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A STABILIZED FINITE VOLUME ELEMENT FORMULATION FOR
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Abstract. A model of sedimentation-consolidation processes in so-called clarifier-thickener units
is given by a parabolic equation describing the evolution of the local solids concentration coupled
with a version of the Stokes system for an incompressible fluid describing the motion of the mixture.
In cylindrical coordinates, and if an axially symmetric solution is assumed, the original problem
reduces to two space dimensions. This poses the difficulty that the subspaces for the construction
of a numerical scheme involve weighted Sobolev spaces. A novel finite volume element method
is introduced for the spatial discretization, where the velocity field and the solids concentration
are discretized on two different dual meshes. The method is based on a stabilized discontinuous
Galerkin formulation for the concentration field, and a multiscale stabilized pair of P1-P; elements
for velocity and pressure, respectively. Numerical experiments illustrate properties of the model and
the satisfactory performance of the proposed method.
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1. Introduction.

1.1. Scope. The sedimentation of a suspension of small solid particles dispersed
in a viscous fluid under the influence of gravity is a well-studied phenomenon and
a fundamental unit operation in industrial applications and wastewater treatment.
In many situations, the solid particles are flocculated artificially or naturally and
form sediment layers that undergo consolidation. The modeling and simulation of
the resulting sedimentation-consolidation process, and density-driven flows in general,
requires the solution of a transport-flow problem in which a convection (or convection-
diffusion) equation for the transport of solids volume fraction is coupled with a version
of the Stokes, Navier—Stokes, or Darcy equations describing the flow of the mixture.
Solving these problems numerically both accurately and efficiently is difficult due to
the combination of strong nonlinearities with the strong coupling between the field
equations and the incompressibility constraint.
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The physical principles of sedimentation-consolidation processes, corresponding
mathematical models, and some numerical tools for their simulation in one or two
space dimensions under simplifying assumptions can be found, e.g., in [9, 12] (see also
[14, 53, 54]). The governing partial differential equations can be written as follows:

(1.1a) 9+ V- F(o,u) = AA(¢),
(1.1b) =V (u(d)e(u) — ApI) = G(9),
(1.1c) AWV-u=0 inQ, t>0.

Here Q C R3 is a given spatial domain, and ¢ is time. The sought quantities are the
local solids concentration ¢, the local volume-average velocity of the mixture u, and
the pressure p. Furthermore, F is a flux vector which is linear in w but nonlinear in ¢,
A is a nonlinear, nondecreasing diffusion function modeling sediment compressibility,
1(¢)e(u) — ApI is the Cauchy stress tensor, where e(u) := 2(Vu+ VuT), X is a given
coefficient, p is a concentration-dependent viscosity function, and G is a forcing term
modeling that local density fluctuations drive the motion of the mixture. The cou-
pling of the Stokes system (1.1b), (1.1c) with the convection-diffusion equation (1.1a)
induces several problems. First, at the discrete level, the convection-dominated na-
ture of the problem results in failure of standard Galerkin approximations. Second,
the method for the coupled problem also must include inf-sup stable discretizations
for the Stokes system and at the same time guarantee (at least locally) conservation of
mass. From a general mathematical perspective, the analysis of (1.1) faces other dif-
ficulties, including degeneracy where A is flat, the possible need to introduce entropy
conditions, and strong assumptions on the boundedness of the coupling terms.

The system (1.1) will be considered in an axisymmetric domain in two space
dimensions along with initial and boundary conditions. This configuration represents
widely used equipment in applications such as clarifier-thickeners in mineral processing
or secondary settling tanks in wastewater treatment and avoids an excessive number
of degrees of freedom, as would be required for a fully three-dimensional flow problem.

This paper develops, implements, and tests a numerical scheme for (1.1). In
our proposed approach, the resulting system is discretized in time by a semi-implicit
backward Euler method and in space by a suitable finite volume element (FVE)
method whose main novelty lies in the formulation of a unified scheme for a coupled
problem, while several FVE methods have been proposed for Stokes and quasi-linear
scalar elliptic problems only; see, e.g., [7, 15, 48]. Besides the finite element (FE)
primal mesh, we introduce two additional meshes on which we discretize velocity and
solids fraction by continuous and discontinuous piecewise linear elements, respectively.
Moreover, since the problem is defined in an axisymmetric setting, we need to employ
weighted Sobolev spaces at both continuous and discrete levels.

1.2. Related work. An important amount of literature is devoted to the de-
termination of exact and numerical solutions of model (1.1) in the one-dimensional
case [5, 10, 12, 26, 27, 28, 29, 55] (this list is far from being complete). In that
setting, only the equation for the concentration (1.1a) needs to be solved, while the
mixture flow velocity is determined by boundary conditions. Only a limited number
of papers, including [11, 24, 30, 37, 40, 41, 49|, deal with the numerical study of
sedimentation-consolidation models in two or three space dimensions.

Fast and reliable numerical methods for related problems in two and three space
dimensions include stable FE methods [37, 49], discontinuous Galerkin methods [18],
finite volume (FV) formulations [5, 11], finite difference schemes [43, 47], and hy-
brid/combined FV-FE methods [16, 20, 33, 46]. The particular concept of FVE meth-
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ods (see [15]) is intermediate between finite volumes and finite elements. The ability
of the numerical scheme to be locally conservative (as that of classical FV methods)
while allowing for the deduction of L? estimates in a rather natural way (as for classi-
cal finite elements) is one of the most appealing features of FVE methods. In fact, the
principle behind FVE methods is as follows. A Petrov—Galerkin type of discretization
of the underlying problem is obtained, in which the test and trial functional spaces
associated to the finite-dimensional problem do not originally coincide. With the aid
of a transfer map, the test space is transformed to match the trial space. In this
approach we further propose the use of two different transfer maps, which will allow
us to project discrete functions defined in standard FE spaces associated to nodes
and elements in a given primal mesh into different spaces associated to a dual and a
diamond mesh. Using some properties of these transfer operators, the resulting FVE
scheme adopts a form similar to the original Petrov—Galerkin formulation, which in
our case corresponds to an edge-based stabilized method. The solution of the coupled
transport-flow problem is then obtained by this final scheme.

In consonance with FE formulations for Navier—Stokes problems, to avoid spu-
rious oscillations in the pressure approximation, inf-sup stable spaces are needed for
the velocity-pressure pair. Among the possible discretizations of these variables, we
restrict ourselves to continuous piecewise bilinear elements enriched with local func-
tions for velocity (u) and continuous piecewise linear elements for the pressure (p)
field (as in the multiscale stabilized method of [2, 48]), whereas discontinuous piece-
wise linear elements are chosen for the approximation of the concentration (¢) field.
In a diffusion-dominated regime, classical piecewise linear finite elements represent
the most appropriate choice for the approximation of ¢. However, for convection-
dominated problems, particular care must be taken to avoid nonphysical oscillations
in ¢, which are likely to occur since solutions of degenerate parabolic equations, which
include first-order hyperbolic conservation laws, exhibit sharp fronts and even shock
discontinuities, which need to be resolved accurately. Such behavior motivates the
use of discontinuous Galerkin elements for ¢. In that approach, no continuity across
the interelement boundaries is required for the approximation functions. However, a
connection between neighboring elements is enforced via a penalty term. Other pos-
sible approaches include the so-called monotone schemes such as upwind procedures
or streamline upwind Petrov—Galerkin methods [32].

Contributions more closely related to the present paper include the work of
Guardone and Vigevano [35], who present a “node-pair” FE method and make the
link with the FV approximation for axially symmetric scalar conservation laws. Kleine
and Reddy [37] study different geometries for settling tanks using a FE method, while
Calgaro, Creusé, and Goudon [16] couple Taylor-Hood finite elements for the flow
equations with finite volumes for a conservation law.

The reduction of three-dimensional problems to axisymmetric ones is addressed in
the early work by Mercier and Raugel [42] (for Poisson problems) and by Belhachmi,
Bernardi, and Deparis [3] and Belhachmi et al. [4] for the Stokes and Navier—Stokes
equations in the primitive variables and by Carneiro de Araujo and Ruas [17] for a
three-field formulation.

Models similar to (1.1) also arise in other applications, including so-called time-
dependent natural convection flows, in which the Navier—Stokes equations are cou-
pled with a transport equation for temperature [21], thermal convection flows [52],
the melting of glaciers [36], aluminum production [31], petroleum reservoir engineer-
ing [50], and nuclear waste contamination [20]. The present numerical method should
therefore be of interest in these applications.
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1.3. Outline of the paper. The remainder of this paper is organized as fol-
lows. In section 2, some preliminaries about notation and the model itself along with
its weak formulation and a discussion on its solvability are presented. In section 3
we derive an FVE method for the numerical approximation of the weak formula-
tion. To this end we first introduce in section 3.1 the appropriate FE spaces for the
approximation of ¢, u, and p in an axisymmetric setting. Then we formulate the
semidiscrete Galerkin discretizations for the axisymmetric versions of the convection-
diffusion equation (1.1a) and the Stokes system (1.1b), (1.1c), respectively (in sec-
tion 3.2). Then, in section 3.3, we proceed to the formulation of the FVE method for
the coupled problem, and we specify in section 3.4 the space-time-discrete scheme.
Section 4 provides several numerical experiments to illustrate the performance of the
method and the applicability of the model, and we close in section 5 with some con-
clusions and comments on current extensions.

2. Preliminaries and statement of the problem.

2.1. Notation. Let R denote an open, bounded, and connected subset of R?,
d = 2,3, with a piecewise smooth boundary dR. We use standard notation for
Lebesgue spaces LP(R), 1 < p < oo, L§(R) = {v € L*(R) : [, vdx = 0}, and
Sobolev functional spaces H™(R), m > 0. In particular L?*(R) = H°(R). We also
write H}(R) = {v € H*(R) : v =0 on dR}, and by n we denote the outward normal
vector to OR. For T > 0, standard Bochner spaces are denoted by LP(0,T; H™(R)).
To distinguish between scalar and vector functions, we will use boldface symbols for
vector functions. Similarly, a function space written in boldface denotes the vector
analogue of the corresponding space of scalar functions.

2.2. Axisymmetric formulation. We are interested in solving (1.1) in a do-
main Q C R3 which is assumed to be invariant by rotation around a vertical axis
(see Figure 1(a)). To this end, we rewrite (1.1) in cylindrical coordinates (r,#6, z).
Furthermore, 2 denotes the half cross section defined by (r,0, z) (see Figure 1(b)), on
which we want to solve the problem. Since an axisymmetric scalar function § defined
on depends only on r and z, it is possible to associate to § a function s defined
on Q such that s(r, z) = 5(r,0,2). If a vector field ¥ defined on Q has zero angular
component, then a vector field v = (v,, v,) can be associated to it such that o, = v,,
and ¥, = v,. This assumption corresponds to a so-called nonswirling flow regime,
in which the datum and initial conditions have zero angular component [6]. In this
context, the operators V,, V- and the tensor &, are defined by

Orv,  Opv,

0,v, 0,v (vav + va'vT)a

Vav = [

N~

} , Va-v:i=0.v,+ %&(rvr), éa(v) =

and for a scalar field s we write Vas = (9,5,0,5)T and Aas = r=10,(r0,s) + 0?s.
Then, the nondimensional governing equations read

(2.1) O+ Va-F(p,u) =Aa(A(¢)) inQ, ¢>0,
(2:2) ~Va - (1(d)ea(u)) + AVap = G(¢) in Q,
(2.3) AVa-u=0 in Q.

As pointed out in [6, 17], to ensure that the model obtained by rewriting the
original problem as (2.1)—(2.3) is consistent, we need to suppose axisymmetry not
only of the domain but also of the relevant phenomenon under study. This means, in
particular, that the flow spreads radially through the domain Q.
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Fic. 1. (a) Sketch of a three-dimensional simplified clarifier-thickener unit Q). Here z represents
a symmetry azis. The disks I'in and Touy and the cylindrical strip T'c are the respective inflow,
underflow, and overflow portions of the boundary 0 of Q. (b) Schematic view of the azisymmetric
domain 2. The boundary T's represents the symmetry axis v = 0, [y, is the inflow, Tout is the
underflow, and I'c is the overflow boundary. In real-world applications, the bottom is of comical
shape (as shown here) for ease of discharging sediment through the underflow opening, and the
material (usually clear liquid) leaving through the overflow is collected in a circumferential open
channel (not modeled or depicted here).

The field variables are the local volume fraction of solids (in short, concentration)
¢ = ¢(r, z,t) > 0, the volume average flow velocity of the mixture (in short, velocity)
u = u(r, z) € R% and the total pressure p = p(r,2) € R. Clearly, u and p also depend
on time, but we drop this explicit dependence to emphasize that the same Stokes
problem (2.2), (2.3) is solved for each ¢t > 0. As usual, (2.3) implies that the bulk
suspension is regarded as an incompressible fluid.

2.3. Flux vector, diffusion term, viscosity, and body force. The flux
vector in (2.1) is given by F(¢,u) = ¢u + fox(@)k (cf. [12]), where k is the unit
vector pointing in the direction of gravity and fpx is the Kynch batch flux density
function [38] describing hindered settling. This function is assumed to satisfy fp(0) =
Sfok(dmax) = 0 and fik(¢) > 0 for 0 < ¢ < Pmax, where 0 < Ppax < 1 is a maximum
concentration. Specifically, we choose here the expression [45]

Uoo®(1 — @/ Pmax)™B  for 0 < ¢ < Pmax,

. nus > 1
0 otherwise, ’

fox(@) = {

where 1y, > 0 is the settling velocity of a single particle in an unbounded fluid, and
we choose the exponent nyp = 2.

The term AA(¢) models sediment compressibility, where the integrated diffusion
function A is given by

@ o
40 = [atoas, where a(o) = 2O,

Here o5 and gf are the solid and fluid mass densities, respectively, g is the acceleration
of gravity, and o/, is the derivative of effective solid stress function, o., which is here
assumed to satisfy

(2.4) oL (0) =0, o.(¢)>0 for¢>0.
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Since a(0) = a(Pmax) = 0 and a(¢p) > 0 for 0 < ¢ < Gmax, (2.1) is a two-point de-
generate parabolic PDE, which degenerates into a first-order hyperbolic conservation
law for ¢ = 0 and ¢ = Pmax. If in addition a(-) is assumed to be continuous, then in
particular

Aa(A(P)) = Va- (a(@)Vag)  for ¢ € (0,1],

which is a useful asset in developing the numerical method.

Remark 2.1. Tt is frequently assumed that o.(¢) = 0 not only for ¢ = 0 but
for 0 < ¢ < ¢, where 0 < ¢c < Pmax is a critical concentration. In that case, (2.1)
is strongly degenerate, and the well-posedness of this equation requires an entropy
solution concept. Even though the development of our method is based on two-
point degeneracy, numerical experiments demonstrate that it handles the strongly
degenerate case as well; see section 4.3.

The forcing term G(¢) in (2.2) models that the mixture flow is driven by local
fluctuations of ¢, and therefore of the density of the mixture, besides the inflow and
discharge boundary conditions. More specifically, we put G(¢) = —Aogk.

Finally, 11(¢) denotes a generalized local concentration-dependent Newtonian vis-
cosity function, where we assume that there exist constants fimin, fimax > 0 such that

(25) Hmin < ,LL(S) < HMmax for s € Ry.

A suitable choice is 1(¢) = (1 — ¢/dmax)~? [44], where the parameter ¢y is a second
(nominal) maximum concentration. If we set g?)max > Pmax, then (2.5) is indeed valid.

2.4. Initial and boundary conditions. We are interested in solving (2.1)-
(2.3) for ¢t € [0,T] in the spatial domain €2, which represents the axially symmetric
cross section of the clarifier-thickener unit (see Figure 1(b)). The model is comple-
mented by initial data for the concentration ¢ and the velocity w, and boundary
conditions are set as follows. The vessel is continuously fed through the inflow bound-
ary I'y, with feed suspension, which corresponds to a given profile for the velocity wiy,
and a feed concentration ¢i,. On 'yt we prescribe a volume underflow velocity woyt
at which the thickened sediment is removed from the unit and zero-flux conditions
are assumed for ¢. On the symmetry axis (interior of the intersection of the whole
boundary with the axis represented by r = 0) denoted by I's we set zero velocity in
its perpendicular direction, and we assume that the flux component normal to the
symmetry axis vanishes, i.e., (F(¢,u) — a(¢)Va¢) -n =0 a.e. on I's.

On the remaining part of 92 we specify no-slip boundary data for the velocity
field (u = 0) and zero-flux boundary conditions for the concentration. The datum
u =wup € L3(T') on I' = 9N summarizes all boundary conditions for velocity, whose
specifications depend on the particular example and will be made precise in section 4.

2.5. Weak solutions. To derive a weak form of (2.1)—(2.3), we recall the defi-
nitions of some weighted Lebesgue and Sobolev spaces (see, e.g., [4]). For a € R and
1 <p < o0, let LP(§2) denote the space of measurable functions v on €2 such that

ol gy i= [ lolPr drdz < co.
« Q

Obviously, for p = 0o, LY () coincides with L>(£2). We also use the space

L3 () = {qeLf(Q): /qudrdz:O}.
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The scalar product in L2 () is denoted by (-, )a.0. Moreover, H™(f2) is the space of
functions in L2 (€2) whose derivatives up to order m are also in L2 (1), and we denote
by H, ng(Q) its restriction to functions with null trace on I'. Its counterpart for general
(nonhomogeneous) Dirichlet data is denoted H[7'(£2). Finally, we introduce the spaces

VI (Q) == {we H(Q): we L> (D)}, Vll)FS(Q) = {w e V{(Q): w=0onT},
S:=H{(Q), V:=Vr(Q) xH{ ().

The space of axisymmetric vector fields in [H 1(())]3 with zero angular component is
isomorphic to Vi'(€2) x H}(Q) and the space of axisymmetric vector fields in [H(€2)]?
with zero angular component is isomorphic to V (see, e.g., [3]).

Multiplying (2.1), (2.2), and (2.3) by r and smooth functions s, v, and ¢, respec-
tively, and integrating by parts over €, which means that for any function b € L?(1),

- / Va - (bVau) - vrdrdz = / <bVau : (Vav)r + éurvr> drdz for w,v € H{ ((Q),
Q Q r ’

yields the following weak formulation in the axisymmetric case: For 0 < ¢t < T, find
(¢(t), u,p) = (¢(t),up + u,p) € S x V x Q, with @ € H ;(€2), such that

/satmdrdz—/(F(¢,u)—a(¢)va¢)-vasrdrdz+/ r¢sdo
Q Q

Fin
+ /
Din

(2.6) /Qu(@ea(u) i &a(v)rdrdz —|—/ 1u(¢)urvr drdz

Tl

rs(F(¢,u) — a(¢)Vad) - ndo = / rdinsdo Vs e S,

Tin

—)\/pVa-vrdrdz:/G’(¢)-vrdrdz Vv € Hi ,(Q),
Q Q ’

)\/ qVa-urdrdz=0 VqeQ,
Q

and ¢(0) = ¢¢ a.e. in 2. Notice that the boundary condition ¢|r,, = ¢, is imposed
weakly in the first equation of (2.6), whereas the condition u|sq = up is included by
means of a lifting.

LEMMA 2.2. Let 0 < ¢g < dmax, P0 € L™(Q), and assume that A(s) €
L*(0,T; HL(Q)) for s € S and A(¢w) € L*(0,T; H'/?(I'y,)). Then, there exists a
unique solution to (2.6), satisfying $(0) = ¢o, ¢ € L*(0,T; HL(Q))NC([0,T]; L3(Q)),
and Oy € L?(0,T; (HL(2))).

A proof of Lemma 2.2 can be developed using the following sketch. First, the
following closed subset of L?(0,T; L3(12)) is considered:

W:={¢ € L*(0,T;L}(Q)) :0< ¢(r,z,t) < ¢max for ae. (r,z) €Q, t >0},

i.e., a maximum principle is assumed for ¢. In the following step, the degeneracy of a(-)
at ¢ = 0 is treated by defining an auxiliary system related to the term a.(¢) = a(¢)+¢

with € > 0. We then fix ¢ = ¢ € W. The coupling terms u(¢) and G(¢) are
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then uniformly bounded, which implies that the usual bilinear form associated to the
diffusive term in (2.2) is continuous and coercive in V intersected with the space of
(axisymmetric) divergence-free functions, and hence by the Lax—Milgram lemma we
immediately obtain existence and uniqueness of solution w. A unique pressure p € @
follows from the well-known Babuska—Brezzi condition satisfied for the pair ¥V x Q. As
a corollary we obtain that for a fixed ¢ > 0, the mentioned solution satisfies an estimate
of the form [lully, + |[pl[o < €, where C depends only on |65, tmax, and |©2|. Next,
we fix (u,p) = (uw,p) as the unique solution of (2.2), (2.3). The forms of a.(-) and
F(-,u), along with a classical result from [39], allow us to state the unique solvability
of the auxiliary system related to the uniformly parabolic quasi-linear problem (2.1)
for a fixed (w,p) with boundary data ¢ = ¢, on Iy, zero normal flux on Ty, and
zero-fluxes elsewhere (depending on u). Next, a solution map © : W — W is defined
such that ©(¢) = ¢, i.e., ¢ is regarded as the solution of (2.1) associated to (u,p).
This operator is well defined (in the sense that the maximum principle implied by W
holds for ©(¢)) and we can prove its continuity and compactness by demonstrating
that sequences of regularized solutions satisfy a comparison principle, are bounded
in L>(0,T;L3(f)), and are relatively compact in L*(0,7T; L}(2)). Finally, by the
Schauder fixed-point theorem one concludes that it admits a fixed point. The proof
is complete after taking the limit £ — 0.

3. Approximation by finite volume elements.

3.1. Axisymmetric FE setting. In what follows, 7, denotes a locally regular
partition of the polygonal domain 2 into triangles K of diameter hg, that is, we
assume that

3C >0: VKeT,: Ch% <|K|<h%.

The level of refinement of 7}, is defined by the mesh parameter h := maxgeT, {hK},
and N = {s; : j =1,...,N} is the set of nodes of T;. By &, we denote the set of
edges or interelement boundaries of Ty, while 8};“ will denote the edges of 7}, that are
not part of 9. As usual, C' will denote a generic constant C' > 0 that is independent
of h. For simplicity, meshes are kept fixed in time.

By Sh, Vi, and Qj, we will denote the FE spaces for the approximation of ¢, u,
and p, respectively, which in our setting will be defined as follows:

Spi={s € L}(Q): s|x € P1(K) VK € T},
V), ={vevnC’Q): vk €eP1(K)* VK € Tp },
Qn:={qe L} ((Q)NC°(Q) : q|lx € P1(K) VK € Tp,}.

Notice that Dirichlet data are imposed for w in the definition of Vj,. As usual, P,,(R)
denotes the space of polynomial functions of total degree s < m defined on the set
R (in the coordinates r and z). In addition, for a scalar function w € S, we let
[w]F denote its jump and {w}r denote its mean value defined at the edge F' € &
separating the neighboring elements K+ and K~. That is,

[wlr = w|xg+ —wlg-, {whr:=(w|g+ +w|x-).

N~
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For boundary edges F' € &, N OS2, these definitions simply reduce to
[wlF = {w}Fr = w|F.
We also define the test space
V) = {v e Hi () NC°Q): v|x € P1(K)* VK € T}

Some approximation and interpolation properties associated to polynomial functions
in weighted Sobolev spaces can be found in [6, Chapter V].

As is well known, the well-posedness of a Galerkin discretization for (2.1)—(2.3)
will depend crucially on the choice of the finite-dimensional spaces. The discrete
inf-sup condition states that there exists n > 0 not depending on h such that

AqpVa - vy drdz
Q

sup >0 ||QhHL2(Q) ) qn € Qn-
oneVi [vnll g1 )2 !
Our particular choice Vi, = V?L and Qh = @y, does not satisfy such a condition and
therefore a stabilization method is needed (see section 3.2).

In what follows, starting from the weak formulation (2.6) we derive a Galerkin
discretization of the coupled problem. Although the scheme in section 3.2 is not used
for implementation, its derivation is useful to motivate the formulation of the final
FVE scheme (in sections 3.3 and 3.4).

3.2. Galerkin FE formulation for the coupled problem. First, consider the
following local semidiscrete Galerkin problem associated to (2.1) for a given element
K e Ty

d
at Jx

+ /8[(7"8}1 (F(¢n(t),un) — a(¢n(t)Vadn(t)) -ng do =0 Vs, € Sh,

snén(t)rdrdz — / (F(¢n(t), un) — a(dn(t))Vadn(t)) - Vas,rdrdz

K

where no boundary data have been considered yet. By the choice of the discrete
space Sy we do not impose continuity across interelement boundaries, and for such a
discontinuous representation of functions of Sj,, two values of the unknown ¢y, (t) exist
over a given edge F' C 0K . To handle this situation, the discontinuous boundary flux
term is replaced by the Lax—Friedrichs numerical flux across F' € &, defined by

~ {F(on(t),un)},-nr—oplont)] if F e &,
F(én(t),un) np = F(¢n,un) -np if I C Iip,
F(on(t),un) nr otherwise,

where we define (cf., e.g., [22])

o= / k) - .
Op (u + O<gl<a¢§mx fox(9) ) nr
In addition, the Dirichlet boundary datum ¢, = ¢, on Iy, is imposed weakly (see,
e.g., [25, 34]) and a general stabilization procedure is applied, where the additional
terms are similar to those in [13, 22].
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Next, the discretization of (2.2), (2.3) follows the lines of [48] in the context of
the well-known variational multiscale methods [2, 32]. In short, the trial functional
space for w is enriched with a space of functions that do not vanish on the element
boundaries and which are split into a bubble part and a harmonic extension of the
local boundary condition. After a static condensation procedure, the enriched part is
completely identified, and so the original discrete problem can be recast as a stabilized
method in terms of classical piecewise linear elements for both velocity and pressure.

Summarizing, we may state the proposed Galerkin FE formulation associated to
the weak formulation (2.6) of the coupled problem (2.1)—(2.3) as follows. For ¢ € (0,77,
find (¢n(t), wun,pr) € S X V5, X Qp, such that

(3.1)
 (On(0), 1), — (F(0n(0), un) — alén (1)) Vachu (1), Vasn),
_ 0
# 3 (Flont).w) e~ {alonO)Vaont) e} + 2L Eon(0] o]

Fegprt

_nz< )] r, {a(én(t)) Vasn, - nF}> > <Z_§¢h(t)’sh)1,F

Fegint LF  FCOKMIjy N F

¢
- Z [n(¢inaa(¢h(t))vash -nF)l,F - <Z_§¢in75h)
F

Fe&pnlin

1,F

:| =0 Vsp € Sy,
1F

(1(dn(t))ea(un), €alvn)); o + (1(Sn(t))unr, var) ;g
— X(ph, Va - vh) - (G(<l5h(t))avh)17Q

(3.2)
+ oy —5 [1(on (1) unlr, [1(dn (1)) vnlF), p =0 You € Vi,
Fegm F
2
(3:3)  AansVa-un), o+ > ff (AVapn — G(6n(t)), Vadn), ;c =0 Van € Qn.
Ker, K

Here hp stands for the one-dimensional measure of F, mf, is a stabilization parameter
(constant along F') for the concentration field, to be adjusted appropriately, and the
parameter 7 assumes the values 0,1, —1 for the incomplete, symmetric, and nonsym-
metric interior penalty Galerkin methods, respectively. The remaining stabilization
parameters are chosen as K = fmax and /4:5’( = 2Umax, and wy , denotes the r-
component of any discrete function wy. Edge-based discretizations of this type help
enforcing the global mass conservation property (see [13]). At time ¢ = 0, the approx-
imate concentration ¢, (0) is constructed by taking the L?-orthogonal projection of
(b() onto Sh.

3.3. The FVE method. For the formulation of the FVE counterpart of (3.2),
(3.3), we require the so-called dual partition 7,* of €2, which is defined based on the
primal mesh 7;, by constructing nonoverlapping control volumes K} surrounding the
node s; € N; (as sketched in Figure 2). The control volumes can be introduced in
several different ways, but we stick to barycentric dual meshes. In a given triangle
K € Ty, we select its barycenter b and create segments joining by with the midpoints
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F1a. 2. Sketch of triangular elements in the primal mesh Ty, interior node-centered control
volumes of the dual mesh T (in dashed lines), and triangular elements of the diamond mesh T,
(in dashed-dotted lines). A control volume K; surrounding a node sj, and an element Kr of the
diamond mesh are enhanced.

mp of each edge F' C OK. This operation is performed for all elements in K, and in
this way one control volume K} will be associated to the vertex s;, which is formed
by all subelements sharing the vertex s;.

Since in section 3.2 we approximate the ¢-field by discontinuous finite elements,
a further mesh is needed for the FVE formulation associated to (3.1). We refer to
that mesh as the diamond mesh (although it does not correspond exactly to the
classical concept of diamond meshes arising in the construction of discrete duality FV
methods, such as the one in [1]). As we will see later, both the dual and diamond
meshes will be needed only for the formulation of the FVE scheme, but no longer
at the implementation stage, since the terms containing the contributions on 7, are
actually lying on the edges of 7j,. The diamond mesh 7, is constructed simply by
joining the barycenter bx of the generic triangle K € 7Tp, with the vertices of K,
forming in this way three subtriangles Kp, for F' C 0K, for a given K € T;,. We now
define some finite-dimensional spaces associated to 7, and 7, . First, we define

Z = {’U S L%(Q) . ’U|K]% S ]P)Q(K;)Q VK; S 771*7

v|K; =up if Kj* is a boundary Volume},

spanned by {x;(1,0),x;(0,1)};, where x; is the characteristic function of the control
volume K7, that is,

(z) = 1 ifxe K7,
Xt =9 otherwise,

and up is a generic Dirichlet datum for velocity. Second, we introduce the space

Sp = {s € L}(Q) : s|k, € Po(Kr) VKp € T}, }.
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Moreover, we introduce the transfer operator P : V), — Vj (cf. [15, 48]), which for
all vy, € Vj, is defined as follows. If

x) = th(si)qbi(a:) for z € ,

where {¢,}; is the canonical FE basis of V},, then

Nh
Prop)( th (si)x;(z) for z € Q.

We also define the bijective map Ry, : Sp, — S}, by [7]

1
Rh5h|Kp:h_/3h|Kpd0' for sp € Sy, KF€7;L/.
FJF

The discrete problem associated to the variational formulation is obtained by
multiplying (2.1) by Rpsp € Sy, integrating by parts over each K € 7/, multiplying
(2.2) by Ppvp, € Vj, and integrating by parts over each control volume K} € 7%, and
multiplying (2.3) by ¢ € @Qp and integrating by parts over each element K € Tj,.
This gives the following (unstable) semidiscrete Petrov—Galerkin interior formulation:
For 0 <t <T, find ¢p(t) € Sh,up, € YV, pn € Qp such that

GO0 0- X 3 [ s (F @) - alon©)daon(t)rdo =0,

KeTn KrCK aKF

Np, Np,
— Z/ w(op(t))v], - Opup rdo — /\Z/ prvy - nrdo = (G’((bh(t)),vZ)l_Q,
i=1 7/ OK; i=1 79K} ’

/\Zuh(si)/ gnmrdo =0 Vs, € S, v5 € Vi, qn € Q.
i=1 oK

i

To recast this formulation as a Galerkin method where the trial and test spaces
coincide, we employ the next lemma.

LEMMA 3.1. The following equations hold for all wp, vy € V?I, gn € Qp, and
fh, Sp € Sp:

(3.4) - Z”“Si) /M; 11(r, 2)Opup r do

= (p(r, z)é:a(uh),‘s‘a(’vh))LQ + (p(r, z)uh?r,vh_,r)ilﬂ,

(3.5) th(si)/a gnmrdo = (qn, Va - vn), o
K* )

i=1

-3 > Rnsna(&n)On&nrdo

KeT, Kpck ¥ OKr

= (a(&)Vans Vasn) o + D (0(6n)0n&h Rusn — ), -
Fegim
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Proof. For (3.6) it suffices to apply [19, Lemma 2.2] noting the continuity of
a(&n)Vaép - 1, whereas (3.4) and (3.5) follow as in [48]. O

In light of Lemma 3.1 we conclude that the semidiscrete stabilized FVE approxi-
mation of (2.1)—(2.3) (whose solution we will also denote by ¢y, up, pr) is the solution
of the following problem: For 0 < ¢t < T, find ¢n(t) € Sh,un € Vi, pn € Qn such that

(o0, Rusn), g~ (Fon(8), un) — alon (1) Vabn (1) Vas),

5y ¢>
=S (F(aﬁh(t),uh)-w—{awh(» V() e o o wh()ﬂF,ﬂRhsh]}F)

Fegilnt 17F
P
-0y ([[¢h Fy {a(on(t))Vasn -nr} ) + ) <h—§¢h(b‘),73h8h)
Feg}ilm 1,F FCOKNTin F 1,F
K
= > | 1(Sms a(n(t)) Vasn ME) - h_2¢in7Rh5h =0 Vs € Sp,
Fe&,MTiy F LF

((on(8))ea(un), ea(0n)) o + (O tnr, 1) g
— A(ph: Va v4), = (G(6n(1), Pron) |

+ ) —; (o (D)ea(un) - nele, [u(dn()ea(n) -nrlr), =0 Vou € VS,

Fegprt
h2
Man:Va-un), o+ Y = (AVapn — G(¢n (1)), Vadn), x =0 Van € Qn.
i KeTy, K:K

By virtue of Lemma 3.1 the two last schemes are equivalent up to stabilization terms
that vanish asymptotically.

3.4. Space-time discrete scheme. We introduce a variable time step At"™ =
t" Tt —¢" and partition the time interval as [0,...,t",...,T]. Furthermore, by w™ we
denote the quantity w(-,¢"). Then, to advance the solution from ¢" to t"*1 we solve
the time discrete problem by the following splitting (or segregating) method (we here
consider the incomplete interior penalty method):

1. Given ¢}, compute u} and p} by solving the Stokes problem

(ﬂ(gb?l;)ea(u;;)a sa(vh))l)g + (M(%L)Uz,m Uh,f’) ~1,Q
- A(pZJ Va : vh)l Q (G(QSZ)athh)l)Q

+ Z [[u o)ea(up) - mrlr, [1(d})ea(vn) - nplr), , =0 Vou €V},

FeS‘“t

hQ
(qhav Uh 1ot Z /\vaph G(¢n), th) =0 Vgn € Qn.
K€7—h
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2. Given u} and pj computed in step 1, obtain QSZH from the following scheme
associated to the parabolic problem:

n+1 n
B ¢ n n n n
(hfh’Rhso - (F( h+17uh) - a(%)va%“’ Vash)l,n
1,Q

)

’%?‘ n+1 ﬁ?’
+ § : 12 én s Rusn + 7z ®in, Rnsnh
Fe&,MMiy ~ F LF F LF
(3.7)

£ 3 (Pl ne - {a@l)Vae ! nrl,
Fegint
K®
+ —5[[7?,}1(;524_1]]}7, [['Rhsh]]p> =0 Vs, €S
Wi 1,F
Computational efficiency is the principal motivation for our procedure to use a

segregated solution algorithm to compute ¢, u, and p. Furthermore, to reduce the
complexity of the tangent system needed by Newton’s method at every time step (we
found that in almost every time step, fewer than 10 iterations are enough to achieve
convergence), the time discretization (3.7) corresponds to a semi-implicit procedure
(the terms a(¢p) are taken in the previous time step), and so the nonlinearity is
carried only by the term F(-,u}). We also mention that the first term in the left-
hand side of (3.7) could be replaced by & (5 (t),sn)1,0 (as is done, e.g., in [51] in the
context of the transient Stokes equations, with the objective of a classical convergence
analysis). Notice that the stabilization terms for u and ¢ in the FVE formulation
lead to a nonsymmetric linear system, which at each time step we solve by means of
the unsymmetric multifrontal direct solver for sparse matrices (UMFPACK [23]).

4. Numerical results. We report in this section the results of three numer-
ical tests computed with the proposed formulation. Before solving (2.1)—(2.3) for
the clarifier-thickener unit, we consider in Example 1 a simple linear model prob-
lem (in Cartesian coordinates) with an explicit exact solution in order to test the
(spatial) accuracy of the numerical method, and in Example 2 we consider a station-
ary state test for which we can verify the experimental order of convergence of the
axisymmetric discrete formulation. Example 3 will present a pair of simulations of
the full sedimentation-consolidation model in axisymmetric coordinates done under
the assumptions of pointwise degeneracy of the diffusion coefficient as implied by
(2.4) and under strong degeneracy (Examples 3a and 3b, respectively). In Example 4
we consider again pointwise degeneracy, axisymmetry, and the full sedimentation-
consolidation model but replace the clarifier-thickener setup by a realistic secondary
settling tank studied in literature.

4.1. Example 1: A model problem in Cartesian coordinates. For the first
example, presented to evaluate the FVE formulation and to validate the implemented
code, we define Q := (—1/2,1/2)? and consider the flat two-dimensional problem of
seeking u = (uy,u2)T, p, and ¢ such that

8t¢+ % F(¢7 'LL) = aA¢7
(4.1) —pAu + AVp = G(9),
AV u=0,
endowed with boundary conditions as follows: slip conditions (u - n = 0) are applied
for w on all parts of 90, while for ¢ we prescribe zero-flux boundary conditions. The
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F1a. 3. Ezample 1: Approzimate solutions for concentration, pressure field, and velocity com-
ponents at time t = 1 obtained with the FVE method. In this case, Uz p,uy pn € [—0.8409,0.8408],
¢n € [0,0.5401], and p;, € [—5.28685,5.28685].

o/
)

time interval is ¢ € [0,1]. The initial conditions are
up =0, ¢o= —cos(mx)cos(my),
and the coefficients in (4.1) are chosen as

tant
G = (0, —4n* sin(mz) cos(my) sint)T, F(p,u) = du, a= %, p=x=1.
s
This choice leads to the vanishing of the convective term, i.e., V- F(¢,u) = 0. The
exact solution is

¢(z,y,t) = — cos(mzx) cos(my) cost, p(z,y,t) = —2msin(wz) sin(ry) sin ¢,
up(x,y,t) = cos(mwz) sin(wy) sin ¢, ug(z,y,t) = — sin(wx) cos(my) sin t.

The errors to be studied are computed at the final time 7' = 1 for u, p, and ¢.
The numerical solution is depicted in Figure 3. We focus on the accuracy in space
only, so we apply the numerical method on several successively refined meshes. Let vy,
and g;, denote the FVE approximations of v € H*(Q) and ¢ € H'(Q), respectively.
We define relative errors by

v —vnllge v — vn| g
eo(v) :== Wmv e1(v) = ﬁfl(ﬂ),
(42) v L2(Q) le(Q)
g — anll2(q) g = anl g0
eo(q) == 7” ) e1(q) == ————,
Q||L2(Q) |Q|H1(Q)

and let ri(v) and r,(g) denote the experimental rates of convergence given by

_logla®)/a®) o losler(@)/éa)
W= ey T T gy S

where ex and éj stand for the corresponding errors obtained for two consecutive
meshes of sizes h and h. Figure 4 indicates that the method approximately attains an
O(h?/?) order of convergence for ¢ in L?, whereas an O(h) order is achieved for u in
the H'seminorm and for p in L2. In the context of Stokes problems, with the chosen
FE spaces these rates for u and p are optimal (see, e.g., [48]), and the convergence
rate for ¢ is also in accordance with previous results for linear problems [8].

Obviously, the regularity of the exact solution, along with the simplification of
the model problem (notice that considering the uncoupled transport equation, the
flux function is linear) are able to provide these rates, which are not recovered by the
FVE approximation of the original problem (2.1)-(2.3).
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Fi1c. 4. Ezxample 1: Convergence histories for the FVE method applied to the reduced model
problem. The displayed quantities correspond to relative errors as defined in (4.2).

0.5[m]

Fic. 5. Ezamples 2 and 3: Sketch of coarse primal and dual meshes for a clarifier unit.
The inflow, outflow, and overflow boundaries I'in, Tout, ['c have lengths of 1.5, 0.5, and 0.5 meters,
respectively. All other dimensions are also depicted.

4.2. Example 2: A steady-state problem. As a second example, and to as-
sess the correctness of the axisymmetric scheme, we compute the steady-state solution
the Stokes problem (2.2), (2.3) in the domain of interest. A coarse mesh T; and the
corresponding dual mesh 7, are indicated in Figure 5. (The diamond mesh 7, is
not drawn since it is not needed in the actual computations.) The dimensions of the
clarifier-thickener are in the usual range for center-pie-like settling tanks.

Zero radial velocity is imposed on I'y, and a parabolic profile is used as a boundary
condition for w on I'y,. On I'¢ and I'yy we apply parabolic profiles proportional to
the size of the boundaries corresponding to the cylindrical unit, and on the remainder
of the boundary we impose no-slip conditions.

In Figure 6 we present the numerical solution of the Stokes flow. To obtain approx-
imate convergence rates for the numerical scheme, we compute approximate errors by
using as a reference solution (replacing the unavailable exact solution) the numerical
approximation obtained on highly refined primal and dual meshes (93,223 vertices
and 184,972 elements in 7). These errors are computed in the norms associated to
the spaces V and @, that is,

ef(v) = . eg(q) ==

)

|U|H%YF(Q) ||Q||L§(Q)

and r{(u), r§(p) denote the corresponding convergence rates. According to Table 1,
rates of convergence close to first order are obtained for w in the V-norm and for p
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F1Gc. 6. Ezample 2: Steady-state solution of problem (2.2)—(2.3). Velocity (top) and pressure
field (bottom). In this case, u,p € [—4.86 x 1075,5.70 x 1075], u, 5 € [-1.92 x 1074,2.11 x 1077],
and py, € [—2.04 x 107%,2.06 x 1075].

TABLE 1
Ezxample 2: Number of interior nodes in the primal mesh Ny, approximate errors computed
with respect to an FVE solution on a fine mesh, and experimental convergence rates for the steady
state problem (2.2)—(2.3).

Np ef (u) 71 (u) eg(p) 76 (p)

113 2.3016 x 10~2 - 6.3122 x 10~3 —
403 1.0348 x 1072 0.9940 2.8831 x 10~3  0.9972
1508  4.7215 x 1073 0.9762 1.2914 x 10~3  1.0239
6030  2.0368 x 1073 0.9947 5.5939 x 10~%  0.9673
22931  8.9410 x 10~%  0.9968 2.3896 x 10~%  0.9816

in the @Q-norm. This behavior is expected for FE approximations of axisymmetric
Stokes equations (see [3, Theorem 5]), although the result in [3] (based on some of
the regularity assumptions of [6, section IX.1]) is valid for convex domains only.

4.3. Example 3: A clarifier-thickener simulation. We now present the
numerical solution of (2.1)-(2.3) for the clarifier-thickener unit. From now on, all
component velocities are given in [m/s] and pressure in [Pa]. The model and numerical
parameters are displayed in Table 2. In principle, the stabilization parameters KJ?,
(kh,)71, and (k%)~! are unfortunately problem dependent and should be tuned so
that they are as small as possible while maintaining stability.

Example 3a. The initial datum for ¢ is ¢ = 0 in the whole vessel. The boundary
conditions are set as follows. The volumetric bulk flow rate through the generic part
of the boundary T; (of the three-dimensional domain) is given by @Q; = ffi u - ndo,
where in cylindrical coordinates @, = u,, @, = u, and @y = 0 (see section 2.2).
At the inlet Ty, we set wui, = (0, _uz,in)T, meaning that the vessel is continuously
fed with feed suspension of concentration ¢y,. This gives Qi, = —uz,in|1:‘in|, where
|1:‘in| =7li]? = %’T [m?] is the area of the inlet boundary [y, At the outlet Doy
we prescribe u;, = (0, —uz,out)T, which indicates that the concentrated sediment is
removed from the unit at a volume underflow rate

Qout = uz,out|fout| with |fout| - 7'r|rlout|2 - [m2]

T
4
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TABLE 2
Ezxzamples 3 and 4: List of geometrical data, and model and numerical parameters considered

in the simulations.

Quantity

Values

Density difference
Size of the unit
Example 3
Example 4
Maximum volume fraction and gel point
Settling velocity in an unbounded medium
Gravity force
Prescribed concentration at inlet
Absolute bulk boundary velocities
Example 3
Example 4
Other model parameters
Meshsize and time step
Example 3
Example 4
Stabilization parameters

Example 3
Example 4

Ap = 1562 [kg/m3]

Sectional area = 70.5 [m?] (Figure 5)
Sectional area = 53.3 [m?]
$max = 0.9, pc = 0.1
Uso = 2.2 X 1073 [m/s]

g = 9.81[m/s?]
¢in = 0.08
Uz,out = VUz in, Urofi = gs__gyuz,in
Uzin =2.9x 1073 [m/s], v =0
Uprin = 1.9 X 1072 [m/s], v = 0.75
a=58=25X=100=5x10"2

h =0.1428 [m], At = 1.0[s]
h = 0.0961 [m], At =5.0]s]
[ 1

Kp = 13, K3 = 100,
kb, =200
kb =500

On the symmetry axis I'y we put u,, = 0. Consistently with the global conservation
of mass of the mixture we set

s 97
Qoﬂ - Qout - Qin - uzg:)utZ + uz,inza
and then, from Qo = Uy on|Tec| and || = 27R|T| = 137 [m?], at the overflow we
impose uofi = (urof,0)T, where

uz,out |fout |
T

Uy o = uz,ir~1|rin| _ 9 i
’ T
On the remainder of 92 we enforce a no-slip condition (homogeneous Dirichlet bound-
ary data for u) and zero-flux boundary conditions for ¢. The primal mesh 7;, used in
the experiments consists of 8708 elements and 4516 interior nodes. As the time step
we use At = 1.0[s], which is sufficiently accurate to capture the main phenomena of
the problem.

Figure 7 shows the volume fraction profiles and Figure 8 shows the corresponding
velocity fields at different times. After ¢ = 1000 [s], the effect of sedimentation is
clearly noticed since ¢ increases toward the bottom of the tank. The concentration
at the effluent remains equals to zero until ¢ = 10 [h].

Example 3b. In light of Remark 2.1 we perform an analogous simulation with a
diffusion function A that vanishes for ¢ < ¢.. Condition (2.4) is replaced by the choice

0 for ¢ < ¢,

o(¢) = o ( K3

"6 \ g

Figure 9 presents the concentration profiles and Figure 10 presents the corresponding
velocity fields at four different times. The sedimentation front is now sharper than

op, >0, 0<¢p.<I1.

a—1
) otherwise,
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Fic. 7. Ezample 3a: Snapshots of the numerical solution for the clarifier-thickener prob-
lem: concentration profiles at times t = 100 [s] (top left), t = 1000 [s] (top Tight), t = 8000 [s]
(bottom left), and t = 30,000 [s] (bottom right). The contours correspond to ¢ = 0.01,
0.02,...,0.09,0.1,0.12,0.14, . . . , 0.26.

ur,p € [—0.0273,0.0196] uz,p € [—0.0487,0.0096]

Uz p € [—0.1600, 0.0244]

uz.n € [—0.0289,0.0024]

uz.n € [—0.0289,0.0137]

2 %

Fic. 8. Ezample 3a: Snapshots of the numerical solution for the clarifier-thickener problem:
velocity components (radial and height, in left and right columns, respectively) at times t = 100 [s],
t = 1000 [s], t = 8000 [s], and ¢t = 30,000 [s].
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0.20 0.26

Fi1c. 9. Example 3b: Snapshots of the numerical solution for the clarifier-thickener problem
with degenerate diffusion. Concentration profiles at times t = 100 [s]| (top left), ¢ = 1000 [s] (top
right), t = 8000 [s] (bottom left), and t = 30,000 [s] (bottom right). The contours correspond to
é =0.01,0.02,...,0.09,0.1,0.12,0.14, . .., 0.26.

u,,p € [—0.0270,0.0195] uz,p € [—0.0493,0.0095]

<

uz.p € [—0.1599,0.0242]

us,p € [—0.0288,0.0038]

A

Ur,p € [—0.0057,0.0265] uz,p € [—0.0289,0.0140]

Fic. 10. Ezample 3b: Snapshot of the numerical solution for the clarifier-thickener problem
with degenerate diffusion: velocities at times t = 100 [s], t = 1000 [s], t = 8000 [s], and t = 30,000 [s]
(from top to bottom).
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Fic. 11. Ezample 4: secondary settling tank studied in [37, 55]. The device has a center feed,
peripheral and radial effluent overflows, and a skirt baffle acting as flocculator. For this example,
in the bottom of the tank there are four suction lifts for the sludge of width 0.25 [m] each. The unit
has a radial length and height of 13 [m] and 4.6 [m], respectively, the inlet has a height of 1.50 [m],
the baffle has a width of 0.2[m] and a height of 2.6 [m], the effluent outlet has a height of 0.5 [m],
and the slope of the bottom of the tank is of 6.5%.

in the previous example (Example 3a), and the FVE method is still able to resolve it
accurately, without changing the discretization parameters.

4.4. Example 4: A secondary settling unit. We consider a secondary set-
tling tank studied in [37, 55]. (See Figure 11, where the geometry is also described.)
The difference to the clarifier-thickener configuration is that the feed inlet is oriented
radially rather than axially; the outlet is associated with four so-called suction lifts
rather than a central discharge; and there is a so-called skirt baffle separating the area
closer to the inlet from that farther away.

For our simulation all values for the parameters are considered as in Table 2.
The primal mesh 7, is composed by 7410 elements and 4206 interior nodes. The
boundary conditions for velocity at the suction lifts are given by u = (0, —u, out/4),
where u, out = VUrin With v = 0.75.

The evolution of the concentration fields is depicted in Figure 12, where we present
profiles corresponding to time instants ¢ = 1000, 3000, 7500, 15,000 [s]. We observe
from the corresponding velocity profiles, shown in Figure 13, that from time t =
7500 [s] the material starts to be extracted at the bottom lifts, which explains the
decrease in the concentration in the bottom.

5. Concluding remarks. In the present work, an innovative numerical tech-
nique for the solution of a coupled fluid flow and transport problem in a two-dimen-
sional axisymmetric domain has been proposed within the context of sedimentation-
consolidation models. It is of practical importance to solve accurately the reduced
two-dimensional problem to model the underlying full three-dimensional phenomenon.

The numerical scheme introduced is based on a low-order stabilized FVE dis-
cretization, where a novel ingredient is the use of two different dual meshes for the
velocity and the concentration field. We have verified the convergence of the pro-
posed numerical method in simple test cases and have performed relevant transient
simulations on the axisymmetric geometry. Similar problems might be found in sev-
eral other application fields, and therefore this technique can be, and is currently
being, extended to accommodate the study of related and more involved models. We
mention that without much effort, a step forward could be made in including, for
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Fic. 12. Ezxample 4: Snapshot of the numerical solution for the clarifier-thickener problem:
concentration fields at times t = 1000 [s] (top left), t = 3000 [s] (top right), t = 7500 [s] (bottom left),
and t = 15,000 [s] (bottom right). The contours correspond to ¢ = 0.01,0.02,...,0.12,0.13,0.14.

Upj, € [—0.0862,0.0794] uz p € [—0.1517,0.0312]

%

o

Fic. 13. Ezample 4: Snapshot of the numerical solution for the clarifier-thickener problem:
velocity fields at times t = 1000 [s], ¢ = 3000 [s], ¢ = 7500 [s], and t = 15,000 [s] (from top to bottom).
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instance, more general rheological assumptions [40], and the sedimentation of poly-
disperse flocculated suspensions [9]. A further issue at the numerical level is the
pointwise satisfaction of the divergence-free condition. In this regard, a possible im-
provement to our model could be the formulation of FVE discretizations employing
features of the Scott—Vogelius mixed finite elements.
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