Files

Abstract

At our laboratory extensive research has been conducted on the conversion of conventional Diesel cogeneration engines to operation on natural gas and biogas. In the framework of this research, a numerical simulation of a prechamber autoignition gas engine has been performed based on an experimental test case. With a simplified finite-rate/eddy-dissipation model for the combustion of natural gas, it was possible to properly reproduce the experiment considering the combustion duration, ignition timing and overall energy balance. A modification of the original cylindrical-conical prechamber geometry to a simpler cylindrical one was tested with the simulation model. The influence of burnt gases inside the prechamber was assessed simulating ghe mixture formation inside the prechamber. The simulations showed little effect of taking into account the non-homogeneities in the gas phase on the cumbustion duration. The new cylindrical geometry envisaged did not show any improvement in the combustion homogeneity inside the prechamber and its volume (limited by the real engine geometry) is in fact not sufficient to properly ignite the main chamber according to the simulations. The model can be used to further guide design modifications of the prechamber engine to improve performance.

Details

Actions