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Abstract—Ultra-wideband (UWB) localization is one of the
most promising indoor localization methods. Yet, non-line-of-
sight (NLOS) positioning scenarios remain a challenge and can
potentially cause significant localization errors. In this work,
we leverage the collaborative paradigm of a multi-robot system
by sharing relative positioning information, and thus alleviating
error susceptibility in NLOS ranging scenarios. In particular, we
detail a decentralized particle filter based localization algorithm
which combines an UWB range model with a robot detection
model. Finally, we test both collaborative and non-collaborative
versions of our algorithm in simulation, in mixed LOS/NLOS
scenarios. Results show superior performance for the collabora-
tive system when compared to non-collaborative systems utilizing
only UWB ranging.

Index Terms—Collaborative localization, ultra-wideband, mo-
bile robots

I. INTRODUCTION

Accurate indoor localization is an enabling technology.

Within the research community, the mobile robotics domain

plays an important role with a vast and continuously grow-

ing body of contributions. In particular, works completed in

recent years have pointed out the advantages of collaborative,

multi-robot systems over single-robot systems in terms of

localization performance. Indeed, the strategy of multi-robot

collaboration is able to compensate for deficiencies in the data

owned by a singular robot [1]. Despite the outstanding features

of UWB for positioning, such as good penetrability through

objects and high accuracy, the signal remains affected by mul-

tipath problems requiring complex range estimation algorithms

to maintain theoretically optimal performances [10]. Thus,

our ultimate goal is to mitigate these effects and optimize

localization accuracy by including information provided by

other team-members.

In this paper, we consider the problem of absolute localiza-

tion of a team of mobile robots for unknown initial pose esti-

mates in a common frame. We design an algorithm targeting

miniaturized, computationally limited platforms equipped with

noisy, low-power sensing modalities. Given its efficiency in

solving localization problems for unknown initial conditions,

and for accommodating arbitrary probability density functions,

our method of choice is the particle filter, building on the

probabilistic framework of Monte-Carlo Localization (MCL)

presented in [1]. Our localization strategy uses range mea-

surements from one UWB base-station, relative (inter-robot)
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Fig. 1. System of two robots (Rn and Rm) sharing a common localization
frame. The figure illustrates the robots’ relative range (rnm and rmn) and
bearing (θnm and θmn) values. A UWB base-station is marked by Bs, and
ranges to the individual robots are shown (rsn and rsm).

observations, and a common map of the environment a priori

available on each robot.

A. Related Work

UWB has shown to be amongst the most promising localiza-

tion techniques for indoor environments [4]. In consequence,

it has very recently been adopted by the robotics community.

In [11], an UWB receiver is mounted on a mobile robot which

uses a time-difference-of-arrival (TDOA) algorithm between

pairs of anchor nodes to estimate its own position. The robot’s

self-localization algorithm is based on UWB measurements

only, and no sensor fusion is considered. Further, the studies in

[2] and [3] develop probabilistic models for biased UWB range

measurements which are combined with onboard odometry

data. Yet, given the novelty of UWB positioning systems in

the robotics community, to the best of our knowledge, no

significant studies have been performed on the fusion of UWB

with onboard exteroceptive sensors, in the case of single-robot

systems, nor any onboard relative positioning sensors, in the

case of multi-robot systems.

B. Problem Formulation

Our problem is described as follows. We have a multi-robot

system of N robots R1,R2, ...RN , where the number N does

not need to be known by the robots. The robots navigate in a

common frame in a space bounded by a map; for a robot Rn,

at time t, the pose xn,t is given by the Cartesian coordinates

xn,t, yn,t and orientation φn,t. Also, at time t, a robot Rm

is in the set of neighbors Nn,t of robot Rn if robot Rm can

determine a range rmn,t and bearing θmn,t to robot Rn. We

make the assumption that a robot Rm can communicate with

a robot Rn, if Rm ∈ Nn,t. Furthermore, every robot Rn

in the system receives a range rsn from the base-station Bs,

which is fixed and well-localized in the absolute coordinate

system. Apart from these sensing modalities, the robots are
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Fig. 2. Cumulative density function of a log-normal bias with (a)
µlnN = −1.59, σlnN = 0.49 and (b) with µlnN = −0.5, σlnN = 0.2.
(c) Example 9m2 large area with a LOS/NLOS mixing ratio of 1/1.

also equipped with a dead-reckoning self-localization module

(e.g. wheel-based odometry). Given these specifications, the

goal is to localize all robots, without any prior knowledge of

their initial pose or previous measurements.

II. UWB RANGE ERROR MODEL

UWB is a radio technology which is characterized by its

very large bandwidth compared to conventional narrowband

systems, and in particular features high positioning accuracy

(due to a high time resolution) and high material penetrability

(due to the large bandwidth). Despite these desirable traits,

the resolution of multipath signals leads to complex TOA

algorithms prone to estimation errors, which inevitably leads

to ranging inaccuracies. In this paper, we employ a popular

error model [10] for the range between a base-station Bs and

a target node Rn

r̂sn = rsn + bsn + εsn (1)

where rsn represents the true distance, bsn is a non-negative

distance bias introduced by a NLOS signal propagation, and

εsn ∼ N (0, σ2
N ) is a zero-mean Gaussian measurement noise

with variance σ2
N . Whereas modeling εsn is straightforward,

modeling the bias bsn is less obvious. Current work discusses a

variety of viable statistical models with exponential behavior

[6, 9]. Indeed, biases may not only be caused by multipath

propagation, but also by signal delay or by signal attenuation,

and thus are dependent on bandwidth and distance. Despite the

complexity of NLOS error patterns, we resort to a statistical

model, the log-normal distribution, as it is shown to best char-

acterize the spatial NLOS error behavior in the comprehensive

measurement campaign of [6]. Furthermore, we recreate a

mixed LOS/NLOS area by defining random patches where

range measures are consistently affected by a bias drawn

from a log-normal distribution bsn ∼ lnN (µlnN , σlnN ).
Figures 2(a) and 2(b) show the cumulative density functions

employed in this paper, (a) for a mild bias with µlnN = −1.59,

σlnN = 0.49 (as for the Schussler system of [6]) and (b) for a

harsh bias with µlnN = −0.5, σlnN = 0.2. Figure 2(c) shows

an example 9m2 large area with a spatial LOS/NLOS mixing

ratio of 1/1.

III. COLLABORATIVE MONTE-CARLO LOCALIZATION

In this section, we briefly review Monte-Carlo Localization

(MCL), as it forms a baseline for our work. We then extend the

standard MCL formalism to a fully decentralized, collaborative

adaptation resulting in the complete routine as shown in

Algorithm 1. Let us from hereon consider a robot Rn. At

time t, after a sequence of motion control actions un,t and a

sequence of observations zn,t the recursive update equation is

denoted

Bel(xn,t) = η p(zn,t|xn,t)

∫

p(xn,t|xn,t−1, un,t−1)

Bel(xn,t−1) dxn,t−1 (2)

where Bel(xn,t) estimates of the posterior state xn,t

and is called a belief. The value η is a normaliza-

tion constant, p(zn,t|xn,t) is the measurement model, and

p(xn,t|xn,t−1, un,t−1) the motion model.

The main idea of MCL lies in the way the belief is

represented—samples, or particles, are drawn from the poste-

rior probability distribution of the robot pose to form a set of

particles. By weighting these particles one obtains a discrete

probability function that approximates the continuous belief

Bel(xn,t), and hence we have

Bel(xn,t) ∼ {〈x
[i]
n,t, w

[i]
n,t〉|i = 1, ...,M} = Xn,t (3)

where M is the number of particles, x
[i]
n,t is a sample of the

random variable xn,t (the pose), and w
[i]
n,t is its weight.

The framework presented above takes into account a single

robot. However, when operating a collaborative multi-robot

system, the baseline formalism must be adapted to integrate

measurements taken on different platforms [1]. If we make

the assumption that individual robot poses are independent,

we can formulate the event that robot Rn is detected by robot

Rm as

Bel (xn,t) = p (xn,t|zn,0..t, un,0..t)
∫

p (xn,t|xm,t, rmn,t, θmn,t)Bel (xm,t) dxm,t (4)

where p(xn,t|zn,0..t, un,0..t) describes the nth robot’s cur-

rent belief, and
∫

p(xn,t|xm,t, rmn,t, θmn,t) Bel (xm,t) dxm,t

describes the mth robot’s belief about the position of

robot Rn. For such a collaboration to take place, robot

Rm needs to communicate rmn,t, θmn,t and Bel (xm,t) to

robot Rn. Thus a communication message is composed as

dmn,t = 〈rmn,t, θmn,t, Xm,t〉. If several robots in a neigh-

borhood Nn,t communicate with robot Rn, the received

information is the set of all communication messages Dn,t =
{dmn,t|Rm ∈ Nn,t}. We note that the collaborative aspect of

this formalism lies in the integration of robot Rm’s belief into

that of robot Rn. This update step is shown in Algorithm 1

(line 5). Finally, we complete our algorithm with a collabo-

rative, reciprocal sampling routine, which at each update step

adds a proportion α of particles drawn from the distribution

x
[i]
n,t ∼ p(Dn,t|x

[i]
n,t) according to the robot detection model.

This additional technique accounts for the collapse of particles

onto one pose estimate given a finite number of particles. The

reciprocal sampling algorithm is elaborated in more detail,

later in Section IV-B.

IV. OBSERVATION MODELS

In the following two paragraphs, we describe the TOA

measurement model applied to UWB ranging, and a detection

model, applied to the relative range and bearing observations.



Algorithm 1 MultiRobot MCL(Xn,t−1, un,t, r̂n,t, Dn,t)

1: X̄n,t = Xn,t = ∅
2: for i = 1 to M do
3: x

[i]
n,t ← Motion Model(un,t,x

[i]
n,t−1)

4: w
[i]
n,t ← Measurement Model(r̂n,t,x

[i]
n,t)

5: w
[i]
n,t ← Detection Model(Dn,t,x

[i]
n,t, w

[i]
n,t)

6: X̄n,t ← X̄n,t +
〈

x
[i]
n,t, w

[i]
n,t

〉

7: end for
8: for i = 1 to M do
9: r ∼ U(0, 1)

10: if r ≤ (1− α) then

11: x
[i]
n,t ← Sampling(X̄n,t)

12: else
13: x

[i]
n,t ← Reciprocal Sampling(Dn,t, X̄n,t)

14: end if

15: Xn,t ← Xn,t +
〈

x
[i]
n,t, w

[i]
n,t

〉

16: end for
17: return Xn,t

A. TOA Measurement Model

The TOA measurement model returns the likelihood that

a robot Rn measures a certain range distance r̂sn from a

beacon Bs at a position xn,t. We denote the event of a LOS

path at location xn of beacon Bs as Lsn, and the event of

a NLOS path L̄sn, respectively. For a log-normal probability

density function PlnN (b) with parameters µlnN and σlnN , and

a normal probability density function PN (ε) with a standard

deviation σN , we define the probability of measuring a range

in a NLOS condition as

Psn(xn|r̂sn, L̄sn) =

∫

PlnN (b) · PN (εsn = r̂sn − rsn − b)db

which is the convolution of the probability density function

of the bias value, with the probability density function of the

white noise value. Correspondingly, we define the probability

of measuring a range in a LOS condition as

Psn(xn|r̂sn, Lsn) = PN (ε = r̂sn − rsn). (5)

Finally, with use of the total probability theorem, we combine

the above equations to obtain the probability of measuring a

range r̂sn

Psn(xn|r̂sn) = Psn(xn|r̂sn, Lsn) · PLsn

+ Psn(xn|r̂n, L̄sn) · (1− PLsn
) (6)

where PLsn
is the probability of measuring a LOS path, and

correspondingly, (1 − PLsn
) is the probability of measuring

a NLOS path. Indeed, in this work we assume no a-priori

knowledge about PLsn
for all xn, and an additional model

must be devised with the purpose of estimating it. Finally,

the TOA measurement model can be formulated as an update

equation as shown in Algorithm 2.

Figure 3 shows an application of Equation 6, weighting

particles in (a) a LOS scenario and (b) a NLOS scenario, for

a single base-station, where the probability of PLsn
is known

(in this case we have (a) PLsn
= 1 and (b) PLsn

= 0).

Algorithm 2 Measurement Model(r̂n,t,x
[i]
t )

1: w ←
∏

s∈Bs
Psn(x

[i]
t |r̂sn)

2: return w

Algorithm 3 Detection Model(Dn,t,x
[i]
t , w

[i]
t )

1: w ← w
[i]
t ·

∏

dmn∈Dn,t
Pmn(x

[i]
t |dmn)

2: return w

B. Range & Bearing Detection Model

The idea of the range and bearing model is to propose a

probability density function which is based on the relative

observations made by the detection sensors, and which is

also based on the belief of the detecting robot. We then

simultaneously use this probability density function as an

observation model in the belief update, and as a proposal

distribution for the reciprocal sampling routine.

For clarity, we omit the subscript t in the following deriva-

tions. A robot Rm detects a robot Rn with a range rmn and

relative bearing θmn. We formulate the detection model as

Pmn(xn|dmn) which describes the probability that robot Rm

detects robot Rn at pose xn = [xn yn φn], given the detection

data dmn. For a given particle i in robot Rm’s belief, we define

the range difference ∆rmn, and the bearing difference ∆θmn.

The range and bearing differences are given by the geometric

relations

∆rmn =
√

∆x2
mn +∆y2mn − rmn

∆θmn = atan2(∆ymn,∆xmn)− (φ[i]
m + θmn)

where we denote ∆xmn = (x
[i]
m − xn) and

∆ymn = (y
[i]
m − yn). Assuming Gaussian noise and

knowledge of the range and bearing standard deviation

(σr and σθ, respectively), and the independence of range and

bearing measurements, the detection probability is

Pmn(xn|dmn) = η ·
∑

〈

x
[i]
m

w[i]
m

〉

∈Xm

Φ

([

∆rmn

∆θmn

]

,

[

σ2
r 0
0 σ2

θ

])

· w[i]
m (7)

where Φ(·,Σ) is thezero-mean multivariate normal probability

distribution with the covariance matrix Σ and where η is a

(a) (b) (c)

Fig. 3. Illustration of observation models within a particle filter. The pose
estimates (particles) are represented by triangles with increasing transparency
for decreasing weights. The dashed line represents the noisy/biased range mea-
surement, the robot body shows the actual robot position. TOA measurement
model for a single base-station in a (a) LOS scenario (b) NLOS scenario.
Robot detection model for 3 detecting robots is shown in (c); the detected
robot is shown in white. The model’s probability density is superimposed on
the detected robot.



normalization constant. Finally, the detection model can be

formulated as an update equation as shown in Algorithm 3.

Algorithm 4 shows how samples are drawn from the detection

model in a reciprocal sampling routine. Figure 3(c) shows an

illustration of the probability density function resulting from

the detection model for three detecting robots.

Algorithm 4 Reciprocal Sampling(Dn,t, X̄n,t)

1: if Dn,t = ∅ then
2: x← Sampling(X̄n,t)
3: else
4: x ∼

∏

dmn∈Dn,t
Pmn(x|dmn)

5: end if
6: return x

V. RESULTS

We run our algorithm in a submicroscopic embodied robot

simulator (Webots, [5]), employing a model of the Khepera III

robot [7] with realistically calibrated sensors and actuators (in-

cluding a realistic simulation of the hardware range and bear-

ing module [8] with noise values experimentally determined on

our actual hardware setup: σr = 0.15·rmn, and σθ = 0.15rad).

Our setup consists of a 3m large square arena containing no

obstacles (other than the robots themselves, which can occlude

and thus prohibit relative range and bearing measurements). At

the start of each experiment, the robots are randomly placed

in the arena. For all experiments, the robots move straight

at a speed of one robot-size per second (12cm/s) and avoid

collisions. The simulated TOA range values r̂sn (Eq. 1) are

perturbed with a Gaussian noise component εsn ∼ N (0, σ2
N )

with a zero mean and standard deviation σN = 0.022m

(empirical LOS noise in [6]) and a bias drawn from a log-

normal distribution, considering both a mild and a harsh case

(as detailed in Section II). The LOS/NLOS proportion is 1/1,

and is defined spatially based on a randomly drawn bias map

(see Figure 2(c)). TOA range measurements as well as relative

observations are made at a frequency of 1Hz.
In order to assess the performance of the collaborative

framework, we perform two sets of experiments:

Collaborative 4 collaborative robots with relative observation
data, UWB range data, and odometry.
Non-collaborative 4 non-collaborative robots with only UWB
range data and odometry.

Each of the two experiment sets is tested on a set of three
case-studies, analyzing the impact of knowledge on PLsn

:

None No knowledge available; no NLOS paths are assumed and
PLsn = 1, ∀s, n
Naive No knowledge available; a naive assumption is made, ie.
PLsn = 0.5, ∀s, n
Optimal Ground truth knowledge is available; PLsn is em-
ployed optimally at all times.

Each robot is equipped with a set of 500 particles. We perform

800 runs, each lasting 4min, and log positioning data at a

frequency of 2Hz. We discuss the localization performance

in terms of the mean positioning error of all particles in a

given robot’s belief (RMSE). Figure 4 shows the empirical

cumulative density function of the RMSE distribution over

all runs. For optimal knowledge of PLsn
, 95.5% of the time
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Fig. 4. Cumulative density function of the RMSE distribution over 800 runs,
eacj of 4min duration, (a) for a mild bias and (b) for a harsh bias.

the error of the collaborative system is below 0.61m (mild

scenario) and 0.93m (harsh scenario), in comparison to errors

of 2.59m and 2.58m, respectively, for the non-collaborative

system. Indeed, by imposing additional geometric constraints

through the relative observations, the collaborative robot team

is more likely to converge to correct position estimates. Also,

for any robot which has an approximate estimate of its true

position, the propagation of this belief to its team-members

will accelerate the process of localizing the whole system.

VI. CONCLUSION

In this work, we presented a scalable, decentralized par-

ticle filter algorithm for collaborative localization in mixed

LOS/NLOS scenarios. The algorithm has shown that collab-

oration, through skillful exchange of positioning information,

can lead to a clearly improved performance.
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