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Dear Editor, 

 

Please find attached the files for the paper entitled “Fabrication of Polymer-Based 

Micro Devices: Formulation and Study of the Paste” authored by Nathalie Serra, 

Thomas Maeder, Olivier Gentsch and Peter Ryser, which is an extension of the 

extended abstract presented at Eurosensors XXIV as contribution #3185. 

 

This work covers the formulation of organic materials enabling facile fabrication of 

micromechanical and microfluidic structures by thick-film screen-printing operations, 

which of course could be further extended to other printing processes such as inkjetting. 

The main challenge is to to find a suitable organic sacrifical material that has sufficient 

structural and mechanical integrity to allow further screen-printing operations, is 

chemically compatible with the overlying structural layers, yet is afterwards easily 

removed, even from closed structures. Preferrably, removal is achieved by a direct 

solid-to-gas process such as decomposition / depolymerisation or sublimation, and the 

polyol-based materials used here are quite promising in this regard. Preliminary work 

on cantilevers is shown to demonstrate the potential of this technique.  
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Abstract 

We investigate in the present work the fabrication of polymer-based micro-fluidic and micro-mechanical devices using 

sacrificial, resistive/conductive pastes, through a screen-printing process. An organic sacrificial paste is first screen-printed onto a 

substrate, building the future empty space (channels, cavities…) where it lies. Then, a resistive paste based on thermosetting 

polymer resin and graphite is deposited onto the previous layer. Finally, the sacrificial paste is removed at 150°C by sublimation 

through the composite, thus yielding the desired pattern. For such applications, the key is naturally the formulation of the pastes. 

In a previous work, we already proposed a potential formulation for the organic sacrificial paste, based on polyols [1]. In the 

present paper, we will focus on the formulation of the cover paste, which must be adapted rheologically for the screen-printing 

process, but also chemically due to strong potential interactions between the sacrificial layer and the over-layer. Finally, micro-

devices such as simple fluidic channels and suspended structures were produced and shown to be operational, demonstrating the 

high potential of our process.    
 
Keywords:organic sacrificial layers; silicone resins; screen-printing; thick films   

1. Introduction 

In the micro-electromechanical systems (MEMS) field, sacrificial layers are widely used for fabrication of free-

standing structures by surface or volume micromachining. However, many applications, due to size or cost reasons, 

do not require clean-room processes, and/or are just as well or better fabricated using other substrates than silicon. 

For instance, the thick-film and low-temperature co-fired ceramic (LTCC) technologies, principally based on 

glass/ceramic materials, are commonly used for sensors, and have recently seen considerable developments in 

structuration techniques [2-3] for fabrication of elements such as cantilevers, bridges, membranes and fluidic 

structures. 

Nowadays, a move towards polymers is observed as their properties such as low cost, transparency and good 

biocompatibility make them particularly suitable for disposable biomedical applications. Micro-structures based on 

organic sacrificial layers, such as the combination of SU-8 (over-layer) and polypropylene carbonate (sacrificial 

material) have already been reported in the literature [4]. However the polypropylene carbonate decomposes around 

300°C which remain too high for most polymer applications. Therefore we introduced [1] materials with 

significantly lower sacrificial layer removal temperatures, thereby considerably extending the application field of 

this process. Moreover, the materials employed are also chosen for their sublimation ability. This particular property 

has the advantage to allow closed structures such as micro-channels, cavities and membranes as the compounds 

sublimate cleanly through the over-layer, without collapse due to surface tension, and do not require any etching 

process. Two different organic sacrificial pastes, both of them based on mixes of non-polymeric polyol-type organic 

materials (so-called plastic crystals) were tested. Polyols are widely used in industry for paints and coatings 

formulation, due to the viscosity and fast drying properties they give to the final paste. Some polyols have also 

attracted considerable attention due to their solid-solid order-disorder phase transitions, which make them interesting 

for thermal energy storage [5]. Finally, these materials have the advantage to be non-toxic.  
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In a previous work, we had characterized epoxy-graphite resistive pastes for micro-heater manufacturing [6]. The 

point here is to analyze to what extent what we developed can be adapted to this other application. Particular care 

must therefore be given to the formulation of the over-layer. Various epoxy resins and silicones as thermosetting 

polymers were used in this study. A key factor in screen-printing process is the rheology of the paste (ca. honey-like 

consistency). In order to tune this property, the use of additives and/or solvents can be envisaged. We already tested 

different solvents that are well-suited for epoxies [6]. Here, this study was also extended to silicone, with the 

purpose of finding suitable solvents, i.e. having good solvency towards silicone resins, yet without chemical 

reactions.  

2. Experimental  

Fabrication of the micro-fluidic and micro mechanical devices is performed by screen-printing: the sacrificial 

material is first screen-printed onto a substrate (here alumina) and dried around 80°C. Then a second layer is over-

printed and dried at 100°C. Finally, the structures are placed at typically 150°C and sublimation of the organic paste 

occurs, leaving clean structures with the desired pattern (see Fig. 1).  

 

FIGURE 1 

 

Formulation of the sacrificial layers was developed previously [1,7]. Two kinds were tested, both based on 

trimethylolethane (TME). Two mixes are prepared with resp. 2,5-dimethyl-2,5 hexanediol (DMHD) and neopentyl 

glycol (NPG). The materials are then partly dispersed and dissolved with solvents. Cyclohexanol was chosen for its 

high viscosity, completed with water in order to obtain a good screen-printable paste. Table 1 sums up the different 

characteristics of these compounds.  

Regarding its physical properties, TME is the main sacrificial material, i.e. the ultimately sublimating compound. 

It will be in suspension in the solution. However, TME alone essentially yields a powdery substance unsuitable for 

overprinting. Therefore, NPG and DMHD are added as “waxy binders” in the mixture, but presumably do not work 

the same way. NPG and TME have a high chemical compatibility – they in fact form a continuous solid solution 

series [8-9], NPG promoting a waxy consistency suitable for screen-printing by stabilising the high-temperature 

"plastic" phase. The system is however further complexified by the particular role of cyclohexanol; it was recently 

demonstrated that cyclohexanol also forms a complete solid solution with NPG [10], and therefore is not “just” a 

solvent and most likely forms a ternary solid solution with NPG and TME, which to our knowledge has not yet been 

investigated. Due to its different molecular structure, DMHD is not expected to form extensive solid solution with 

the cyclohexanol/ TME "plastic crystal" compounds. The detailed interactions in both systems (DMHD or NPG 

additive) will be the object of further studies. 

 

TABLE 1 

 

Formulation of a structural over-layer that is both compatible with the sacrificial layers and screen-printable is 

here the key for successful fabrication of our structures. As explained before, the organic sacrificial pastes we use 

are based on mixes of polyols partly dispersed and dissolved in cyclohexanol [1]. These were found to be well 

compatible (i.e. not significantly interact) with silicones and ethylcellulose, but not with epoxies, which are reactive 

to the polyol –OH group, resulting in the destruction of the structure. In this paper, we focus on the formulation of 

silicone resin, filled with graphite to impart electrical conductivity and improve mechanical stability. Regular 

silicone resin (see Table 1) was used as a matrix and graphite (KS4, ellipsoidal shape with 95% of the particles 

having a large axis smaller than 4 µm, Timcal, Switzerland) as a filler. As high graphite loadings tend to yield an 

excessive paste viscosity, the introduction of suitable high-boiling solvents, whose properties are given in Table 2, 

was studied to allow convenient tuning of the paste rheology. 

 

TABLE 2 

 

Solvents must be carefully chosen: they should be miscible with the resin, yet remain inert without chemical 

reaction. Miscibility can be easily predicted using the Hansen solubility parameter theory [11-12]. One would notice 
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that our list includes also polar solvents (octanol and tetraglyme), which are not a priori suitable solvents for 

silicones. However, our sacrificial material having polar groups, it might be interesting to have also a certain 

percentage of a polar solvent in the over-layer to promote wetting and adhesion between the layers. Therefore, 

knowing the behavior of these solvents with silicones would be of great use. In order to prove their efficiency and 

validate their use for paste formulation, mass loss tests were performed for 10% and 20% in volume of graphite. A 

second “qualitative” test consisting in rheological measurements was done at 10% vol. of graphite in order to 

classify the “solvative” nature of the materials. Finally, fabricated structures were tested and compared.     

3. Results  

3.1. Study of solvents 

A first series of mass loss experiments was performed in order to determine whether solvents evaporate 

completely during the curing process (see Fig.2a). A mass loss profile was made for 10% and 20%vol. graphite by 

measuring the composite mass after 30, 60 and 120 min at 150°C. Only the profile for 10% is shown here, as no 

significant difference between both loadings was observed. A/B0 samples correspond to the reference measurement, 

i.e. without solvent. Whatever the solvent or the graphite loading, essentially all the mass loss occurs in the first 

thirty minutes, which is noticeably faster than with epoxies [6] and agrees with the higher permeability of silicones. 

The somewhat slower removal of tetraglyme stems from its very high boiling point. Finally, the small mass loss 

seen in the reference sample probably corresponds to water. 

A second series of experiments consisted in rheological measurements. The dynamic viscosity was measured 

with a rotative viscosimeter, Rheomat RM180 from Mettler. No measurement was possible for the reference sample, 

the viscosity being too high for our device. Fig. 2b reports the data for the four solvents. 

 

FIGURE 2 

 

First, we can see that the pastes present a typical shape of a thixotropic / shear thinning behaviour, which is 

satisfactory for screen-printing [13]. We can see that theoretical suppositions are confirmed, i.e. dodecane and 

limonene have a higher solvative power compared to the other two. Octanol and tetraglyme first form a gel but 

nevertheless may be incorporated into the resin under shear, yielding a strong thixotropic behaviour. This can be 

explained by their rather low polarity. Likewise, the long alkane chain of octanol is expected to facilitate its 

observed easier incorporation into the resin than tegraglyme. Octanol is therefore expected to be particularly useful 

as a wetting agent for silicone (affinity with alkane chain) on polyol (hydroxyl head) layers. In practice, an 

acceptable combination of wetting and solution stability must be found, which may be done by combining octanol 

with dodecane or limonene. 

3.2. Applications 

3.2.1. Fabrication of micro-channels 

Micro-channels using silicone as over-layer were fabricated, with the aim of studying the influence of a polar 

solvent on the good functionality of the structures. Silicone/graphite pastes were prepared using first only dodecane 

as solvent, than mixes of dodecane:octanol (2:1 and 1:1). Test structures were dipped in water in order to check for 

leaks, air (≈ 6 bar) was blown through the channel, and the maximum flow was determined in each case. The results 

(Table 3) show that without octanol, the structures tend to tear away from the substrate. On the other hand, an equal 

mix of dodecane and octanol gives the best results in terms of reproducible channel geometry. However, a too large 

amount of octanol (not tested in this study) may lead to an unstable solution, another possible problem being 

dissolution of the sacrificial layer by octanol during the curing of the silicone resin.  
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TABLE 3 

  

3.2.2. Fabrication of position/force-sensing cantilevers 

Fabrication of cantilevers was also investigated using this process. The elastomeric silicone resin alone being too 

soft for cantilever structures, a carbon-filled ethylcellulose-silicone bilayer structure was used, the idea being to 

combine the thermal stability of the cross-linked silicone resin during sublimation of the sacrificial layer with the 

rigidity of ethylcellulose at room temperature. The distance between the cantilever and the base was sensed 

capacitively. The top electrode was the cantilever itself (both ethylcellulose and silicone filled with 15%vol KS4 

graphite), and the bottom electrode consisted of an Ag thick-film paste, previously screen-printed and fired onto the 

alumina substrate (see Fig 3.a).  

Preliminary tests are presented here. Capacitance of the cantilevers was measured through an Analog Devices 

AD7746/7745 integrated circuit that allows differential capacitance measurements between -4 and +4 pF, with a 

resolution of ±4 fF [14]. Different balsa loadings were then applied on the cantilever, changing the distance between 

the electrodes (see Fig 3.b). It is therefore possible to calculate the capacitance with the following equation: 

C = ε0 ∙ εr ∙ A / z         (1) 

where C is the capacitance, ε0 the electric constant, εr the relative permittivity, A the electrodes area and z the 

distance between the electrodes.  

FIGURE 3 

 

Cantilevers with a length of 10, 8 and 6 mm and a width of 1, 2 and 3 mm were fabricated. The theoretical 

capacitance without any loading was calculated using equation (1) and is reported in table 4. However, due to the 

difference of thermal expansion coefficient between the two over-layers, leading to a stress during the cooling, some 

cantilevers were initially highly bent. Therefore, the two electrodes are no longer parallel and the area changes in 

each case, following the cantilever bending. This is the reason why the theoretical capacitance is so different from 

the experimental one. Indeed, the combined effects of different possible sources of error (area not equal, 

inhomogeneity of the charge along the cantilever leading to changes in the electrical field…), yield large errors in 

the calculations. 

 

TABLE 4 

 

The force response was then determined for each cantilever by loading them with small balsa wood weights. The 

fabricated devices were able to measure small forces (0…1 mN). The following graphs present the results for each 

length (Fig 4).   

 

FIGURE 4 

 

These graphs highlight the fact that the capacitance increases with an increasing width, i.e. an increasing area of 

the electrode. This can be easily understood by equation (1). In most of the case, we can see that the evolution of the 

curves is not linear but quadratic with an increase of the applied force at the end of the cantilever. Once again, this is 

due to the bending of the cantilever. The parallel plate model capacitor is therefore no longer applicable as two 

phenomena occur: change of the distance between the electrodes and change of the electrode area. The over-layer 

must therefore be improved in order to have a better resolution.    

4. Conclusion 

Screen-printable silicone/graphite structural over-layers compatible with an organic polyol sacrificial paste were 

successfully formulated. A study of solvents showed that dodecane and limonene have a high dilutive power on 

silicone resins, allowing therefore the tuning of paste rheology and extending the achievable range of filler loadings. 

We also demonstrated that adding a solvent with a polar group (i.e. octanol) to the formulation improved wetting 
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and adhesion between the over-layer and the sacrificial material, thereby allowing reliable and convenient 

fabrication of printed micro-fluidic devices.  

Our process also allowed us to fabricate polymer cantilevers. The results shown here are just preliminary, but 

they are promising for measurements of small forces.  
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5. Figure captions 

Fig.1: (a) Process of structures using sacrificial pastes; (b) Cross-section of a micro-channel after sublimation of the sacrificial paste. 

Fig 2. Relative composite mass vs. solvent in silicone with 10%vol KS4 (a); Viscosity measurements for the different solvents (b). 

Fig 3. Schema of the cantilever (a); Set-up of the capacitance measurement (b). 

Fig 4. Capacitance measurements for cantilevers with a length of 10 mm (a), 8 mm (b) and 6 mm (c). 
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6. Table captions 

Table 1. Properties of the compounds used in this work . Tm = melting point; Tb = boiling point. 

Table 2. Properties of tested solvents. Tb = boiling point; M = molar mass; d = density. 

Table 3: Influence of solvent formulation on the maximum air flow. 

Table 4. Comparison of the theoretical and experimental capacitance. 
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Table 1. Properties of the compounds used in this work . Tm = melting point; Tb = boiling point. 

Name                CAS-n° Source Tm (°C) Tb (°C) Code 

Trimethylolethane 77-85-0 Sigma-Aldrich 200 293 TME 

Neopentyl glycol  126-30-7 Sigma-Aldrich 130 207 NPG 

2,5-dimethyl-2,5-hexanediol   110-03-2 Sigma-Aldrich 86 214 DMHD 

Cyclohexanol 108-93-0 Sigma-Aldrich 24 160 CH 

2-component silicone resin Q5-8401  Dow Corning   silicone 

Ethylcellulose, 46cps grade, 48% ethoxyl content 9004-57-3 Sigma-Aldrich 170  EC-46-48 

 

Table(s)



Table 2. Properties of tested solvents. Tb = boiling point; M = molar mass; d = density. 

Name                CAS-n° Tb (°C) M (g/mol) d (kg/m3) Symbol 

Dodecane 112-40-3 215 170.33 750 A/B1 

Octanol 123-96-6 196 130.23 827 A/B2 

(R)-(+) limonene    5989-27-5 175 136.24 840 A/B3 

Tetraglyme 143-24-8 275 222.28 1009 A/B4 

 



Table 3: Influence of solvent formulation on the maximum air flow 

Dodecane:octanol ratio Max. Flow [lN/min] 

1:0 (unreliable) 

2:1 1.7 

1:1 2.8 

 



Table 4. Comparison of the theoretical Cth and experimental Cexp capacitance. 

Cantilever Cth (pF) Cexp (pF) Ratio 

10x1 0.0210 0.256 13 

10x2 0.0397 0.307 8 

10x3 0.0418 0.384 9 

8x1 0.0165 0.289 17 

8x2 0.0509 0.404 8 

8x3 0.0770 0.509 7 

6x1 0.0176 0.276 15 

6x2 0.0516 0.429 8 

6x3 0.0738 0.461 6 

 

 


