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Abstract

The use of acoustic resonators for sensors application has opened a new

branch in research and applications of piezoelectric materials and devices.

The first generation of such sensors is constituted by the quartz crystal

microbalance (QCM) based on AT-cut mono-crystalline quartz. High sen-

sitivities of gravimetric sensing in both air and liquids were demonstrated.

Since the 1980s, when the first QCM-based sensor was demonstrated for

the detection of silver in a liquid solution, many other application in chem-

ical, bio-medical and environmental sensing were realized using the same

concept. QCM’s exhibit a very good thermal stability. The AT-cut quartz

plate leads to the excitation of shear waves when used in parallel capacitor

geometry. This is important for achieving high quality factors in the im-

mersed operation of the sensor. A second generation of gravimetric sensors

is based on surface acoustic wave (SAW) structures, working for instance

with Love waves in a SiO2 layer on top of a LiTaO3 single crystal. SAW

devices are mainly used as RF filters in television and mobile phones. SAW

sensors are a side product of the much larger telecommunication market.

The evolution of thin film and MEMS technology has lead to a third gen-

eration of gravimetric sensors that is based on bulk acoustic wave (BAW)

resonances in piezoelectric thin films. Again, such sensors are a side product

from the large telecommunication market where such resonators are used

for RF filters. With every generation, the oscillation frequency increased.

While QCM’s operate typically at 5 MHz, the SAW resonators work typi-

cally at a few 100 MHz, and the thin film BAW resonators (TFBAR) operate

typically around 2 GHz. The increase of the frequency goes together with

an increase in sensitivity, and a decrease of the thickness and mass range

that can be measured.



The TFBARs are in some sense miniaturized analogs of QCM’s operating

at much higher frequencies. They are very promising as they reach higher

sensitivities. This attracted the attention of researchers, and experimental

evidence of the potential of TFBARs as sensors was delivered. In addition to

the higher sensitivity, the miniaturization allows for using arrays of sensors

with di↵erent immobilization layers as needed for drug screening. However,

the application of the same TFBARs as used in telecommunications would

not allow a good performance in immersed operation. It would only be good

for operation in air. The principal characteristic of TFBARs used in mobile

phones is the value of the electromechanical coupling and not the resonance

mode at which this coupling is achieved. But for the in-liquid operated

sensors, it’s rather the opposite - the mode of the resonance should be such

that the surface of the resonator, which tis in contact with liquid, should

move parallel to the surface (in-plane motion, or transverse motion) to

minimize emission of acoustic waves into the liquid. The coupling coe�cient

is of secondary importance in this case. Therefore, the development of

shear mode TFBARs became an interesting task that was challenged by

several research groups. One of the most successful solutions is the use

of c-axis inclined AlN thin films. Inclination of c-axis in a parallel plate

capacitor structure enables the coupling of the electric field to the shear

strain, which enables the excitation of a shear mode. Such devices were

successfully applied for selective sensing of organic species, such as DNA

molecules, suspended in a liquid. Even if the process of deposition of c-axis

inclined AlN films doesn’t require hardware modification, the quality of the

process is still far from the one for deposition of (0001)AlN films used in

telecommunications. So the goal of this thesis was to find a solution for the

shear mode TFBAR’s based on (0001)AlN films.

In (0001)AlN films, the shear strain cannot be induced by the electric field

produced in a parallel plate geometry as the coe�cient e35 and e34 of the

piezoelectric tensor are zero. But there are e15 and e24 coe�cients that are

not zero, meaning that in-plane electric field can be used to excite the shear

waves. In the frame of this work, this concept was studied theoretically and

experimentally. The in-plane electric field was generated via inter-digitated



electrodes (IDE). A first device type was realized in solidly mounted res-

onator (SMR) design and based on uniform (0001)- oriented AlN thin films.

The anti-phase of the electric field in adjacent half-periods of the IDE re-

sulted in an anti-phase movement of the corresponding regions of the film.

Finite element modeling and boundary element modeling (FEM-BEM) were

carried out to clarify the kind of vibrations present in the device. A kind of

shear/lingitudinal mode with elliptic motions was obtained. A device was

fabricated and tested both in liquid and air. The resonance of the device

was observed in the expected frequency range (1.86 GHz) and high quality

factors under operations in air (Q=870) and silicon oil (Q=270) were ob-

tained. The drop of the quality factor was explained by the up and down

motion of the regions of the film located directly under the IDE electrodes.

Such a motion is due to anti-phase motion of di↵erent regions of the film

as mentioned above.

To prevent this e↵ect, a second device type was studied. It is again based on

the use of (0001)AlN thin films, but with modulated piezoelectric properties.

Having di↵erent piezoelectric properties in the regions corresponding to

adjacent half-periods of IDE, breaks the mirror symmetry of the device and

allows for coupling the electric field to a pure shear mode. Analytical and

numerical models explaining such a device were established and evaluated.

The optimal situation is found when perfect Al-polar and N-polar regions of

AlN are combined. This maximizes the coupling coe�cient k that is derived

as being proportional to the di↵erence of e15 coe�cients.

Finding a way to fabricate the AlN thin film with di↵erent piezoelectric

properties was thus the next objective. Growth features to decrease the

piezoelectric e↵ect were first studied. Providing rougher regions on the

otherwise smooth substrate allowed to modify locally the quality of AlN

thin films. Device based on such films were fabricated and characterized.

The resonance of a pure shear mode was found at the expected frequency

(roughly 2GHz) when the piezoelectric e↵ect was modulated. Devices with-

out this modulation failed to show the resonance at the exact frequency,

exactly as the theory predicted. We managed to reduce two times the



d33 coe�cient of the film by inducing a increased roughness to the sub-

strate - from 5.0 pm/V, corresponding to 1.5 degree rocking curve, down to

2.4pm/V, corresponding to 7 degree of rocking curve.

The final step of the thesis was the process development for the simul-

taneous growth of Al-polar and N-polar regions within sputter deposited

(0001)AlN, in order to achieve the maximal possible ”piezomodulation” ef-

fect. As the sputter deposition yielded only N-polar films, we included

Al-polar films from another source as seed layers. High temperature epi-

taxial growth methods of GaN and AlN on Si(111) and Si(100) lead to Ga-

and Al-polarities. On such films, the sputter deposited AlN copies polarity

from the growth substrate. The selective polarity was then obtained by

preventing the expitaxy locally through a patterned oxide layer. Wet etch-

ing tests together with PFM measurements were performed to prove the

dual polarity in the sputter deposited film. Finally, the integration of this

process into the process flow for device fabrication was investigated.

Keywords: AlN, sputtering, BAW, shear mode, sensors



Resume

L’utilisation de résonateurs acoustiques pour des capteurs gravimétriques

a ouvert une nouvelle activité dans la recherche et les applications des

matériaux et dispositifs piézo-électriques. La première génération de ces

capteurs est constituée par la microbalance à cristal de quartz (QCM) sur

la base de coupe AT d’un quartz mono-cristallin. Cette microbalance se dis-

tingue par la haute sensibilité de détection gravimétrique dans l’air ainsi que

dans les liquides. Depuis les années 1980, lorsque le premier capteur à base

de QCM a été réalisé pour la détection de l’argent dans une solution liquide,

de nombreux capteurs pour les applications chimiques, bio-médicales, et en-

vironnementales ont été fabriqués en utilisant le même concept. Les QCMs

présentent une très bonne stabilité thermique. Dans une plaque de quartz

de coupe AT, des ondes de cisaillement sont excitées avec des électrodes

dans la configuration de plaques parallèles. Le mode en cisaillement est

important pour la réalisation de facteurs de qualité élevé dans le cas ou le

capteur est plongé dans un liquide. Une seconde génération de capteurs

gravimétriques est basée sur des ondes acoustiques de surface (SAW), par

exemple avec ondes de Love dans une couche de SiO2 sur un monocristal de

LiTaO3. Les dispositifs SAW sont principalement utilisés comme filtres RF

pour la télévision et les téléphones mobiles. Les capteurs SAW sont un pro-

duit secondaire par rapport au marché des télécommunications. L’évolution

des technologies des couches minces et des microsystèmes a donné lieu à

une troisième génération de capteurs gravimétriques, qui est basé sur des

ondes acoustique en volume (BAW) piégées dans des films minces piézo-

électriques. Encore une fois, ces capteurs sont un produit secondaire du

grand marché des télécommunications, où les résonateurs sont utilisés pour

des filtres RF. Avec chaque génération, la fréquence d’oscillation a aug-

menté. Les QCM fonctionnent généralement à 5 MHz, les résonateurs



SAW travail généralement à quelques 100 MHz, et les résonateurs BAW

en films minces (TFBAR) fonctionnent généralement autour de 2 GHz.

L’augmentation de la fréquence est accompagnée d’une augmentation de la

sensibilité, et d’une diminution de l’épaisseur et de la gamme de masses qui

peuvent être mesurés.

Les TFBARs sont d’une certaine manière des QCMs miniaturisés, qui tra-

vaillent à des fréquences beaucoup plus élevées. Ils sont très prometteurs

car ils visent des sensibilités plus elevès. En plus, la miniaturisation permet

d’utiliser des matrices de capteurs avec di↵érentes couches d’immobilisation,

ce qui faciliterait le dépistage de drogues. Toutefois, l’application du même

type de TFBAR que celui utilisé dans les télécommunications ne permet-

trait pas une bonne performances en fonctionnement immergé. Il ne serait

bon que pour des opérations dans l’air. La principale caractéristique de

TFBARs utilisés dans des téléphones mobiles est la coe�cient du cou-

plage électromécanique et non le mode de résonance. Mais pour le fonc-

tionnement immergé en liquide, le mode de résonance doit être tel que la

surface du résonateur, en contact avec le liquide, doit vibrer parallèlement

à la surface pour minimiser des émissions d’ondes acoustiques dans le liq-

uide. Le coe�cient de couplage est secondaire pour ce type d’applications.

Par conséquent, le développement de TFBARs en mode de cisaillement est

devenu un travail intéressant qui a été poursuivi par plusieurs groupes de

recherche. L’une des solutions les plus e�caces est le l’utilisation de couches

minces AlN ou ZnO qui possèdent une texture avec l’axe c incliné dans le

même sens partout. Cette structure associée à des électrodes en forme de

plaques parallèles permet de coupler le champ électrique à la contrainte de

cisaillement, ce qui permet l’excitation d’un mode de cisaillement. De tels

dispositifs ont été utilisés avec succès pour la détection sélective d’espèces

organiques, telles que des molécules d’ADN, en suspension dans un liquide.

Le processus de dépôt pour aboutir a l’axe c incliné n’est que di�cilement

réalisable à l’échelle industrielle. L’objectif de cette thèse était de proposer

une solution pour réaliser des TFBAR’s en mode de cisaillement qui sont

basés sur des films AlN de texture (0001), donc identique à celle des filtres

RF.



Dans des films de texture (0001) du AlN, les contraintes de cisaillement

ne peuvent pas être induite par un champ électrique produit dans une

géométrie à plaques parallèles, étant donné que les coe�cients e35 et e34

du tenseur piézo-électriques sont nulls. Pour profiter des coe�cients e15 et

e24 qui ne sont pas nulls, il faut mettre le champ électrique dans le plan du

film. Dans le cadre de ce travail, ce concept a été étudié théoriquement et

expérimentalement. Un tel champ électrique a été généré par des électrodes

inter-digités (IDE). Un premier dispositif de ce type a été réalisée sur un

réflecteur acoustique (mirroir de Bragg). L’anti-phase du champ électrique

dans des demi-périodes avoisinantes de l’IDE entrâıne un mouvement d’anti-

phase. Les modélisations par éléments finis et éléments de frontière (BEM-

FEM) ont été menées pour identifier les types de vibrations présentes dans

ces dispositifs. Une sorte de combinsation composé de mouvements en ci-

saillement et en longitudinal, forment ainsi un mouvement elliptique a été

obtenu. Un dispositif de a été fabriqué et testé dans un liquide et à l’air. La

résonance du dispositif a été observée dans la gamme de fréquence prévue

(1,86 GHz). Les facteurs de qualité dans l’air (Q = 870) et dans un huile de

silicone (Q = 270) étaient satisfaisants. La baisse du facteur de qualité dans

le liquide s’explique par le mouvement ascendant et descendant des régions

situées directement sous les électrodes IDE, qui est une conséquence du

mouvement anti-phase des demi-périodes avoisinées.

Pour éviter cet e↵et, un second type de dispositif a été étudiée. Il est à

nouveau basée sur l’utilisation de (0001) AlN films minces, mais contenant

un film mince d’AlN avec des propriétés piézoélectriques modulées en phase

avec la période des doigts d’électrodes. Cette modulation permet de coupler

le champ électrique au mode de cisaillement pur. Les modèles analytique et

numérique pour un tel dispositif ont été établis et comparés. La configura-

tion optimale est obtenue lorsque les demi-périodes avoisinées possèdent les

polarités parfaites de Al et de N en alternance. Cela maximise le coe�cient

de couplage k qui est calculée comme étant proportionnelle à la di↵érence

des coe�cients e15.

Par la suite, nous avons étudié des procédés pour réaliser un contrôle local de



la polarité du AlN. La premierè approche était de on l’e↵et piézo-électrique

dans les régions définies par la lithographie, se basant sur le fait que les

films du AlN sont di↵érents selon la rugosité du substrat. Ainsi, nous avons

introduit un film mince de silicium amorphe avec une rugosité augmentée,

qui a été structuré pour contrôler la rugosité d’une manière locale. Les dis-

positifs réalisés suivant ce concept ont permis d’avoir le mode fondamental

de cisaillement à la fréquence attendue (environ 2 GHz). Les dispositifs

sans cette modulation, présents au voisinage, n’ont pas permis d’obtenir la

résonance à la fréquence prévue. Nous avons réussi à réduire le coe�cient

piézoélectrique du film sur la surface rugueuse par un facteur 2 par rapport

au valeur du film déposé sur la surface lisse.

La dernière étape de la thèse était dédié à la réalisation d’un dispositif con-

tenant un film mince d’AlN(0001) avec les deux polarité en même temps, et

prédéfinie selon l’endroit par une lithographie, pour obtenir l’e↵et maximal

de la modulation de la piézoélectricité. Comme le dépôt par pulvérisation

cathodique donne que des films N-polaires, nous avons inclus des films Al-

polaire d’un procédé MOPVE pour faire germer cette polarité aussi dans

les films pulvérisés. Une couche très fine de silice a été utilisé pour briser

l’èpitaxie localement, et ainsi faire crôıtre à ces endroits la polarité N. Le

bon fonctionnement de cette méthode a été mis au jour par la gravure

sélective dans une solution alcaline, et par la microscopie à force atomique

mesurant le déplacement piézoélectrique.

Mots-clés: AIN, pulvérisation, BAW, mode de cisaillement, les capteurs
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1

Introduction

Weighing the mass of an object is one of the earliest measurements that was made by

mankind, and remained a crucial, technical prerequisite of economy and science through

the centuries to nowadays. The classical balance principle, which is still employed at

present, was already in use in Ancient Egypt (see fig. 1.1). Such a balance is a time-

tested, and very much optimized tool that is used in everyday’s life as well as in research

in the fields of physics, chemistry and engineering.

Figure 1.1: Anubis weighing the heart of Hunefer, 1285 BC

Being based on gravitation, such balances work fine in the static case with constant

gravitation fields when carrying out a di↵erential measurement with known reference

masses. They do not work when gravitation is absent. This is the case in space. For

1



1. INTRODUCTION

such situations, there is another weighing principle available. Instead of using a static

principle, one can use a dynamic principle to determine the inertial mass. For example,

one of the methods studied in school is to determine the mass of a body by means of

a spring pendulum as shown in fig. 1.2.

k

M

Figure 1.2: Spring pendulum - a way to measure the inertial mass

The oscillation frequency of such a pendulum is defined by the sti↵ness of the spring

and attached mass through the well-known formula:

!0 = (
k

M
)1/2 (1.1)

By measuring the oscillation frequency of the pendulum, and knowing the spring

constant k, the unknown mass can be found. Moreover, by recording frequency changes

�! caused by a changing mass �M , one actually can determine �M (case for small

�M) through the equation:

�!

!0
= �1

2

�M

M
(1.2)

In most cases of real life, it’s easier to use balances that are based on Earth gravity

to weigh the static mass of an object. However, the inertial principle as described on

the example of the spring pendulum (fig. 1.2) found applications not only in space, but

also in cases requiring dynamic measurements to detect mass changes, in cases where

the measurement set-up cannot have a defined orientation with respect to gravitation

force, and in cases where small mass changes need to be detected, i.e. for sensors. The

spring-mass pendulum is of course not easily adapted for operation independently of

gravitational forces, though quite some achievements were made for portable mechanical

watches since the 18th century. A breakthrough for sensor applications was the quartz

microbalance proposed by Sauerbrey (1). He substituted the spring-mass system by a

2



1.1 Concept of gravimetric sensors

quartz crystal plate vibrating at its eigenfrequency of the fundamental thickness mode

resonance. As quartz is piezoelectric, two electrodes forming a plate capacitor (fig. 1.3)

are used to excite the vibration. Sauerbrey proposed his apparatus for the measurement

of thin film masses, specifically for the determination of thin film deposition rates in

evaporation tools.

Top electrode

Quartz plate

Bottom electrode

Figure 1.3: Quartz crystal microbalance - a quartz plate confined between two electrodes

forming parallel plate capacitor

With such a device, the ratio of frequency change �f per surface mass density

change �µ is obtained as:

�f

�µ
= Cf2 (1.3)

where C is a constant related to the mechanical properties and thickness of the quartz.

The resonance frequency (eigenfrequency) f of the QCM is measured electrically by an

RF circuit exciting continuously the shape resonance through the piezoelectric e↵ect of

quartz.

This tool is applied routinely in thin film technology to control the thickness of

deposited films. Later it was also found that it can be applied as a sensor to measure the

presence of the certain species in liquid media (2). The concept and further description

will follow in the next sections.

1.1 Concept of gravimetric sensors

The principle of gravimetric sensing with a piezoelectric oscillator is depicted in fig. 1.4.

The resonating body, usually a plane plate, is resonating at some frequency, defined

by its geometry, and is immersed into the medium in which a species of unknown

concentration must be sensed. The surface of the plate is covered with a specifically

3



1. INTRODUCTION

chosen material, called functionalisation layer, or sometimes also immobilization layer,

which captures selectively the species to be sensed. Once the species are captured, the

overall thickness, mass, and elastic properties are changed, leading to a change of the

resonance frequency. The latter is the signal of the sensor, from which the amount of

detected species is derived.

Surface vibrations

Selective layer

Species to be sensed

Captured species

Surface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrationsSurface vibrations

Captured speciesCaptured speciesCaptured speciesCaptured speciesCaptured speciesCaptured speciesCaptured speciesCaptured speciesCaptured speciesCaptured speciesCaptured speciesCaptured species

Liquid enviroment

Figure 1.4: Principle of gravimetric sensing by acoustic device with functionalisation

layer

The sensitivity of the sensor depends on the precision with which the resonance

frequency is detected. An example of measured conductance of a thin film bulk acoustic

wave resonator is shown in fig. 1.5 for illustration (3). The narrower the resonance

peak, the more precise the resonance frequency can be derived. The resonance curve

widens with energy losses of various origins, such as the viscous losses in the vibrating

materials, electrical losses in the contacts, and acoustic emission into the environment.

The fixation of the oscillator is critical, as well as the possibility to emit acoustic waves

into the liquid in which the sensor is immersed. For this reason, the QCM sensors

are based on shear mode vibrations, as shown in fig. 1.4. The surface of the plate

vibrates then in the plane, and the mechanical coupling of the device to the liquid is

dramatically reduced in comparison to the case of out-of-plane motion of the plate.

Furthermore, shear waves are quickly damped in liquids and do not propagate. As a

consequence, the acoustic coupling between resonator and liquid is much smaller as

compared to the case of longitudinal modes and waves.

4



1.2 Functional layers for chemical and bio-medical sensors

Figure 1.5: Resonance curves of a thin film bulk acoustic wave resonator. The shift from

curve 1 to 2 is due to adding a self assembled monolayer to the top electrode, (3)

1.2 Functional layers for chemical and bio-medical sensors

The sensor as described above consists of two main parts: a piezoelectric transducer

and a functional (immobilization) layer. The last one provides the selectivity of the

sensor to certain species. These are captured by specific chemical reactions with the

functional layer . This layer can be a simple polymer, as useful for temperature and PH

measurements, or be the results of an elaborate chemistry to immobilize specific organic

molecules. For bio-medical applications, also antigene-antibody reactions are employed.

In the following, literature results with di↵erent functional layers are presented.

1.2.1 Sensing the presence of Vero cells in liquid media using QCM

D. M. Gryte et al. demostrated (4) an in situ technique based on QCM for continuous

monitoring of attachment and detachment of anchorage-dependent mammalian cells on

a metal surface. An example of such a process is shown in fig. 1.6. The authors conclude

that QCM is a viable technique for monitoring anchorage-dependent cell attachment

and detachment on surfaces.

1.2.2 Pd and Co-tetra-phenyl-porphyrin (Co-TPP) layers

M. Benetti et al., reported in their work (5), ”Microbalance chemical sensor based

on thin-film bulk acoustic wave resonators” the detection of H2, CO and ethanol as

5



1. INTRODUCTION

Figure 1.6: Resonant frequency change of a 5-MHz AT-cut quartz resonator as a response

to the inoculation of Vero cells to the liquid media, (4)

low as about 2, 40 and 500 ppm concentrations in air, respectively, by using Pd and

Co-tetra-phenyl-porphyrin (Co-TPP) layers (see fig. 1.7).

Figure 1.7: Calibration curves for the TFBAR sensors upon exposure to H2 (Pd mem-

brane), CO, and ethanol (Co-TPP membrane) (5)

1.2.3 Utilizazion of oligo layer for DNA and protein detection

In the work of R. Gabl et al (6), ”First results on label-free detection of DNA and protein

molecules using a novel integrated sensor technology based on gravimetric detection

principles” utilization of 50-thiolalkyl-ACC TCT TCT GGC TCA AAA AGA GAA

T-30-biotin oligo to detect Streptavidin and utilization of 50-thiolalkyl-ACC TCT TCT

6



1.2 Functional layers for chemical and bio-medical sensors

GGC TCA AAA AGA GAA T-30 to detect its exact match to oligo (see fig. 1.8). The

resonator structure was a shear mode BAW resonator based on tilted ZnO growth.

Figure 1.8: Resonance frequency shift due to the coating with the immobilization layer

and the detection of the protein (6)

1.2.4 PMMA layer for detection of acetone vapors

In the work of S. Rey-Mermet et al (3), ”AlN thin film resonators operating at 8 GHz

used as sensors for organic films”, a Polymethyl methacrylate (PMMA) layer was tested

as acetone sensor in air. The presence of acetone in the vicinity to the device causes

an increase of the mass density of the PMMA layer, which results in a frequency drop.

Once the vapor source is removed, the absorbed acetone evaporates from the PMMA

and the frequency is coming back to its original value (see fig. 1.9)

1.2.5 Detection of cocaine and heroine. Competitive binding

G. Wingqvist et al. reported in their work (7), ”Immunosensor utilizing a shear mode

thin film bulk acoustic sensor” the detection of drug molecules, such heroine and co-

caine, presented in liquid media. The sensor was based on the detection by competitive

binding. The surface of the device was first covered with antigens and then with an-

tibodies that have specific a�nity both to the antigens and to the target molecules.

In addition, the a�nity of the antibodies to the target molecule was higher than that

to the antigen. That results in a release of antibodies once the target molecules are

7
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Figure 1.9: Resonant frequency change upon immersing the sensor in acetone saturated

air, and upon removal from the acetone vapor (3)

Figure 1.10: The antibodies bind to a synthetic antigen onto the surface of the resonator

(A). The antibodies bind with higher a�nity to the analyte and will therefore leave the

surface (B), (7).

8



1.3 Piezoelectric transducers

present in the liquid (see fig. 1.10). The response of the resonator during the process

of functionalization and detection is shown in fig. 1.11.

Figure 1.11: Frequency shift vs. time illustrating surface functionalization and detection

of cocaine with competitive binding, (7).

1.2.6 Detection of avidin, BSA and anti-avidin in the liquid media

J. Weber et al investigated (8) the detection of avidin, bovine serum albumin (BSA)

and anti-avidin by utilizing shear mode thin films BAW resonators. Dynamic measure-

ments demonstrating the reaction of the device upon the in-turn injection of solutions

containing the mentioned species are shown in fig. 1.12.

1.3 Piezoelectric transducers

There are di↵erent piezoelectric transducers that are employed in gravimetric sensors.

In the early years, the piezoelectric oscillator was based on a resonating AT-cut quartz

plate (2) whose frequency was defined by the thickness of the plate. In such a device

– based on a bulk wave – the acoustic energy is mainly distributed inside the plate.

Logically, the sensitivity with respect to surface e↵ects will increase by thinning down

the plate. This leads, however, to quite brittle structures. Further solutions were

investigated, targeting at waves localized in a surface layer: surface acoustic waves

(9), surface transverse waves (see in (10)), and Love waves (11), (12). Furthermore,

membrane-type structures with Lamb wave plate modes (13) and, more recently, thin

9



1. INTRODUCTION

Figure 1.12: Frequency shifts vs. time caused by injections of avidin, BSA and anti-avidin

(8)

film bulk acoustic resonators (TFBARs) (14) were investigated. The sensitivity Sµ

defined as relative frequency shift per change of surface mass density (see 1.4) can be

used as one of the figures of merit for transducers of di↵erent types.

Sµ =
1

f0
lim
µ!0

|�f |
µ

(1.4)

where f0 is the resonance frequency and �f is the shift of the frequency per change of

surface mass density µ.

An overview of sensitivity of mass density obtained with di↵erent devices is shown

in fig. 1.13. The sensitivity as defined by equation 1.4 increases theoretically linearly

with frequency (see (6)). Fig. 1.13 gives the experimental evidence for this behavior. In

virtue of its high frequency, the BAW device has the highest sensitivity in comparison

to others.

As already mentioned above, an important di↵erentiation of the various acoustic

excitation mechanisms is the ability to create exclusively shear displacements, meaning

that at the surface, the displacement is tangential, as shown in fig. 1.4. This property

is required for operations in liquids because shear modes do not emit waves into liquids

and thus are able to maintain a high quality factor in immersed operation. Such

shear mode sensors are required for the largest potential markets, which are medical

10



1.3 Piezoelectric transducers

Figure 1.13: Overview of sensitivity of mass density obtained with quartz micro balances

(QCM) (15), (16), SAW devices (17), and BAW devices (6), (3) following the sensitivity

definition of 1.4 (fig. from (3))

diagnosis, drug screening, and, eventually, environmental sensors. The high sensitivity

makes shear mode BAW resonators to be sensors with unique performance.

The following subsections will be mostly focused on topics related to shear mode

BAW devices.

1.3.1 Transducer materials

The development of thin films technologies over the last decades enabled the fabrica-

tion of piezoelectric resonators and transducers that operate on the same principle as

quartz resonators, but at higher frequencies. Aluminum nitride (AlN) and zinc oxide

(ZnO) are the most used ones. These materials are about equivalent with respect to

piezoelectric properties. However, AlN is a better electrical insulator, and better ther-

mal conductor. Today, AlN is the standard material to fabricate FBAR’s for RF-filters

in mobile phones.

Detailed description of AlN and ZnO properties can be found elsewhere (18), (19).

Considering a (0001)-textured, polycrystalline, columnar film slab as a free body, we

would find a d33 coe�cient that is equal to the �33 of the single crystal column (3: crystal

axes). The in-plane ordering is random, resulting in a cylindrical symmetry. This gives

the same symmetry of the piezoelectric tensor as for hexagonal or tetragonal crystal

11



1. INTRODUCTION

symmetry. It follows that in the case of wurtzites, d31 is equal d32 and corresponds

to the crystal �31 value. In addition, the shear mode coe�cients d15 and d24 coincide

as well and again correspond to the single crystal value, see (1.5). Example of such a

(0001)-textured AlN film is show in fig. 1.14.

dni =

0

@
0 0 0 0 d15 0
0 0 0 d15 0 0
d13 d13 d33 0 0 0

1

A (1.5)

Figure 1.14: Example of (0001)-textured, polycrystalline AlN film with its typical fibrous

or columnar grains, as seen by bright field transmission electron microscopy (20)

1.3.2 Fabrication techniques

AlN thin films for piezoelectric MEMS devices are almost exclusively deposited by

means of reactive sputter techniques. This technique is the only one that provides

highly-oriented, piezoelectric films at temperatures as low as 200 �C. The sputter source

is a magnetron source, and the substrate chuck in face of the target preferentially allows

for coupling in an RF bias. The tool is schematically shown in the fig. 1.15.

During the sputter process, ions from the plasma are accelerated in the cathode

sheath and sputter o↵ atoms from the target material. These atoms form a so-called

12
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S N S

Plasma

Magnetron

Target

Wafer

Magnetic !eld

RF or DC

RF bias

Figure 1.15: Constitution of the sputter deposition chamber

physical vapor and travel towards the substrate, on which they condense. The pecu-

liarity of the method is that the energy of the atoms sputtered from the target bring a

kinetic energy of a few eV. In addition, on an insulating substrate or film, the surface is

negatively biased, attracting positive ions from the plasma. The substrate bias can be

enhanced by the application of RF power to the substrate chuck. In this way, the bias

voltage on the substrate becomes even more negative, thus attracting even more ions to

bombard the growing film. Ion energies in the range of 20 to 40 eV are very suitable to

enhance adatom di↵usion on the surface. In this way, films can be grown with an appar-

ent surface temperature that is higher than the real substrate temperature. A higher

film quality is achieved as would be possible with a process at thermal equilibrium at

the same substrate temperature. This phenomenon results in a peculiar growth mode,

called zone T growth mode, which is due to the absence of bulk and grain boundary

di↵usion, but includes surface di↵usion. In the Thornton structure zone diagram (Fig.

1.16) zone T is situated between the zones 1 (no di↵usion at all) and zone 2, which

is governed by thermally activated grain boundary and surface di↵usion. The typical

growth conditions for sputter deposited, columnar (0001) textured AlN thin films are

indicated in the diagram with red color.

Non-reactive gases, such as argon, are usually used as sputtter gas to deposit films

with the target composition. Nitrides and oxides can be obtained by using metallic

targets, and adding N2 and O2 gas to the sputter gas. Nitride and oxide films are then

obtained due to chemical reactions on the target and film surface. For example, thin

films of AlN are obtained in the presence of N2 gas while sputtering from a Al target.

Such a process called reactive sputter deposition.

13
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Growth conditions for 

columnar (0001) AlN !lms

Figure 1.16: Growth conditions for the columnar (0001)-AlN films according to the

Thornton structure zone diagram

1.3.3 Design of the shear mode resonator

Piezoelectricity is an anisotropic e↵ect. The deformation depends on the direction along

which the electric field is applied. The strain tensor is obtained from the multiplication

of the piezoelectric tensor with the electric field vector (1.5). In case of single crystal

transducers, the crystals are cut in specific directions to place the electrodes in an

optimal way. For instance, the AT cut quartz is cut in such a way that the electric field

perpendicular to the plate excites a pure shear deformation. This degree of freedom

is not available in thin film transducers. Growth cannot be made along arbitrary

crystalline directions.

The parallel plate capacitor design, as shown in fig. 1.17, is the most classical

and simplest design. As the films investigated in this thesis grow naturally with a

preferred (0001) texture, the exploitation of the d3⇤ is possible for such design. For

(0002) oriented films of AlN and ZnO there are no coe�cients among d3⇤ that couples

to shear deformation. Thus no shear waves can be excited. Such device can applied as

a sensor in gaseous environment and examples of such one already have been mentioned

(6), (3).

In order to have coupling to shear mode while using plane plate capacitor design,

one need to use a material that has d35 or d34 to be non zero. That can be achieved

by using AlN or ZnO films with inclined (0002) axes (see fig. 1.18). Such a device

was investigated by several groups (14), (8). The coupling coe�cient of the device for

longitudinal and shear mode depending on the angle of inclination from the vertical

14
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1

3

E

Figure 1.17: Plane plate capacitor with piezoelectric material

modeled is shown in fig. 1.19 (21). The di�culties related to growth of such inclined

films were discussed in the previous subsection.

1

3

inclined c-axis

E

θ

Figure 1.18: Utilization of AlN or ZnO with inclined c-axis to excite shear waves in the

film by E3 electric field

Considering devices based on (0002)-AlN or (0002)-ZnO, the only possibility of the

direct excitation of the shear mode waves is through d15 (or d24).

1.4 Sensitivity and cross-sensitivity

The mass change of material attached to the surface of the resonator is only one of the

factors to which piezoelectric transducers are sensitive. There are also others factors

that may cause a frequency shift. This may be practical and useful for some applica-

tions, but annoying for others. Such so-called cross-sensitivities should be taken into

account to get correct results. First of all, there are external factors that may cause the

change in the geometry and mechanical properties of the transducer itself. For example,

temperature and pressure of the environment. In order to exclude that e↵ect one can

measure in parallel two devices - one that is sensitive to the environment and another

15
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Figure 1.19: Coupling coe�cient k2 of plate thickness mode (shear and longitudinal)

based on AlN film with inclined c-axis (21)

one that is sensitive to both environment and to the factor defined by functionalization

layer.

The functional layer used to immobilize specific molecules, might do more than

simply attach these molecules. Chemical reactions may happen that change elastic

and viscous properties, as well as the thickness and density. For example, a change

in sti↵ness and thickness may shift resonance frequency. In the work of N. Schuwer

(22), the shift of the resonance frequency occurred due expansion or compression of the

polymer brushes layer as a reaction on change of the pH of the liquid (fig. 1.20)

Figure 1.20: Sensing pH level in the liquid media using QCM with polymer brushes layer

that is sensitive to pH, (22)
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1.4 Sensitivity and cross-sensitivity

Last but not least, the change of viscosity of the liquid leads to a change of resonance

frequency, too. The reason is that the viscosity defines the mass of the liquid involved in

the vibration motion (see fig. 1.21). It’s actually the way the QCM or other transducers

can be a tool to measure the viscosity and it has been studied by several groups (23),

(24).

Figure 1.21: Cross-sectional view of a smooth TSM resonator with the upper surface

contacted by a liquid. Shear motion of the smooth surface causes a thin layer of the

contacting liquid to be viscously entrained, (23)
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1. INTRODUCTION

1.5 Goal of this thesis

As outlined in the previous sections, shear mode BAW resonator have a high potential

for sensor applications. The growth of films with tilted c-planes appears to be rather

di�cult to up-scale for industrial production. It would be more interesting to use

industrially available processes and thin films, such as (0002)AlN and (0002)ZnO.

The goal of this thesis is to study design and fabrication of shear mode

BAW resonators that are feasible within existing industrial fabrication tools

and materials, in particular (0002)AlN films.
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2

Coupling the shear displacement

in c-axis oriented AlN thin films

As mentioned in introduction, a shear strain in (0001) oriented AlN thin films is

achieved through e15 by applying an electric field E1 parallel to any direction in the

film plane.

ρ, c, ε, e

1

3

uniform AlN (0001) #lm

E

Electrodes

Figure 2.1: Thin film of AlN with in-plane electric field inside (ideal situation)

First, the ideal situation as given in fig. 2.1 was studied. The in-plane electric

field causes a pure shear strain. In the following article, the exact, analytical one-

dimensional (1D) model was treated, and admittance of an idealized capacitor was

derived as follows:

Y = j!C0(1 + k215
tan(')

'
), ' =

k3l

2
, (2.1)
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2. COUPLING THE SHEAR DISPLACEMENT IN C-AXIS ORIENTED
ALN THIN FILMS

where C0 is the static capacitance between the electrodes, l is the thickness of the film

and wave number k3 = !
q

⇢
cE55

is defined through the mechanical properties of the film.

The coupling constant k15 is obtained as:

k15
2 =

e152

cE55✏
S
11

(2.2)

. The fundamental resonance occurs when the thickness of the film is equal to half the

wavelength of the wave.

The theoretical value of the coupling coe�cient as given by the formula (2.2)

amounts to 2.5% for AlN. However, the idealized electrodes buried in AlN are very

di�cult to realize. Also it is not practical to obtain in-plane fields by very much

distant electrodes, because the electrical impedance would be too large. A realistic

device employs interdigitated electrodes as shown in fig. 2.2. In this way, the electrical

impedance is kept at reasonable values. Between each pair of IDT fingers, an in-plane

electric field will be induced and a shear strain is produced locally, which is expected

to excite a shear mode excitation between the finger pairs (see fig. 2.2). However, the

two adjacent pairs of IDT induce an electric field that is in anti-phase, so the motion

of the film within these regions will be in anti-phase too. Overall, the regions between

the fingers will be vibrating in a shear mode, with the exclusion of the regions below

the electrodes.

planar IDT electrodes

ρ, c, ε, e

1

3

+ - +

uniform AlN (0001) #lm

E E

Figure 2.2: Using the IDT electrodes to create in-plane electric field locally in the film

A demonstration device was designed and fabricated. Acoustic decoupling from the

substrate was obtained by the use of a Bragg reflector between substrate and active

AlN layer. This reflector was optimized for the sought shear mode. Such decoupling

20



is commonly called the solidly mounted resonator (SMR) design. It has the advantage

of a more rugged structure than the membrane approach. In our case, it additionally

helped to amplify the shear vibrations. The Bragg reflector consisted of 5 pairs of layers

of AlN and SiO2, a solution known from the past (25) and (26). A 3-dimensional view

of the design is shown in fig. 2.3

Figure 2.3: Schematic drawing of SMR shear mode BAW device with interdigitated

electrodes

Combined finite element and periodic boundary element modeling (FEM-BEM)

were employed to analyze the motion of the IDT device. The FEM-BEM confirms the

in-plane motion of the regions located between electrodes (see fig. 2.4) as well as that

e15 coe�cient is essential for excitation of such wave. As mentioned, the film doesn’t

vibrate in shear mode as a whole, but locally between electrodes. It can be seen that

Bragg mirror prevents the penetration of the wave to the substrate. Electrodes are

moving up and down, that is a source of losses of acoustic energy from resonator into

the liquid once it’s immersed.

Following paper, ”Shear mode bulk acoustic wave resonator based on c-axis oriented

AlN thin film” is devoted to detailed theoretical investigation of the device shown in

fig. 2.2 and to its fabrication and experimental characterization.
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ALN THIN FILMS

Figure 2.4: FEM-BEM simulation: motion of the device at resonance frequency
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I. IINTRODUCTION

In recent years, the rise of mobile communication has
stimulated the development of thin film bulk acoustic wave
resonators TFBARs to realize rf filters for the low giga-
hertz frequency range.1,2 Such resonators are also potentially
very interesting for gravimetric sensors,3,4 which are tradi-
tionally based on AT-cut quartz plates.5 The decrease in reso-
nator thickness when passing from a single crystal to a thin
film leads to a very marked increase in frequency. Theoreti-
cally, and also evidenced by experiments,6 the relative fre-
quency shift by mass loading increases linearly with fre-
quency. The signal-to-noise ratio, however, does not increase
as much. A recent comparative study showed a factor of 2
improvement of a TFBAR device as compared to a quartz
microbalance device.7 TFBARs of the type utilized in tele-
communication devices are based on a longitudinal wave.
The AlN or ZnO films are grown on metal electrodes and are
c-axis oriented. The electric field is created by means of a
parallel plate capacitor that points along the c-axis. This ge-
ometry leads to a piezoelectric stress excitation along the
c-axis by means of the e33 piezoelectric coefficient. The bor-
der reflections lead to trapping of a wave running along the
c-axis. This longitudinal mode is optimal for rf filters be-
cause the highest piezoelectric coupling is achieved in this
way. The same geometry can be used for sensors operated in
air.3,4,6 However, sensors for immersed operation are more
attractive because they are useful for biomedical and many
environmental applications. In liquids, longitudinal waves
are very much damped by acoustic emission into the liquid.
For this reason it is better to use shear waves, which do not
propagate in liquids.

Many efforts have recently been made to grow AlN and
ZnO thin films whose c-axis is tilted with respect to the film
normal.8–11 In this way, the shear coupling through the e15
piezoelectric coefficient comes into play in parallel plate ca-
pacitors and a mixed, shear, and longitudinal excitation is

achieved. The fact that the shear wave exhibits a much lower
sound velocity than the longitudinal wave allows for trap-
ping the shear mode selectively, thus suppressing the longi-
tudinal mode to a large extent. The disadvantages of this
method are associated with achieving a homogeneous c-axis
tilt across the wafer. The design of the magnetron source for
homogeneous tilting is not evident and certainly does not
correspond to a standard tool as currently optimized by in-
dustry, which by now achieves impressive results in terms of
uniformity of thickness and piezoelectric coupling of c-axis
oriented AlN.

In this work, we investigate another solution. It is sought
to use standard AlN thin films that are useful for rf filters, but
instead we tilt the electric field into the plane of the film by
using interdigitated electrodes IDEs . We will first show that
a BAW mode of shear symmetry can indeed be generated in
this way. Important requirements for the realization of such a
structure are: growth of good piezoelectric thin films on an
insulator such as a SiO2 layer and a design that avoids mix-
ing of the desired shear bulk mode with Rayleigh, Love, or
Lamb waves. We do not use a membrane structure but em-
ploy an acoustic reflector to suppress emission into the sub-
strate. This eliminates the occurrence of Lamb waves. At-
tempts to create such resonators based on ZnO were very
recently published by Corso et al.12 A Q-factor of about 550
in air and the capability of operating in liquid were reported
without, however, showing details for the latter. These au-
thors employed a reflector based on W layers, which short
circuit the electric field, leading to strong vertical compo-
nents of the electric field below the electrodes, and only
weak horizontal fields in between the two electrodes. Ac-
cording to their simulations, the active layer operates not in a
shear mode but in some other mode type, probably due to
transverse strain in the film plane e31 coefficient . In our
work we use a pure dielectric reflector stack AlN SiO2,
which leads to an electric field that is mainly along the x-axis
in the plane of the film. In addition, we extended the two
electrodes to a larger IDE system.

SHEAR MODE BULK ACOUSTIC WAVE RESONATOR BASED ON C-AXIS ORIENTED ALN THIN FILM

Preprint for Journal of Applied Physics
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II. THEORETICAL BACKGROUND

A. Concept

The shear mode sought requires the exciting electric
field to be perpendicular to the propagation direction. This is
a major difference in the traditional longitudinal TFBAR. For
this reason the major derivation steps are presented in this
section to show that the existence of this mode also follows
from simple analytical modeling !our approach differs to that
of Corso et al.12". For an AlN plate with its c-axis oriented
perpendicular to plane, Newton’s wave equation is combined
with Maxwell’s equations including the electromechanical
coupling,

!üi =
!Tij

!xj
, !1"

Tij = cijkl
E Skl − enijEn, !2"

Dn = "njEj + enklSkl, !3"

rot E! = 0, div D! = 0, !4"

where ui, Tij, Sij, Ej, and Dn are mechanical displacement
field, stress and strain tensors, electric field intensity, and
electric displacement filed, respectively.

As usual, the upper index in cijkl
E denotes the condition at

constant electric field. In the following, we will use reduced
index notation, and understand cij to be for constant field. In
the applied coordinate system, direction 3 points perpendicu-
lar to the film plane and is at the same time the sixfold polar
axis of the AlN single crystal grain and the long growth
direction of the grain. The overall symmetry of the polycrys-
talline textured film is cylindrical, and results in the same
matrix symmetry as for single crystal AlN.

For an electric field pointing along the x1 direction !Fig.
1", Eq. !2" becomes

Ti = cijSj , !5"

where i , j=1,2 ,3 ,4 ,6 and

T5 = c55S5 − e15E1. !6"

We can see that only the S5 strain of the film is coupled with
the electric field E1 and that this deformation is not coupled
with any other deformation. Hence the excited wave contains
only displacements corresponding to S5.

For a clamped thin film, S5 is equal to !u1 /!x3. Introduc-
ing the Maxwell equations, it follows that all variables de-
pend on x3 only. Then by solving Maxwell’s equations and
Newton’s equation together with the equations of electrome-
chanical coupling, we obtain

!E1

!x3
= 0,

!E1

!x1
= 0, !7"

!ü1 =
!T5

!x3
, !8"

!T5

!x3
= c55

!S5

!x3
= c55

!2u1

!x3
2 . !9"

So,

!ü1 = c55
!2u1

!x3
2 . !10"

The last equation describes shear waves that propagate in the
x3 direction #wave vector !0, 0, k3"$ and with displacement in
the x1 direction. The current and the voltage between elec-
trodes can easily be derived and admittance Y = I /U is finally
equal to

Y = j#C0%1 +
e15

2

c55"11

tan!$"
$

&, $ =
k3l

2
, !11"

where C0 is the static capacitance between the electrodes and
wave number k3=#'! /c55. Resonances are observed for in-
finite values of tan!$". At the antiresonance frequency the
admittance becomes zero. The difference between the reso-
nance and antiresonance frequencies is proportional to the
piezoelectric coupling constant e15

2 /c55"11. Note that the
value of e15 does not affect the resonance frequency but
strongly affects the antiresonance frequency. This is the re-
sult of the fact that c55 at constant E-field is relevant for the
wave propagation, as follows from Maxwell’s Eq. !4". Our
result contradicts the theory presented by Corso et al.12 in
which the wave number is derived as cD dependent.

B. Field element modeling

As a first task infinite element method !FEM" simula-
tion, we confirmed our theoretical results. An in-plane ac
electric field is produced in a slab of AlN!001", as in Fig. 1,
allowing motions in the field direction !index 1" only. The
resulting displacements at resonance are exactly those ex-
pected of a pure shear mode !Fig. 2". The resonance fre-
quency was found to obey exactly Eq. !11" of the analytical
1−d model. The coefficient e15 was varied from one to three
times the literature value of −0.48!C /m2" for AlN. The de-
pendence of resonance and antiresonance frequencies are de-
picted in Fig. 2, showing that the behavior of the analytical
model is exactly reproduced.

In practice, it is difficult to create a pure in-plane electric
field, because it would require very precise patterning of the
active AlN film without avoiding completely stray fields. A
more practical way of supplying in-plane electric fields is the
use of IDEs. In this geometry, the electric field has opposite
directions in neighboring IDE sections leading to an an-
tiphase motion in adjacent regions. This will lead to some
perturbation from the ideal case. For this reason, FEM mod-
eling has been carried out to quantify the details of the re-
sulting motion. The silicon substrate was included using the
boundary element method !BEM". Apart from the regions of

3
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electrodes, FEM-BEM modeling shows that the electric
fields of the IDEs lead to an excitation that is close to the
ideal one, as used for the analytical calculation.

The properties of the solidly mounted resonator with a
periodic planar electrode system were simulated with the
help of ANSYS and the FEM-BEM coupling module from
Microsonics. A half-period of the mechanical response at
resonance frequency is shown in Fig. 3. The electrode is
located in the center on the top of the structure, the bottom
border is clamped to a semi-infinite substrate, and half-
period conditions are established along the horizontal axis.

The fact that we are dealing with shear waves can easily be
ascertained from the type of resonant motion within the ac-
tive AlN layer.

It is important to emphasize several peculiarities as fol-
lows. !1" A shear mode thickness resonance can be seen be-
tween the electrodes !at the left and right of the center of the
structure". !2" The most intense motion is concentrated in the
top layer of AIN and the amplitude decreases strongly within
the Bragg reflector. !3" The displacement of the AlN surface
between electrodes is mostly horizontal, which is very im-
portant for sensors in liquid applications. !4" There are small
vertical displacements of the electrode, which are expected
to contribute to losses in immersed operation. The simulated
electrical admittance is shown in Fig. 4, from which a
Q-factor of 2000 and coupling coefficient of 0.2% are de-
rived.

The material constants used for AlN are given in Table I
!from Ref. 13". The following material constants for SiO2
were also used: density of 2200 kg /m3, Poisson’s ratio of
0.171, and Young’s modulus of 70 GPa. Electrical resistivity
of electrodes and mechanical losses of materials were not
taken into account. The finite quality factor of the resonance
results entirely from the acoustic emission into the substrate
through the Bragg grating. The thickness of the electrode has
only a minor effect on the resonance frequency. The latter
was found to be 2086 and 2074 MHz for 100 and 150 nm
thickness, respectively.

III. FABRICATION

A top view and a cross-sectional view of a typical device
are shown in Figs. 5 and 6. The device consists of a reflector
composed of five pairs of SiO2 and AlN layers !similar as in
Ref. 14". Such reflectors were originally proposed and fabri-
cated by Lakin et al.2 for rf filters based on the longitudinal
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FIG. 3. FEM-BEM simulation: motion of the device at resonance frequency.

FIG. 2. Resonance and antiresonance frequencies as a function of the pi-
ezoelectric coefficient e15, as obtained from FEM simulation. The insert
shows the motion shape, i.e., the u1 displacement intensity in a contour plot.
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mode. They require more layers than the commonly used
SiO2 W type, but have the advantage of being electrically
insulating. As explained earlier, this is extremely important
for the IDE shear mode excitation. The critical issue in re-
flector stack deposition is the stress control to avoid accumu-
lation of bending moments, as described in an earlier work of
the EPFL group,15,16 and later by the CSEM group.17 We
deposited the AlN thin films by pulsed dc reactive magnetron
sputtering18,19 and the SiO2 films by rf sputtering at a tem-
perature of 300 °C. The stress within AlN films can be ad-
justed more easily than that within SiO2. For this reason, the
AlN process was optimized to compensate the SiO2 film

stress of −200 MPa. The active 2 AlN layer is deposited
on the top SiO2 layer of the reflector. A very thin layer of
SiO2 on top of the active AlN layer was used to protect the
AlN from being attacked by the developer solution during
subsequent photolithography for aluminum electrode pattern-
ing. The 150 nm thick aluminum electrodes with chromium
adhesion layers were evaporated at room temperature, and
patterned by means of a lift-off process using a double layer
resist lift-off resist LOR +AZ1512 photo resist . This de-
vice thus needs only one photolithography step, and not two
as the simplest possible TFBAR.

All devices were designed to have equal static capaci-
tance, but at the same time the distance between the centers
of neighboring electrode fingers was varied from 6 to 10 m
in order to test the resonance frequency dependence on the
IDE dimensions. In case of a pure shear thickness mode
excitation no such dependence must be observed.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The performance of the resonators was assessed using a
Cascade Microtech probe and HP Network analyzer in air
and in silicon oil Poly dimethylsiloxane , viscosity of 0.65
cS . Typically, the resonance frequency of devices operated
in air was between 1.8 and1.9 GHz, depending on the posi-
tion on the wafer. This effect is due to a nonuniformAlN film

thickness. The resonance frequency was found to change

very weakly with increasing distance between adjacent finger
electrodes. The change amounted to less than 2% when the
distance between the fingers was almost doubled, from 6 to
10 m Fig. 7 . The devices for this study were built near
each other on the wafer, thus having equal thickness of all
layers active layer: 1.55 m . The thickness mode nature of
the resonance is thus confirmed, excluding any wave depen-
dent on IDE periodicity. The small change in frequency with
short electrode distance must be assigned to the stronger ad-
mixture of up and down motions below the center of the
electrode, leading to a stiffening.

The sensitivity of the sensor depends crucially on the
width of the resonance curve, because the shift of the reso-
nance curve is more precisely measured when the resonance
peak is narrower. This width is inversely proportional to the
quality factor Q, which is evaluated as the ratio between full
width at half maximum of the conductance peak, as a func-
tion of frequency to the resonance frequency. The maximum
Q-factor was thus determined to be 870 in air Fig. 8 . This
Q-factor is smaller than the simulated one, since the latter
did not take into account material losses.

The coupling coefficient k2 amounted to 0.15% in this
case, which is in agreement with simulations. As compared
to FEM and analytical calculations, the experimental reso-
nance frequencies turned out to be around 10% lower. It is
possible that the shear stiffness of a columnar microstructure
is smaller than that of an epitaxial film, as investigated by
Tsubouchi et al.,13 whose value of c55=118 GPa was applied
in FEM-BEM simulations.

The conductance curve of the device immersed in silicon
oil is shown in Fig. 9. The peak amplitude is decreased as
well as the Q-factor and a small shift of the resonance fre-
quency 2 MHz takes place. This shift may have two pos-

TABLE I. Properties of AlN used in FEM-BEM simulation.

Stiffness constants
!GPa"

Piezoelectric coefficient
!pm/V"

Density
!kg /m3"

c11
E c12

E c13
E c55

E d31 d33 d15 !

345 125 120 118 −2.64 5.53 −4.07 3260

100μm

FIG. 5. Top view image of the typical resonator fabricated in this work.

SiO2

1.55μm

AlN



sible origins. The first one can be a loading effect due to the
local piston motion of the electrode regions, which contain
the previously discussed longitudinal i.e., vertical wave
component. As a second origin we can see surface roughness
or asperities. As the liquid has some finite viscosity, it is
dragged to a certain depth, and thus the shear wave is loaded
as well. The Q-factor measured in immersed operation
amounted to 260. According to our simulation calculations
comparing the actual resonator with an ideal homogeneous
shear resonator, the additional damping is mostly due to the
piston movement in the electrode finger regions. However,
the achieved Q-factor in the liquid is still high enough for
sensor applications. In comparison, Wingqvist et al.9 re-
ported a Q-factor of 150 achieved by a shear mode thin film
bulk acoustic resonator based on inclined c-axis AlN, oper-
ated at a lower frequency of 1.2 GHz.

In the future, the device will be completed as a sensor. It
will be covered by a SiO2 layer, on top of which an organic
immobilization layer will be grafted. The resonant frequency
is expected to shift when the surface mass density, or stiff-
ness of this layer, changes upon adsorption of or reaction
with organic molecules from the liquid mostly water . The
immobilization layer may contain, for instance, antigenes
that attach the corresponding antibodies.

V. CONCLUSIONS

We have shown by a simple one-dimensional model that
standing shear bulk acoustic waves can be excited in a pi-
ezoelectric slab with an in-plane electric ac field. In contrast
to the well-known longitudinal bulk acoustic waves, their
resonance frequency depends on the stiffness at constant
E-field and not at constant D-field. The FEM simulation was
extended to a full two-dimensional simulation model for a
realizable device based on IDEs, including an acoustic re-
flector. A specific boundary element method was applied to
deal with the boundary condition underneath the reflector.
The model confirmed that IDEs excite mainly the desired
shear mode, however, with a deviation from the ideal motion
below the electrodes. We succeeded in the fabrication of test
devices that show resonance frequencies close to the calcu-
lated ones, and that vary only slightly with the electrode
spacing, as expected for such modes. Importantly for sen-
sors, the immersion into a low-viscosity siloxane liquid still
allowed for a high Q-factor of 260, and only slightly shifted
the resonance frequency. The results achieved and the sim-
plicity of the fabrication of such devices show their potential
as gravimetric sensors for biomedical and environmental ap-
plications.
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3

Modulation of piezoelectric

properties to excite a pure shear

mode

In Chapter 2 we treated interdigitated transducers made from homogeneous, c-axis

oriented AlN thin films having everywhere the same polarity. We have seen that the

excited shear strains are opposite to each other in neighboring sections. This resulted

in antiphase vibrations of adjacent regions, and, as a consequence, in an up and down

motion of the electrodes. Hence, shear mode could be excited only in the regions

between electrodes and pure shear displacement of the whole film could not be achieved.

The question was thus how to modify the device in order to obtain a pure shear mode,

under the condition of keeping the c-axis orientation of the AlN thin film.

The idea came up to turn the polarity of the AlN film when going from one section

to the next. In this way, the piezoelectric coe�cient changes sign in phase with the

in-plane electric field, and the shear strain would be the same in all sections. As a

generalization of this concept, one can assume to have di↵erent piezoelectric properties

of adjacent sections, as indicated in fig. 3.1 . That breaks the symmetry of the structure

and removes constraints for the coupling in-plane plane shear waves to the electric field

of the IDT electrode. The larger the di↵erence between piezoelectric properties of two

types of AlN, the higher the electromechanical coupling of the device. The idealized

one-dimenensional model leads indeed to the simple result of:
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3. MODULATION OF PIEZOELECTRIC PROPERTIES TO EXCITE A
PURE SHEAR MODE

k2t / (e(1)15 � e(2)15 )
2 (3.1)

Theoretical description of such a device is given in the article ”Electro-Mechanical

Coupling in Shear-Mode FBAR With Piezoelectric Modulated Thin Film”, reproduced

on the following pages.

Such a concept can be realized in both, the membrane structures or solidly mounted

resonators using Bragg reflectors (as described in Chapter 4). It can be argued, however,

that the coupling coe�cient is lower for SMR devices due to parasitic capacitances

caused by the reflector layers (even if they are dielectric).

This design was also patented. The patent is described on the following pages.

planar IDT electrodes

ρ, c, ε, e

1

3

+ - +

uniform AlN (0001) #lm

planar IDT electrodes

ρ, c, ε, e ρ, c, ε, e

1

3

+ - +

(1) (2)

AlN of a #rst type AlN of a second type

Figure 3.1: Modification of the design if using AlN of two di↵erent types
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4

Experimental device with

piezo-modulated AlN in SMR

design

In this chapter we report on the first realization of a piezoelectric modulated IDT

transducer. The goal was to decrease piezoelectric coe�cients in every other section,

and to demonstrate the existence of a pure shear mode.

4.1 Seeking a method to locally reduce the piezoelectric

e↵ect in AlN sputtered thin films

Process-microstructure-property relations of AlN thin films are the topic of many many

research targeting to optimize the piezoelectric coe�cient d33,f , or the coupling coef-

ficient k2t . A major microstructural parameter is the rocking curve width of X-ray

di↵raction peaks. This width depends firstly on the tilting of the corresponding planes

(i.e. the deviation from parallelism with respect the film plane), and secondly on the

coherence length within these planes. The first e↵ect is related to the roughness of

the substrate, the second to the density of grain boundaries and dislocations. From

these works one can draw a simply conclusion: the better the crystalline quality of

AlN, the better the piezoelectric properties and vice versa. This was evidenced in the

early work of Dubois and Muralt (19), where two (001)-textured AlN films with rocking

curves of 2.41 and 7.24 degree show an almost factor 2 di↵erence in the d33,f coe�cient
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(see fig. 4.1). The di↵erence in film quality was achieved through di↵erent deposition

conditions. Such an approach would not work to obtain local variations.

Figure 4.1: X-ray rocking curves and d33,f coe�cients of AlN films deposited on Pt with

under di�rent conditions (with di↵erent values of bias: of either -42V or -27 V) (19)

Of course it is essential that the film is completely (001) textured to achieve good

piezoelectric coe�cients. Iborra et al (27) show that a considerable reduction in cou-

pling factors was obtained when other orientations were present. However, also com-

plete (001) texture is no guarantee for a good piezoelectricity. In this work, thin films of

AlN were sputter deposited under di↵erent conditions and their piezoelectric responses

were derived from the frequency response of SAW devices 4.2. Tonisch et al. (28) re-

ported the dependence of d33,f from the (002) rocking curve width of full (001) textured

AlN films prepared by sputtering and MOCVD (see. fig. 4.3)

In the works mentioned above, the di↵erence of AlN quality was achieved by chang-

ing deposition conditions and methods. S. Mishin et al. (30) also investigated the

relationship between quality of sputtered films and substrate surface roughness. They

showed that the rocking curve width (FWHM) tends to increase as a function of sub-

strate surface roughness (fig. 4.4).

This work was followed by the research of A. Artieda et al (31), who investigated

the dependence of the rocking curve width and of stress of AlN thin films sputtered on

amorphous Si films with varied roughness. Similar results as by Mishin are reported:

the rougher the substrate the broader the rocking curve (fig. 4.5)
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4.1 Seeking a method to locally reduce the piezoelectric e↵ect in AlN
sputtered thin films

Figure 4.2: Electromechanical coupling factor k2 as a function of the degree of (002)

orientation, defined as the ratio of the peak intensity of the (002) XRD reflection over

the sum of the peak intensities of all the reflections in the XRD pattern, for AlN films

deposited at di↵erent pressures (27)

Figure 4.3: Dependence coupling factor k2 (29) and d33,f (28) on the FWHM of the (002)

rocking curve width (FWHM) of AlN films
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Figure 4.4: Correlation between FWHM of AlN films and substrate surface roughness

(30)

Figure 4.5: Rocking curve FWHM of AlN (002) peak as a function of rms of substrate.

Black squares: substrate with Si sputtered layer; white-black square: substrate with (111)

Pt layer; and black triangle: substrate of thermal oxide SiO2. (31)
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4.1 Seeking a method to locally reduce the piezoelectric e↵ect in AlN
sputtered thin films

Seeking a process for the fabrication of AlN thin film with locally di↵erent piezo-

electric properties, the most promising technique to deteriorate piezoelectric properties

appears to be the local control of substrate roughness. The roughness must be tuned

to the process that is used to achieve good AlN on smooth surfaces.
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4.2 Methods to make rough surfaces

In this section, we studied processes to reduce the piezoelectric coe�cients by locally

roughening the growth substrate. In the design of the device described in chapter 3,

layers under the AlN thin film should be electrically isolating. For engineering the

roughness, we need an additional layer that allows the tuning of the roughness. We

must be able to introduce the roughness locally, meaning that we need a patterning

step. For electrical and acoustic reasons, the AlN film is grown on a SiO2 layer. This

applies for both designs, the SMR design with the reflector, and the membrane design.

We investigated two ways to create roughness. In a first method we add a rough

layer locally: the added layer method. In a second method we replicate the rough-

ness of a rough layer that is removed afterwards: the replica method. In both cases

photolithography is used to define the places where roughness is introduced. Within

the added layer method, an amorphous layer of amorphous silicon (a-Si) is sputtered

deposited and lifted o↵ afterwards, remaining only in desired places (see. fig 4.6).

Surface to 
induce roughness

lift-off resist

photoresist
Rough layer Rough area

Smooth area

Double resist 

photolithography

Wafer with

smooth surface0. 1.
Deposition of

rough material2. Lift-o!3.

Figure 4.6: Process of inducing roughness by depositing a layer of rough material

Within a replica method, an a-Si layer is sputtered deposited onto the oxide layer

through a lift-o↵ mask, i.e. a patterned resist layer. The sputtered material is chosen to

have a lower etching rate than the underlying SiO2 layer during a dry etching process,

in our case with C4F8, He, CH4. In this way, during partial or complete removal of

the the amorphous layer by dry etching, the roughness of the the amorphous layer is

replicated into the SiO2 surface with a magnification. After etching the eventual rest

of the amorphous layer and the resist are removed (see fig. 4.7).

Both processes have their advantages and disadvantages. For device functionality,

the roughened surface should in average have the same height as the smooth surface

in order to avoid steps between the two surfaces. If we would like to achieve a higher

roughness with an added layer, we need to deposit a thicker layer, thus creating steps.

In addition, it might lead to problems to lift-o↵ the layer at the border of the resist.
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Surface to 
induce roughness

photoresist Rough area
Smooth area

Photolithography

and deposition of

rough material

Wafer with

smooth surface0. 1. Etching 2.
Removing the 

residuals3.

Figure 4.7: Process of inducing roughness by etching

In order to have clean lift-o↵ processes, a double layer resist (LOR) was used with

high under-etching of the first layer as shown in fig. 4.6. Sputtered amorphous Si with

thickness of 30-50 nm was used as a rough layer on the top of the Bragg reflector that

had roughness of around rms=0.15-0.2nm after CMP process. That allows to make a

roughness of rms=0.5-0.7nm according to (31). After patterning the layer, the AlN film

was deposited. Fig. 4.8 shows the cross-section of the film sputtered onto the surface

with patterned roughness. The quality of lift-o↵ process is reflected in the quality of

the AlN film. In order to avoid residues from the lift-o↵ process, underetching of 1.5-2

microns of of the lift-o↵ resist was required. The example of defects that appear on the

device in case if some residues left during lift-o↵ are shown in fig. 4.9

Figure 4.8: AlN thin film sputtered onto SiO2 with di↵erent roughness achieved by added

layer method

The second method has the disadvantage that one needs to stop the dry etching

process at the right time, thus avoiding to etch too much of SiO2. The thickness

uniformity of the roughness layer can especially be di↵erent from the etching uniformity.
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Figure 4.9: Defects on AlN due to residues from lift-o↵ process using the method of

added roughness layer

As a result, an optimal result is achieved on a part of the wafer only. We used again an

a-Si film as an amorphous layer and then the dry etching process for SiO2 to achieve the

roughness replication. The process use gasses C4F8, He, CH4 at 17 sccm, 150 sccm and

13 sccm respectively. The selectivity with respect to Si is high, i.e. around 20. The a-

Si was striped with wet-etching in the HNO3:H2O:HF - 50:20:3 solution and the resist

was removed. Without inducing much of topography variations, the roughness was

considerably increased to 1.5-2nm. The roughness measured with AFM is represented

on fig. 4.10 for rough and smooth areas.

Rough SiO2

RMS=2.5-4nm
Smooth SiO2

RMS=0.10-0.15nm

Figure 4.10: AFM measurements of surface roughness of rough and smooth areas after

the replication process
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4.3 Decrease of piezoelectric properties of AlN

The AlN thin film obtained on a rough amorphous surface by the replica method was

characterized by XRD di↵raction, comparison of the XRD scans for these films is shown

in fig. 4.11. A rocking curve width of 7.2 degrees was observed. As there is no bottom

electrode below AlN, it was not possible to measure d33,f . For this reason, we prepared

a sample with identical AlN process that included a bottom electrode below the oxide

film. We obtained the rocking curve width less than 7.2 degree - of 5.6 degrees. This

structure could be characterized by double side interferometry for deriving the clamped

d33,f (=e33/c33) as 2.4 pm/V. We think that the AlN on the insulating reflector stack

will have the same d33,f or less, on the parts with the added rough layer.

�10 20 30 40 50 60 70 80 90

2Theta,(deg)

XRD spectrum for AlN thin films

C
ou

nt

102

103
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107
Sample with rocking curve of 1.7° 
(grown on smooth surface) 

Sample with rocking curve of 7.2° 
(grown on rough surface) 

Figure 4.11: XRD scans of AlN films grown on smooth and on rough surfaces of SiO2

That work was reported on the frequency control symposium and some results

were included in the publication entitled ”Highly piezoelectric AlN thin films grown on

amorphous, insulating substrates” by Artieda et al. (32)

Though thin films of AlN fabricated on the smooth and rough surface achieved

with replica method was obtained and characterized, due to the big di↵erence in their
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properties (stress and orientation), simultaneous growth of such film was not successful.

Growth on interface between good and bad AlN was observed to go in unusual way

(see fig. 4.12) - along the border that divide rough and smooth region there are animal

growth that forms the topographical step of 250 nm and that makes further processing

of such a wafer to be impossible.

Anomal growth of AlNFilm is not !at - topography step of 250 nm

Figure 4.12: Anomaly growth of AlN along the border that divides rough and smooth

regions of the SiO2 substrate

For the further device completion, the rough surface was obtained by using the

method of adding the rough layer.
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4.4 Device completion

In order to demonstrate of the e↵ect of modulated piezoelectric properties, we intro-

duced the local roughness according to the added layer method as additional fabrication

steps to the process flow of the first device 4.2, which was based on a homogeneously

smooth surface of the Bragg reflector. The patterns of the added a-Si layer were defined

in agreement with the IDT electrode mask. The smooth/rough interface was situated

in the center of the electrode.

Bragg reflector and AlN layer thickness were optimized for shear mode operation,

targeting the resonance frequency at 2GHz. The electrodes load the resonator non-

uniformly. For this reason, we used Al as electrode metal, and kept its thickness as

small as possible. This reduces the risk of exciting parasitic waves. In addition, we

filled the areas between IDT fingers with SiO2. A SiO2 thin film was first sputtered

deposited onto the device with completed IDT, and then polished down to the electrodes

to flatten the surface. Subsequently, gold layers were evaporated onto the contact pads

by a lift-o↵ process.

The device was measured before and after deposition and polishing of SiO2 (fig.

4.13). The resonance at frequencies around the expected one was observed and it was

also observed that the resonance improved after SiO2 deposition and polishing.

Measurements of the device are shown in fig. 4.13.

In addition to the device fabricated with patterned a-Si, there were also a devices

without any rough layer patterns on the same wafer. The purpose was to identify the

change introduced by the patterned rough layer, and to verify that the pure shear mode

would only exist in the resonators including the rough layer.

Fig. 4.14, shows the measurements of device with patterns of a-Si and without

it. The device that doesn’t have patterning don’t the resonance behavior at chosen

frequency.

This work was reported on the ultrasonic symposium, see the paper ”PMBAR -

shear mode TFBAR based on (001) AlN thin film”.
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Figure 1. Conceptual design of PMBAR  

 

I.  INTRODUCTION 
The use of quartz crystal microbalances (QCM) as

 

gravimetric sensors in liquids clearly shows the potential of

 

shear acoustic wave resonators for bio-medical applications. As

 

the relative sensitivity increases with working frequency,

 

resonators operated at GHz frequencies are very promising to

 

push down detection limits [1]. Shear mode thin film bulk

 

acoustic wave resonators (TFBARs) with tilted c-axis AlN or

 

ZnO are studied by several groups as an alternative to QCM [2-
4]. However, homogeneous deposition of tilted c-axis material

 

is quite difficult, and certainly does not correspond to the AlN

 

needed for the larger telecom market. For this reason, we

 

studied the possibility to achieve shear mode resonators with

 

standard c-axis oriented AlN thin films based on interdigitated

 

electrodes, AlN growth on sputtered SiO2 films, and acoustic

 

Bragg reflectors for acoustic isolation[5]. Such a structure leads

 

to an excitation of mainly shear mode displacements in the AlN

 

film. However, a more pure mode is expected if only every

 

second electrode section would contain active AlN, thus

 

requiring means to selective disabling the piezoelectricity in

 

AlN. In this article, such Piezo-Modulated BAR structures -

 

abbreviated PMBAR - are studied by the finite element method

 

to evaluate the theoretical performance. In addition, first

 

experimental results are presented.   

II. IDEA OF PMBAR 
The PMBAR design [6] makes use of a c-axis oriented AlN 

thin film with modulated piezoelectric properties, i.e. only a 
part of the film is piezo-active and the rest behaves as a 
dielectric with mechanical properties of AlN. In fig. 1 one 
period of such film is shown, half of which is piezoelectric and 

the rest is not. An interdigitated electrode system is employed 
to excite the acoustic waves, whereby the piezoelectric activity 
is modulated in phase with the electrode field, meaning that the 
piezoelectric sections see all the same direction of the electric 
field. Non-piezoelectric sections are indifferent to electrical 
field and they just follow the motion of piezoelectric ones, 
forming a homogeneous shear deformation of the whole film. 
Following finite element modeling is confirming this 
assumption. 

 

III. FINITE ELEMENT MODELING 

PMBAR * - SHEAR MODE TFBAR BASED ON (001)ALN THIN FILM

                      * Piezo-Modulated Bulk Acoustic wave Resonator
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Figure 5. Modeled deformation (contour) and x-displacement (colored) of 

solidly mounted PMBAR at resonance frequency  
Figure 3. Modeled deformation (contour) and x-displacement (colored) of 

free standing membrane PMBAR at resonance frequency  

 

 

Figure 2. Modeled phase of electrical admittance of free standing 

membrane PMBAR under operations in air and in liquid  

 

    Figure 

4. Modeled phase of electrical admittance of solidly mounted PMBAR 

operated in air and in liquid.  

.  

 

Finite element modeling was performed with the ANSYS 
program in combination with the module of Microsonics [7], 
adding a boundary element method (FEM-BEM simulation). 
This is needed to deal with the boundary between acoustic 
reflector and silicon wafer by the inclusion of a semi-infinite 
substrate. First, the concept of PMBAR was verified for a 
freestanding, piezo-modulated film slab as shown in fig. 1. 
Piezoelectricity in half of the film was assumed to be zero. The 
ID electrodes were assumed to be ideally conductive, and 
absolutely thin. Periodic conditions along the horizontal 
direction were imposed. Operation in air was modeled by 

setting boundary conditions of a mechanically free surface. 

Immersed operation was modeled by applying the BEM to the 
liquid/resonator interface. The electrodes were set to be 
isolated electrically from the liquid. The mechanical properties 
of the liquid were chosen to be the ones for water, except that 
the viscosity was assumed to be zero. In this ideal case of 

unloaded resonator, mode trapping occurs at exactly !/2. A 

film thickness of 1.55 microns was used in the calculation, 
corresponding to a resonance at approximately 2 GHz. The 
phase of the electrical admittance vs. frequency is shown in fig. 
2. A resonance close to 2 GHz is observed. Only a minor 
change occurs when passing from air into the liquid. This 
means that acoustic emission into the liquid is practically 
absent, as expected for an ideal shear mode. The motion in the 
film, as obtained by the same calculations, shows indeed that 
the displacements are close to ideal shear mode behavior film. 
The coupling coefficient k

2
 amounts to 0.6 %.  

After showing the principle functioning PMBAR's, we 
added some of the necessary elements for a realistic device, 
first of all a Bragg reflector for acoustic isolation. The Bragg 
reflector should be dielectric in order to avoid short-cuts of the 
electric field through the reflector layers acting like floating 
electrodes. We chose AlN (high impedance material) and SiO2 
(low impedance material) as reflector materials, as used in 

earlier works [8-9]. A sufficiently high reflectivity is achieved 
with 5 layer pairs. These were included in the finite element 
modeling between silicon substrate and active AlN layer, each 
layer having a !/4 thickness. Fig. 4 shows the simulation result 

for the admittance phase. There is again no difference between 
operation in air and liquid. A deterioration of the quality factor 
is observed, which is due to acoustic losses into the substrate 
through reflector. However, the remaining value of 25'000 is 
largely sufficient and won't play anymore a role once the 
materials quality factors are taken into account. In addition the 
coupling coefficient k

2
 is reduced by about 0.3 %, or half of the 

previous value. This is most likely due to the parasitic capacity 
introduced with the Bragg reflector. The calculated 
displacements and strains are shown in fig. 5. The shear 
thickness mode resonance and the effect of acoustic isolation 
by the Bragg grating is clearly observed.  

 

 



 

Figure 7. Measured electrical conductance for PMBAR device and for 

device based on non-modulated AlN.  

 

 

Figure 6. Top view of experimental devices, left on based on modulated 

film of AlN, right one on non-modulated one.  

 

IV. EXPERIMENTAL PROTOTYPE 

Prototypes of PMBAR, as shown in fig. 5, were fabricated 
using AlN as piezoelectric material. Thin films of AlN and 

SiO2 have been deposited by dc-pulsed reactive magnetron 
sputtering and rf-sputtering respectively, at 300C, similar as in 
work[10]. The top views of experimental devices are shown in 
fig. 6. In order to be sure that we observe a resonance with a 
piezo-modulated AlN, the same device, but without modulation 
of properties, was fabricated nearby to the PMBAR on the 
same wafer. The electrical properties of both devices, as 
measured in air, are displayed in fig. 7. A resonance frequency 
is found at around 2.0GHz in the modulated device (PMBAR), 
but not in the non-modulated device for which the resonance 
would occur at a higher frequency, which eventually is not 
supported anymore so well by the Bragg reflector. This finding 
confirms that the selective disabling of piezoelectricity works 
at least partially, and that the searched mode exists. The width 

of conductance curve indicates a Q-factor of 1100. The 

experimental coupling coefficient is considerably lower than 
theoretically expected, meaning that we still can improve very 
much the resonator. The experimental method for the 
modulation of piezoelectric properties is under study, and not 
yet characterized.  

V. CONCLUSIONS 

We have shown a new design of TFBAR based on c-axis 
oriented AlN thin film that is able to operate in a shear mode. 
FEM-BEM simulations demonstrated the potential of the 
device as high-quality resonator for immersed operations. 

First devices were fabricated. Their resonance frequency 
was close to theoretical expectation, i.e. matches with the 
planned shear mode. The obtained quality factor amounted to 
1100, as measured in air. The coupling coefficient was 7 times 
lower than theoretically possible, meaning that there is a large 
potential for improving the resonator characteristics by 
improving mainly materials, and the efficiency of the process 
disabling piezoelectricity.  
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5

Advancing AlN growth: Al-polar

and N-polar films

5.1 Polarity of sputtered AlN

The work described in the previous chapter dealt with processes to reduce the piezoelec-

tric coe�cient in a controlled way on defined areas, and how to build a IDT resonator

with such processes. There are, however, disadvantages with polarity reduction. The

microstructure of AlN films with a small degree of polar order can be very much di↵er-

ent from the one of good films with a high degree of polar order. This di↵erence will

result also in a di↵erence of the rigidity, especially if other than (001) orientations are

present, and thus acoustic properties will change. This works against having a pure

shear mode vibration. Furthermore, as derived in chapter 3, we would achieve in the

best case only 1/4 of the maximal possible coupling factor k2t , which is realized when

we deal with a completely inverted polarity instead of a zeroed polarity:

k2t / (e(1)15 � e(2)15 )
2 (5.1)

We need e15 coe�cients of di↵erent signs. In the ideal case one should use an AlN

thin film with periodic patterns having (0002) and (000-2) orientations. In this chapter,

approaches to realize such films are studied.

In most applications, the sign of the piezoelectric coe�cient does not matter, since

the sign is anyhow everywhere the same. No particular orientation, i.e (0002) or (000

-2) is required, as either only the coupling is relevant, or negative and low voltages can
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5. ADVANCING ALN GROWTH: AL-POLAR AND N-POLAR FILMS

be supplied for driving the device. For this reason, the improvement of the e33 is much

more often the research topic than the sign of the e↵ect.

Regarding AlN films sputtered by our group, d33,f measurements with double side

interferometry reveals systematically the same sign when dealing with AlN films de-

posited by pulsed DC reactive sputtering (32). The obtained polarity is called N-polar.

This was also confirmed by etching test allowing to discriminate between the two po-

larities: Al-polar AlN films are more stable in KOH aqueous solutions than N-polar

films. This method is routinely used to determine the polarities of GaN and AlN films,

and has the advantage that it does not require electrodes. Films of N-oriented GaN

form pyramidal shapes after the etching, and Ga-polar films are not etched at all, or

may show conical holes where N-polar regions exist, (33) (see fig. 5.1).

Figure 5.1: SEM image of GaN sample taken after etching in 2M KOH at 908C for 45min.

Hexagonal pyramids were formed in the N-polar region while the surface of the Ga-polar

region remained smooth and intact, (33)

GaN and AlN are chemically very similar, and exhibit the same crystalline structure.

The etching in KOH is thus expected to be very similar. There is, however, a di↵erence:

the Al-polar AlN is less resistive to alkaline etchants than Ga-polar GaN because Al is

more reactive than Ga. Our N-polar AlN thin films are strongly attacked by aqueous

KOH solutions, forming pyramids as shown in fig. 5.2 and fig. 5.3. The worse the film

orientation is in terms of rocking curve width and degree of (001)-texture, the less the

etching pattern resembles the pattern of isolated pyramids, and the more resistive the
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5.2 Polarity of AlN by other deposition methods

film becomes to etching. This is certainly due to the higher density of oppositely polar

grains.

Figure 5.2: N-polar film of AlN after etching in 5M KOH aqueous solution

Figure 5.3: Close view on pyramids in N-polar film of AlN after etching in 5M KOH

aqueous solution

5.2 Polarity of AlN by other deposition methods

There are others methods of depositing nitrides such as AlN and GaN. For example,

MOPVE and MBE method are used to fabricate AlN and GaN for electro-optical

applications. For some of the applications, it’s important to know the polarity of these

nitride films, and even to have di↵erent polarities in the same layer (34), so the issues

related to polarity of AlN and GaN is more investigated in that field. Few works to

switch GaN polarities was reported. One of the methods to switch the polarity is to use

the template of the material (AlN or GaN) with desired polarity and then the film that

is grown on such template follow the polarity of the template. Such a method is also

used to growth the film with Ga-polar/Al-polar and N-polar patterns by patterning

the template (35), as in fig. 5.4.
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5. ADVANCING ALN GROWTH: AL-POLAR AND N-POLAR FILMS

Figure 5.4: Process flow for fabricating GaN microstructures by PSCE: (a) GaN/AlN

growth on sapphire by MBE, (b) formation of stripe/hole pattern by optical lithography,

(c) plasma etch to expose the sapphire substrate, (d) second growth of GaN by MBE, and

(e) PSCE step to remove N-polar GaN, (35)

5.3 Switching the polarity of sputtered AlN

In our work, the goal was to switch the polarity of sputter deposited AlN thin films.

Since the DC pulsed sputter process does leads to N-polarity only, we profited from

metal organic phase vapor epitaxy (MOPVE) processes delivering the Al-polarity when

growth was carried out on crystalline silicon. Both AlN and GaN template layers

deposited by MOPVE were used. The polarity is checked by the etching experiment.

Fig. 5.5 shows an example of the AlN thin film sputtered onto highly-oriented 500

nm Ga-polar GaN layer, and subsequently etched in the KOH solution. The film was

etched much more slowly than N-polar films. Hexagonal holes in AlN are the signs of

an Al-polarity film with a certain density of N-polar grains.

Decreasing the GaN film thickness lead to a decreasing quality of the Al polarity in

the sputter deposited AlN film. One of the reasons for that is the quality of the seed

layer in terms of (001)-texture - for thinner films deposited with MOPVE the quality

is worse. In addition to GaN, we tested as well Al-polar AlN grown by MOPVE as

a template. The thinnest investigated template had a thickness of 100nm. With this

template, the Al-polarity was still copied by the sputter deposited film. In order to

72



5.3 Switching the polarity of sputtered AlN

Figure 5.5: Al-polar AlN film after etching test

achieve Al-polar and N-polar regions within a film sputtered at fixed conditions, a thin

layer of sputter deposited SiO2 was patterned on the surface of the template AlN. AlN

grown the SiO2 regions is expected to grow as usual in N-polarity, while the AlN grown

on the template is expected to grow with Al-polarity. Fig. 5.6 shows a SEM picture of

such a film before and after the etching test.

In addition to the etching test, PFM measurements were carried out to verify the

sign of the piezoelectric e↵ect as a proof of local polarity control.

This part of my PhD work is published in ”Sputtering of (001)AlN thin films:

Control of polarity by a seed layer”
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5. ADVANCING ALN GROWTH: AL-POLAR AND N-POLAR FILMS

Figure 5.6: Sputtered AlN film with patterned polarities

5.4 Towards a device with locally controlled AlN polarity

Based on the processes as described above, the fabrication of a device was studied.

The template layers were only available on 2 inch wafers, which caused considerable

complications in processing. For the integration of the template process into the process

flow of the device fabrication (see fig 5.7), there are two particular steps to be discussed:

1. In order to avoid any reaction of the AlN template layer with chemicals involved

in the photolithography process (especially the alkaline developer of the positive resist

is a high risk), we used a shadow mask for patterning the SiO2 layer on the wafer level.

Such a shadow mask was prepared by silicon micro machining using a patterned silicon

nitride membrane as mask layer (36).

The SiN membrane of the shadow mask is in contact with a surface of the seed layer

on the processing wafer and the SiO2 deposition is realized through the openings of the

shadow mask. The contact of the AlN template layer to photoresist and developer is

thus prevented. Nanostencil shadow masks are quite fragile, and for processing several

wafers in parallel, that is normally done for the step of evaporation of SiO2 (step B

in the process flow), one would require as much masks as wafers to process. That

complicates the fabrication.
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5.4 Towards a device with locally controlled AlN polarity
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Figure 5.7: Process flow for the fabrication of the device with reversed polarities
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5. ADVANCING ALN GROWTH: AL-POLAR AND N-POLAR FILMS

Figure 5.8: Schematic illustration of shadow-evaporation through a nanostencil (36)

After patterning the SiO2, AlN film with varied polarities was grown in one step,

see the fig. 5.9.

2. The patterns of the N-polar and Al-polar in the resulting sputtered AlN film are

optically the same and it’s di�cult to align the electrode pattern (step E of the process

flow). To resolve this issue, after the step C and before going with step D, we exposed

regions of the wafer with alignment marks to the KOH based solution while protection

the devices. Alignment marks are N-polar pattern of AlN in the Al-polar film, so after

etching topography appear step appear between Al-polar and N-polar regions. That

made the marks well seen under the microscope and thus simplified the alignment of

the electrodes on the patterns of AlN (see fig. 5.10).

Result of testing the fabrication processes is shown in fig. 5.11 and confirming its

feasibility.
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5.4 Towards a device with locally controlled AlN polarity

N-polar region

Al-polar region Al-polar region

Figure 5.9: SEM picture of the surface of the AlN film with polarity patterns as desired

for the device design

N-polar region

Figure 5.10: Alignment of electrodes respectively to the regions of di↵erent polarities
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Figure 5.11: Membrane based on AlN with di↵erent polarities with IDT electrodes
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I. INTRODUCTION

Polycrystalline, 001 -textured AlN thin films obtained by
sputter deposition have important applications in microwave
rf filter technology for mobile communication.1 The deposi-
tion is a rf or dc-pulsed2 reactive sputter process and excels
by the high degree of polar ordering at relatively low tem-

peratures of 300 °C or less, which is very attractive for sili-
con based micro-electro-mechanical systems MEMS fabri-
cation. For current ultrasonic applications, it does not matter
whether the film grows in Al- or N-polarity see Fig. 1 for
the definition in terms of lattice orientation . It is only re-
quired that it is the same everywhere in a single resonator
structure, which is a parallel plate capacitor in electrical and
geometrical terms. However, the freedom to locally select
the polarity opens new possibilities for the design and appli-
cation of thin film bulk acoustic wave resonators, as well as
of Lamb wave devices and surface acoustic wave devices. In
this article, the advantage is illustrated for the case of a shear
mode thin film bulk acoustic resonator excited by means of
an interdigitated electrode on top of a c-axis textured film.3

The coupling to the shear mode is a function of the differ-
ence of the piezoelectric coefficients e15

1 and e15
2 in the re-

gions of positive field upper index 1 and negative field
upper index 2 , if we give a polarization dependent sign to
e15.

kshear
2 =

e15
1
− e15

2 2

4c55 11
. 1

Normally, sputter deposited AlN films exhibit N-polarity,
irrespective of the substrate. It appears that this polarity is
caused by the ion bombardment giving advantage to this
polarization during growth, as evidenced by a number of
findings such as higher piezoelectric coefficients with larger
bias voltage, and higher coefficients with thicker films.4–6 In
a previous study, Akiyama et al.7 reported that the polarity is
turned by doping the film with oxygen. This result can pos-
sibly explain the effect reported by Ruffner et al.,8 namely,
that the oxidation of ruthenium electrodes prior to AlN depo-
sition led to a reversal of polarity, if we assume that RuO2 is
reduced and AlN weakly oxidized during nucleation. The
aforementioned results demonstrate the possibility of polar-
ity switching by adding oxygen during the process or when
growing AlN on the conductive oxides of noble metals,

which are easily reduced. Both results cannot be exploited
for local polarity variation and control on insulators within
the film deposited at once.

II. EXPERIMENT
The task was thus to find an insulating substrate upon

which the AlN grows in Al-polarity. It turns out that this
polarity is present in AlN films deposited by molecular beam
epitaxy MBE or metal organic phase vapour epitaxy
MOPVE techniques, which are usually carried out in the
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temperature range 800–900 °C, with the application targets
in the field of photonic devices. We thus tried to use the
MOPVE film as a template for the Al-polarity of sputter
deposited films and to screen the template locally by an
amorphous silicon dioxide film to achieve N-polarity see
Fig. 1 . In contrast to sputter deposition, the MBE techniques
lead to very high tensile stresses and film cracking. However,
as a template, only very thin films are required.
A 200 nm thick seed layer of MOPVE AlN 001 was

deposited on a Si 100 substrate according to the description
given by Liu et al.,9 i.e., the sample was subject to the Al
precursor trimethyl-aluminum prior to AlN deposition—i.e.,
prior to the addition of the NH3 precursor—to prevent the
formation of an amorphous silicon nitride layer. Subse-
quently, a 7 nm thick amorphous SiO2 layer was deposited
by evaporation through a shadow mask. Finally, a 1.2 m
thick AlN thin film was deposited by reactive pulsed dc sput-
tering, explained in more detail in Refs. 4–6, using param-
eters that allow for unchanged Al-polarity on the AlN seed
layer, while at the same time preference is given for
N-polarity by the process on the amorphous silica film.

III. RESULTS AND DISCUSSION
The polarities were verified by a wet etching test in

KOH.10 The etching rate depends on the polarity: N-polar
films are less resistive to KOH attack. Most of the film is
etched away. The remaining part shows typical pyramidal or
conical columns. In contrast, Al-polar films resist etching.
Conical holes appear where defects and isolated N-polar
grains allow an attack. In our experiments, we used a 5M
aqueous solution of KOH and an etching time of 45 s. The
surface of the resultant 1.2 m thick AlN film, before and
after the wet etching test, is shown in Fig. 2.
It can clearly be seen that the AlN film exhibits different

polarities depending on the surface it was grown on. The part
of the film grown directly on the AlN seed layer shows re-
sistance to the etchant; hexagonal holes are formed on the
surface giving evidence of Al-polarity. Therefore, the polar-
ity of the AlN seed layer was replicated in the film. In con-
trast, the region of the film grown on SiO2 is not resistant to
the etchant, and pyramidlike structures, typical for etched
N-polarity films, are visible. Also, one should notice that for
the Al-polar region of the film, a good 001 texture with
small rocking curve of =1.2° –1.8° is observed due to the
fact that the AlN film was sputtered onto the well-oriented
epitaxial AlN seed layer. That is not the case for the AlN
sputtered onto SiO2. The surface roughness of the sublayer is
duplicated by the SiO2 layer. Consequently, the rocking

FIG. 1. Color online Schematic view of the fabricated structure. The polar
ordering of atoms is represented by its basic tetrahedral structure.

FIG. 2. Scanning electron microscopy images showing the surface of sput-
tered AlN films deposited on AlN with patterns of SiO2 substrate after 45 s
of etching in 5M aqueous solution of KOH left and before the etching
right . Closer look on the Al-polar region after etching is also shown, dem-
onstrating hexagonal holes.

FIG. 3. PFM measurements on the surface of AlN deposited on AlN pat-
terned with SiO2. Almost uniform polarity for AlN grown directly onto AlN
seed top , transition region middle , and mixed ratio=70 30 polarities
for AlN grown on SiO2 patterns bottom are observed.



curve width is much larger, resulting in a less perfect tex-
tured film, even showing same small peaks of other orienta-
tions in agreement with Ref. 6. This explains why the pyra-
mid structures are less well faceted in comparison to those
seen in Ref. 10. However, the general behavior is still the
same: N-polar films are less resistive to etching than Al-polar
films.

For confirmation, the films were analyzed using piezore-
sponse force microscopy PFM , inspecting the polarity at
the nanoscale as shown in Fig. 3. The region of the film that
was grown directly on the AlN seed shows almost uniform
polarity, with the occasional grain displaying the inverse po-
larity. On the contrary, AlN grown on SiO2 shows a mixture
of polarities in the ratio of N-polar:Al-polar=70:30. There-
fore, the results acquired using PFM correlate well with
those of the wet etching tests. The film shows 001 texture,
as observed by x-ray diffraction. The N-polarity on amor-
phous silica is introduced by the sputter process, however,
not strongly enough to suppress completely the Al-polarity,
which nucleates as well. The process proved to be reproduc-
ible many times. For future improvement, we propose to
replace amorphous SiO2 by an oriented, crystalline nonpolar
seed layer to achieve a higher quality texture.

IV. CONCLUSIONS
In conclusion, we have demonstrated a method that uti-

lizes substrate polarity as a way of defining the polarity of

sputtered AlN films. Patterning of the polarity within the
same AlN film, defined by means of lithography, is pre-
sented. The procedure relies upon Si wafers and is hence
compatible with MEMS fabrication steps such as wafer
backside processing, which is not the case for solutions that
involve sapphire wafers, for example.
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6.1 Conclusions

In this thesis work, we studied a new type of bulk acoustic wave resonator operating

on a fundamental thickness shear mode. The motivation was to investigate thin film

shear mode BAW’s for bio-medical and environmental sensor applications. In this work

we restricted the study on (0001)-oriented AlN thin films. The following results and

understanding were achieved:

1. In the paper ”Shear mode bulk acoustic wave resonator based on c-axis oriented

AlN thin film” the excitation of shear mode vibrations in c-axis oriented films of

AlN through e15 coe�cient was suggested and explained in details. The electric

field is applied to a interdigitated electrode on top of a homogeneous AlN thin

film. A device based on the SMR concept, fabricated and characterized. The

mode excited in this way, cannot be a homogeneous shear mode, due to the

periodic alteration of the sing of the in-plane electric field. Some local piston

movement cannot be avoided, which leads to emission of parasitic waves into the

liquid.

2. In the paper ”Electro-Mechanical Coupling in Shear-Mode FBAR With Piezo-

electric Modulated Thin Film” it was suggested to use the (0001)AlN film with

periodically alternated piezoelectric properties in order to excite pure shear mode

vibration in the film. It was shown that utilization of AlN with bad piezoelec-

tric properties in combination with AlN with good piezoelectric properties is one
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possibility to excite the desired shear mode. The more the properties of two AlN

regions di↵er, the stronger is the excitation of the pure shear mode. The strongest

coupling is achieved when the two regions have maximal piezoelectric coe�cients

of opposite sign, i.e. when using selectively Al-polar and N-polar AlN regions.

This part of the work was purely theoretical, and gave the confidence that the

sought phenomenon is existing and giving the correct behavior.

3. In the paper ”PMBAR - shear mode TFBAR based on (001)AlN thin film” solidly

mounted resonator based on AlN with two di↵erent properties was fabricated and

characterized. In this work, the piezoelectric coe�cient was reduced in one type

of regions. A resonance behavior at expected frequencies was observed only for

the device with non-uniform AlN film and not for the device with uniform AlN,

confirming the importance of modulation of piezoelectric properties for exciting

shear modes.

4. In the paper ”Sputtering of (001)AlN thin films: Control of polarity by a seed

layer”, a process for simultaneous growth of Al-polar and N-polar regions during

the same AlN thin films process was studied and established. The applied method

was based on template layers of the Al-polarity grown by another deposition

technique than our sputter method yielding N-polarity. In addition we showed

that such a method can be integrated to the process flow of shear mode BAW

device fabrication. Time was too short to achieve functional devices due to the

unavailability Al-polar AlN thin films on 4 inch wafers. We had to used two inch

wafers, which complicates too much lithography, and processing in 100 mm tools

with automatic wafer handling, thus increased considerably fabrication time and

risks of failures. This is not a major obstacle, because the same MOPVE process

is in principle available on 4 inch wafers.

6.2 Outlook

Shear mode BAW devices definitely have a high potential in sensor applications. How-

ever, development of fully functional sensors is a challenge that requires the contribu-

tions from di↵erent fields of research and engineering, from material science to biology
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and chemistry. With regard to the shear mode BAW device investigated in this the-

sis, there are many aspects to work on before a fully functional and reliable sensor is

established. One of the key issues is the attachment of the immobilization layer to

the resonator. We could show in collaboration with a chemist group that functional

layers of type ”brushes” could be attached by plasma treatment onto SiO2 layers. This

gives the opportunity to attach functional layers either on top of the device, i.e. on

the polished capping layer covering the IDT, or onto the backside of the membrane. In

the latter case, one would need to deposit first an oxide layer onto the AlN seed layer.

The temperature drift should be addressed as well. It can be assumed that at a certain

thickness ratio of SiO2 to AlN, a TCF close to 0 ppm/K can be achieved. Further-

more, the sensor might be subject to certain pressure di↵erences across the membrane.

This may also result in a cross sensitivity to pressure. Finally the resonator must be

integrated into a fluidic package with micro valves and micro pumps.
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[35] Hock M. Ng, Wolfgang Parz, Nils G. Weimann and Aref Chowdhury, Patterning

GaN Microstructures by Polarity-Selective Chemical Etching, Jpn. J. Appl. Phys.

Vol. 42 (2003) pp. L 1405–L 1407 71, 72

[36] J. Brugger, J.W. Berenschot, S. Kuiper, W. Nijdam, B. Otter and M. Elwenspoek.

Resistless patterning of sub-micron structures by evaporation through nanosten-

cils, Microelectronic Engineering 53 (2000), 403-405 74, 76

90



7

Appendix A

List of publications

Letters

E. Milyutin and P. Muralt, Electro-Mechanical Coupling in Shear-Mode FBAR

With Piezoelectric Modulated Thin Film, IEEE TRANSACTIONS ON ULTRASON-

ICS, FERROELECTRICS, AND FREQUENCY CONTROL, Vol. 58, N. 4, APRIL

2011

E. Milyutim, S. Harada, D. Martin, J. F. Carlin, N. Grandjean, V. Savu, O.

Vaszquez-Mena, J. Brugger and P. Muralt, Sputtering of (001)-AlN thin films: Control

of polarity by a seed layer, J. Vac. Sci. Technol. B 28(6), Nov/Dec 2010

Regular papers

Evgeny Milyutin, Sandrine Gentil and Paul Muralt, Shear mode bulk acoustic wave

resonator based on c-axis oriented AlN thin film, JOURNAL OF APPLIED PHYSICS

104, 084508 (2008)

91



7. APPENDIX A

Proceedings papers

Evgeny Milyutin and Paul Muralt, PMBAR - shear mode TFBAR based on (001)AlN,

IEEE Ultrasonics Symposium, Beijing (China), Nov. 2-5, 2008

Patents

Evgeny Milyutin and Paul Muralt, Piezoelectric resonator operating in thickness

shear mode, PCT application, WO 2010/013197 A2

Publications in books

Evgeny Milyutin and Paul Muralt, Thin Film Bulk Acoustic Wave Resonators for

Gravimetric Sensing, in Nanosystems Design and Technology, Springer Science + Busi-

ness Media LLC (2009), pp. 103-116

92



8

Acknowledgements

I would like to thank my thesis director, Professor Paul Muralt, for providing me with

the possibility to work with his group. His deep knowledge in a wide range of research

fields such as materials, micro-fabrication and physics and also his ability to constantly

listen and teach me are among of the principal reasons for the completion of my thesis.

I am grateful to Professor Alexander Tagantsev for the discussions related to the

theory on acoustics and acoustic devices, that was extremely helpful especially in the

beginning of my thesis, when discussions in Russian were still easier than in English.

I would like to acknowledge Professor Nicolas Grandjean, Professor Juergen Brugger

and their teams for their contribution to the research on material growth.

I acknowledge Professor Nava Setter, the head of Laboratory of Ceramics, for her

initiative to organize seminars and competitions in the laboratory and in the depart-

ment.

I thank the team of the Center of Micro and Nanotechhnology (CMI), in particular

Jean-Baptiste Bureau, Boris Lunardi, Cyrille Hibert, Nareg Simonian, Guy Clerc and

Dr. Philippe Langlet, for their guidance in processing.

I would like to thank everyone in the LC team, in particularly my o�ce mates -

Scott, Monika, Kaushik, Andy, Florian and Brahim.

Special thanks to my my Russian and Slavic friends - Max ”the Ded”, Serguei

Okhonin, Marko from Sinj, Professor Yury, Sasha for their support and in particularly

to Valya and Jenya for making the most complicated year of my thesis su�ciently

comfortable and much less disturbing as it could have been.

93



8. ACKNOWLEDGEMENTS

94

И конечно, я хотел бы поблагодарить моих родителей и мою сестру, Юлю, за 
их теплоту, понимание и заботу, которая чувствуется даже на расстояние в 
5769 км. Эта диссертация во многом ваше достижение!



 
Name: Evgeny Milyutin 
 
Date of birth: 07.08.1985 
 
Contacts: +41-76-217-9112, evgeny.milyutin@epfl.ch 
 

 
 
 
Professional interests:  Mathematics, Physics, Engineering, Computer Science, Teaching, 
Start-ups. 
 
 
Education: 
Sept. 2006 – present time 
Swiss Federal Institute of Technology (EPFL), PhD student 
June 2009 
Swissnex Boston, Workshop on start-ups and entrepreneurship 
Jan. 2005 - June 2008 
Russian Research Center, Diploma work on Micro-technology 
Sept. 2002 – June 2008  
Moscow Institute of Physics and Technology (State University), Department of General and 
Applied Physics 
Sept. 2000 – June 2002. 
Last two years of senior school – studying at The Specialized Scientific Center (Physics and 
Mathematics School) of Novosibirsk State University  
Sept. 1998 – June 2002. 
Correspondence school of physics and mathematics at Moscow Institute Of Physics and 
Technology (State University) 
 
 
Achievements: 
April 2009 
Selected to be part of Swiss National Start-up Team 
June 2008  
Master degree 
June 2006   
Bachelor degree (mean score 4.71 of 5) 
2001/2002 - Senior pupil at school. II degree diploma at the regional physics contest 
(Siberia region), II degree diploma at All-Russian Physics Contest. 
1999/2000 9th grade. III degree diploma at regional physics contest (Siberia & Far East), 
participant of the final stage of All-Russian Physics Contest. 
 
 
PC skill:  
Available to use PC as a tool. Also I have skills of programming on C, Pascal, Mathematica 
and Matlab. 
 
Hobby: 
Physics, mathematics. Sports: swimming, mount skiing. 1st adult category of judo 
 


	1 Introduction
	1.1 Concept of gravimetric sensors
	1.2 Functional layers for chemical and bio-medical sensors
	1.2.1 Sensing the presence of Vero cells in liquid media using QCM
	1.2.2 Pd and Co-tetra-phenyl-porphyrin (Co-TPP) layers
	1.2.3 Utilizazion of oligo layer for DNA and protein detection
	1.2.4 PMMA layer for detection of acetone vapors
	1.2.5 Detection of cocaine and heroine. Competitive binding
	1.2.6 Detection of avidin, BSA and anti-avidin in the liquid media

	1.3 Piezoelectric transducers
	1.3.1 Transducer materials
	1.3.2 Fabrication techniques
	1.3.3 Design of the shear mode resonator

	1.4 Sensitivity and cross-sensitivity
	1.5 Goal of this thesis

	2 Coupling the shear displacement in c-axis oriented AlN thin films
	3 Modulation of piezoelectric properties to excite a pure shear mode
	4 Experimental device with piezo-modulated AlN in SMR design
	4.1 Seeking a method to locally reduce the piezoelectric effect in AlN sputtered thin films
	4.2 Methods to make rough surfaces
	4.3 Decrease of piezoelectric properties of AlN
	4.4 Device completion

	5 Advancing AlN growth: Al-polar and N-polar films
	5.1 Polarity of sputtered AlN
	5.2 Polarity of AlN by other deposition methods
	5.3 Switching the polarity of sputtered AlN
	5.4 Towards a device with locally controlled AlN polarity

	6 Conclusions and Outlook
	6.1 Conclusions
	6.2 Outlook

	Bibliography
	7 Appendix A
	8 Acknowledgements
	CV

