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Abstract
Engineers rely on efficient simulations that provide them with reliable data in order to make

proper engineering design decisions. The purpose of this thesis is to design adaptive numerical

methods for multiscale problems in this spirit.

We consider elliptic homogenization problems discretized by the finite element heteroge-

neous multiscale method (FE-HMM). Unlike standard (single-scale) finite element methods,

our multiscale discretization scheme relies on coupled macro and micro finite elements. The

framework of the HMM allows to design an algorithm that follows the classical finite element

structure on the macro level. The fine scales of the multiscale problems are taken into account

by replacing the element-wise numerical integration over unknown macroscopic data by

a numerical integration over suitably averaged micro solutions. These micro solutions are

obtained from micro FE problems on sampling domains within the macro elements.

This thesis is divided into two parts.

In the first part, we discuss a short and versatile FE implementation of the multiscale

algorithm. The implementation is flexible, easy to use and to modify and can handle simplicial

or quadrilateral FE and various macro-micro coupling conditions for the constrained micro

problems. The implementation of time-dependent problems is also discussed. Numerical

examples including three dimensional problems are presented and demonstrate the efficiency

and the versatility of the computational strategy.

In the second part (the main part of this thesis), we present an a posteriori error analysis

for the FE-HMM. The a posteriori analysis enables us to estimate the accuracy of a numerical

solution (and therefore its reliability) and further it allows for the design of adaptive numerical

methods, which are the most efficient. The crucial component for the design of an adaptive

multiscale method is the introduction of appropriate error indicators. As the error indicators

depend on macroscopic data (such as the macroscopic diffusion tensor) that are not readily

available, we construct error indicators that only depend on the available macro and micro FE

solutions, available from previous computations.

We provide a posteriori estimates for the upper and lower bound in the energy norm. The

corresponding macroscopic mesh refinement strategy is therefore both reliable and efficient.

The microscopic mesh is refined simultaneously and – under appropriate assumptions –

optimally with the macroscopic mesh. This means that the strategy reduces the macro and
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Abstract

micro error at the same rate. In the case of a uniformly oscillating tensor and exact micro

computations, the standard a posteriori error estimates for the FEM applied to the homoge-

nized problem are recovered. Numerical experiments confirm the efficiency and reliability of

the adaptive multiscale method and demonstrate the optimality of the chosen macro-micro

coupling. We extend the adaptive FE-HMM to higher order FE.

We further derive a posteriori estimates for the error in quantities of interest that are

needed to make certain design decisions; the quantity of interest is represented by a linear

functional. We derive and analyze a multiscale counterpart to the classical dual-weighted

residual method and design a corresponding goal-oriented adaptive multiscale method. The

efficiency of the method is shown in numerical experiments.

Keywords: Adaptive mesh refinement, a posteriori error estimate, finite element method,

goal-oriented adaptivity, multiscale method, heterogeneous multiscale method, homogeniza-

tion.
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Résumé
L’objet de la thèse est la construction de méthodes numériques adaptatives et efficaces pour

des problèmes multi-échelles, permettant aux ingénieurs d’obtenir des données fiables pour

prendre les décisions d’ingénierie appropriées.

Nous considérons des problèmes d’homogénéisation elliptiques discrétisés par la mé-

thode d’éléments finis hétérogène multi-échelles (FE-HMM). Contrairement à la méthode

d’éléments finis standard (une seule échelle), notre schéma de discrétisation multi-échelles

repose sur un couplage de méthodes d’éléments finis macro et micro. Le cadre de HMM

permet le développement d’un algorithme qui s’appuie sur la structure de la méthode des

éléments finis classique au niveau macro. Les échelles fines des problèmes multi-échelles

sont prises en compte en remplaçant l’intégration numérique sur chaque élément par une

intégration numérique sur des moyennes bien choisies des micro solutions. Ces solutions sont

obtenues à partir des micro problèmes d’éléments finis sur les domaines d’échantillonnage

au sein des macro éléments.

Cette thèse est divisée en deux parties.

Dans la première partie, nous présentons une implémentation courte et souple de l’algorithme

multi-échelles basé sur la méthode des éléments finis. L’implémentation est flexible, facile à

utiliser et à modifier et peux supporter des éléments finis simpliciaux ou quadrilatéraux et

diverses conditions de couplages macro-micro pour les micro problèmes avec contraintes.

L’implémentation de problèmes évoluant en temps est aussi considérée. Des expériences

numériques incluant des problèmes tridimensionnels sont présentées et illustrent l’efficacité

et la souplesse de la stratégie de calcul.

Dans la deuxième partie (la partie principale de cette thèse), nous présentons une analyse

a posteriori de l’erreur de la méthode FE-HMM. L’analyse a posteriori nous permet d’estimer

la précision d’une solution numérique (et par conséquent sa fiabilité) et de plus, elle permet la

conception de méthodes numériques adaptatives, qui sont les plus efficaces. La composante

essentielle pour la conception d’une méthode adaptative multi-échelles est la mise en place

d’estimateurs d’erreur appropriés. Comme les estimateurs d’erreur dépendent des données

macroscopiques (comme le tenseur de diffusion macroscopique) qui ne sont pas facilement

accessibles, nous construisons des estimateurs d’erreur qui dépendent seulement des solu-

tions d’éléments finis macro et micro disponibles, qui proviennent de calculs précédents.

Nous fournissons des estimations a posteriori pour les limites supérieures et inférieures dans
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Résumé

la norme de l’énergie. La stratégie macroscopique correspondante de raffinement de maillage

est donc à la fois fiable et efficace. Le maillage microscopique est raffiné en même temps

que le maillage macroscopique et (avec des hypothèses appropriées) de façon optimale. Cela

signifie que la stratégie permet de réduire les erreurs macro et micro à la même vitesse. Dans

le cas d’un tenseur uniformément oscillant et de calculs micro exacts, on retrouve l’estima-

teur d’erreur a posteriori standard de la méthode des éléments finis appliquée au problème

homogénéisé. Des expériences numériques confirment l’efficacité et la fiabilité de la méthode

adaptative multi-échelles et montrent l’optimalité du couplage macro-micro choisi.

Nous obtenons de plus des estimations a posteriori de l’erreur dans des quantités d’intérêts

utiles pour prendre certaines décisions d’ingénierie. La quantité d’intérêt est représentée

par une fonctionnelle linéaire. Nous obtenons et analysons l’analogue multi-échelles de la

méthode classique des résidus à double pondération (DWR) et développons la méthode multi-

échelles adaptative. L’efficacité de la méthode est illustrée par des méthodes numériques.

Mots Clés: Raffinement adaptatif de maillage, estimation a posteriori, méthode des élé-

ments finis, quantité d’intérêt, méthode multi-échelles, heterogeneous multiscale method,

homogénéisation.
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Notation
Throughout the thesis, we will use the following notation (we follow the notation as used in

[6, 12]).

ε ε represents a small scale in the considered multiscale problems.

C C>0 denotes a generic constant, independent of ε, whose value can change at any

occurrence but depends only on the quantities which are indicated explicitly.

|r | For r = (r1, . . . ,rd ) ∈Nd , we denote |r | = r1 + . . .+ rd , Dr = ∂r1
1 . . .∂rd

d .

H 1 (Ω) The Sobolev space H 1(Ω) = {u ∈ L2(Ω);Dr u ∈ L2(Ω), |r | ≤ 1}.

‖u‖H 1(Ω) The norm ‖u‖H 1(Ω) = (
∑

|r |≤1 ‖Dr u‖2
L2(Ω)

)1/2 corresponding to the Sobolev space

H 1 (Ω).

H 1
0 (Ω) H 1

0 (Ω) is the closure of C∞
0 (Ω) for the ‖ ·‖H 1(Ω) norm.

Y Y = (0,1)d is the unit cube.

W 1
per (Y ) For the unit cube Y = (0,1)d , we will consider

W 1
per (Y ) = {v ∈ H 1

per (Y );
∫

Y
vd x = 0}.

H 1
per (Y ) H 1

per (Y ) is defined as the closure of C ∞
per (Y ).

C ∞
per (Y ) The subset of C ∞(Rd ) of periodic functions in Y .

‖a‖F The Frobenius matrix norm ‖a‖F :=
√∑

i
∑

j

∣∣ai j
∣∣2.

(Q1) Condition on the quadrature formula for the FE-HMM, see (2.4.4) on page 24.

(Q2) Condition on the quadrature formula for the FE-HMM, see (2.4.5) on page 24.
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1 Introduction and Motivation

What is the purpose of computation? According to Babuška, a pioneer in the field of finite

element methods (FEM), the purpose is “to obtain reliable data leading to the proper engineer-

ing decisions” [27]. It is in this spirit that we pursue in this thesis to efficiently compute the

solution of so-called multiscale problems.

From a physics point of view, the (macroscopic) behavior of every object, such as deforma-

tion or thermal or electrical conductivity, could be computed solely based upon a detailed

model on the atomistic level. Solid-state physicists follow this approach and use simulations

on the atomistic and electronic level in order to gain insight on material properties, for exam-

ple whether a material is an electrical insulator or conductor. This approach, however, will

lead to a system of equations so enormous that it is impossible to even compute the behavior

of a dust particle on today’s most powerful supercomputer1. Engineers, on the other hand,

use macroscopic laws and continuum models such as thermodynamics or the Navier-Stokes

equations, found empirically over the last centuries [49]. These empirical models allow engi-

neers to make reasonable design decisions. With the increased capabilities of science, such as

the invention of nanotechnology, there is a growing need for more realistic simulations that

combine the models of the different scales. These multiscale methods predict the behavior

or properties of an object or system on the macroscopic scale while also using information

and models from microscopic scales. For example, classical mechanics in the macro scale

could be coupled with quantum mechanics on the micro scale. Multiscale models are found

in many areas, such as the simulation of the pollution of groundwater through infiltration

of a fluid in a porous medium, for finding the effective properties of the increasingly used

composite materials in engineering or for finding the mechanical properties of heterogeneous

tissues such as bones that are important for the understanding of failure or diseases and their

cure (see [6, 49]). Even in everyday life, we encounter multiscale phenomena: for example, we

measure time in days, months and years to describe phenomena happening over different

time scales, ultimately caused by the multiscale nature of our solar system: the rotation of

1In 2001 a simulation of material failure using approximately 1 billion atoms was performed on the then fastest
supercomputer in the world, see [17]. While today’s fastest supercomputer is up to 500 times faster than the fastest
supercomputer in 2001 (see [110]), the smallest dust particle visible by the human eye (5 ·10−5m) consists of
roughly 1017 atoms, and therefore has 108 times more atoms than were considered in the simulation of [17].
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Chapter 1. Introduction and Motivation

Figure 1.0.1: Microscopic view of a metal matrix composite (AlSiC), which is used in thermal man-
agement applications such as microprocessors or heat sinks. It consists of an aluminum (Al) matrix
(dark) with silicon carbide (SiC) inclusions (white) that can be as small as 1 µm; hence the inclusions
are approximately 10,000 times smaller than the size of the full microprocessor or heat sink in which
it is used. The composite material has properties that neither Al nor SiC have alone. The SiC content
can be changed according to some design goal, such as strength or to match the coefficient of thermal
expansion to surrounding materials. Picture courtesy of CPS Technologies [108], reproduced with
permission.

the earth around itself, the moon around the earth and the earth around the sun [49]. The

growing need for multiscale simulations has lead to an urge for the development of multiscale

mathematics and computational methods.

Throughout this thesis, we consider the class of problems modeled by elliptic multiscale

partial differential equations (PDEs), which we solve using a multiscale finite element method

(FEM). Elliptic multiscale PDEs are used for example to model the steady state heat distribu-

tion in an object made of a composite material. In Figure 1.0.1 we show a microscopic view of

a metal matrix composite (AlSiC) that is used in thermal management applications, such as

microprocessors or heat sinks. The composite consists of an aluminum (Al) matrix with silicon

carbide (SiC) inclusions and features properties that neither Al nor SiC could have on their

own. The amount of SiC inclusions can be adapted according to the engineer’s design goal,

such as giving the composite more strength or matching its coefficient of thermal expansion

to the surrounding materials. In Figure 1.0.2 we provide a model of a typical application,

where a microprocessor (about 1 cm in length and width) features components made of such

a composite material. The SiC inclusions in the metal matrix are as small as 1 µm, hence

the microprocessor will be 10,000 times larger than the inclusion2. At the same time, the

2For scale separation, it not the size itself that is important, but it is important to notice that the macroscropic
properties vary over a lengthscale of approximately 1 mm, whereas the microscopic properties vary over some µm.
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Figure 1.0.2: Model of a multiscale setup to simulate the heat distribution in a microprocessor, which
is made of a composite material. To obtain the missing data of the macro model (1) with elements of
size H , a micro problem is solved on a sampling domain (red cube) in every macro element (2). The
mesh of the sampling domain is of size h and small enough to capture the fine scale properties of the
composite material (3). The sampling domain is much smaller than the macro element (see (2) ) and
therefore the multiscale computation will be computationally much cheaper than the full fine scale
solution. Picture of AlSiC (underneath of (3)) courtesy of CPS Technologies [108], reproduced with
permission.

microstructure of the composite will influence the thermal conductivity on the macroscopic

length scale. If we try to solve the heat distribution problem of the microprocessor of size 1

cm with a full fine-scale FEM solution, we will face a linear equation with over 1011 unknowns.

The requirements in memory and computational time would be enormous, even if modern

techniques (such as multigrid solvers) and supercomputers were employed. However, often

the engineer or scientist is merely interested in the effective, macroscopic behavior (that is

influenced by the microstructure) rather than the full fine-scale behavior. This motivates the

construction of numerical methods, capable of capturing such effective behavior.

In our example of the microprocessor made of composite material, we have a clear scale

separation: the microscopic structure varies over a few µm whereas the macroscopic structure

varies over some mm. As the microscopic structure features a self-similarity, we can use a

multiscale framework (the so-called heterogeneous multiscale method) that exploits scale

separation: inside every macro element of the macroscopic finite element mesh, we have

a sampling domain that suitably represents the microstructure of the composite material

within the entire macro element. At the same time, the sampling domain is much smaller

than the macro element, thus reducing the total computational cost. We solve an appropriate

microscopic problem, which is modeled such that it gives us the effective (homogenized)

3



Chapter 1. Introduction and Motivation

properties inside every macro element, here the effective heat conductivity and heat flux,

respectively. We then use these effective properties in the macroscopic model (see Figure 1.0.2

for an illustration). In this way, we can obtain the effective macroscopic solution at a very low

computational cost.

Multiscale Methods. In recent years a considerable amount of effort has been put into the

design of multiscale methods for elliptic PDEs with multiple scales. In this thesis we will

focus on homogenization problems. Babuška and Osborn [25, 24] developed the pioneering

work for multiscale FEM for elliptic problems using multiscale basis functions. There has

been a vast amount of literature and strategies to solve such problems, we mention – without

attempting to be exhaustive – the multiscale finite element method (MsFEM) developed by

Hou et al. [65] (see also the book by Efendiev and Hou [54]), the two-scale FEM proposed

by Matache, Babuška and Schwab [76], the variational multiscale method by Hughes et al.

[68], and the sparse FEM introduced by Hoang and Schwab [63]. Furthermore, there is the

multigrid homogenization method by Neuss, Jäger and Wittum [83] and the heterogeneous

multiscale method (HMM) proposed by E and Engquist [50, 51, 52]. In the engineering and

structural mechanics literature concerning micro-macro methods for multiscale PDEs we

mention Yu and Fish [117], Terada and Kukuchi [109], Kouznetsova et al. [71] and Miehe et al.

[78]. The heat conduction in heterogeneous solids was studied by Özdemir et al. [93].

In this thesis we will use the so-called finite element heterogeneous multiscale method

(FE-HMM). For elliptic problems, a semi-discrete a priori analysis for the FE-HMM was given

in [53, 14] and a fully discrete analysis was obtained in [2, 9, 4]. Furthermore, discontinuous

Galerkin FE-HMM was developed in [5, 7] and problems in elasticity were studied in [3]. See

also [6] for a thorough overview.

The Importance of Predictive and Reliable Numerical Methods. Today, many closed black-

box (single-scale) finite element solvers exist, which provide the user with a finite element

solution and a graphically appealing visualization thereof. But are the results reliable? Is

the accuracy of the finite element solution adequate to the goal of the engineer’s analysis?

Sometimes it is not.

The worst-case consequences of insufficient accuracy could be seen at the Sleipner A

offshore oil and gas platform in the North Sea, which was going to operate in 82 m of water.

The foundation of the platform is the concrete gravity base structure (GBS), which consists

of 24 caisson cells; 4 caisson cells are extended to shafts that support the platform deck, see

Figure 1.0.3. The GBS has a total base area of about 16,000 m2. Due to design constraints

(the walls had to be thin enough so the platform could float, but strong enough to resist an

increased hydrostatic pressure during the assembly), the safety factor for the design had to

be very low. On August 23, 1991 the base structure was lowered into a Fjord as part of the

deck mounting procedure of the platform, where the hydrostatic pressure reached critical

values. During this controlled operation one base structure sprang a leak and sank. In

an investigation following the accident it was found that a cell wall failed, which caused a

4



severe crack and leakage that the pumps were unable to cope with. Furthermore, it was

   
   

  
    

     
       

      
      

      
    
       

    
     

     
      

       
       

    
        

  

     
       

    
        

     
      
      
      

        
     

    
       

       
      

     
    

  
     

      
      

     
     

       
       

    
   

   
       
     

     
  

    
      

     
     

       
     
    

      
      
       

    
      

      
      

      
     

    
     

 

 

     
     

      
       

      
       

     
    

     
 

       
      

      
     

      

       
       
        
        
      

     
    

 

   
      
     
      

      

    
     

      
   

     
    
       

    
      

 

     

      

    

Figure 1.0.3: An artist’s view of the Sleipner
A platform. Taken from [69, Figure 1]; repro-
duced with permission.

found that the numerically computed stresses

that were essential for the dimensioning of

the walls had an error of 47%. This inaccu-

racy lead to an inappropriate design of the

walls and, hence, to the wall failure. While

there were other deficiencies, the main rea-

son for the failure was found to be an insuf-

ficient accuracy of the FEM solution with re-

spect to the engineers’ design goal [27]. Two

years later, a new platform was built and suc-

cessfully mounted on the deck. The failure

of the Sleipner base structure lead to a total

loss of about $700 million and could have been

avoided if reliable estimates of the error in the

shear stresses had been used [27]. See [69] and

[27] for more information on the Sleipner acci-

dent.

In the pioneering work of Babuška and Rhein-

boldt [26] it was shown that one indeed can quan-

titatively estimate the errors of a finite element

solution a posteriori. This means that we can find

an error bound of an actual solution based solely on the computed finite element solution and

data. But the goal of a posteriori error estimates is not only to offer a criterion that indicates

whether a certain prescribed accuracy is met, but also to give local error indicators, which can

be used to drive an adaptive mesh refinement. They indicate where the error is the largest

and thus, where the mesh should be refined. As many problems exhibit local variations or

singularities (for example due to reentrant corners) adaptive methods are crucial, because

they can equi-distribute the approximation error among the elements and therefore minimize

the total computational effort. A vast amount of literature on a posteriori error analysis of

elliptic PDEs using the FEM is available, we refer to the work of Ainsworth and Oden [19],

Verfürth [113] and Babuška and Strouboulis [27] and to the references therein. Until the mid

1990s, the majority of a posteriori error estimators concentrated on global error estimates in

the energy norm.

Generally, however, scientists and engineers are not interested in global errors in the energy

norm, but rather in errors in a certain quantity of interest that is needed for an engineering

design decision. In the above example of the oil platform, the quantity of interest might be the

average shear stress over a certain domain or at a certain point. In other applications it might

for example be the average heat flux through a boundary. Therefore, starting from the late

1990s, goal-oriented error estimates in quantities of interest were developed. The basic idea is

5



Chapter 1. Introduction and Motivation

that many quantities of interest such as stresses, heat transfer or deformations of a component

can be obtained by applying a linear functional to the (numerical) solution. The goal-oriented

adaptive techniques usually involve the use of a dual solution. Among the different strategies

we mention the work of Prudhomme and Oden [96] and [88] and Bangerth and Rannacher

[28] and Becker and Rannacher [31] who developed the so-called dual-weighted residual

(DWR) method (see also the review by Grätsch et al. [59] and the references therein). A general

overview of adjoint methods in a posteriori analysis can be found in Giles and Süli [58].

Adaptive Multiscale Methods. As seen previously, reliable data needed for proper design

decisions require a posteriori estimates3. However, despite the booming interest around the

design and control of multiscale solvers, there have only been very few approaches to do a

rigorous analysis of adaptive procedures for multiscale finite element methods. The success

of multiscale methods in science and engineering applications will crucially depend on the

efficiency and reliability of the adaptive strategies. We will see throughout this work that the

gain in computational efficiency that is obtained when adding adaptivity to multiscale meth-

ods can be substantially higher than the gain that can be obtained when adding adaptivity to

single-scale methods. The large gain in computational efficiency for multiscale methods is

possible, because on the micro level, expensive micro computations can be avoided or re-used

through the adaptive cycle.

When combining multiscale finite element methods with adaptivity, new challenges arise,

namely the quantification of the interplay between the micro and macro solutions and further

the design and analysis of an adaptive strategy that takes into account both micro and macro

errors. In other words: How does the solution in the microscopic problem influence which

macroscopic element we should refine? If we refine a macroscopic element, how do we need

to refine the microscopic mesh of the corresponding sampling domain?

Among the few existing adaptive multiscale methods, we mention one approach based on

the variational multiscale method by Hughes et al. [67, 68], which decomposes the solution

into a coarse-scale and a fine-scale part. The solution of the fine-scale equation is formulated

in dependence of the residual of the macro solution. A posteriori error estimates in the energy

norm (only upper bounds) were derived by Larson and Målqvist in [74] and duality-based

error estimates in [73].

First a posteriori error estimates for the FE-HMM have been obtained by Ohlberger [92].

These estimates are based on a reformulation of the FE-HMM in a two-scale framework [84].

In this framework, the microscopic variable is added as a supplementary variable, which

results in doubling the size of the limiting problem. A tensor product FEM with quadrature in

the slow variable is introduced to reformulate the FE-HMM within this framework. Piecewise

linear elements are used in the macro and micro FE spaces. The a posteriori upper and lower

3In science and engineering applications, the reliability of the mathematical model of the physical behavior
should also be validated, but throughout the thesis we only verify the reliability of the approximate solution with
respect to the exact solution of the mathematical model.
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bounds in [92] are therefore obtained in terms of the corresponding two-scale norm over

Ω×Y (where Ω is the physical (macro) domain and Y is the microscopic domain) and not in a

norm that is related to the physical domain. It is not straightforward to derive optimal a priori

or a posteriori error estimates in the energy norm for the physical domain Ω based on the

results of [92], and no such results have been obtained so far. Furthermore, the analysis of [92]

is restricted to homogenization problems where the tensor is given in an explicit two-scale

form, i.e., aε = a (x, x/ε), where the fast variable x
ε is periodic and ε assumed to be known (see

[92, Section 3]). We note that a posteriori upper bounds in the L2 (Ω) norm were obtained by

Henning and Ohlberger in [61] (in the context of perforated domains) by using the two-scale

techniques as in [92] and subsequently employing duality arguments.

Main Contributions of this Thesis.

Despite the activity and interest in computational homogenization problems, only very few

open-box computer codes are available in this field. Therefore, we contribute a short finite

element implementation for multiscale elliptic (and parabolic) problems to the scientific

community. We construct an algorithm with a corresponding Matlab implementation that is

versatile, easy to use and to modify, yet capable of solving challenging 3D problems, such as

the complex heat conduction problem in microelectronics mentioned above (see Figure 1.0.2).

Indeed, such a code will prove to be accessible in many scientific and engineering contexts, as

it can be easily and quickly tested, as well as modified by users to encompass features specific

to their application.

The main contribution of this thesis consists of the proposition of adaptive FE heteroge-

neous multiscale methods. We derive a posteriori error estimates for the upper and lower

bounds for the FE-HMM in the energy norm of the physical domain. Our estimates are ob-

tained using a completely different approach than that proposed by Ohlberger [92]. We use a

technique much closer to the standard techniques for residual-based a posteriori error analysis

[20, 113]. The crucial components of our technique are the so-called multiscale bilinear forms,

fluxes and jumps. We show that it is possible to relate our multiscale strategy to adaptive

strategies for single-scale adaptive FEM.

Our estimates are not dependent on an explicit decomposition of the tensor and our

analysis also holds for general (non-periodic) tensors, although in this case it involves a data

approximation error that can only be estimated explicitly if additional spatial assumptions

on the fast variable are made (such as periodicity or random homogeneity). In the case of a

uniformly oscillating tensor and exact micro computations, the standard a posteriori error

estimates for the FEM applied to the homogenized problem are recovered.

Our a posteriori estimates build the foundation for the adaptive FE-HMM algorithm.

The error estimator gives information on how to refine the macro mesh. As singularities

in the micro problems could only arise in the micro scale of the conductivity tensor, we

use a uniform refinement for the micro problems (we emphasize that standard a posteriori

techniques could be used to refine the micro mesh adaptively). Our analysis reveals how –

7



Chapter 1. Introduction and Motivation

under appropriate assumptions – the refinement of the mesh of the micro sampling domain

has to be coupled with the refinement of the corresponding macro element in order to obtain

optimal convergence. The optimal coupling rates are confirmed in numerical experiments.

We further extend our adaptive, residual-based FE-HMM to support higher order FE in the

macro and micro spaces. The extension to higher order FE is a crucial component for the

development of our goal-oriented adaptive FE-HMM, where higher-order so-called dual-

solutions are required.

Based on the framework we developed for the adaptive, residual-based FE-HMM, we derive

a posteriori error estimates for the adaptive FE-HMM in quantities of interest, expressed by a

linear functional. A multiscale counterpart of the classical dual-weighted residual method

by Bangerth and Rannacher [28] is derived and analyzed. We design the corresponding

adaptive goal-oriented FE-HMM algorithm and demonstrate its performance on numerical

experiments.

Thesis Outline
The thesis is organized as follows.

Part I is a review of the Finite Element Heterogeneous Multiscale Method (FE-HMM).

In Chapter 2 we review homogenization, the Finite Element Method (FEM) and FE-HMM. In

Chapter 3 we present a short and versatile implementation of the FE-HMM in Matlab. Several

numerical experiments illustrate what problems the FE-HMM is capable of solving. The work

of Chapter 3 was published in [11]. We end Part I with a conclusion in Chapter 4.

Part II deals with adaptive Finite Element Heterogeneous Multiscale Methods.

In Chapter 5 we review adaptive (single-scale) Finite Element Methods. In Chapter 6 we

present a posteriori estimates for the FE-HMM in the physical energy norm for piecewise

linear macro elements and use these estimates to construct an adaptive FE-HMM. We end

this chapter with a comparison of our work to that by Ohlberger [92]. The results of Chapter 6

were published in [12, 10]. In Chapter 7 we generalize the work of Chapter 6 to higher order

finite elements. Based on the results obtained in Chapter 7, in Chapter 8 we derive a posteriori

error estimates for errors in quantities of interest and design a multiscale counterpart to the

dual-weighted residual FEM.

We conclude in Chapter 9 with an outlook on future work.
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Part IThe Finite Element Heterogeneous
Multiscale Method
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Introduction to Part I

Introduction to Part I.

In this first Part of the thesis, we review the finite element heterogeneous multiscale method

(FE-HMM) [50, 51, 52, 53, 2, 5], a computational method for solving elliptic multiscale partial

differential equations (PDEs). The multiscale coefficients (such as the heat conductivity) of

the PDE originate from some fine-scale structure, see Chapter 1. We follow the presentation of

[6] and write the elliptic multiscale PDE in an abstract form as

L ε
(
uε

)= f ε, (1.0.1)

where L ε refers to a differential operator, uε refers to the solution of the PDE and f ε denotes

some data of the problem. Here and throughout this thesis ε stands for a microscopic scale,

where we assume scale separation, i.e., we assume the variations on the macro scale to be

much larger than the variations on the micro scale. We further assume that a macroscopic

description exists.

The introduction of a microscopic scale in the mathematical equation (1.0.1) might for

example be motivated by small heterogeneities in the thermal conductivity tensor of the

underlying physical problem we want to model. We suppose that the conductivity features

a scale separation between a fast and a slow scale. We further suppose that the conductivity

is either periodic, locally periodic or statistically homogeneous (i.e., the stochastic processes

are described by joint probability distributions that are invariant under a translation of the

spatial origin, see [111, Chapter 2]). Often scientists or engineers are not interested in the full

fine-scale behavior, but rather in the effective, macroscopic behavior, which is influenced by

the micro structure. This motivates the use of mathematical tools such as homogenization

that describe the effective properties of a multiscale problem.

From a mathematical point of view, in homogenization we aim at finding the limit solution u0

for uε when ε→ 0 and a corresponding equation

L 0 (
u0)= f 0. (1.0.2)

Here, the solution u0 is given by the limit of uε for ε→ 0 and is independent of ε. We call it the

homogenized solution.

From a physical point of view, homogenization can be interpreted as follows: instead of

looking at a composite material consisting of small heterogeneities with phases of different

thermal conductivity, we assume an ideal composite material that has perfectly mixed phases

and therefore is homogeneous. See Figure 1.0.4 for an illustration.

From a computational point of view, the computational cost of an exact solution of problem

(1.0.1) is too expensive (see the example in Chapter 1). At the same time, the equations (1.0.2)

11
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ε

L

a0aε

Figure 1.0.4: The left picture shows a stylized two-phase heterogeneous material with periodic micro-
structure. When the macroscopic length scale L is much bigger than the microscopic length scale ε,
the heterogeneous material (left) with a conductivity of aε can be treated as a homogeneous material
(right) with an effective conductivity of a0.

for the homogenized problem are in general not available in a closed form. We therefore follow

the framework of the heterogeneous multiscale method (HMM) [50, 51, 52], which consists of

the following algorithm:

Step 1: A macroscopic discretization is defined, which uses macroscopic parameters that are

unknown a priori.

Step 2: The scales are coupled simultaneously:

Macro-to-micro: when macro parameters need to be evaluated, micro problems on

sampling domains are computed. The micro problems are constrained by the

unknown4 macro state.

Micro-to-macro: the unknown macro parameters are then obtained based on the

micro solutions by a suitable averaging.

Step 3: The macroscopic solution is computed.

Outline of Part I.

In Chapter 2 we provide a short review of the homogenization, classical FEM and introduce

the FE-HMM. In Chapter 3 we give a detailed explanation of the FE-HMM algorithm and

present a short implementation in Matlab. Several numerical experiments in two and three

dimensions illustrate the capabilities of this short FE-HMM implementation.

4Note that the unknown macro state is expanded in a macro basis; while the coefficients of this expansion are
unknown (solution of the macro problem), the basis functions themselves are known and used for the constraints.
See Chapter 3 or [11].
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2 The Finite Element Heterogeneous
Multiscale Method (FE-HMM)
In Section 2.1 we give a quick introduction to the mathematical homogenization theory. In

Section 2.2 we review classical (single-scale) FEM to set the notation for the later work. We

present some finite element approaches for solving multiscale PDEs in Section 2.3 and finally

review the heterogeneous multiscale finite element method (FE-HMM) in Section 2.4.

The presentation of this Chapter is taken in part from [11] and [12].

2.1 A brief review of Homogenization

2.1.1 Model problem

We want to solve elliptic multiscale PDEs with coefficients originating from some fine scale

structure. We consider a domain Ω ⊂ Rd , d = 1,2,3 with a Lipschitz continuous boundary

∂Ω= ∂ΩD ∪∂ΩN where Dirichlet conditions are imposed on ∂ΩD and Neumann conditions

on ∂ΩN . We assume that ∂ΩD has positive measure. Given f ∈ L2(Ω), gD ∈ H 1/2(∂ΩD ) and

gN ∈ L2(∂ΩN ) 1, we consider the second-order elliptic equation

−∇· (aε∇uε
)= f in Ω,

uε = gD on ∂ΩD , (2.1.1)

n · (aε∇uε
)= gN on ∂ΩN ,

where aε represents a family of tensors, indexed by ε, that are symmetric, satisfy aε(x) ∈
(L∞(Ω))d×d and are uniformly elliptic and bounded, i.e.,

∃λ,Λ> 0 such that λ|ξ|2 ≤ aε(x)ξ ·ξ≤Λ|ξ|2, ∀ξ ∈Rd and ∀ε. (2.1.2)

Here and throughout this thesis, ε represents a small scale in the problem that characterizes

the multiscale nature of the tensor aε(x). An application of the Lax-Milgram theorem (see

e.g. [39]) gives us a family of solutions that are bounded in H 1
D (Ω) independently of ε. The

1We could also consider more general Neumann data, e.g., gN ∈
(
H1/2

00 (∂ΩN )
)′

, see [105, Section 1.4.3] for the

variational formulation. For simplicity with respect to the implementation in Chapter 3 we assume gN ∈ L2 (∂ΩN )
here; we can thus write the corresponding duality pairing as

∫
∂ΩN

gN v d s.

13



Chapter 2. The Finite Element Heterogeneous Multiscale Method (FE-HMM)

variational form of (2.1.1) is given as follows: Find uε ∈ H 1
D (Ω) such that

Bε(uε, v) :=
∫
Ω

aε∇uε ·∇v d x =
∫
Ω

f v d x+
∫
∂ΩN

gN v d s−
∫
Ω

aε∇gD ·∇v d x =: lε(v), (2.1.3)

for all v ∈ H 1
D (Ω), where H 1

D (Ω) := {v ∈ H 1(Ω); v = 0 on ∂ΩD }.

There is however a major practical issue: solving (2.1.3) using a standard FEM requires

to resolve the smallest scale present in the problem, denoted here by ε. If we have a d-

dimensional macroscopic geometry of size O (1) this means that we need O
(
ε−d

)
degrees of

freedom to resolve the fine scale properties. For small ε, the cost associated with the FEM to

solve (2.1.3) will be prohibitive. This fundamental problem associated with the complexity of

discretizing multiscale problems such as (2.1.1) has been among the motivations to develop

homogenization theory that is described in what follows.

2.1.2 Homogenization

We introduce a model problem, derive the homogenized equations, and give convergence

results and error estimates of the homogenized solution.

For simplicity, we will in this Section 2.1.2 consider a model problem (2.1.1) with homoge-

neous Dirichlet boundary conditions. The model problem then reads

−∇· (aε∇uε
)= f inΩ,

uε =0 on∂Ω,
(2.1.4)

where aε is symmetric, satisfies aε(x) ∈ (L∞(Ω))d×d and is uniformly elliptic and bounded. In

the weak form problem (2.1.4) is given as: Find uε ∈ H 1
0 (Ω) s.t.

Bε(uε, v) :=
∫
Ω

aε∇uε ·∇vd x =
∫
Ω

f v d x ∀v ∈ H 1
0 (Ω) . (2.1.5)

We further assume that the tensor is Y −periodic (as defined below), and of the form

aε (x) = a
( x

ε

)
a.e. in Ω.

Definition 1 (Y -periodicity). (See [45, Definition 2.1]). Let the reference period Y denote an

interval in Rd defined by Y = (0,`1)× (0,`2)× ...× (0,`d ) , where `1, ...,`d are given positive

numbers. Then aε (x) is Y -periodic iff

aεi j (x +k`mem) = aεi j (x) , ∀k ∈Z and ∀m ∈ {1, ...,d} ,

where {em}d
m=1 is the canonical basis of Rd .

The goal of homogenization w.r.t. problem (2.1.4) is to find the so-called homogenized
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tensor a0 (x) and the homogenized equation

−∇· (a0∇u0)= f inΩ,

u0 =0 on∂Ω,
(2.1.6)

by studying the limiting behavior of uε which converges (usually in a weak sense) to the

so-called homogenized solution u0 as ε→ 0. We will frequently use the weak formulation of

problem (2.1.6): Find u0 ∈ H 1
0 (Ω) such that

B0(u0, v) :=
∫
Ω

a0∇u0 ·∇vd x =
∫
Ω

f vd x ∀v ∈ H 1
0 (Ω), (2.1.7)

where B0 (·, ·) is the so-called homogenized bilinear form.

In what follows we show that the homogenized solution u0 satisfies a boundary value

problem (which will turn out to be the homogenized equations above) and that u0 is uniquely

determined. We follow the presentation of [45] and refer the reader to [32, 70, 94] for more

details.

Weak convergence.

From the Lax-Milgram Theorem [39, 45], we know that (2.1.5) has a unique solution and we

also obtain that∥∥uε
∥∥

H 1
0 (Ω) ≤

1

λ

∥∥ f
∥∥

H−1(Ω) , (2.1.8)

which together with the following theorem ([45, Theorem 1.18]) will allow us to deduce weak

convergence of uε.

Theorem 2. Let the Banach space E be reflexive and let {xn} be a bounded sequence in E. Then

there exists a subsequence
{

xnk

}
of {xn} and x ∈ E s.t. as k →∞, we have xnk * x weakly in E,

i.e.,

∀x ′ ∈ E ′ 〈
x ′, xnk

〉
E ′,E → 〈

x ′, x
〉

E ′,E .

Remark 3. Theorem 2 is a special case of the Banach–Alaoglu Theorem, where we assume that

E is reflexive. We refer the reader to [116, Theorem III.3.7] and [107, Section 1.9] for details.

We further introduce weak∗ convergence.

Definition 4 (Weak∗ convergence). (See [45, Definition 1.20]). Let F be a Banach space and

set E = F ′. A sequence {xn} in E is said to converge weakly∗ to x iff〈
xn , x ′〉

F ′,F → 〈
x, x ′〉

F ′,F , ∀x ′ ∈ F.

From Theorem 2 and the bound (2.1.8) follows that there exists a subsequence
{

uε′
}

and
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Chapter 2. The Finite Element Heterogeneous Multiscale Method (FE-HMM)

an element u0 ∈ H 1
0 (Ω) s.t.

uε′ * u0 weakly in H 1
0 (Ω) . (2.1.9)

We furthermore know [45] that the function aε (x) weakly converges to the mean value of

a
( x
ε

)= a
(
y
)

with y = x
ε , that means that we have

aε (x)*
1

|Y |
∫

Y
a

(
y
)

d y weakly* in
(
L∞ (Ω)

)d×d .

The challenge is now to find the limit of the product aε∇uε, as in general the product

of two weakly convergent sequences does not converge to the product of the weak limits

(see [45]). The main difficulty of homogenization is to find the homogenized coefficients a0

and the homogenized equation for the limiting solution u0. We will now use the method of

asymptotic expansion in order to derive the homogenized equation.

Formal asymptotic expansion.

We consider a two-scale model for uε (x) with a macroscopic variable x and a microscopic

variable x
ε , which means that we look for an asymptotic expansion of uε of the form

uε (x) = u0
(
x,

x

ε

)
+εu1

(
x,

x

ε

)
+ε2u2

(
x,

x

ε

)
+ ... (2.1.10)

where the u j
(
x, y

)
for j = 1,2,3, ... satisfy that u j

(
x, y

)
is defined for x ∈ Ω and y ∈ Y and

u j
(·, y

)
is Y -periodic.

For ε¿ 1 the microscopic variable y will change much more rapidly than x and when

looking at the problem from a microscopic scale, we can assume x to be a constant parameter

to the problem. This way we can exploit scale separation and treat x and y independently of

each other.

Differentiating a function φε (x) :=φ(
x, x

ε

)
w.r.t. x means that

∇→∇x + 1

ε
∇y ,

so that the total derivative of φ
(
x, x

ε

)
can be expressed as

∇φε (x) =∇xφ
(
x, y

) |y= x
ε
+ 1

ε
∇yφ

(
x, y

) |y= x
ε

.

Thus the differential operator

A ε =−∇· (aε∇)
(2.1.11)

becomes

A ε = 1

ε2 A 0 + 1

ε
A 1 +A 2, (2.1.12)
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2.1 A brief review of Homogenization

where

A 0 =−∇y ·
(
a

(
y
)∇y

)
(2.1.13a)

A 1 =−∇y ·
(
a

(
y
)∇x

)−∇x
(
a

(
y
)∇y

)
(2.1.13b)

A 2 =−∇x ·
(
a

(
y
)∇x

)
. (2.1.13c)

Inserting (2.1.12) into (2.1.4) we obtain(
1

ε2 A 0 + 1

ε
A 1 +A 2

)
uε = f . (2.1.14)

We substitute (2.1.10) into (2.1.14) and obtain

1

ε2 A 0u0 + 1

ε

(
A 0u1 +A 1u0)+ (

A 0u2 +A 1u1 +A 2u0)+O (ε) = f .

Equating coefficients of equal powers of ε and ignoring the O (ε)-term leads to the following

set of equations

O

(
1

ε2

)
: A 0u0 = 0 (2.1.15a)

O

(
1

ε

)
: A 0u1 =−A 1u0 (2.1.15b)

O (1) : A 0u2 =−A 1u1 −A 2u0 + f . (2.1.15c)

From equations (2.1.15) we can derive the following results.

O
( 1
ε2

)
: From equation (2.1.15a) follows that u0

(
x, x

ε

) = u0 (x), which indicates that the ob-

tained variable u0 must be the “homogenized solution” that is independent of y .

O
(1
ε

)
: From equation (2.1.15b) we can derive the cell-problem (2.1.18) and find that u1

(
y
)=∑d

j=1χ
j
(
y
) ∂u0(x)

∂x j
as given in (2.1.21), where χ j is the so-called first order corrector

defined in Theorem 5.

O (1): Finally, the homogenized equation −∇· (a0∇u0
)= f follows from (2.1.15c).

We refer the reader to [45, Chapter 7] for details.

Convergence results

Theorem 5. See [45, Theorem 6.1]. Let f ∈ H−1 (Ω) and uε be the solution of (2.1.4), where aε is

symmetric, satisfies aε(x) ∈ (L∞(Ω))d×d , is uniformly elliptic and bounded. We further assume

that the tensor is Y -periodic and of the form

aε (x) = a
( x

ε

)
a.e. in Ω.
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Chapter 2. The Finite Element Heterogeneous Multiscale Method (FE-HMM)

Then

i ) uε* u0 weakly in H 1
0 (Ω) ,

i i ) aε∇uε* a0∇u0 weakly in
(
L2 (Ω)

)d
,

where u0 ∈ H 1
0 (Ω) is the unique solution of (2.1.6)

−∇· (a0∇u0)= f in Ω,

u0 =0 on ∂Ω.
(2.1.16)

The homogenized tensor a0 = (
a0

)
i j ,1≤i , j≤d is constant, elliptic and given by

a0
i j =

1

|Y |
∫

Y

(
ai j

(
y
)+ d∑

k=1
ai k

(
y
) ∂χ j

∂yk

(
y
))

d y, (2.1.17)

with a so-called first order corrector χ j ∈W 1
per (Y ). The first order corrector χ j

(
y
)

, j = 1, ...,d,

is defined to be the unique solution of the so-called cell problems∫
Y
∇χ j (

y
) ·a

(
y
)∇v

(
y
)

d y =−
∫

Y

(
a

(
y
)

e j
)T ∇v

(
y
)

d y, ∀v
(
y
) ∈W 1

per (Y ) , (2.1.18)

where
{

e j
}d

j=1 is the canonical basis in Rd .

Remark 6. Theorem 5 holds also for a two-scale tensor with a slow variable x and a fast

variable y = x
ε , i.e. for aε(x) = a

(
x, y

) ∈C
(
Ω;L∞

per (Y )
)

d×d , where the x in a
(
x, y

)
merely acts

as a parameter, see [32].

Error estimates. How well can the homogenized solution u0 (x) approximate the original

fine-scale solution uε (x)? In the L2 norm, strong error estimates exist [70, Sect. 1.4]∥∥uε−u0
∥∥

L2(Ω) ≤Cε. (2.1.19)

In general, we cannot obtain strong errors in the H 1 norm, because the oscillations of uε

introduce O (1) perturbations in the gradient which are not captured by u0. If we look for a

development of uε of the form

uε (x) = u0
(
x,

x

ε

)
+εu1

(
x,

x

ε

)
+ε2u2

(
x,

x

ε

)
+ ... (2.1.20)

where u j
(
x, y

)
are Y -periodic in the second variable y , then we can add to the homogenized

solution u0 a corrector which has information of the fine scale and is given by

u1
(
x,

x

ε

)
=

d∑
j=1

χ j
( x

ε

) ∂u0 (x)

∂x j
. (2.1.21)
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We have for the corrected solution that [70, Sect. 1.4]∥∥∥uε−
(
u0 (x)+εu1

(
x,

x

ε

))∥∥∥
H 1(Ω)

≤C
p
ε. (2.1.22)

The
p
ε boundary layer term (instead of an ε term that we might expect) is caused because

u1 does not satisfy the boundary conditions of problem (2.1.1). We remark that for estimates

(2.1.19) and (2.1.22) to hold, some regularity on u0 and χ j is required and we refer the reader

to [70, Sect. 1.4] for details.

Properties of the homogenized tensor.

Remark 7. We have the following properties for the homogenized tensor (see [45, 94]):

• The homogenized tensor again is elliptic and bounded, i.e.

∃λ,Λ> 0 such that λ|ξ|2 ≤ a0(x)ξ ·ξ≤Λ|ξ|2, ∀ξ ∈Rd . (2.1.23)

• Symmetry of aε (x) implies symmetry of a0 (x).

• If aε (x) is diagonal, a0 (x) is in general not diagonal. This means that an isotropic

composite material can, as the microstructure gets smaller and smaller in the limit of

ε→ 0, behave like an anisotropic material.

2.2 The basic theory of the Finite Element Method (FEM)
We briefly sketch the basic theory of the FEM that we will need for the FE heterogeneous

multiscale method and refer the reader for more details and generalizations to [39, 44, 98]. We

consider the non-oscillatory (single-scale) version of problem (2.1.1), i.e. an elliptic partial

differential equation on a domain Ω⊂ Rd , d = 1,2,3 with a Lipschitz continuous boundary

∂Ω= ∂ΩD ∪∂ΩN , where Dirichlet conditions are imposed on ∂ΩD and Neumann conditions

on ∂ΩN . We assume that ∂ΩD has positive measure. Given f ∈ L2(Ω), gD ∈ H 1/2(∂ΩD ), gN ∈
H−1/2(∂ΩN ) we consider the second-order elliptic equation

−∇· (a∇u) = f in Ω,

u = gD on ∂ΩD , (2.2.1)

n · (a∇u) = gN on ∂ΩN ,

where a is symmetric, satisfies a(x) ∈ (L∞(Ω))d×d and is uniformly elliptic and bounded. Using

Lax-Milgram theorem (see e.g. [39]) leads to a family of solutions which are bounded in H 1
D (Ω).

The variational form of (2.2.1) is to find u ∈ H 1
D (Ω) such that

Bclassic(u, v) :=
∫
Ω

a∇u ·∇vd x =
∫
Ω

f vd x +
∫
∂ΩN

gN vd x −
∫
Ω

a∇gD ·∇vd x =: l (v), (2.2.2)
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Chapter 2. The Finite Element Heterogeneous Multiscale Method (FE-HMM)

for all v ∈ H 1
D (Ω), where H 1

D (Ω) := {v ∈ H 1(Ω); v = 0 on ∂ΩD }. We use the subscript classic on

Bclassic (·, ·) to emphasize that the bilinear form Bclassic (·, ·) corresponds to a single-scale (classic)

FEM problem. The associated norm is the energy norm

|||v ||| :=
√

Bclassic (v, v).

A finite element discretization of this variational problem is standard. To avoid technicality

with curved boundary and regularity issues with re-entrant corners, we assume in what

follows that Ω is a convex polygonal domain in Rd . Let TH be a partition of Ω in simplicial or

quadrilateral elements K of diameter HK and denote H = maxK∈TH HK . For this partition we

define a finite dimensional subspace of H 1
D (Ω) by

V p
D (Ω,TH ) = {v H ∈ H 1

D (Ω); uH |K ∈Rp (K ), ∀K ∈Th}, (2.2.3)

with elements K ∈TH , where TH is assumed to be shape regular. Here Rp =P p is the space

of piecewise polynomials on the element K of total degree p, if K is a simplicial element

(triangle if d = 2, tetrahedron if d = 3). If K is a quadrilateral element (quadrilateral if d = 2,

hexahedron if d = 3), then Rp =Qp is the space of piecewise polynomials on the element K

of degree p in each variable.

The solution of the discretized problem (2.2.2) reads: find uH ∈V p
D (Ω,TH ) such that

Bclassic(uH , v H ) = l (v H ) ∀v H ∈V p
D (Ω,TH ). (2.2.4)

A priori estimates. A priori estimates provide information about the asymptotic behavior of

the FE solution uH . For elliptic bilinear forms Céa’s Lemma (see [44, 40, 39]) holds,

∥∥u −uH
∥∥

H 1(Ω) ≤
C

λ
inf

v H∈V p
D (Ω,TH )

∥∥u − v H
∥∥

H 1(Ω)

which states that the error eH := u −uH between the finite element solution uH ∈V p
D (Ω,TH )

of (2.2.4) and the exact solution u ∈ H 1
D (Ω) of (2.2.2) is of the same order of magnitude as the

interpolation error, i.e. the quality of the approximation essentially depends on the choice of

V p
D (Ω,TH ).

Provided that the solution u of problem (2.2.1) has regularity u ∈ H p+1 (Ω), we have that there

exists a constant C such that the error in the H 1- norm is given by∥∥u −uH
∥∥

H 1(Ω) ≤C H p |u|p+1,Ω . (2.2.5)

Furthermore, we can apply duality arguments (Aubin-Nitsche duality argument, see [39]) to

obtain estimates for the L2-error∥∥u −uH
∥∥

L2(Ω) ≤C H p+1 |u|p+1,Ω . (2.2.6)
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2.3 Numerical approaches to solve elliptic multiscale PDEs
We want to briefly mention several numerical approaches in the literature that aim at solving

multiscale problems of the form (2.1.1). For an overview of different methods, we refer the

reader to [49].

The variational multiscale method (VMM) was proposed by Hughes and co-workers [67,

68]. For the VMM in context of adaptive methods, see [74, 73]. The idea is to choose a coarse

and a fine space, Vc ⊂V and V f ⊂V , respectively such that

V =Vc ⊕V f

and to decompose the solution u ⊂ V into a coarse-scale and a fine-scale component u =
uc +u f . The key of the method is to decouple the resulting coupled equations for the coarse

and fine scale components by using localization techniques. One such technique involves the

use of localized Dirichlet problems on subdomains, where the fine-scale problem is approxi-

mated by a set of localized, decoupled problems. The choice of these subdomains is crucial

and their size can be chosen adaptively, see [74, 73].

The multiscale finite element method (MsFEM) is based on the ideas of Babuška and Os-

born [24, 25] who proposed to modify the finite element space and use special multiscale

basis functions which take the microstructure of the problem into account. The method was

later extended by Hou and Wu [64]. We refer the reader to the book by Efendiev and Hou [54]

for a detailed description of the method.

The MsFEM follows a different approach than the VMM. The basic idea is to find a set of

local multiscale basis functions in such a way that they resemble the correct local fine-scale

characteristics of the multiscale solution. A global numerical formulation is then used in

order to find a solution of the global multiscale problem within the space spanned by these

multiscale basis functions. The choice of the boundary conditions for the local problems that

are used to find the multiscale basis functions is crucial (see [54, Section 2.3]). The complexity

of the MsFEM is similar to the complexity of the full fine-scale problem, but necessary compu-

tations over the fine grid can be re-used e.g. for different right-hand sides (as typically wanted

in e.g. fluid-flow applications).

In their general formulation, both VMM and MsFEM aim at obtaining the full fine scale

solution, therefore the total degrees of freedom required for finding the fine scale solution

is of order O
(
ε−d

)
. Other methods have been developed, which assume and exploit special

features of the problem, such as scale separation and self-similarity of the conductivity tensor

in the microscopic scale. These methods aim at reducing the total degrees of freedom of the

multiscale problem, ideally making it independent of ε. One such method used in the engi-

neering world uses representative volume elements (RVE), another such method is the finite

element heterogeneous multiscale method (FE-HMM) that we use throughout this thesis.
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Upscaling methods based on representative volume elements (RVE). A well-established

approach for treating multiscale problems in the engineering and structural mechanics com-

munity is upscaling based on representative volume elements (RVEs)2. In an RVE, one sim-

ulates the microstructure of a material. The result of this micro simulation is then used in

order to obtain effective macroscopic properties at a macroscopic point. Since we assume

scale separation, the size of the RVE is chosen to be much smaller than the variations on the

macro scale, but at the same time big enough to represent the characteristic micro structure

sufficiently well. The approach typically follows the structure [93, 57, 71]:

1. At a macroscopic point(s), the micro-structural RVE is defined.

2. Macro-to-micro transition: appropriate boundary conditions involving previously com-

puted3 macroscopic quantities are formulated on the microscopic boundary value

problem, in order to impose consistency with the macroscopic scale. (Step I in Figure

2.3.1).

3. The boundary value problem on the RVE is solved (e.g. with a FEM). (Step II in Figure

2.3.1).

4. Micro-to-macro transition: a consistent volume averaging scheme is used in order to

extract the desired macroscopic quantities in terms of the microscopic quantities in the

RVE. (Step III in Figure 2.3.1).

For a review of computational homogenization methods in the context of solid mechanics we

refer to the lecture notes of Geers and Kouznetsova [57] and references therein. More details

and references in the context of heat transfer can be found in [93, 56].

2.4 The Finite Element Heterogeneous Multiscale Method (FE-HMM)
This Section is an extended overview of the FE-HMM based on [11] and [12]. We again consider

the elliptic problem (2.1.1) with oscillatory coefficients

−∇· (aε∇uε
)= f in Ω,

uε = gD on ∂ΩD , (2.4.1)

n · (aε∇uε
)= gN on ∂ΩN ,

as introduced in Section 2.1.1. The corresponding homogenized elliptic problem is given by

2In some communities also called representative elementary volume (REV).
3In contrast, the FE-HMM uses an on-the-fly computation of required unknown macroscopic quantities.
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Figure 2.3.1: Schematic of an RVE-based computational homogenization scheme. Figure taken from
[93] with permission from John Wiley & Sons, Ltd.

−∇· (a0∇u0)= f in Ω,

u0 = gD on ∂ΩD , (2.4.2)

n · (a0∇u0)= gN on ∂ΩN ,

as introduced in Section 2.1.2 and where the homogenized tensor a0 (x) is symmetric and

uniformly elliptic and bounded, see Remark 7.

The finite element heterogeneous multiscale method (FE-HMM) aims at capturing the

homogenized (coarse) solution u0 of (2.4.2) (with appropriately changed boundary condi-

tions) without computing a0(x) explicitly and by relying only on input data given by (2.4.1).

Furthermore, the knowledge of the oscillatory data of (2.4.1) is only needed on sampling

domains. This is important since in practice, for many applications, the fine scale structure

of the problem can be obtained only on part of the computational domain. We mention

problems in material science, where the fine scale structure may only be accessible locally by

modern scanning and microscopy techniques or in geosciences where required knowledge of

a landscape may only be sparsely available. The basic FE-HMM can be described as follows.

Macro finite element space. We consider the macro finite element space

V p
D (Ω,TH ) = {v H ∈ H 1

D (Ω); uH |K ∈Rp (K ), ∀K ∈TH }, (2.4.3)
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with macro elements K ∈TH , where TH is assumed to be shape regular. Here Rp is defined

as for (2.2.3). We emphasize that H , the size of the macro triangulation, is allowed to be much

larger than ε.

Quadrature formulas. We follow the definition of the quadrature formula as in [15] and

consider for each macro element K ∈TH a C 1-diffeomorphism FK such that K = F
(
K̂

)
, where

K̂ is the (simplicial or rectangular) reference element. We consider a given quadrature formula

{x̂`,ω̂`}L
`=1 on the reference element K̂ ; the corresponding integration points on an element

K ∈TH are given by xK`
= FK (x̂`), `= 1, ...,L and the corresponding quadrature weights on

K are given by ωK`
= ω̂` |det(∂FK )|, `= 1, ...,L . We make the following assumptions on the

quadrature formulas:

(Q1) For ω̂` > 0, `= 1, ...,L and λ̂> 0 we have that

L∑
`=1

ω̂`
∣∣∇q̂ (x̂`)

∣∣2 ≥ λ̂∥∥∇q̂
∥∥2

L2(K̂ ) ∀q̂ (x̂) ∈Rp (
K̂

)
. (2.4.4)

(Q2) We have that∫
K̂

q̂(x̂)d x̂ =
L∑
`=1

ω̂`q̂(x̂`) ∀q̂(x̂) ∈Rσ
(
K̂

)
, (2.4.5)

where σ= max
(
2p −2, p

)
if K̂ is a simplicial element and where σ= max

(
2p −1, p +1

)
if K̂ is a rectangular element.

We remark that there exist some well-known quadrature formulae that satisfy conditions (Q1)

and (Q2). For example, for piecewise linear elements L = 1, ωK`
= |K | and xK`

is chosen to be

located at the barycenter of the simplicial K . For bilinear elements, L = 4 and {ωK`
, xK`

}4
`=1 is

the two points Gauss quadrature rule given by ωK`
= |K |/4, xK`

= FK (1/2±p
3/6,1/2±p

3/6).

We refer to [6] for details.

Remark 8. We will revisit quadrature rules in the context of higher order FE-HMM in Section

7.2.

Figure 2.4.1 illustrates the quadrature formulas and the coupling between the macro and

micro problem which we describe in the following.

Macro bilinear form. For a discretization in the macro FE space (2.4.3) we need to modify

the single-scale FEM bilinear form (2.2.4). For v H , w H ∈V p
D (Ω,TH ) we define

B(v H , w H ) = ∑
K∈TH

L∑
`=1

ωK`

|Kδ` |
∫

Kδ`

aε(x)∇vh
Kδ`

·∇wh
Kδ`

d x, (2.4.6)
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TH

K

H

(a) macro discretization with sampling domains
(micro-problems)

Th
Kδ

xKδ

δ

(b) micro-problems

T

h

(c) example of quadrature for
a micro-problem

Figure 2.4.1: In every element of the FE-HMM, the contribution to the stiffness matrix of the macro
elements (a) is given by the solutions of the micro problems (b), which are computed using numerical
quadrature on every micro element (c).

where vh
K`

, wh
K`

are appropriate micro functions defined on sampling domains Kδ` (see below)

and the factor |Kδ` | gives the appropriate weight for the contribution of the integrals defined

on Kδ` instead of K .

Remark 9. The FE-HMM bilinear form (2.4.6) relies on numerical quadrature. Therefore, in our

a posteriori analysis in Part II of this thesis, we need to specially take care of the corresponding

variational crimes.

Micro solver. For every macro element K we compute the additive contribution to the

macro stiffness matrix by computing micro functions vh
K`

(and wh
K`

) obtained by solving

micro-problems on sampling domains Kδ` , `= 1, . . . ,L . The micro-problems read as follows:

find vh
K`

such that (vh
K`

− v H
lin,K`

) ∈ Sq (Kδ` ,Th) and∫
Kδ`

aε(x)∇vh
K`

·∇zhd x = 0 ∀zh ∈ Sq (Kδ` ,Th), (2.4.7)

where

v H
lin,K`

(x) = v H (xK`
)+ (x −xK`

) ·∇v H (xK`
) (2.4.8)

is a linearization of the macro function v H at the integration point xK`
(see [53, 6] for details)

and

Sq (Kδ` ,Th) = {zh ∈W (Kδ`); zh |T ∈Rq (T ), T ∈Th}, (2.4.9)

where W (Kδ`) determines the coupling condition or boundary conditions used for computing

the micro functions vh
K`

(or wh
K`

).

Remark 10. The choice of (2.4.7) is motivated as follows. In the periodic case, the micro

problem (2.4.7) resembles the (discrete version of the) cell problem (2.1.18) if we choose

∇v H
lin,i = e i , i = 1, ...,d . Then the solution vh

i of (2.4.7) resembles the FE solution of the cell
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problem χh,i as vh
i − v H

lin,i =χh,i . We will further see in Section 6.3.2 that

|K |∣∣Kδ`

∣∣
∫

Kδ`

aε(x)∇vh
K`

·∇wh
K`

d x =
∫

K
a0

K`
∇v H

lin,K`
·∇w H

lin,K`
d x,

where a0
K`

refers to the numerically homogenized tensor.

We will again set q = 1 and since the sampling domain has a simple geometry, we will use

quadrilateral FE. Notice that for piecewise linear functions v H
li n,K`

= v H . Several choices are

possible for the coupling condition we will consider

• the periodic coupling

W (Kδ`) =W 1
per (Kδ`) (2.4.10)

and we denote Sq (Kδ` ,Th) by Sq
P (Kδ` ,Th); this coupling condition will be referred in

what follows as (P ),

• the Dirichlet coupling

W (Kδ`) = H 1
0 (Kδ`) (2.4.11)

and we denote Sq (Kδ` ,Th) by Sq
D (Kδ` ,Th); this coupling condition will be referred in

what follows as (D),

where W 1
per

(
Kδ`

)= {
v ∈ H 1

per

(
Kδ`

)
;
∫

Kδ`
v d x = 0

}
, and H 1

per

(
Kδ`

)
is defined as the closure of

C ∞
per

(
Kδ`

)
(the subset of C ∞ (Rn) of periodic functions in Kδ`).

Remark 11. For a tensor aε(x) = a(x, x/ε) with explicit scale separation, it is preferable to

collocate the slow variable at the integration points a(xK`
, x/ε) in both the macro and micro

bilinear forms (2.4.6) and (2.4.7). In the periodic case, choosing δ as an integer multiple of ε

gives robust, i.e. independent of ε, convergence results (see [14, App. A]).

Variational problem. The macro solution of the FE-HMM is defined by the following varia-

tional problem: find uH ∈V p (Ω,TH ) such that

B(uH , v H ) =
∫
Ω

f v H d x +
∫
∂ΩN

gN v H d x −B(gD , v H ) ∀v H ∈V p (Ω,TH ). (2.4.12)

The primary goal of this method is to capture the effective solution u0 of (2.4.2), i.e., uH

converges to u0 as H goes to zero. Remember that the method also depends on a micro mesh,

thus h going to zero is also necessary for the above convergence (see Section 2.4.1).
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Ellipticity, boundedness and well-posedness. We have that the HMM bilinear form (2.4.6)

is elliptic and bounded, i.e. it satisfies

B
(
v H , v H )≥C

∥∥v H
∥∥2

H 1(Ω)

and ∣∣B (
v H , w H )∣∣≤C

∥∥v H
∥∥

H 1(Ω)

∥∥w H
∥∥

H 1(Ω)

for all v H , w H ∈V p (Ω,TH ) with a constant C that only depends on the quadrature formula

and the domain Ω. The proof can be found in [6, Lemma 5] and relies on the inequality∥∥∇v H
lin

∥∥
L2

(
Kδ`

) ≤ ∥∥∥∇vh
∥∥∥

L2
(
Kδ`

) ≤C
∥∥∇v H

lin

∥∥
L2

(
Kδ`

)
and quadrature formula (Q1) given in (2.4.4).

With the Lax-Milgram Theorem, there immediately follows the existence and uniqueness

of the solution uH of problem (2.4.12).

Post-processing procedure. While uH converges to uε in the L2 norm, a convergence of

uH to uε in the energy (H 1) norm is not guaranteed in general. Indeed, the oscillations of uε

introduce O (1) perturbations in the gradient which are not captured by uH . An approximation

of uε in the energy norm can nevertheless be obtained from the macro solution uH by using a

post-processing procedure. The known small scale solution in the sampling domain (2.4.7)

computed during the assembly of the FE-HMM can be extended locally on the macro element

K and added to uH . This is done as follows (for simplicial elements): define uH ,ε :Ω→R given

by its restriction on each macro element K by

uH ,ε(x)|K = uH (x)+
(
uh −uH

)
(x − [x]K`

) for x ∈ K ∈TH , (2.4.13)

where for x ∈Rd , [x]K`
denotes the unique combination δ

∑d
i=1 bi ei , where bi ∈Z and (ei )d

i=1 is

the canonical basis of Rd , such that (x − [x]K`
) ∈ Kδ` , see Figure 2.4.2 for an illustration. Notice

that uH ,ε(x) can be discontinuous across the macro elements K .

2.4.1 A priori estimates

We now list all the sources of errors of the numerical FE-HMM scheme, which can be obtained

from an a priori estimate [6, 53, 2]. We follow the framework of [6] and decompose the error

into three parts:∥∥u0 −uH
∥∥≤ ∥∥u0 −u0,H

∥∥︸ ︷︷ ︸
er rmac

+∥∥u0,H − ūH
∥∥︸ ︷︷ ︸

er rmod

+∥∥ūH −uH
∥∥︸ ︷︷ ︸

er rmi c

, (2.4.14)
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K K

x δ
[x]K

Figure 2.4.2: Post-processing procedure: the small scale solution of the sampling domain is extended
locally on the macro element K as given in eq. (2.4.13).

where er rmac , er rmod and er rmi c are the macro, modeling and micro error, respectively. Here,

u0 is the solution of (2.1.7), uH is the FE-HMM solution of (2.4.12), u0,H is the FEM solution of

(2.1.7) in the space V p (Ω,TH ) and ūH is the FE-HMM solution of (2.4.12) with exact micro

functions (in W
(
Kδ`

)
).

The various components can be estimated as follows:

er rmac is the macroscopic error from a standard finite element approximation u0,H of (2.4.2)

in V p (Ω,TH ) with numerical quadrature (see e.g. [44]). The error can be estimated in

the H 1-norm as

er rmac =
∥∥u0 −u0,H

∥∥
H 1(Ω) ≤C H p

and in the L2-norm as

er rmac =
∥∥u0 −u0,H

∥∥
L2(Ω) ≤C H p+1.

er rmi c is the error caused by the FE approximation of the micro problems in Sq
(
Kδ` ,Th

)
.

The micro error adds to the total error through the macro bilinear form. Under appro-

priate assumptions on aε (e.g. regularity, local periodicity) and appropriate boundary

conditions we get

er rmi c =
∥∥ūH −uH

∥∥
H 1(Ω) ≤C

(
h

ε

)2q

, er rmi c =
∥∥ūH −uH

∥∥
L2(Ω) ≤C

(
h

ε

)2q

,

for both the H 1 and the L2-norm. We refer to [6] for details.

er rmod is the error introduced by the modeling of the multiscale scheme, i.e. the upscaling

procedure and the coupling between the macro and micro FEMs. While the modeling

error depends on the structure of the tensor aε, the boundary conditions of the micro

problem (i.e., the coupling of the micro to the macro FE spaces) and the sampling

domain size δ, it is independent of the macro and micro mesh size H and h, respectively.

Under the assumption of a two-scale tensor of form aε (x) = a
(
x, x

ε

)
, the general form of
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the modeling error for piecewise linear macro FE is

er rmod ≤C sup
K∈TH ,x`∈K

∥∥a0 (
xK`

)− ā0
K

∥∥
F ,

where the exact homogenized tensor a0 (x) (evaluated at the quadrature node xK`
) is

defined in Theorem 5 and ā0
K is an appropriate numerically upscaled tensor, obtained

from a procedure similar to the FE-HMM (see (6.3.14) for a proper definition). If we

have a periodic tensor aε = a (x, x/ε), periodic coupling, sampling domains covering

an integer number of periods, i.e. δ= nε, n ∈N and collocation of the slow variable, i.e.

a
(
xK`

, x/ε
)

we get that the modeling error is er rmod = 0. We refer to Section 6.3.5.2 and

[53, 6] and references therein for a more detailed description of the modeling error.

The general form of the a priori error estimate in the H 1-norm under the appropriate assump-

tions of the two-scale tensor aε (x) = a
(
x, x

ε

)
is therefore

∥∥u0 −uH
∥∥

H 1(Ω) ≤C

(
H p +

(
h

ε

)2q)
+er rmod . (2.4.15)

Finescale error. In order to estimate
∥∥uε−u0

∥∥
L2(Ω) ≤

∥∥uε−u0
∥∥

L2(Ω) +
∥∥u0 −uH

∥∥
L2(Ω) in the

L2-norm, we use the estimate (2.1.19) and the triangle inequality and we obtain the following

additional term in (2.4.14)∥∥uε−u0
∥∥

L2(Ω) ≤Cε.

In the H 1-norm, u0 does not converge to uε and therefore uH does not converge to uε.

Indeed, u0 (or uH ) can not capture the micro oscillation of uε, which results in an O (1)

mismatch when gradients are estimated. One can however create a post-processed solution

uH ,ε based on the macro solution uH and the micro solutions uh
K (available in the sampling

domains Kδ` ⊂ K ) using ideas from the construction of correctors in homogenization theory

[32]. An estimate for the post-processed FE-HMM solution uH ,ε (illustrated in Figure 2.4.2)

does exist and, under appropriate assumptions and for piecewise linear macro and micro FE,

satisfies [2, 5]

∥∥uε−uH ,ε
∥∥

H̄ 1(Ω) ≤C

(
H +p

ε+ h

ε

)
, (2.4.16)

where H̄ 1(Ω) is a broken norm defined by ‖u‖H̄ 1(Ω) =
(∑

K∈TH
‖∇u‖2

L2(K )

)1/2
(as the recon-

structed solution may have jumps on the interfaces of two adjacent elements). The term
p
ε in

(2.4.16) originates from a boundary layer; this boundary layer is caused as the corrector does

not satisfy the appropriate boundary conditions on ∂Ω. Notice that in (2.4.16) we have a term
h
ε , while in the estimate

∥∥u0 −uH
∥∥

H 1(Ω) we have for piecewise linear macro and micro FE the

micro error can be estimated as er rmi c <C
(

h
ε

)2
.
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3 Implementation of the FE-HMM and
Simulation of Heat Transfer Problems
Despite the flourishing activity on computational homogenization problems or related mul-

tiscale problems (see the references in Chapter 1), very few open-box computer codes are

currently available in this area. The goal of this chapter is to present a short finite element (FE)

implementation for multiscale elliptic or parabolic problems. For convenience, we propose a

MATLAB implementation, which allows for a concise coding. A FORTRAN or C/C++ version

could be easily obtained following the structure of the code given in this paper.

The algorithm proposed in this Chapter is short (less than 200 lines) and flexible, easy to

use and to modify. At the same time, it is capable to handle challenging 3D problems as can

be seen in Section 3.2, where we describe the heat conduction in a microprocessor package

made of composite materials. Generalization for elastic problems can be done following the

implementation described here. We believe that such a code can be useful for many practical

applications since it can easily be modified by users to account for specific features of their

problems. Our multiscale code can handle

• simplicial and quadrilateral FE (at the macroscopic level, i.e., for meshing the physical

domain),

• various coupling conditions between macroscopic and microscopic solvers,

• time dependent (parabolic) and 3D problems.

As we will see, a parallelization of the algorithm is straightforward. We propose an implemen-

tation for problems with two scales. This could however be generalized to problems with

several separated scales. For simplicity, we also limit ourselves to piecewise (bi)linear FE

approximations. The proposed code can easily be extended to higher order FE approximation

and the algorithm discussed in the first part of the paper is written in this general setting. The

code and implementation discussed is available at http://anmc.epfl.ch.

The outline of this Chapter is as follows. We present the FE algorithm and implementation

in detail in Section 3.1. Various numerical examples in two and three dimensions (including

parabolic problems) are given in Section 3.2, where we use different types of elements and

both deterministic and random oscillating coefficients. There we present an application of

our code to the steady-state heat distribution in a heat sink and a microprocessor featuring a
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multiscale heat conductivity tensor; this simulation resembles the motivating engineering

problem we stated in the introduction of this thesis in Chapter 1, see also Figure 1.0.2.

The results in this Chapter were published in [11] and Sections 3.1 and 3.2 are reprinted

from [11, Section 3 and 4], with permission from Elsevier. The introduction of this Chapter

is based on [11, Section 1]. The references and citations were updated in order to fit into the

framework of this thesis.

3.1 Implementation
For simplicity of notations, we describe the implementation for two-dimensional problems,

and comment on the subtleties which occur for three-dimensional problems when appropri-

ate. We emphasize that our code can handle both two and three-dimensional problems. We

also restrict ourselves to a piecewise linear or bilinear macro FE approximation and empha-

size again that modification of our solver to accommodate higher order FEM can easily be

obtained.

Data representation of the macro triangulation. We recall that a data-

representation of a triangulation Th of a domain G requires the following input data

• Coordinates.dat containing in line i : x−coordinate, y−coordinate of node number i ,

• Elements3.dat and Elements4.dat containing in line i the node numbers of the i th

triangular or quadrilateral elements,

node1 node2 node3 (for a triangle) and

node1 node2 node3 node4 (for a quadrilateral),

respectively.

• Dirichlet.dat and Neumann.dat containing the node numbers of boundary nodes.

If G =Ω we will use the above notation, if G = Kδ (sampling domain) we will use the prefix

Micro.... The data representation used is standard unless explicitly mentioned and we refer

for example to [22] for details.

Macro and micro basis functions. In what follows we denote by

•
{
ϕH

m

}Mmac

m=1 the basis of the macro FE space V 1(Ω,TH ) defined in (2.4.3), where Mmac is

the number of discretization points in the macro domain; the elements (simplicial or

quadrilateral) of the macro triangulation TH are denoted by K ,

•
{
ψh

m,K`

}Mmi c

m=1
the basis of the micro FE space S1(Kδ` ,Th) defined in (2.4.9) with q = 1,

where Mmi c = (Nmi c )d (d = 2,3) and Nmi c is the number of discretization points in each

direction of the d-dimensional micro sampling domain; the elements (simplicial or

quadrilateral) of the micro triangulation Th are denoted by T .
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3.1 Implementation

3.1.1 Core structure: assembling the macro problem

Following a standard assembly process for the macro bilinear form (2.4.6), we compute the

contribution AK to the stiffness matrix associated with the macro element K . We identify the

macro basis functions with non-zero support in K denoted by ϕH
i , i = 1, . . . ,µK and determine

AK based on contributions computed on sampling domains Kδ` ⊂ K . The process reads as

follows

AK := B
(
ϕH

i ,ϕH
j

)µK

i , j=1
=

(
L∑
`=1

ωK`

|Kδ` |
∫

Kδ`

aε(x)∇ϕh
i ,K`

·∇ϕh
j ,K`

d x

)µK

i , j=1

(3.1.1)

=
L∑
`=1

ωK`

|Kδ` |
(
A T

K`
Ami c,K`

AK`

)
︸ ︷︷ ︸
hmm_stima_type_of_K

, (3.1.2)

where type_of_K refers to the type of the macro element K , i.e., type_of_K=tri for triangular

elements or type_of_K=quad for quadrilateral elements. Notice that Ami c,K`
is a Mmi c ×Mmi c

matrix and AK`
a Mmi c ×µK matrix. Furthermore, ϕh

i ,Kδ`

is the micro function solution of

(2.4.7) such that (ϕh
i ,Kδ`

−ϕH
l i n,i ,Kδ`

) ∈ S1(Kδ` ,Th) andϕH
li n,i ,Kδ`

is the linearization (2.4.8) of the

basis function ϕH
i .

We then compute the contribution to the right-hand side for the triangle K as

bK =
∫

K
f ϕH

i d x ' f (xKb )
∫

K
ϕH

i d x, (3.1.3)

where xKb ∈ K is an integration point located at the barycenter of K and
∫

K ϕ
H
i d x can be

computed explicitly (its value is for example |K |/6 if K is a triangle or |K |/4 if K is a quadrilat-

eral). Upon a suitable numbering of the macro nodes, the system corresponding to the macro

solution can be written as(
A11 A12

A21 A22

)
︸ ︷︷ ︸

A

(
U

UD

)
=

(
bI

bD

)
︸ ︷︷ ︸

b

, (3.1.4)

where U are the free macro nodes to be computed and UD the values (known a priori) of the

nodes at the portion of the boundary enforced with Dirichlet conditions. The first block of the

above system of equations gives the desired macro solution

A11U = bI − A12UD .

The above procedure as well as the incorporation of the boundary conditions for the macro

problem are standard and we follow the structure of the MATLAB implementation described

in [22]. A flow chart of the algorithm is shown in Figure 3.1.1.

While for classical FEM, stima_tri or stima_quad are given by a suitable element-wise

integration, for the FE-HMM, stima_tri or stima_quad are given by a suitable contribution
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Generate initial mesh

Choose micro constraints (bctype), sampling domain size 
(delta), Micro DOF (Nmicro), type of elements 

(Elements3 (triangle), Elements4 (quadrilateral)), macro 
boundary conditions (Dirichlet, Neumann,…)

For each macro 
element K, 

elementwise macro 
assembly AK

(hmm_stima_tri, 

hmm_stima_quad)

Solve the macro problem

Compute macro volume force bK and macro boundary 
condition

Solve constrained 
micro problem on 
sampling domain 
Kδ for  this macro 

element

All macro elements 
(Elements3,...) processed?

No

Yes

on the fly

Figure 3.1.1: Flow chart for FE-HMM algorithm.
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of micro functions computed on sampling domains, constrained by the basis functions associ-

ated with the element K . This is explained in detail in the next section.

We note that the solution of the constrained micro problem on one macro element is

independent of the constrained micro problem on a different macro element. The macro

assembly is thus well-suited for parallel implementation.

3.1.2 Local assembly and micro solutions on sampling domains

In order to compute the matrix A of (3.1.4) we have to compute for each macro element K the

local macro contribution AK (see (3.1.2)) to the stiffness matrix. This assembly is based upon

suitable solutions of micro problems on sampling domains Kδ` ⊂ K .

Data representation of the micro triangulation. Since the sampling domains Kδ` have a

simple shape (square or cube) we choose a quadrilateral mesh Th with Mmi c = (Nmi c )d (d =
2,3) grid points. The MicroCoordinates must be computed around the integration points of

each macro element and is implemented in micromesh_coords. The MicroElements do not

depend on the MicroCoordinates and are computed once at the initialization of the code,

which is done in micromesh_elements.

Structure of the micro assembly process. To have the flexibility to incorporate various

micro boundary conditions we will use Lagrange multipliers to computeϕh . Given a sampling

domain Kδ` ⊂ K and an associated linearized macro basis function ϕH
li n,i ,Kδ`

we consider

instead of (2.4.7) the minimization problem

ϕh
i ,Kδ`

= argmin
∫

Kδ`

a(xKδ`
,

x

ε
)∇wh ·∇whd x (3.1.5)

over all functions wh ∈ S1(Kδ` ,Th) = {zh ∈ H 1(Kδ`); zh |T ∈R(T ), ∀T ∈Th}, such that

• wh −ϕH
li n,i ,Kδ`

∈ S1
P (Kδ` ,Th) (periodic coupling) or

• wh −ϕH
li n,i ,Kδ`

∈ S1
D (Kδ` ,Th) (Dirichlet coupling).

Remark 12. If we do not have explicit scale separation, i.e. aε (x) instead of a(xKδ`
, x
ε ), we can

insert a dummy parameter for xKδ`
, such as xKδ`

= 0 and only use the second parameter x
ε in

the tensor function of the MATLAB code.

To compute (3.1.5) we expand ϕH
li n,i ,Kδ`

in the basis of S1(Kδ` ,Th)

ϕH
li n,i ,Kδ`

=
Mmi c∑
m=1

βi ,mψ
h
m,Kδ`

(x) (3.1.6)
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and the above minimization problem leads, by introducing Lagrange multipliers, to a saddle

point problem given in linear form by (see [14, Sect. 5])

Ami c,Kδ`
αi ,Kδ`

+DTλ= 0

D(αi ,Kδ`
−βi ,Kδ`

) = 0,
(3.1.7)

whereαi ,Kδ`
= (αi ,1, . . . ,αi ,Mmi c )T , βi ,Kδ`

= (βi ,1, . . . ,βi ,Mmi c )T , and λ is the Lagrange multiplier.

We then have

ϕh
i ,Kδ`

=
Mmi c∑
m=1

αmψ
h
m,Kδ`

. (3.1.8)

Ami c,Kδ`
is the micro stiffness matrix with entries given by

(
Ami c,Kδ`

)
mn

=
∫

Kδ`

a(xKδ`
,

x

ε
)∇ψh

m,Kδ`
·∇ψh

n,Kδ`
d x, (3.1.9)

and D is the matrix of the constraints detailed below.

Assemble and solve the constrained micro problem. The problem (3.1.7) is solved for each

basis function ϕH
l i n,i ,Kδ`

, i = 1, . . . ,µK and we define the Mmi c ×µK matrix AK`
with columns

given by αi ,Kδ`
, i.e., AK`

= (α1,Kδ`
, . . . ,αµK ,Kδ`

). This is done for each quadrature node of the

macro element and we obtain

AK =
L∑
`=1

ωK`

|Kδ` |
(
A T

K`
Ami c,K`

AK`

)
︸ ︷︷ ︸
hmm_stima_type_of_K

,

as defined in (3.1.2). The corresponding MATLAB code is given here for quadrilateral macro

elements (hence the factor 0.25), i.e., type_of_K=quad,

68 for node_no =1:4
69 % select current quadrature nodes

...

105 % Assemble matrix AConstr for constrained system and corresponding rhs
106 AConstr =[A ConstraintMat ';...
107 ConstraintMat sparse(size(ConstraintMat ,1),size(ConstraintMat ,1))];
108 RhsConstr =[ zeros(NoOfNodes ,4); ConstraintRhs ];
109

110 % solve constrained microproblem
111 x=AConstr\RhsConstr;
112 alpha=x(1: size(MicroCoordinates ,1) ,:);

...

118 %The contribution to the macro stiffness matrix
119 A_macro=A_macro+ .25 * K_macro/K_micro *alpha '*A*alpha;
120 end
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where A_macro and A in the above code are denoted AK and Ami c , respectively, in the above

discussion.

The main steps of hmm_stima_type_of_K are

• to assemble the micro stiffness matrix (see Section 3.1.2.1),

• to incorporate the micro coupling constraints (P) or (D) (see Section 3.1.2.2).

These steps are explained in the two following sections. We will mainly concentrate on a given

sampling domain and skip the index corresponding to the particular macro integration point.

We will thus write Kδ,ϕh
i ,ϕH

li n,i ,ψh
m , xK instead of Kδl ,ϕh

i ,Kδ`

,ϕH
l i n,i ,Kδ`

,ψh
m,Kδ`

, xKδ`
. When

no confusion can occur, we will also skip the underscript index for the micro functions

ϕh
i , i = 1, . . . ,µK and simply write ϕh for a given micro function and ϕH for its corresponding

macro function.

3.1.2.1 Assembly of the micro stiffness matrix

Gauss quadrature rules are used to evaluate the integral (3.1.9) numerically. This is done in a

standard way in hmm_micro_stima_quad

(Ami c )`m = ∑
T∈Th

∫
T

a
(
xk ,

x

ε

)
∇ψh

` ·∇ψh
md x.

For each micro element T the contribution to the micro stiffness matrix is evaluated via

4∑
i=1

1

4

∫
T̂

a

(
xk ,

FT (ξ)

ε

)(
D−T

F,T ∇ψ̂h
` (ξ)

)
·
(
D−T

F,T ∇ψ̂h
m (ξ)

)∣∣detDF,T
∣∣d (ξ) ,

where FT (ξ) = x0 +DF,T ξ is the affine mapping (here we only allow parallelograms for simplic-

ity) from the reference element T̂ = [0,1]2 onto T ∈ Th with DF,T given by Map, ξi are deter-

mined by the two points Gauss quadrature rule on the reference element defined in quadnodes,

and ψ̂l ,ψ̂m are the usual bilinear shape functions on the reference square T̂ with derivatives

computed in phi_prime_hat. We note that the slow variable xK in a
(
xK , x

ε

)
is kept fixed in the

micro problem. The tensor a
(
xK , xi

ε

)
is evaluated in the function

tensor_a.m. The MATLAB code for the micro stiffness matrix assembly is given by

1 function M = hmm_microstima_quad(vertices ,...
2 MacroQuadNode , epsilon)

...

47 % map from reference element
48 Map=[ vertices (2,:)- vertices (1 ,:); vertices (4,:)- vertices (1,:)]';
49

50 % gauss quadrature at the 4 quadrature nodes , reference element and mapped
51 % element
52 quadnodes_ref =[.5 -sqrt (3)/6 , .5+sqrt (3)/6, .5 -sqrt (3)/6 , .5+sqrt (3)/6; ...
53 .5 -sqrt (3)/6, .5-sqrt (3)/6, .5+sqrt (3)/6 , .5+sqrt (3)/6];
54 quadnodes= Map*quadnodes_ref+repmat(vertices (1,:)',1,4);
55

56 M=zeros (4,4);
57 for node =1:4
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58 quadnode=quadnodes (:,node);
59 x=quadnodes_ref (1,node);
60 y=quadnodes_ref (2,node);
61

62 phi_prime_hat =[y-1, x-1; 1-y, -x; y, x; -y, 1-x];
63 phi_prime_invD =( phi_prime_hat/Map);
64

65 % evaluate coefficiency tensor at the specific nodes
66 a=tensor_a(MacroQuadNode , quadnode/epsilon );
67 M=M+(det(Map ))* phi_prime_invD*a*phi_prime_invD ';
68 end
69 M=M/4;
70

71 end

3.1.2.2 Micro boundary conditions and coupling constraints

The suitable constraints between macro and micro solvers (or boundary conditions for the

micro problem) are encoded in the matrix D (see (3.1.7)). In our MATLAB implementa-

tion, we provide both Dirichlet or periodic boundary conditions for the micro problem.

Other boundary conditions could easily be incorporated using the structure explained below.

They can be selected by setting the variable bctype in the main file hmmfem2d.m to either

dirichlet or periodic. The chosen boundary conditions are then selected in

hmm_stima_type_of_K.

Periodic micro constraints. If (ϕh −ϕH
li n) ∈ SP (Kδ,Th) (see (2.4.9)) we must have

(i)
∫

Kδ
(ϕh −ϕH

li n)d x = 0,

(ii) (ϕh −ϕH
l i n)(p) = (ϕh −ϕH

li n)(p ′), for all L couples (p, p ′) of boundary nodes on opposite

edges avoiding redundant couples at the corner.

In this situation, the matrix D has the form

D =
(

b1 . . . bMmi c

D̃

)
, (3.1.10)

where the first row corresponds to the condition (i) and the L×Mmi c matrix D̃ corresponds to

the condition (ii). The first condition simply fixes the constant of the periodic boundary value

problem and can be chosen arbitrarily. A convenient choice is
∫

Kδ
ϕh d x = 0, i.e.,

Mmi c∑
m=1

αm

∫
Kδ

ψh
m d x = ∑

T∈Th

Mmi c∑
m=1

αm

∫
T
ψh

m d x︸ ︷︷ ︸
bm

= ∑
T∈Th

bTα= 0. (3.1.11)

This is implemented in the MATLAB function micro_constraints_periodic.m:

98 NoOfNodes = size(MicroCoordinates ,1);
99 b=sparse(NoOfNodes ,1);

100

101 for j=1: size(MicroElements ,1)
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1 2 3

4 5 6

7 8 9

(a) Example of micro mesh. Marked couples of nodes
are (1,7), (2,8), (3,9), (1,3), (4,6). Periodicity con-
straints for the couple (7,9) is redundant as it is im-
plicitly enforced by (1,7), (1,3), (3,9).

(b) Example of a three dimensional micro mesh,
black lines correspond to boundary node identifica-
tions that are redundant. For example periodicity
for the couple (3,21) is implicitly enforced by (1,3),
(1,19) and (19,21).

Figure 3.1.2: Micro domain and periodic boundary conditions in 2D and 3D

102 b(MicroElements(j ,:))=b(MicroElements(j,:))+ ...
103 det([1,1,1; MicroCoordinates(MicroElements(j,1:3) ,:) '])/4;
104 end

To treat the periodicity conditions we select the L non-redundant couples at opposite sides

of Kδ as (p, p ′) = (pµ(`), pν(`)), `= 1, . . . ,L, where µ (`) and ν (`) are the node numbers of the

marked couples. Using (3.1.8) we can express the periodicity condition for the `th constraint

as

ϕh (
pµ(`)

)−ϕh (
pν(`)

)= Mmi c∑
m=1

D̃`mαm =ϕH
li n

(
pµ(`)

)−ϕH
l i n

(
pν(`)

)
(3.1.12)

where ϕh
(
pµ( j)

)
= α j , and the matrix D̃ ∈ RL×Mmi c has entry D̃` j = 1 if j = µ (`), D̃` j =−1 if

j = ν (`) and 0 otherwise. For the example sketched in Figure 3.1.2 (left picture) we get

D̃ =


1 0 0 0 0 0 −1 0 0

0 1 0 0 0 0 0 −1 0

0 0 1 0 0 0 0 0 −1

1 0 −1 0 0 0 0 0 0

0 0 0 1 0 −1 0 0 0

 .

Notice that the nodes can be marked once at the beginning of the code. This is done in

make_constraints.m

54 Constraints (: ,1)=[1:N 1:N:N*N-N];
55 Constraints (: ,2)=[(N-1)*N+1:N*N N:N:N*N-N];
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and the computation of the matrix D̃ is implemented in micro_constraints_periodic.m
as follows:

70 NoOfPerNodes=size(Constraints ,1);
71 ConstraintMat=sparse(repmat (1: NoOfPerNodes ,1,2), ...
72 [Constraints (:,1) Constraints (:,2)], ...
73 [ones(NoOfPerNodes ,1); -ones(NoOfPerNodes ,1)]);

where we took advantage of the MATLAB function repmat which creates a large m ×n tiled

matrix of which each tile is the replicated original matrix. Thus here, with m = 1 and n = 2 we

get a vector (1,2, ...,NoOfPerNodes,1,2, ...,NoOfPerNodes)T .

We calculate the right-hand side of (3.1.12) for all macro basis functions ϕH
j at the same

time via ϕH
j (x) = ϕ̂H

j

(
F−1

K (x)
)

where FT (ξ) = x0 +DF,T ξ is the affine mapping from the refer-

ence triangle K̂ onto K ∈Th , where DF,T is given by MacroMap and ϕ̂H
j is the macro reference-

element shape function. The corresponding MATLAB code is

75 % coordinates of periodic boundary conditions
76 % x_node1 and x_node2 are corresponding periodic nodes
77 x_node1= MicroCoordinates(Constraints (:,1), :);
78 x_node2= MicroCoordinates(Constraints (:,2), :);
79

80 % coordinates in the reference quadrilateral corresponding to the nodes with
81 % periodic boundary conditions
82 x_node_ref1 =( MacroMap \(x_node1 -repmat(MacroVertices (1,:), NoOfPerNodes ,1))')';
83 x_node_ref2 =( MacroMap \(x_node2 -repmat(MacroVertices (1,:), NoOfPerNodes ,1))')';
84

85 % corresponding rhs
86 if (MacroNodes ==3) % we have macro triangles
87 ConstraintRhs=shapefunction_tri(x_node_ref1)-...
88 shapefunction_tri(x_node_ref2 );
89 end
90 if (MacroNodes ==4) % we have macro quadrilaterals
91 ConstraintRhs=shapefunction_quad_lin(x_node_ref1 , refquadnode)-...
92 shapefunction_quad_lin(x_node_ref2 , refquadnode );
93 end

The macro basis functions ϕ̂H
j are evaluated in the functions shapefunction_tri and

shapefunction_quad_lin for triangles and quadrilaterals, respectively. Finally, we merge

the constraint matrix b from (3.1.11) and D̃ from (3.1.12) to assemble the matrix D given in

(3.1.10) as well as the right-hand side.

108 % merge both to one unified matrix / vector
109 ConstraintMat =[b'; ConstraintMat ];
110 ConstraintRhs =[ zeros(1, MacroNodes ); ConstraintRhs ];

Dirichlet micro constraints. Other constraints for the micro solver, such as constraints

through Dirichlet boundary conditions, can be implemented similarly as explained before.

In our code we can switch from periodic to Dirichlet boundary constraints. For Dirichlet

boundary constraints we have (ϕh −ϕH
li n) ∈ SD (Kδ,Th) (see (2.4.9)), and thus

(ϕh −ϕH
li n)(pµ(`)) = 0 (3.1.13)

40



3.1 Implementation

for all boundary nodes pµ(1), . . . , pµ(L). We get for the `th constraint

M∑
m=1

D`mαm =ϕH
li n

(
pµ(`)

)
(3.1.14)

where the entries of D ∈RL×Mmi c are given by D`m = 1 if m =µ(`) and 0 otherwise. The micro

boundary nodes pµ(`) are determined in make_constraints.m at the beginning of the code

60 Constraints =[1:N N*N-N+1:N*N 1+N:N:N*N-2*N+1 2*N:N:N*N-N];

and the computation of the matrix D and the right-hand side of (3.1.14) is performed similarly

as in the periodic case in micro_constraints_dirichlet.m.

Remark 13. While we chose to present and discuss periodic and Dirichlet micro constraints,

other constraints through Neumann or Robin boundary conditions could easily be imple-

mented, following the procedure described for periodic or Dirichlet constraints.

3.1.3 Parabolic problems
As mentioned in the introduction, our code can handle parabolic problems without difficulties.

Consider for example

∂uε

∂t
=∇· (aε∇uε)+ f in Ω× [t0,T ], (3.1.15)

with initial conditions given by u(x, t0) = u0(x) and mixed Dirichlet and Neumann boundary

conditions as for the elliptic problem (2.1.1). Using the simple backward Euler method in time

leads to the following weak form for the HMM∫
Ω

uH
n v H d x +∆tB(uH

n , v H ) =
∫
Ω

uH
n−1v H d x (3.1.16)

+∆t

(∫
Ω

f v H d x +
∫
∂ΩN

gN v H d x −B(gD , v H )

)
,

∀v H ∈V p
D (Ω,TH ) and t ∈ (t0,T ), where uH

n is an approximation of u(x, tn), tn = t0 +n∆t and

B(·, ·) is defined in (2.4.6). This leads to the linear system

(M +∆t A)uH
n = b +MuH

n−1, (3.1.17)

where A and b are as in (3.1.4) and obtained as described in Section 2 and the mass matrix

M has entries given by Mi j =
∫
Ωϕ

H
i ϕ

H
j d x. We described here the simplest time integration

procedure. Of course more sophisticated solvers could be implemented. Notice that by using

discontinuous Galerkin methods for the HMM [5], the mass matrix M becomes block diagonal

and an explicit stabilized scheme as proposed in [1] could be applied for the time integration,

avoiding the use of linear solver for the whole approximation procedure of parabolic multiscale

problems. This may be an appealing strategy when the spatially discretized problem is of high

dimension and contains complicated nonlinear terms. In this case, the implementation of

iterative solvers requires some care (suitable preconditioners, etc.) while the above strategy is

very easy to implement while being efficient.
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3.1.4 Three dimensional problems

With only a few modifications we can extend the 2D code presented above to three dimensional

problems. For the macro problem, it is convenient to use tetrahedral elements. In three

dimension, the sampling domains are chosen to be cubes of size δ and parallelepipeds meshes

are suitable for the micro problems. At the macro level, the core structure using 3D shape

functions is built upon standard procedure [22]. Macro assembly using micro solvers on

sampling domains follows the procedure explained in Section 2 with obvious changes. Let us

notice that some care is needed to implement the micro boundary conditions. For example,

for periodic boundary conditions, a moment of reflection is needed to find all couples of

boundary nodes on opposite sides while avoiding redundant couples. Figure 3.1.2(b) gives an

example of such a node selection.

3.2 Numerical examples

In what follows, we present several numerical examples to illustrate the use, the versatility, the

capabilities and the performance of our code.

In a first set of examples, we present an elliptic problem with non-uniformly periodic

coefficients (Section 3.2.1), an elliptic problem with a random tensor (Section 3.2.2) and a

time dependent multiscale (parabolic) problem (Section 3.2.3). We notice that problems with

random tensors, similar to those chosen here, are widely used in the modeling of porous

media flows. In a second set of examples, we investigate three dimensional simulations based

on simplified real-world engineering problems: the steady state heat distribution in a heat

sink (Section 3.2.4) and in a microprocessor (Section 3.2.5). Both the processor and the heat

sink are assumed to be made of composite materials.

3.2.1 Problems with non uniformly periodic coefficients

For the first example, we perform numerous numerical experiments to illustrate the con-

vergence behavior of the FE-HMM in various norms, to show the impact of the size of the

sampling domains on the numerical solution and to indicate how macro and micro meshes

have to be refined in order to minimize the computational complexity with optimal conver-

gence rates. For the other examples, we do not perform a rigorous numerical convergence

study. Such studies have been reported elsewhere for the FE-HMM [14, 2, 4, 9, 6, 79]. We never-

theless occasionally complement our plots by giving energy norms of the exact, homogenized

or FE-HMM solutions to illustrate some (convergence) aspects of the proposed algorithm.

We consider the two scale problem taken from [9]

−∇·
(
a

(
x,

x

ε

)
∇uε

)
= f (x) in Ω, (3.2.1)

uε = 0 on ∂ΩD , (3.2.2)

−n ·
(
a

(
x,

x

ε

)
∇uε

)
= 0 on ∂ΩN , (3.2.3)
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(a) Conductivity tensor for ε= 0.1.

−0.5 0 0.5−1

−0.5

0

0.5

(b) Grid.

Figure 3.2.1: Snapshot of the conductivity tensor (left picture) and sketch of the computational mesh
(right picture) for the elliptic problem of Section 3.2.1.

(a) Fine scale results for ε= 5 ·10−2. (b) Fine scale results for ε= 5 ·10−3.

Figure 3.2.2: Fine scale solutions of the problem described in Section 3.2.1 computed on a mesh with
106 degrees of freedom for two different ε.

where the conductivity tensor aε is given by

a
(
x,

x

ε

)
= 1.5sin(2πx1/ε)

1.5sin(2πx2/ε)
+ 1.5sin(2πx2/ε)

1.5cos(2πx1/ε)
+ sin(4x1x2)+1, (3.2.4)

with x = (x1, x2). We choose f = 1. A snapshot of the conductivity tensor is shown in Figure

3.2.1a.

The domain Ω consists of a semi circle and a rectangle, meshed with 1137 nodes using

576 triangles and 784 quadrilaterals, respectively (see Figure 3.2.1b). This problem does not
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(a) ε= 5 ·10−3, NMi c = 32.
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(b) ε= 10−5, NMi c = 32.

Figure 3.2.3: FE-HMM solutions of the elliptic problem described in Section 3.2.1 for two different ε.
The FE-HMM captures the effective solution and is thus independent of ε.

Nmi c = 4 Nmi c = 8 Nmi c = 16 Nmi c = 32 finescale

ε= 0.005 ‖u‖A 0.2105 0.2124 0.2128 0.2129 0.2146
‖u‖∞ 0.0713249 0.072289 0.0725326 0.0725888 0.0736806

ε= 10−5 ‖u‖A 0.2101 0.2124 0.2128 0.2129 -
‖u‖∞ 0.0710427 0.0722795 0.0725326 0.0725888 -

Table 3.2.1: Energy and maximum norm for the solution of the problem described in Section 3.2.1.
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(b) zoom into cross-section

Figure 3.2.4: FE-HMM solution (with 1100 macro DOF) and fine scale solutions (with 106 DOF) of
problem 3.2.1 for various ε (cross section of the solution of the problem described in Section 3.2.1
through y = 0).
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Figure 3.2.5: FE-HMM solutions of the problem described in Section 3.2.1 for ε= 0.005 and Nmi c =
4,8,16,32 (cross section of the solution of the problem described in Section 3.2.1 through y = 0).

have an explicit analytical solution and we thus compute a finescale solution using a standard

FEM with a fine mesh with about 106 degrees of freedom (DOF) in order to resolve the micro

scale. Neumann boundary conditions (3.2.3) are given on the boundary of the semi circle ΩN ,

whereas the remaining part has Dirichlet boundary conditions (3.2.2). While the problem

itself is not periodic, the fast scale is, and we thus choose δ= ε for the size of the sampling

domains and periodic micro boundary conditions. Figure 3.2.3 shows the solution generated

by the FE-HMM.

In Figures 3.2.2 and 3.2.4 we compare the FE-HMM solution with the fine scale solutions

obtained by choosing ε= 0.05 and ε= 0.005. Fine scale solutions with smaller ε quickly get

impossible to compute due to the increasing complexity. The plots of Figure 3.2.2 show the

behavior of the fine scale solution as ε decreases. For ε = 0.005 the oscillations are barely

visible (remember that in the limit ε→ 0 one gets the homogenized solution u0 of (2.4.2) as

discussed in Section 2.1.2).

The FE-HMM captures the effective solution and is thus independent of ε. This fact is

consistent with the numerical results provided in Table 3.2.1, where we compare the energy

norm ‖u‖A :=
√∫

Ω a∇u ·∇u dx and maximum norm ‖u‖∞ := supx∈Ω |u (x)| for different values

of ε and Nmi c . Here, Nmi c refers to the number of discretization points in each direction of the

d-dimensional sampling domains of the micro solver (2.4.7) of the FE-HMM, i.e. we have a

total of N d
mi c DOF in each sampling domain. In Figure 3.2.5 we show the influence of the micro

discretization in the macro solution of the FE-HMM by varying Nmi c . The results presented in

Section 2.4.1 allow to choose the appropriate micro mesh size according to the selected macro

discretization. This is further discussed in Section 3.2.1.1.

Sampling domain size. We next report numerical results in the situation when δ, the size of

the sampling domain, is not an integer multiple of ε, i.e. when δ does not comprise an integer

number of ε micro oscillations. This situation arises even for periodic problems, if one does

not know the exact size of the period. In Table 3.2.2, we study the influence of such “modeling
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error” for the HMM. We choose δ= 5
3ε, and compare the HMM solution obtained with either

periodic or Dirichlet boundary conditions for the micro problem. For each type of boundary

conditions we also refine the discretization of the micro solver by increasing Nmi c .

As can be seen, we get better solutions with periodic boundary conditions. The better

behavior of periodic boundary conditions even for such non-matching sampling domains

is well-known but yet not fully understood [118]. Cross-section plots for a fixed Nmi c are

presented in Figure 3.2.6. Further numerical results for the FE-HMM can be found in [2, 4, 79].

Remark 14. We emphasize that while it is convenient to compare the HMM solution uH with a

resolved fine scale solution, the former does usually not converges to the latter in the H 1 or in

the energy norm as ε→ 0 (remember that uH converges to u0 as macro and micro meshes tend

to zero). In the L2 norm, the following convergence rate can be obtained ‖uε−u0‖L2(Ω) ≤Cε,

and by the triangle inequality and by using results of Section 2.4.1, convergence rate for uH (to

the fine scale solution in the L2 norm) can also be obtained (see [2] for details).

Nmi c = 4 Nmi c = 8 Nmi c = 16 Nmi c = 32 finescale

periodic ‖u‖A 0.2085 0.2119 0.2130 0.2133 0.2146
‖u‖∞ 0.0702 0.0720 0.0726 0.0728 0.0737

dirichlet ‖u‖A 0.2080 0.2107 0.2117 0.2119 0.2146
‖u‖∞ 0.0699 0.0714 0.0719 0.0720 0.0737

Table 3.2.2: Energy and maximum norm for the FE-HMM and fine-scale solution of the elliptic problem
described in Section 3.2.1 with a non-integer number of periods within each sampling domain (δ= 5

3ε,
ε= 5 ·10−3).
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Figure 3.2.6: FE-HMM solutions of the problem described in Section 3.2.1 with a non-integer number
of periods within the sampling domain with δ= 5

3ε, ε= 0.05, Nmi c = 32 (cross section through y = 0).
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3.2.1.1 Performance of the method.

Finally, we want to investigate the dependence of L2 and H 1 errors on the choice of the macro

and micro meshes and give an indication of CPU-times for the FE-HMM.

In order to easily compare L2 and H 1 errors for different mesh sizes, we consider the follow-

ing quasi-1d-problem on a square domain for which the exact solution and the homogenized

tensor can be computed analytically (see [2])

−∇·
(
a

( x

ε

)
∇uε

)
= f (x) in Ω= (0,1)2 , (3.2.5)

uε|ΓD = 0 on ΓD := {x1 = 0}∪ {x1 = 1} , (3.2.6)

n ·
(
a

( x

ε

)
∇uε

)
|ΓN = 0 on ΓN := ∂Ω\ΓN . (3.2.7)

We choose f (x) ≡ 1 and set a
( x
ε

)= cos
(
2π x1

ε

)+2. For the FE-HMM, we choose quadrilaterals

for the macro- and micro-discretization.

Optimal refinement strategy for the macro and micro meshes. In what follows, Nmac

refers to the number of discretization points in each direction of the domain Ω = (0,1)2 ,

while we recall that Nmi c refers to the number of discretization points in each direction of

the d-dimensional sampling domains (here d = 2). Thus, the macro mesh H is given by

H = 1/Nmac and the micro mesh by h = δ/Nmi c (in the following computations we choose

δ= ε). As the sampling domain is of size δ, we will also consider the scaled micro mesh given

by hs = h/δ= 1/Nmi c . The macro and micro DOF are then given by O (Mmac ) and O (Mmi c ),

respectively, where Mmac = N d
mac and Mmi c = N d

mi c Following the a priori estimates stated in

Section 2.4.1 we see that

Mmi c ∝ Mmac (L2 norm), Mmi c ∝
√

Mmac (H 1 norm),

i.e., hs ∝ H or Nmi c ∝ Nmac (for the L2 norm) and hs ∝
p

H or Nmi c ∝
p

Nmac (for the H 1

norm) are the best refinement strategies for optimal convergence rates with minimal compu-

tational cost. We thus obtain a complexity of O (Mmac ·Mmi c ) =O (M 3/2
mac ) floating point opera-

tions for a linear (macro) convergence rate in the H 1 norm and O (Mmac ·Mmi c ) =O (M 2
mac )

floating point operations for a quadratic convergence rate in the L2 norm. Here we assume

that the cost (floating point operations) of the method is proportional to the total DOF (which

is the case for example when using multigrid linear solver). For the above problem, we select a

sequence of macro meshes H = 1/16,1/32,1/64,1/128 and adapt the micro mesh hs according

to the above criteria. This gives (selecting hs = H for the L2 error and hs =
p

H for the H 1 error)

the following macro and micro meshes written here in term of Nmi c and Nmac (H = 1/Nmac ,

hs = 1/Nmi c ):
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Nmac 16 32 64 128

Nmi c (L2-micro refinement strategy) 16 32 64 128

Nmi c (H 1-micro refinement strategy) 4 6 8 11

The results presented in Figures 3.2.7 and 3.2.8 show the errors and CPU-times corre-

sponding to the aforementioned refinement-strategies (CPU-times measured on an AMD

Opteron 2214 HE).

Remark 15. Because of the constant homogenized tensor we could solve the micro problem

just once. However, to assess realistic computing times for two-scale problems, we provide

the CPU-times that would be needed to solve the full problem.

As predicted by the a-priori estimates, the chosen refinement strategies achieve quadratic

and linear convergence rates for the error in the L2 and H 1 norms, respectively. We list in

Table 3.2.3 the detailed errors.

H 1/16 1/32 1/64 1/128

L2-approximation
∥∥u0 −uH

∥∥
L2(Ω) 6.06e-03 1.48e-03 3.67e-04 9.13e-05∥∥u0 −uH

∥∥
H 1(Ω) 6.25e-02 3.13e-02 1.56e-02 7.80e-03

H 1-approximation
∥∥u0 −uH

∥∥
L2(Ω) 6.46e-02 1.98e-02 1.09e-02 5.43e-03∥∥u0 −uH

∥∥
H 1(Ω) 8.76e-02 3.65e-02 1.89e-02 9.48e-03

Table 3.2.3: Comparison of the L2 and H 1 errors for the test-case described in Section 3.2.1.1 using
different refinement strategies.
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Figure 3.2.7: Dependence of errors and CPU-time on the macro DOF for the test-case problem de-
scribed in Section 3.2.1.1 (L2-micro refinement strategy).

We see in Table 3.2.3 that an appropriate refinement strategy is crucial to achieve the

optimal quadratic convergence rate in the L2 norm. We also see (in accordance with the
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Figure 3.2.8: Dependence of errors and CPU-time on the macro DOF for the test-case problem de-
scribed in Section 3.2.1.1 (H 1-micro refinement strategy).

theoretical estimates) that we can use a much larger micro mesh for H 1 approximations than

for L2 approximations. We emphasize that a correct refinement strategy is crucial for efficient

computations. Finally, we observe as expected that the convergence rates are independent of

ε.

Remark 16. A comparison with a fine-scale solution is not useful in the present context of

performance-evaluation. Indeed, as the performance of the FE-HMM is independent of the

fine scale ε, this parameter can be tuned arbitrarily for the fine scale problem, leading to

arbitrary (high) CPU-time for the corresponding fine scale solution.

Parallel implementation of the FE-HMM. We remark that an implementation on a parallel

computer is easily possible and leads – due to the independence of the different micro prob-

lems – to a near-optimal speedup. A parallel version of the FE-HMM (on eight nodes) has been

used for the 3D-problems in Sections 3.2.4 and 3.2.5.

3.2.2 Problems with random tensor
We again consider problem (3.2.1), but this time with a random tensor aε (x). The domainΩ

is the same as in the previous example of Section 3.2.1 except that zero Dirichlet boundary

conditions are chosen on the entire boundary. Again, triangles are used in the circular part of

the domain while quadrilaterals are used in the remaining computational domain. We notice

that random models for the fine scale are often used for problems involving the pressure

equation in porous media flow [115].

This example shows how to address problems where the tensor is not given by an explicit

function, but only as a random field. While the stochastic field for the considered problem is

computer-generated, our code could be used with a real-life tensor obtained from imaging

techniques (for example through scanning or microscopy). The realization of the log-normal

stochastic field with mean zero and variance σ= 1 is generated by the moving ellipse average

method [115, Section 4.1]. We set the correlation lengths of the stochastic field to be ε1 = 0.01
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(a) Snapshot of random tensor. (b) Fine scale solution computed with a standard
FEM on grid with 106 DOF.
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(c) FE-HMM with NMi c = 64 and micro domain size
δ= 0.02 on a macro grid with 1100 DOF.
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(d) FE-HMM with NMi c = 64 and micro domain size
δ= 0.06 on a macro grid with 1100 DOF.

Figure 3.2.9: FE-HMM and fine scale solution of the random problem described in Section 3.2.2. Snap-
shot of the tensor and comparison of the fine-scale solution with FE-HMM solutions with differently
sized micro-domains.

and ε2 = 0.02. A snapshot of this tensor is shown in Figure 3.2.9a.

We compute a reference solution on a fine grid of about 106 degrees of freedom (DOF),

see Figure 3.2.9b, and compare the solution with the FE-HMM on the macro coarse grid with

1100 DOF. For the FE-HMM we present results for various sizes of the sampling domain. We

first choose δ = 0.02 and then δ = 0.06. We clearly see in Figures 3.2.9c and 3.2.9d that the

profile of the solution is closer to the reference solution as the sampling domain contains

more correlation length of the random field. This observation can also be seen in Table 3.2.4

when comparing the energy norm of the various solutions obtained with the FE-HMM to the

energy norm of the reference solution.
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Nmi c = 4 Nmi c = 8 Nmi c = 16 Nmi c = 32 Nmi c = 64 finescale

δ= 0.02 0.2352 0.2415 0.2439 0.2449 0.2454 0.2583
δ= 0.06 0.2313 0.2454 0.2520 0.2551 0.2567 0.2583

Table 3.2.4: Energy norms of the FE-HMM and fine-scale solutions of the problem described in Section
3.2.2 with a random tensor. FE-HMM results are given for various micro sampling-domain sizes δ×δ
and DOF N 2

mi c .

Nmi c = 4 Nmi c = 8 Nmi c = 16 Nmi c = 32 finescale

ε= 0.005 ‖u‖A 0.8354 0.8491 0.8525 0.8533 0.8697
‖u‖∞ 1.0839 1.1060 1.1117 1.1130 1.1379

ε= 10−5 ‖u‖A 0.8313 0.8490 0.8525 0.8533 -
‖u‖∞ 1.0773 1.1058 1.1117 1.1130 -

Table 3.2.5: Energy and maximum errors for the FE-HMM and the fine-scale solutions of the parabolic
problem described in Section 3.2.3 at t = 1. The computation of the fine-scale solution with ε= 10−5

would involve around 1014 DOF and has therefore not been performed.

3.2.3 Parabolic problems

As mentioned in Section 3.4, our code can handle parabolic problems without difficulties. As

an example, we consider

∂uε

∂t
=∇· (aε(x)uε)+ f in Ω× [0,T ]. (3.2.8)

For simplicity, we consider an implicit Euler scheme for time integration. We choose T = 1

and a time step of ∆t = 0.1.

We keep the same domain and boundary conditions as in problem 3.2.1, set f = 0 and

consider the initial condition u0 =−10(x −0.5) · (x +0.5) · (y +1). The tensor used is a scaled

version of the tensor (3.2.4), given by

a
(
x,

x

ε

)
= 0.1 ·

(
1.5sin(2πx1/ε)

1.5sin(2πx2/ε)
+ 1.5sin(2πx2/ε)

1.5cos(2πx1/ε)
+ sin(4x1x2)+1

)
.

Since we consider a time-independent tensor aε here, we only have to solve the micro prob-

lems once and can use the same stiffness matrix whenever we solve the linear equation

arising from the implicit Euler scheme. The code corresponding to this problem is given in

fe_hmm2d_para.m. More general problems with tensors of the form a
(
x, x

ε , t
)

can be com-

puted in a similar manner, but in this case the stiffness matrix has to be updated at each time

step.

Results for this parabolic problem solved with the FE-HMM code are sketched in Figure

3.2.10. The results at t = 1 are extremely close to each other and are indistinguishable to the

eye. A comparison of the energy and infinity norms of various numerical solutions is given in

Table 3.2.5. Again, we clearly see that the FE-HMM is independent of ε.
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(b) FE-HMM (t = 0.5, NMi c = 32)
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(c) FE-HMM (t = 1, NMi c = 32) (d) Finescale solution (t = 1)

Figure 3.2.10: FE-HMM (1100 macro DOF) and fine scale (106 DOF) solution of the parabolic problem
described in Section 3.2.3, obtained with the described MATLAB code (ε= 0.005).

3.2.4 Three dimensional problem: steady state heat distribution in a heat sink

We now present a 3D multiscale problem, the steady state heat conduction of a heat sink made

of a layered material. Crucial for the efficiency of today’s microprocessors is a sophisticated

cooling process which is usually achieved with the help of a heat sink, where advanced

composite materials are used in order to obtain the most efficient cooling procedure. These

heat sinks are typically mounted on top of a microprocessor to dissipate heat away from it,

often with the help of a fan built on top of it. However, since we want to avoid discussing

modeling issues, we neglect the effects originating from such fans and more refined models.

Equations. Heat is transferred away in three ways: conduction, convection and radiation,

the latter of which we ignore. Heat conduction within the heat sink and its different compo-

nents can be described in terms of Fourier’s law

−∇· (a∇u) = f , (3.2.9)
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3.2 Numerical examples

(a) Heat sink, which can be mounted on a micropro-
cessor to dissipate heat.

(b) Boundary conditions. The side shown in color is
connected to the processor package and represent
incoming heat flux. Neumann boundary conditions
(3.2.12) are assigned to this face. The color bar refers
to the incoming heat flux from the processor (mea-
sured in W

m2 ), reflecting the fact the major part of the
incoming flux is located close to the processor core.
The remaining (grey) part is modeled with Robin
boundary conditions (3.2.11).

Figure 3.2.11: Model of the heat sink simulated in Section 3.2.4.

where a is the thermal conductivity tensor, u is the temperature of the body and f is a heat

source. Convective heat transfer with the surrounding air is expressed by the Robin boundary

condition

n · (a∇u) = q0 +α (uamb −u) ,

where α is the heat transfer coefficient, uamb is the ambient temperature and q0 represents

the heat flux entering the domain.

Using the above heat transfer models leads to the following problem describing the steady-

state temperature distribution of the heat sink

−∇· (aε∇uε
)= f in Ω, (3.2.10)

n · (aε∇uε
)+αuε = gR on ∂ΩR , (3.2.11)

n · (aε∇uε
)= gN on ∂ΩN , (3.2.12)

where Ω is the whole domain and ∂ΩR and ∂ΩN are the surfaces of the heat sink with Robin

and Neumann boundary conditions, respectively. The right hand side of the Robin boundary

conditions is given by gR = q0 +αuamb . Notice that we add (as usual) the superscript ε to em-

phasize on the multiscale (composite) nature of the material. The Robin boundary conditions

(3.2.11) involve extra terms
∫
∂ΩR

gR v d s and −∫
∂ΩR

αuv d s to be incorporated into the weak

form (2.1.3). For the FE-HMM, this results in an extra contribution R to the stiffness matrix A,
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given by

Ri j =
∫
∂ΩR

αϕH
i ϕ

H
j d s, (3.2.13)

and an extra contribution to the load vector l given by

r j =
∫
∂ΩR

gRϕ
H
j d s. (3.2.14)

While we consider here two-scale tensors with periodicity in the micro scale, i.e. non uniformly

periodic tensors, other tensors for realistic materials obtained via imaging techniques and

given as data points could be easily taken into account.

3.2.4.1 Setup

The side of the heat sink mounted on top of the processor has an incoming heat flux that we

model by Neumann boundary conditions

n · (a∇u) = gN on ∂ΩN ,

see Figure 3.2.11b. The incoming heat flux entering ∂ΩN is given by

gN (x) = 3493e−1000(x2+y2) W
m2 , where the numerical values are chosen such that we have a

total incoming power of P = ∫
∂ΩN

gN dx = 10W.

In our computations, we will assume that the heat sink is made of a layered material.

The advantage of choosing such a material is that an analytic formula for the homogenized

material is available. This allows to compare the solution of the FE-HMM with an exact

solution. Needless to say that for most of materials used in cooling procedures (e.g. [39, 121]),

analytical formulas are not available and the use of computational procedures as described in

this thesis are unavoidable. We note that recent studies suggest the use of carbon nanotubes

to act as a heat sink [35].

Remark 17. We emphasize that for the chosen tensor, there is no advantage in using the

FE-HMM since the homogenized tensor is constant and can be analytically computed. Of

course for such problems, we need only to call the micro solver once when using the FE-HMM,

and no knowledge about the correct averaging procedure is needed (see [6, Sect. 3.3.2]).

The purpose of using such a simple tensor as considered here is that we can make precise

comparisons with various averaging procedures. A more general tensor (for which no explicit

homogenized tensor is available) is used in Section 3.2.5, where we study the heat distribution

in a micro-processor.

We set the multiscale tensor to be

aε (x) =

 aε11 (x) 35 0

35 aε22 (x) 0

0 0 200

 , (3.2.15)
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(a) FE-HMM, top view. (b) Standard FEM with analytically homogenized
tensor, top view.

(c) FE-HMM, bottom view. (d) Standard FEM with analytically homogenized
tensor, bottom view.

Figure 3.2.12: Steady-state heat distribution in a heat sink (problem described in Section 3.2.4). Com-
parison of the results obtained with the FE-HMM and a standard FEM solved with the analytically
tensor (3.2.16). The macro mesh used in both computations has 17,000 DOF. For the FE-HMM, we
choose ε= 10−6 and Nmi c = 16 (as the FE-HMM is independent of ε (in the periodic case) any other
value of ε give the same results). The color bar represents the temperature in K.

where

aε11 (x) = [500/(5+3.5 · sin(2πx1/ε))] ·e10·x3

aε22 (x) = [500/(5+3.5 ·cos(2πx1/ε))] ·e10·x3 .

For such tensors it is well-known that explicit analytic formulas are available for the homoge-

nized tensor (see for example [45, Chap. 5.4]). For the tensor (3.2.15) we obtain

a0 (x) ≈

 100.0 ·e10·x3 35.0 0.0

35.0 140.0 ·e10·x3 0.0

0.0 0.0 200.0

 , (3.2.16)
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for the homogenized tensor. In our numerical experiments, the heat sink has dimensions

87.5×91.9×50 mm3. The macro mesh was generated by CUBIT [102] and consists of 70,000

tetrahedra with 17,000 grid points and the average tetrahedra volume is 2.3044 mm3.

Arithmetic and harmonic mean. We also compare the results of the FE-HMM with nu-

merical results obtained from tensor averaged using more naive averaging procedures as

the arithmetic or harmonic means. To compute these averaged tensors, we keep the macro

variables fixed and average the tensor element-wise over the micro scale only.

aarithmetic
i j (xk ) = ∫

Y ai j
(
xk , y

)
d y, (3.2.17)

aharmonic
i j (xk ) =

(∫
Y

(
ai j

(
xk , y

))−1 d y
)−1

, (3.2.18)

where Y is the 3D unit cube. This leads to the following tensors

aarithmetic (x) =

 140.0 ·e10x3 35.0 0

35.0 140.0 ·e10x3 0

0.0 0.0 200.0

 , (3.2.19)

aharmonic (x) =

 100.0 ·e10x3 35.0 0.0

35.0 100.0 ·e10x3 0.0

0.0 0.0 200.0

 . (3.2.20)

Compared to the homogenized tensor, we clearly see that the tensor obtained through

arithmetic average overestimates the conductivity of the material while the tensor obtained

through harmonic average underestimates the conductivity of the material.

3.2.4.2 Results

We compare in Figure 3.2.12 the results obtained with the FE-HMM to the solution of the FEM

with the homogenized tensor. We see a very good qualitative agreement between the two

solutions. Both solutions show an interesting effect, that is, the heat sink is more conductive

in one diagonal direction. This is due to the anisotropy of the (homogenized) conductivity

tensor.

Figure 3.2.13 shows the solutions obtained using the arithmetic and harmonic means. As

expected by the over- and under-estimation of these conductivity tensors, a comparison to

the homogenized solution presented in Figure 3.2.12 shows a significant discrepancy.

Table 3.2.6 provides more insights in the quality of the solution of the FE-HMM compared

to the homogenized solution, by providing the values of ‖u‖∞, infx∈Ω |u(x)| and the energy

norm ‖u‖a for various numerical experiments.
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3.2 Numerical examples

(a) Standard FEM with arithmetically averaged ten-
sor, top view.

(b) Standard FEM with harmonically averaged ten-
sor, top view.

(c) Arithmetic mean, bottom view. (d) Harmonic mean, bottom view.

Figure 3.2.13: Steady-state heat distribution in a heat sink (problem described in Section 3.2.4). Com-
parison between the results obtained with an arithmetic and harmonic average of the multiscale tensor
(3.2.15). We can see a significant difference with the results obtained using the homogenized tensor
presented in Figure 3.2.12. The macro mesh used in both computations has 17,000 DOF. The color bar
represents the temperature in K.

Nmi c = 4 Nmi c = 8 Nmi c = 16
‖u‖A 2.1668 2.1671 2.1671

FE-HMM infx∈Ω |u(x)| 305.527 305.527 305.527
‖u‖∞ 306.579 306.58 306.58

homogenized arithmetic mean harmonic mean
‖u‖A 2.1874 2.1586 2.2516

standard FEM infx∈Ω |u(x)| 305.509 305.54 305.43
‖u‖∞ 306.607 306.57 306.68

Table 3.2.6: Energy norm, minimal value and infinity norm for the solution of the problem described
in Section 3.2.4. Comparison of the solutions obtained by the FE-HMM, a standard FEM with homoge-
nized tensor (3.2.16), a standard FEM with tensor obtained by arithmetic or harmonic averages. The
macro mesh used in all computations has 17,000 DOF (u represents the temperature in K).

57



Chapter 3. Implementation of the FE-HMM and Simulation of Heat Transfer Problems

3.2.5 Three dimensional problem: heat distribution in a microprocessor

To demonstrate the versatility of our code we finally present a real-world application, namely

the steady-state temperature distribution in an embedded microprocessor as used e.g. in

cellphones or automotive electronics. The increasing packaging density in microprocessors

and the resulting growth in temperature requires new cooling methods, which are crucial

for the efficiency and long term reliability of micro chips. The use of composite materials

for lead frames and packaging material (see Figure 3.2.14) is crucial for the efficiency of the

microprocessor. Understanding the effective properties of such devices is therefore of prime

importance.

For example, various components of different materials (as metal and silicon) in a micro-

Mold resin
IC Chip Lead frame

(a) Model of a microprocessor. (b) Components of the simulated microprocessor.

Figure 3.2.14: Model of the microprocessor used in Section 3.2.5.

 

 

(a) Mesh of different components of the full proces-
sor, one corner is removed here to allow for inside
view.

(b) Detailed view of the mesh used for the lead frame.

Figure 3.2.15: Coarse finite element mesh used in the 3D microprocessor problem described in Section
3.2.5 with a total of 81,000 grid points and 430,000 tetrahedra.
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processor must have matching coefficients of thermal expansion (CTE), otherwise thermal

stresses might cause component failure. Given that the IC chip is made of silicon, it is im-

portant to use a material for the lead frame which has a compatible CTE. Unfortunately, the

obvious candidates for constructing the lead frame (such as copper or aluminum) have a

CTE much higher than silicon. The way out of this problem is to use composite materials.

For example nickel-iron alloys are widely used for lead frames. A second problem is to find

composite materials (with matching CTEs) featuring a high thermal conductivity at the same

time. We refer to [121] for details and an overview of modern composite materials with large

thermal conductivities.

We will see on the example below, that our MATLAB code, although simple and short, is

nevertheless capable of handling such challenging problems.

We consider a slightly simplified model of a modern embedded microprocessor which

consists of the silicon IC chip, a lead frame, which in our example acts as a heat spreader, and

a mold resin encapsulation (packaging), which covers the IC chip for protection (see Figure

3.2.14). While the simplified model does not reflect effects such as air flow over the package

or heat conduction through the board on which the chip is mounted, these effects could be

simulated without further difficulties with the proposed code. However, since we again want

to avoid discussing modeling issues, we omit such effects originating from a more refined

model.

3.2.5.1 Setup

As in Section 3.2.4, we use Fourier’s law of cooling for the heat conduction within the mi-

croprocessor. Convection on the surface is again described by Robin boundary conditions.

While conductivity tensors for realistic materials obtained via imaging techniques could be

taken into account without further difficulties, we use simplified tensors here. To simulate

the various composite materials, we use different conductivity tensors for each material. The

diagonal entries of these tensors are given by

aεi i ,leadframe (x) =400cos
(
2π

xi

ε

)
+400exp

(
20

√
x2

1 +x2
2

)
,

aεi i ,resin (x) =
1.9cos

(
2π xi

ε

)+2 i = 1,2,

3.8cos
(
2π xi

ε

)+4 i = 3,

aεi i ,chip (x) =140.

Notice that we center the chip at the origin x = (0,0,0) of the coordinate system. The tensor

corresponding to the lead frame has a non-periodic slow variation, which models a change

in the material structure from the center of the lead frame to the periphery. The tensor

corresponding to the resin is chosen to be oscillating and anisotropic with a larger conductivity

in the z-direction. Finally, the conductivity for the chip is assumed to be constant. There is no

explicit analytical solution to this homogenization problem.

We assume a power of the chip of Pchi p = 0.125W and consider a chip size of V = 2×
2×0.2 mm3, which leads to an external heat flux f in (3.2.10) of f = P

V = 1.875 ·108 W
m3 . We
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set q0 = 0. The ambient temperature is set to uamb = 293.15K 1 and we fix the heat transfer

coefficient α= 20 W
m2K , being a rough estimate for air cooling.

The macro mesh was again generated by CUBIT and consists of 81,000 grid points with a

maximum tetrahedra volume of 1.4·10−3mm3 (see Figure 3.2.15). The size of the full processor

model is 12.2×12.2×1 mm3. With ε = 10−6m as used below and about 10 grid points (in

each direction) per oscillation length to resolve the microscopic composite heterogeneities,

a full fine scale computation would lead to more than 1012 grid points and would thus be

computationally out of reach. For comparison purpose, we choose a relatively large ε =
5 ·10−4m to generate a reference fine scale solution on a mesh consisting of 3.9 million grid

points and about 22 million tetrahedra. As we will see below, computations with realistic

values of ε can be done without difficulties with the FE-HMM.

3.2.5.2 Results

We compare in Figure 3.2.16 a solution obtained by taking the arithmetic mean of the fast scale

of the conductivity tensors, the solution of the FE-HMM and a fine-scale solution. We also

compute a solution with the FE-HMM with ε= 10−6m. We notice, as expected, that a naive

average (such as the arithmetic average) gives a completely false result by overestimating the

conductivity of the microprocessor.

We observe in Figure 3.2.16 a very good qualitative agreement between the FE-HMM and

the fine-scale solution. The results of the FE-HMM are independent of ε, as can be seen by

comparing the results with ε= 5 ·10−4m and the results for small (realistic) heterogeneities

(ε = 10−6m). This is again expected as the FE-HMM captures the effective (homogenized)

solution of the multiscale problem (3.2.10).

Finally, we present in Figure 3.2.17 further results for the FE-HMM (with ε= 10−6m), where

we keep the macro DOF fixed (81,000 grid points), while varying the micro degrees of freedom

Nmi c . We observe that the influence of the micro error at the macro scale is not negligible. If

the small scales are not resolved on the sampling domain, a significant error occurs for the

macro FE-HMM solution.

To get a rough estimate of the quality of the various experiments performed in this section,

we provide in Table 3.2.7 the values of minx∈Ω |u (x)|, ‖u‖∞ and the energy norm ‖u‖a for the

various numerical solutions.

1The heat in the immediate vicinity of the device can be much higher than room temperature. This should be
reflected in a more realistic simulation.
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(a) FEM solution with tensor averaged using the
arithmetic mean (81000 DOF).

(b) FE-HMM solution (ε = 5 · 10−4m, Nmi c = 8,
81000 DOF in macro scale).

(c) FE-HMM solution (ε = 5 · 10−4m, Nmi c = 16,
81000 DOF in macro scale).

(d) Finescale solution. Due to the large ε, the os-
cillations in the micro scale lead to the checkered
pattern (ε= 5 ·10−4m, 3.9 ·106 DOF).

Figure 3.2.16: Steady state heat distribution in the microprocessor as sketched in Figure 3.2.14 for the
problem described in Section 3.2.5. Comparison of the solutions obtained by a FEM with arithmetic
averaging of the tensor, the FE-HMM and a finescale FEM. The color bar represents the temperature in
K.

Nmi c = 4 Nmi c = 8 Nmi c = 16 finescale average

‖u‖A 0.3906 0.4961 0.5514 0.5189 0.3122
ε= 5 ·10−4 infx∈Ω |u(x)| 318.688 318.456 318.350 318.23 318.843

‖u‖∞ 320.241 320.9 321.309 320.97 319.851
‖u‖A 0.3894 0.4963 0.5512 - 0.3122

ε= 10−6 infx∈Ω |u(x)| 318.688 318.454 318.351 - 318.843
‖u‖∞ 320.234 320.901 321.308 - 319.851

Table 3.2.7: Energy norm, minimal and maximum value for the solution of the 3D problem described
in Section 3.2.5. Comparison of the solutions obtained by a FEM with arithmetic averaging of the
tensor, the FE-HMM and a finescale FEM. Values are temperatures in K.
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(a) Nmi c = 4, ε= 10−6m, 81000 DOF in macro scale. (b) Nmi c = 8, ε= 10−6m, 81000 DOF in macro scale.

(c) Nmi c = 16, ε = 10−6m, 81000 DOF in macro
scale.

Figure 3.2.17: Steady state heat distribution in the microprocessor as sketched in Figure 3.2.14 for the
problem described in Section 3.2.5. Comparison of FE-HMM solutions with different resolutions of the
micro problems. The color bar represents the temperature in K.
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4 Conclusion of Part I

This Chapter is taken in part from [11, Section 5].

In this Part I of this thesis, we gave a review of the FE-HMM. In Chapter 2 we summarized

homogenization, the single-scale FEM and the FE-HMM. In Chapter 3 we presented a short

and versatile multiscale FE-HMM solver for PDEs (elliptic, parabolic) with highly oscillating

coefficients. While many multiscale strategies have been developed in the past few years for

multiscale PDEs, very few detailed numerical implementations were available so far. The

algorithm is based on the heterogeneous multiscale method, which gives a methodology to

couple efficiently macro and micro solvers. We discussed in detail the implementation of

the multiscale FE solver and showed that the multiscale strategy can be built on the core

structure of a standard FE code. The code also allows for different triangulations (simplicial,

quadrilateral) and can trivially be parallelized.

To illustrate the performance of our code, we presented a number of numerical examples

for both two and three dimensional problems with periodic, non-uniformly periodic and

random tensors. Various boundary conditions and coupling conditions between macro and

micro FE solvers were discussed. Furthermore, time-dependent problems were presented. We

also showed an application of our code to the steady-state heat distribution in a heat sink and

a microprocessor featuring a multiscale heat conductivity tensor. This simulation resembles

the motivating engineering problem we stated in the introduction of this thesis in Chapter 1.

Our numerical results demonstrated that, although simple, our code can nevertheless handle

challenging problems.

The implementation builds the foundation for all numerical experiments of Part II of

this thesis. There, we used a modified version of the implementation that is parallelized

and optimized for efficiency rather than for comprehensibility to a broad audience. The

implementation furthermore has been used as a basis for the numerical experiments in

[13, 12, 10, 15, 16, 8].

We believe that the simplicity and the versatility of the proposed code could be useful for

further developments in computational methods for multiscale PDEs, and that our code or

algorithm could easily be integrated as a subroutine for more general multiscale computational
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problems (e.g. involving optimization procedures, inverse or stochastic problems).
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Introduction to Part II.
In many physical and engineering problems one is confronted with the challenge that local

singularities, such as singularities caused by reentrant corners (see Section 5.7), deteriorate

the overall accuracy of the numerical solution. This difficulty can be overcome by refining the

mesh adaptively, and therefore putting more discretization points around the critical regions,

where the solution is less regular. The goal is to equi-distribute the error among all elements

in order to obtain an optimal mesh, where we have the maximal accuracy at the minimal

computational cost. It is therefore crucial to know how to identify these critical areas, so that

the surrounding mesh can be refined appropriately.

Besides knowing where to refine, it is very important to be able to obtain reliable estimates

of the accuracy of the numerical solution, as we saw in the motivating example in Chapter

1. In Section 2.4.1 we recapitulated the a priori results for the FE-HMM. While these a priori

error bounds hold before the calculation is carried out and hence do not depend on the

numerical solution, they do depend on the exact solution, which is in general unknown. In

addition, the a priori estimates only describe asymptotic error behavior and require a certain

regularity of the solution, which might not be satisfied, like in the aforementioned example

of reentrant corners. A priori estimates are therefore not suitable for providing information

on the quality of an actual numerical computation for a given mesh. Hence, a priori results

are not appropriate for driving a mesh refinement strategy in order to achieve a prescribed

accuracy.

A posteriori error estimators, on the other hand, provide this information by using the

numerically computed solution and given data of the problem. To be useful in practical

applications, we would like to have the following properties from an a posteriori error estimator

(see also [59] and [27, Chapter 6] for a longer discussion):

• the predicted error estimate should be close to the actual error, where we measure the

error in a user-defined norm;

• the error estimation procedure should provide a useful stopping criterion, indicating

that a given accuracy is reached;

• the error estimation procedure should be capable of steering an adaptive refinement

process, where the locally estimated error is used to refine the mesh such that it equally

distributes the error, and thus the computational effort, among all elements;

• the error estimate should be inexpensive to compute, compared to the total computation

time of the problem1;

• the error bounds should be independent of unspecific constants;

1At the same time, the monetary cost of e.g. a sinking oil platform (see Chapter 1) has to be related to the
computational cost of an estimator.
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• sharp upper and lower bounds should be guaranteed. Upper bounds are sufficient to

obtain a numerical solution which is below a user-specified tolerance; lower bounds

ensure that the method is efficient in the sense that a (close to) minimal number of grid

points is used to reach the prescribed tolerance.

A posteriori error estimates aim at providing error estimators which satisfy (to a certain degree)

the above properties. As the exact solution is unknown, the estimates are solely based upon

the numerical solution and the data. In reality, even for linear problems as considered in this

work, it is in general not possible to guarantee practically useful error bounds that are also

inexpensively computable2. However, the error estimator might still be suitable for driving a

very efficient adaptive scheme and give a reasonable indication of the accuracy of the solution.

For nonlinear problems, we refer the reader to [28, 59] and references therein.

Adaptive finite element methods take advantage of one or both of the following observa-

tions

1. Typically, in order to reach a certain accuracy of the solution, more degrees of freedom

are needed in some parts of the domain than in others; the error on a uniform grid is

typically not uniformly distributed among all elements. The non-uniform distribution

of the error can e.g. be caused by singularities due to reentrant corners, which need to

be specially taken care of.

2. Often scientists or engineers are not interested in the FEM solution per se, but in certain

(often local) physical quantities of interest (such as point values or boundary fluxes) that

are necessary to make a certain design decision. Adaptivity can reduce the complexity

of the global solution because the solution does not have to be obtained very accurately

everywhere, but only in those areas that are important to obtain an accurate quantity of

interest.

While the adaptivity using global norms benefits from consequences of the first observation,

goal-oriented adaptivity exploits the effects of observation one and two, but at the expense

of having to solve a so-called dual problem in addition to the main (primal) FEM problem to

obtain the estimate.

Adaptive cycle. Adaptive finite element methods follow an iteration cycle to adapt the mesh

from iteration to iteration. The problem is solved for the numerical solution and an a posteriori

estimate is computed based on the numerical solution. Then the (global) a posteriori error

estimator is divided into (local) error indicators or refinement indicators on every element.

These error indicators are used to steer local mesh modifications by marking elements which

contribute “the most” – in a sense to be defined – to the global error. Finally, the marked

2The cost of the estimator should be small compared to the cost of the solver. To obtain error estimates in
quantities of interest a dual problem must be computed, which in general is more expensive than the original
(primal) numerical solution.
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elements are refined. This leads to the following cycle

Solve → Estimate → Mark → Refine,

which is repeated until we reach a prescribed accuracy or a maximum number of cycles.

In order to increase the accuracy, we could instead of refining an element (h-refinement)

also increase the polynomial degree (p-refinement3) or do both (hp-refinement, see [105, 77]),

but throughout this work, we only consider h-refinement.

In Figure 4.0.1 we plot the local error indicators for an L-shape problem with a singularity

caused by a reentrant corner. The color of the elements represents the estimated error. We can

see that the algorithm refines those elements with the largest local error indicator and that

the error decreases very rapidly with every iteration. We observe that at iteration 3 the error

is more evenly distributed (the color is much more uniform among the different elements).

While the overall estimated accuracy is comparable between Figure (b) and (d), many more

elements are required for the uniform refinement used for Figure (d). In Figure 4.0.2 we

show the mesh for a few iterations and finally plot a uniformly refined mesh. As we will see

throughout this work, the computational cost for reaching a certain accuracy is significantly

lower when using adaptivity compared to uniform refinement.

Adaptivity in multiscale problems. The results of this simple example indicate that adap-

tive methods can be highly efficient. Indeed, for single-scale FEM, adaptivity has been widely

used in applications for about 30 years. We will see throughout this work that the gain in

computational efficiency that is obtained when adding adaptivity to multiscale methods

can be substantially higher than the gain that can be obtained when adding adaptivity to

single-scale methods. The large gain in computational efficiency for multiscale methods is

possible, because on the micro-level expensive micro computations can be avoided or re-used

through the adaptive cycle. We will furthermore investigate how to couple adaptivity between

the micro and the macro mesh, i.e., what to do with the micro mesh when we refine the

corresponding macro element.

3This however requires local regularity of the solution in classical Sobolev spaces or, for the general case, the
introduction of techniques such as the measurement of regularity in terms of weighted Sobolev Spaces, see [105,
Section 4.2].
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(d) Uniform refinement, iteration 2

Figure 4.0.1: A posteriori error indicators on a sequence of adaptive meshes. The color of the element
represents the estimated error. We can see that the estimated error decreases from iteration to iteration
as the mesh is refined.
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(a) Adaptive, iteration 1 (b) Adaptive, iteration 5

(c) Adaptive, iteration 10 (d) Uniform refinement

Figure 4.0.2: The adaptive meshes plotted at several iteration steps and a uniform mesh.
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Terminology.

We will use the following terminology. The word error estimate denotes a quantity that is used

to approximate the unknown error; upper and lower bound denote quantities that are always

larger and smaller, respectively, than the actual error. Therefore, error estimates are close to

the actual error, but cannot be guaranteed, whereas the upper and lower bound might be

less accurate, but are always guaranteed. We furthermore use the word (local) error indicator

or refinement indicator (in context of the dual-weighted residual method) to denote local

quantities on an element, which are used to drive an adaptive mesh refinement.

Outline of Part II. In Chapter 5 we review the basics of adaptive single-scale FEM. In Chap-

ter 6 we derive a posteriori error estimates for the piecewise linear FE-HMM in the energy

norm, give details of the algorithm and show numerical examples; we further compare the

a posteriori estimates by Ohlberger obtained in a two-scale norm [92] to our estimates. In

Chapter 7 we extend these results to higher order FE. Finally, we use the techniques obtained

in Chapter 7 in order to obtain the goal-oriented adaptive FE-HMM in Chapter 8. We end

Part II with a conclusion in Chapter 9.
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5 A short Review of Adaptive Finite
Element Methods

In this Chapter we present a brief review of (single scale) a posteriori error estimators and

adaptive FEM techniques and components. The single scale analysis and techniques form the

foundation for our adaptive multiscale FE-HMM.

In Section 5.1 we present a posteriori estimates in global norms, such as the energy norm,

in Section 5.2 we present the common framework of error estimation in quantities of interest

and illustrate in Section 5.3 one specific method, the dual-weighted residual (DWR) method.

We discuss marking schemes in Section 5.4 and show how a mesh is refined in Section 5.5.

In Section 5.6 we mention adaptive techniques that go beyond the refinement of the macro

(and micro) mesh. We end this Chapter in Section 5.7 with a look at how the regularity of the

solution is affected in non-smooth domains and what benefits the use of higher order FE has

for such problems.

Model problem and notation.

In this Chapter we follow the notation we introduced for the single-scale FEM problem in

Section 2.2. Given f ∈ L2(Ω) and a domain Ω⊂ Rd , d = 1,2,3, we consider the single-scale,

second-order elliptic equation

−∇· (a∇u) = f in Ω,

u = 0 on ∂Ω,
(5.0.1)

where a is symmetric, satisfies a(x) ∈ (L∞(Ω))d×d and is uniformly elliptic and bounded.

For simplicity, we only consider homogeneous Dirichlet boundary conditions. The discrete,

weak-form of problem (5.0.1) is: find uH ∈V H s.t.

Bclassic

(
uH , v H )

:= ∑
K∈TH

∫
K

a∇uH ·∇v H d x =
∫
Ω

f v H d x ∀v H ∈V H , (5.0.2)
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Chapter 5. A short Review of Adaptive Finite Element Methods

where we used the spaces V and V H defined as

V := H 1
0 (Ω) ,

and

V H :=V p (Ω,TH ) = {v H ∈ H 1
0 (Ω); v H |K ∈P p (K ), ∀K ∈TH }.

Here, we use only simplicial elements and P p is defined as for (2.2.3). We emphasize that in

this Chapter we use Bclassic (·, ·) to refer to the single-scale bilinear form as defined in (5.0.2),

whereas we use B (·, ·) to refer to the multiscale FE-HMM bilinear form (2.4.6).

5.1 Global error estimators
We will briefly illustrate various single-scale adaptive FE methods and start with the widely

used recovery-based estimator by Zienkiewicz and Zhu. Then, we will describe residual-based

estimators. Both belong to the group of so-called global error estimators, i.e. they estimate the

error in terms of a global norm such as the energy norm. We will later see error estimators

that can take local quantities of interest into account. For an extended overview of different

adaptive methods, see [20, 59, 113, 114] and references therein.

5.1.1 Zienkiewicz-Zhu estimator

In general, the gradient of the FE solution is discontinuous across element interfaces; the basic

idea of the Zienkiewicz-Zhu estimator [120, 59] is therefore to smooth the (discontinuous)

gradients of the solution and quantify the error by comparing the smoothed and the non-

smoothed gradient.

Let ϕi ∈ V H , i = 1, ..., N be the FE basis functions and uH be the FE-solution of (5.0.2).

We determine the smoothed gradient ∇uH
? = (r1, ...,rd )T , where ri ∈ V H by a standard L2

projection∫
Ω
ϕi

(∇uH
? −∇uH )

d x = 0, i = 1, ..., N .

The smoothed gradient often is only computed approximately. Then the error estimator in the

energy norm is obtained as follows

∣∣∣∣∣∣eH
∣∣∣∣∣∣2 ≈ Bclassic

(
eH
? ,eH

?

)= ∫
Ω

a∇eH
? ·∇eH

? d x,

where eH = u −uH and ∇eH
? =∇uH

? −∇uH .

Although it is widely used and researched, the Zienkiewicz-Zhu estimator has several

disadvantages including that it is assumed that smooth gradients imply accurate gradients.

For a further discussion, see [59] and references therein.
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5.1.2 Residual-based estimators
We will base our adaptive FE-HMM presented in Chapter 6 on the residual-based error estima-

tors. This method seeks for an error estimate in the (global) energy norm and involves a direct

computation of so-called interior element residuals and jumps. We will briefly show here the

ansatz of the method for the classical single-scale case, and postpone a detailed proof and

description for the FE-HMM until Chapter 6. We refer for details on the single-scale case to

the work of Verfürth [113, 112] and Ainsworth and Oden [20, 19]; for the convergence of the

adaptive method see [82, 48]. We will follow the presentation in [86].

We consider problem (5.0.1). We first define the jump and subsequently the element and

jump residual and then find a posteriori error estimates.

Definition 18. (See [20, 113]). We define the jump as

Ja∇uHKe :=
−a∇uH+ ·n+−a∇uH− ·n− for e 6⊂ ∂Ω,

0 for e ⊂ ∂Ω,
(5.1.1)

where where e is the interface between elements K + and K − with unit outward normals n+

and n−, respectively.

Definition 19. (See [20, 113]). We define the element residual RK
(
uH

)
and the jump residual

Je
(
uH

)
as

RK
(
uH )

:= f +∇· (a∇uH )
,

Je
(
uH )

:=Ja∇uHKe .

Using Definition 18 and 19, we can construct the crucial component of the residual-based

estimators, the error representation formula given by

Bclassic

(
eH , v

)= ∑
K∈TH

∫
K

RK
(
uH )

v d x + ∑
e∈EH

∫
e

Je
(
uH )

v d s, ∀v ∈V ,

where uH ∈ V H is the FE solution of (5.0.2). A calculation involving element-wise Cauchy-

Schwarz inequality, bubble functions, using an appropriate test function v and applying

various interpolation estimates leads to the upper bound for the error
∣∣∣∣∣∣eH

∣∣∣∣∣∣ in the energy

norm given by∣∣∣∣∣∣eH
∣∣∣∣∣∣2
Ω ≤C

∑
K∈TH

η2
H (K )+ξ2

H (K )

and to the following lower bound

η2
H (K ) ≤C

(∣∣∣∣∣∣eH
∣∣∣∣∣∣2
ωK

+ξ2
H (ωK )

)
.
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Here, we used the so-called local residual

η2
H (K ) = H 2

K

∥∥RK
(
uH )∥∥2

L2(K ) +
1

2

∑
e∈∂K

HK
∥∥Je

(
uH )∥∥2

L2(e) ,

whereωK is a neighborhood of K and ξH (K ) is the so-called data approximation error. We will

describe the various terms involved in the above inequality and explain the details of the proof

in Chapter 6. Having a lower and upper bound means that the method is both effective (i.e.,

the error is smaller than a prescribed tolerance) and efficient (i.e., the mesh is near optimal).

The algorithm follows the cycle

Solve → Estimate → Mark → Refine

with an appropriate marking (see Section 5.4) and refinement (see Section 5.5) scheme.

5.2 Goal-oriented error estimators
Often, physicists and engineers are not interested in the error in the energy norm, but rather

in the error regarding certain (often local) physical quantities of interest (QoI) that are nec-

essary for making a design decision. This is achieved using so-called goal-oriented error

estimators. We will follow the presentation in [28, 59] and introduce the general duality-

based goal-oriented adaptivity framework. Two specific methods will be illustrated. A third

method, the so-called dual-weighted residual (DWR) method will be described in the separate

Section 5.3 in detail. We refer to [59, 31, 20, 58, 96, 88] for an overview of the general framework.

General framework: duality and goal oriented estimators
We again consider the model problem (5.0.1). Suppose that we want to know the error eH =
u −uH in terms of certain quantities of interests, which can be expressed in terms of a linear,

bounded functional J (u) . Examples of quantities of interest include

• the mean value over a domain S ⊂Ω

J (u) := 1

|S|
∫

S
u d x.

• point-wise errors at a point x? ∈ Ω̄ such as

J (u) := u
(
x?

)
or J (u) := ∂x u (x) |x? .

Special care is required for point-wise quantities of interest, see Remark 22.

• mean normal flux over the boundary such as

J (u) :=
∫
∂Ω
∂nu d s.

Here, the dual problem is not well posed and regularization should be used, see [28,
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Example 3.5].

• global norms1 such as∥∥∇(
u −uH )∥∥

L2(Ω) or
∥∥u −uH

∥∥
L2(Ω) .

The core of the method is an auxiliary (dual) problem, which “extracts” the necessary infor-

mation from the primal solution to express the error in quantities of interest. We formulate

the method for linear, bounded functionals J (u), but remark that an extension to non-linear

functionals is possible, see [28].

We emphasize that the quantity of interest must be well-defined; for example asking for

the maximum error in the derivative or flux in a domain with reentrant corners is of no use, as

the exact solution does not exist since the derivative of the solution around a corner point is

usually unbounded (see [27] and Section 5.7).

Let J : V →R be a linear, bounded functional. We are interested in controlling the error in

terms of the quantity J
(
eH

)= J (u)− J
(
uH

)
. The primal problem is given by (5.0.1), which is

in weak form: find u ∈V s.t.

Bclassic (u, v) =
∫
Ω

a∇u ·∇v d x =
∫
Ω

f v d x ∀v ∈V. (5.2.1)

In discretized form, problem (5.2.1) reads: find uH ∈V H s.t.

Bclassic

(
uH , v H )= ∫

Ω
f v H d x ∀v H ∈V H (Ω,TH ) .

Then let the dual solution z ∈V be the solution to the dual problem: find z ∈V s.t.

Bclassic

(
ϕ, z

)= J
(
ϕ

) ∀ϕ ∈V.

We use the primal Galerkin-orthogonality

Bclassic

(
u −uH ,ψH )= 0 ∀ψH ∈V H (Ω,TH )

to obtain

J
(
eH )=Bclassic

(
eH , z

)
(5.2.2)

=Bclassic

(
eH , z −ψH )

(5.2.3)

=Bclassic

(
u, z −ψH )−Bclassic

(
uH , z −ψH )

(5.2.4)

=
∫
Ω

f
(
z −ψH )

d x −Bclassic

(
uH , z −ψH )

=:R
(
uH )(

z −ψH )
,

1The error in the presented norms may be estimated using a linear functional by using the technique presented
in [28, Chapter 3.2, 3.3].
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where R
(
uH

)(
z −ψH

)
is called the residual. The function ψH ∈V H introduced in (5.2.3) can

be chosen arbitrarily. We can therefore exploit the free choice to follow different goals, such as

the reduction of the computational effort of the estimator or lowering its data approximation

error.

Remark 20. We see from (5.2.2) that simply replacing z by a discrete solution zH ∈ V H will

lead to J
(
eH

)= 0 due to Galerkin-orthogonality. There are different strategies to overcome

this problem (see [28, Chapter 4.1 and 5.2]):

• Approximate the dual solution z by a discrete solution zH in a “richer” space V H , such

as a higher order polynomial space V H :=V p̃ (Ω,TH ) where p̃ > p.

• Approximate the dual solution z by higher-order interpolation. In [28] two-dimensional

bilinear elements with hanging nodes are used; to approximate the dual solution z, a

solution zH ∈ V H is used and a patch-wise biquadratic interpolation is performed to

obtain z ≈ I (2)
2H zH . We refer to [28, 87, 106] for a discussion about the approximation

error.

• In the h-approach one divides each element K into finer subelements of the same

polynomial order. This technique is mentioned in [96] and was used in [66].

• Approximation by local residual problems (which also need to be solved in a richer

space than V H ), which avoids the full solution of the dual problem, see [28, 96, 97, 88].

Remark 21. In our adaptive dual-weighted residual (DWR) FE-HMM, we will follow the first

approach of seeking an approximation to z in a higher order polynomial space V H . This

approach leads to a reliable method only if we can neglect the approximation error
∥∥z −zH ∥∥.

While in principle this is the case for a sufficiently small global mesh size [87], rather coarse or

strongly graded meshes are frequently used in context of adaptive FEM. It was shown by No-

chetto et al. [87] that neglecting the approximation error can cause a severe underestimation of

the error J
(
eH

)
, thus leading to an unreliable method. The severe underestimation of the error

can occur even in rather simple examples, see [87]. They proposed a safeguarded DWR FEM

method, which leads to unconditionally reliable enhanced estimators which asymptotically

coincide with the original DWR method. The main tool is a decomposition of the solution

into a smooth part and into singular functions on the corners (see Section 5.7). However,

only the case a (x) ≡ 1 is considered in [87]. We further mention the very recent effort by

Ainsworth and Rankin to develop guaranteed and fully computable bounds on the error in

quantities of interest, see [21]. There, the discrepancy term Bclassic
(
eH , z −zH )

is estimated

using a posteriori error estimates as
∣∣Bclassic

(
eH , z −zH )∣∣≤ ∣∣∣∣∣∣eH

∣∣∣∣∣∣ ∣∣∣∣∣∣z −zH ∣∣∣∣∣∣.
Remark 22. Special care has to be taken for some quantities of interest such as the point-wise

and point-wise derivative errors, as the solution u ∈ H 1 (Ω) of the primal problem might not

be continuous (in dimension d > 1). Furthermore, point-wise derivatives of a FEM solution

are in general not defined on element interfaces.
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To estimate point-wise errors or point-wise derivative errors at a point x?, Bangerth and

Rannacher suggest in [28, Chapter 3.3] to use the regularized functional

J (u) := 1

|Sε|
∫

Sε
u d x = u

(
x?

)+O
(
ε2) , J (u) := 1

|Sε|
∫

Sε
∂nu d x = ∂nu

(
x?

)+O
(
ε2) ,

where the domain Sε is the ε-ball centered around x?. Prudhomme and Oden suggest in [96]

to use the so-called mollification (see [91, Chap. 2]), which introduces the regularized quantity

of interest for the point-wise error

Jε (u) :=
∫
Ω

u (x)kε
(
x −x?

)
d x,

or for the point-wise directional derivative

Jε (u) :=
∫
Ω
∇u (x) ·n kε

(
x −x?

)
d x,

where the mollifier kε is a parameter-dependent family of C∞ (R) functions with compact

support. The mollifier is commonly chosen in the form

kε (x) =
C exp

(
− ε2

ε2−|x|2
)

if |x| < ε
0 if |x| ≥ ε,

where the normalization constant is given by
∫
Ωkε

(
x −x?

)
d x = 1.

Confidence intervals. The benefit of the duality-based goal-oriented method is not only

that we can choose from a variety of different quantities of interest, but also that the method

in general gives an estimate, which is – compared to the residual-based method – closer to the

real error, as the duality based methods are based on an exact representation of the error in

the quantity of interest. For global residual-based estimates, we can obtain an upper and a

lower estimate for the error; these bounds however depend on an unspecific constant which

in practice can be very difficult to estimate. In contrast to this, the duality-based estimates

involve a dual solution and are therefore more expensive, but they are usually2 independent

of the aforementioned unspecific constant.

While there always is a data approximation error (thus the estimate based on the exact error

representation usually does not coincide with the exact error), the duality-based estimates

are independent of unspecific constants and can therefore be used for specifying a certain

interval where we expect the true solution to be in. This is in general much more difficult to

achieve with residual-based estimates. We can therefore provide the physicist or engineer

not only with the numerically computed quantity of interest, but also with an estimate on

the exact quantity of interest. This is illustrated in Figure 5.2.1. We see that by increasing the

2This is the case for most duality-based methods that are used in practice (such as the dual-weighted residual
based method), but e.g. not for the energy-norm based method presented in Section 5.2.1.
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Figure 5.2.1: The use of duality-based goal-oriented adaptive methods allows to specify – solely based
on the a posteriori estimate – a confidence interval, where we expect the exact quantity of interest to be.

degrees of freedom, the numerical quantity of interest converges to the exact value and the

width of the confidence interval converges to zero.

Remark 23. While in some goal-oriented methods such as [96], there are explicit upper and

lower bounds, in the DWR method, we have an exact error representation that involves an

unknown data approximation error. We assume the unknown data approximation error to be

of equal size as the (absolute value of the) estimated error in the quantity of interest, which

gives us an upper and lower approximation estimate. Therefore, the confidence interval is

rather an indication than a reliable bound.

We have seen the basic framework building on (5.2.4), which is common to duality-based

goal-oriented methods. We will now present three different specific ways of applying the

framework to obtain error estimates.

5.2.1 Energy-norm based estimates
Starting from (5.2.3), one can simply apply the Cauchy-Schwarz inequality (and boundedness

of a (x)) to obtain the following upper bound∣∣J
(
eH )∣∣≤ ∣∣Bclassic

(
u −uH , z − zH )∣∣≤C

∥∥u −uH
∥∥

H 1(Ω)

∥∥z − zH
∥∥

H 1(Ω) ,

or element-wise this can be written as∣∣J
(
eH )∣∣≤ ∑

K∈TH

C
∥∥u −uH

∥∥
H 1(K )

∥∥z − zH
∥∥

H 1(K ) .

We notice that the error in the quantity of interest converges faster than the error∥∥u −uH
∥∥

H 1(Ω). However, this type of error estimate will typically dramatically overestimate
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5.3 The Dual Weighted Residual (DWR) method

the error, as it does not allow for cancelation of errors among different elements (see also [59]).

The goal is thus to avoid the use of the Cauchy-Schwarz inequality.

5.2.2 Goal-oriented error estimators by Oden and Prudhomme

Prudhomme and Oden have suggested in [96, 88] to use the parallelogram identity in order to

obtain upper and lower bounds of the error. Let the dual error be εH = z − zH . Then the error

representation is given by

J
(
eH )= Bclassic

(
eH ,εH )= 1

4

∣∣∣∣∣∣∣∣∣∣∣∣seH + εH

s

∣∣∣∣∣∣∣∣∣∣∣∣2

− 1

4

∣∣∣∣∣∣∣∣∣∣∣∣seH − εH

s

∣∣∣∣∣∣∣∣∣∣∣∣2

,

where the scaling factor s ∈R is s =
√

|||εH |||
|||eH ||| and where the energy norm is denoted as |||v ||| :=

p
Bclassic (v, v). With the definition of the error indicators η+low,η−low,η+upp,η−upp which satisfy

η+low ≤
∣∣∣∣∣∣∣∣∣∣∣∣seH + εH

s

∣∣∣∣∣∣∣∣∣∣∣∣≤ η+upp

η−low ≤
∣∣∣∣∣∣∣∣∣∣∣∣seH − εH

s

∣∣∣∣∣∣∣∣∣∣∣∣≤ η−upp,

we obtain the following lower and upper bounds

1

4

(
η+low

)2 − 1

4

(
η−upp

)2 ≤ J
(
eH )≤ 1

4

(
η+upp

)2 − 1

4

(
η−low

)2 .

Again we remark that an approximation to the dual solution has to be found in a different

space than the primal solution; typically special spaces involving polynomials of higher orders

are used (e.g. polynomials of degree p in the primal problem and polynomials of degree

between p +1 and p +q in the dual problem), we refer the reader to [89, 96, 97]. Prudhomme

et al. have successfully used their goal-oriented method in complex engineering applications

[97, 89] and showed error estimates that are in good agreement with the real error.

5.3 The Dual Weighted Residual (DWR) method

For our goal-oriented adaptive FE-HMM, we will use the so-called dual weighted residual

method (DWR), see [31, 28] and references therein. The error in the quantity of interest is

expressed by the following exact representation

J
(
eH )= Bclassic

(
eH , z −ψH )

= ∑
K∈TH

{∫
K

RI ,H
(
z −ψH )

d x +
∫
∂K

R J ,H
(
z −ψH )

d s

}
,
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whereψH ∈V H is an arbitrary function, and the interior and jump residuals RI ,H and R J ,H are,

respectively, given by

RI ,H |K := f +∇· (a∇uH )
(5.3.1)

R J ,H |e :=−1

2
Ja∇uHKe , (5.3.2)

where we used the definition of the flux (5.1.1). Here we assume a conforming method, i.e.,

we ignore any type of quadrature. In the context of the FE-HMM, we will take the quadrature

error into account, which leads to an additional term ξH (K ), the data approximation error. A

rigorous analysis of the FE-HMM will follow in Section 8.5.

Remark 24. While in the literature typically integration by parts is applied to obtain (5.3.1)

and (5.3.2), the integration by parts is not necessarily required (see also [59, Section 5.2.2]).

Keeping the original form of the equation might facilitate the numerical evaluation of the

expressions.

Unlike a posteriori estimators involving Cauchy-Schwarz inequalities (such as residual-

based estimators), the DWR method allows for cancelation of errors among different elements

over the domain. The DWR therefore does not come with the typical significant overestimation

of the error and the estimates do not involve unspecific constants3. This however requires to

have error estimators with local components that are signed. We therefore distinguish between

the (always positive) refinement indicators η̄H (K ), used to drive the adaptive mesh refinement

procedure and for constructing an upper error bound, and the signed (local) error estimator

ηH (K ) which is used to estimate the error J
(
eH

)≈∑
K∈TH

ηH (K ). See also the terminology at

the beginning of Part II.

Proposition 25 (A posteriori DWR refinement indicators, error estimator and error bound

[28]). We have the following a posteriori element refinement indicators

η̄H (K ) =
∣∣∣∣∫

K
RI ,H

(
z −ψH )

d x +
∫
∂K

R J ,H
(
z −ψH )

d s

∣∣∣∣ ,

which yield the upper a posteriori error bound∣∣J
(
eH )∣∣≤ ∑

K∈TH

η̄H (K )+|ξH (K )| , (5.3.3)

where ξH (K ) is the data approximation error on K . Furthermore, we have the error estimator

J
(
eH )= ∑

K∈TH

ηH (K )+ξH (K ) ,

where

ηH (K ) =
∫

K
RI ,H

(
z −ψH )

d x +
∫
∂K

R J ,H
(
z −ψH )

d s.

3We remark that for PDEs other than the linear elliptic problems considered throughout this thesis, constants
may arise.
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5.3 The Dual Weighted Residual (DWR) method

We will investigate the data approximation error in the case of the FE-HMM in detail in

Section 8.5. We thus have an error estimate, which exploits the cancelation of errors among

the elements and refinement indicators, which are always positive and can drive the mesh

refinement.

Proposition 26 (A posteriori error estimate [28]). The inequality (5.3.3) can be further decom-

posed as

∣∣J
(
u0 −uH )∣∣≤ ∑

K∈TH

η̄H (K )+|ξH (K )| (5.3.4)

≤ ∑
K∈TH

ρKωK + ξ̃H (K ) , (5.3.5)

where the cell-residuals ρK and the weights ωK are given by

ρK :=
(∥∥RI ,H

∥∥2
K + 1

HK

∥∥R J ,H
∥∥2
∂K

)1/2

ωK :=
(∥∥z −ψH

∥∥2
K +HK

∥∥z −ψH
∥∥2
∂K

)1/2
,

and where for the modified data approximation error ξ̃H (K ) we sum over the norms of all of its

components.

Remark 27. Proposition 26 explains where the name dual-weighted residual comes from. The

dual solution acts as a weight function for the cell-residuals.

The step from (5.3.4) to (5.3.5) does not add any further information either on the ap-

proximation of the dual solution z or on the approximation of the tensor a (x). Therefore,∑
K∈TH

ρKωK + ξ̃H (K ) is bigger than
∑

K∈TH
η̄H (K )+|ξH (K )| without increased reliability, see

[87]. Thus we will use the DWR error estimate (5.3.3) in what follows.

Bangerth and Rannacher show in [28] several example problems where the dual solution

needed in (5.3.5) can be estimated a priori. This however is not possible for general quantities

of interest and therefore the dual problem has to be solved numerically. As we mentioned in

Remark 20, we cannot simply choose z ≈ zH ∈V H . We will instead approximate z ≈ zH using

a higher order polynomial space V H := V p̃ (Ω,TH ) where p̃ > p. This leads to the following

Algorithm.

Algorithm 28 (Adaptive DWR-FEM). The algorithm for the adaptive, goal-oriented DWR FE

method follows the Solve → Estimate → Mark → Refine cycle with some modifications.

Solve. Solve the primal problem in V H for uH and the dual problem in V H for zH .

Estimate. Estimate the error in the quantity of interest J
(
u −uH

)
by computing the indicators

ηH (K ).

Mark. Mark the elements on a subset T̃H of TH based on the refinement indicators η̄H (K ) =∣∣ηH (K )
∣∣.
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Refine. Refine the marked elements (and some neighbors for mesh conformity) and update the

mesh for the dual problem accordingly.

We use the same mesh for both the primal and dual solution (but with different shape func-

tions), but other choices are possible, see [28].

5.3.1 Choice ofψH

Due to the Galerkin-orthogonality, ψH can be chosen freely. In the residual-based case, where

we have an upper and a lower bound, the choice is motivated as follows. There, we choose

ψH such that it brings the upper and lower estimate close to the exact error. As ∇eH is not

necessarily continuous, ψH is chosen to be the Clément interpolant of eH . In the DWR

case, we work with an exact representation of the error. Therefore, the choice of ψH is not

straightforward.

This freedom of choice is typically used with the aim of increasing the accuracy or reducing

the computational cost of the error estimator. In [28, 99] it is suggested to choose ψH as an

interpolation of z on a patch P of 2×2 elements (there, rectangular elements and hanging

nodes are used) by requiring the interpolant IP z =:ψH to satisfy∫
P

(z − IP z)d x = 0.

As z − IP z will be orthogonal to all patch-wise constant functions, it is argued that the interior

residual term is smaller by O (H) than the jump residual term and thus can be ignored for

H → 0.

We consider the choice of ψH in the context of the DWR FE-HMM in Section 8.5.1.

5.3.2 Convergence rates
We only require the functional J (·) to be linear and bounded. Therefore, no a priori estimates

exist for general quantities of interest that could be used to extract useful general convergence

rates, even for single-scale FEM. We know asymptotic convergence rates for a few quantities

of interest, such as (presented for the case of piecewise linear elements)

• for the global H 1-norm we expect a convergence rate of J
(
eH

)∝ H ,

• for the global L2-norm we expect a convergence rate of J
(
eH

)∝ H 2,

• for the point-wise error we have a rough estimate of J
(
eH

)∝ H 3, see [28, Section 3.3].

As we will see in the following chapters, the (macroscopic) convergence rates are crucial to find

an optimal multiscale algorithm. We will investigate this further in the case of the adaptive

DWR FE-HMM in Section 8.3.1.

5.4 Marking schemes
We now seek for a suitable mesh refinement that reduce the error, while at the same time

keeps the number of new elements small. Suppose that we have given local error indicators
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η̄H (K ) from an a posteriori estimate∣∣J
(
eH )∣∣≤ ∑

K∈TH

η̄H (K ) .

If the stopping criterion
∣∣∑

K∈TH
ηH (K )

∣∣≤ tol is met, we stop the adaptive iteration cycle and

accept uH as the approximate solution of the problem, for which the quantity of interest J
(
uH

)
(or energy norm

∣∣∣∣∣∣uH
∣∣∣∣∣∣) is within the tolerance tol . Otherwise, we continue with another

iteration of the adaptive cycle. We sort the macro elements Ki ∈TH , i = 1, ..., N of the macro

FE mesh according to a decreasing local error indicator s.t.

η̄H (K1) ≥ η̄H (K2) ≥ ... ≥ η̄H (KN ) .

For the mesh adaption itself, there are many different strategies. We want to present two of

them in what follows and refer to [104, Chapter 1.5] and [28, Chapter 4.2] for an overview.

We remark that some other methods target to directly construct an “optimal” mesh, which

satisfies the error tolerance η̄H (K ) ≈ tol on its elements K without going through an iterative

one-step process. See e.g. the mesh-optimization strategy in [28].

All strategies are based on the assumption that for an optimal mesh, the local error is

equi-distributed among all the elements of the mesh. As the true error is unknown, Babuška

and Rheinboldt suggest in [26] that if the local error indicators η̄H (K ) are nearly equal on all

elements, then the mesh is approximately optimal. We therefore mark a subset of the elements

in TH (with a large local error indicator) for refinement and leave the rest of the elements

unmarked. On the one hand, refining only few elements at every iteration will lead to a more

optimal mesh. On the other hand, at every iteration the computationally expensive primal

(and dual) FE solution has to be found; hence we would like to refine many elements, such

that we only need a few iterations in order to reach a certain accuracy. The goal is therefore to

find a balance between the two aforementioned opposing strategies.

Marking strategy E

We first consider marking strategy E as proposed by Dörfler [48] and used in [82, 85].

Algorithm 29 (Marking Strategy E). For a given a user-defined parameter 0 < θ < 1, find a

minimal subset T̃H of TH such that∑
K∈T̃H

η̄H (K )2 ≥ θ2η̄H (Ω)2 .

Mark all elements in the subset T̃H for refinement.

As shown in [82, 85], for the residual-based adaptive FEM and in the absence of data

approximation errors, this marking strategy guarantees error reduction when used with an

appropriate mesh refinement technique.
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Maximum strategy

Another strategy, the so-called maximum strategy is used in [96] and given as follows (see also

[104]).

Algorithm 30 (Maximum strategy). For a given user-defined parameter 0 < ϑ < 1, mark all

elements K ∈TH with

η̄H (K ) >ϑ max
K̃∈TH

η̄H
(
K̃

)
.

A typical value is ϑ= 0.5.

5.5 Mesh refinement techniques
Once a set of triangles is marked for refinement, the actual element bisection is performed.

It is crucial to ensure that after refining the mesh it is still conforming and shape regular.

Among the various methods such as the red and green refinement [29] or the longest edge

bisection [100], we will only consider the newest vertex bisection [81, 80]. In many adaptive

FEM packages, the newest vertex bisection is used for 2D and longest edge bisection is used for

3D calculations [41, 42, 104]. We restrict ourselves to the description of bisection of triangles,

as for quadrilaterals and hexahedra, if we bisect one element, mesh conformity requires the

repetitive bisection of all their neighboring elements up to the boundary. For the bisection of

tetrahedra, we refer the reader to [104, 41, 42].

Newest vertex bisection. Let TH be a shape regular triangulation of Ω. Then for every

triangle K ∈ TH we label one of its vertices as the newest vertex. We call the opposing edge

the refinement edge. Once an initial labeling is done, the refinement rule for newest vertex

bisection is as follows (see also Figure 5.5.1 for an illustration)

1. We bisect a triangle K into two elements by connecting the newest vertex to the midpoint

of the refinement edge.

2. We assign the new vertex at the midpoint of the refinement edge to be the newest vertex

of the child elements.

After bisecting the marked triangles, the mesh conformity is typically broken. Therefore

additional steps are required to restore mesh conformity by refining the neighboring elements

appropriately. This bisection process will not only lead to a series of nested grids, but also

generate a mesh that is conforming and shape regular. In our numerical experiments we use

the newest vertex bisection based on the implementation in [41, 42].

Interior nodes. Morin et al. show the convergence of adaptive residual-based FEM in [82],

where they further demonstrate that a special condition on the refinement is required in order

to ensure that an error reduction is obtained. The crucial point of this refinement method

is the generation of an interior point at every marked element. We refer to [82, Example 3.6]
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Figure 5.5.1: Newest vertex bisection. The marked element is shown in shaded blue, the newest vertex
is indicated with a red dot and the refinement edges are shown with green dashed lines.

0 1
0 0

1 1

Figure 5.5.2: Newest vertex bisection and additional steps to create an interior node (red). The refine-
ment edges are shown with green dashed lines.

for an illustrative example. In two dimensions, the newest vertex bisection can be extended

to satisfy this property as follows. As shown in Figure 5.5.2, we first mark the appropriate

elements for two bisections and refine them. This will already create a node at the midpoint

of every interface of the original triangle. Second, we refine the two “grandchild” elements

(marked with “1” in Figure 5.5.2) another time. This generates an interior node at the center of

the original triangle. As usual, the surrounding elements have to be refined appropriately in

order to maintain mesh conformity. For the extension in three spatial dimensions, we refer to

[82].

We remark that in our numerical experiments we use the newest vertex bisection but do

not use the additional steps that generate the interior node.

5.6 Adaptivity beyond the macro and micro mesh size
In an adaptive multiscale method, ideally not only the macro and micro mesh size should

be chosen adaptively, but also the underlying model should be adapted accordingly. Here,

we briefly illustrate the problems of adaptive bridging of scales and of the adaptive choice

of the sampling domain size. We further mention the recent effort by Oden et al. regarding

the adaptive control of models for multiphysics problems and refer the reader to [90] and

references therein.

Adaptive bridging.

In the adaptive FE-HMM we we will encounter an issue that is specific to multiscale modeling.

As the macro mesh is refined further and further, the size HK of some macro elements K can

become smaller than the size of the corresponding sampling domains Kδ` “within” the macro

element. We illustrate this behavior in Figure 5.6.1. We furthermore see two other problems:

parts of some sampling domains Kδ` are outside of the corresponding element K (see Figure
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(c)), and some sampling domains may even be situated outside of the domainΩ, as we can see

in Figure (d). In some cases (such as periodic tensors of the form aε (x) = a
( x
ε

)
and a sampling

domain size δ = ε) we can find a physical interpretation, which still justifies the use of the

FE-HMM. However, in most cases it is difficult to justify – from a physical and computational

point of view – a sampling domain exceeding the macro element. We should therefore not

only adaptively refine the mesh, but also adaptively switch the underlying physical model and

therefore the modeling equations. For example, we could use homogenization for large macro

elements and the full finescale equation for sufficiently small macro elements. A crucial point

in model adaptivity is to find matching boundary conditions between the homogenized and

the fine scale problems.

We mention for example the results by Larsson and Runesson [75] on the adaptive switch-

ing between a solver based on homogenization and a finescale solver (in the context of the

VMM, see Section 2.3), which they call “adaptive bridging” [75]. There, they aim at bridging

the scales “seamlessly”. We will not consider the problem of model adaptivity in this thesis.

Adaptive choice of sampling domain size.

As in general the periodicity ε is not known, the choice of the size of the micro sampling

domains Kδ` is not straightforward and ideally would be chosen adaptively. In the context of

the variational multiscale method (see Section 2.3), Larson and Målqvist [74, 73] proposed an

adaptive method, which selects the size of so-called patches for fine-scale problems based on a

posteriori estimates. The selection of the patch size in context of the VMM roughly corresponds

to the selection of the sampling domain size (when using oversampling techniques) of the

micro problems of the FE-HMM.

We do not treat with the problem of adaptively determining the sampling domain size

throughout this thesis, but mention that such kind of adaptivity could be coupled with our

adaptive choice of the multiscale mesh.

5.7 The use higher-order polynomials in non-smooth domains
In many physical problems, we have non-smooth domains, such as domains with a reentrant

corner. In what follows, we illustrate how non-smooth domains affect the regularity of the

solution and we discuss the benefit of using high order FE for such problems.

For simplicity let us consider the following model problem (see [77, 105] for a more general

case)

−∆u = f in Ω⊂R2,

u = 0 on ∂Ω.
(5.7.1)

If ∂Ω is smooth (i.e. there exists a parameter representation with C∞ functions) then the

classical elliptical shift theorem (see [18]) holds, which reads

f ∈ H k−1 (Ω) implies u ∈ H k+1 (Ω) , k = 0,1,2, ... .
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 5 (d) Iteration 8

Figure 5.6.1: Macro mesh with corresponding micro sampling domains. Blue sampling domains
indicate macro elements where |K | > |Kδ|, red sampling domains indicate macro elements where
|K | < |Kδ| . From iteration 5 on we see that for some elements the sampling domain Kδ is no longer
a subset of the domain K . From iteration 7 on we have |K | < |Kδ| for some elements; furthermore
some sampling domains Kδ lie outside of the domain Ω. At this point, the underlying model should be
switched adaptively.
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Figure 5.7.1: Polygonal domain as considered in Section 5.7.

In the presence of corners, the previous results are no longer valid, for example in the

case of a polygonal domain Ω, the above results only hold in general for k ∈ [0,k0), where

k0 =π/max j ω j and the interior angle ω j ∈ (0,2π).

Let us introduce polar coordinates
(
r j ,ϕ j

)
for every vertex A j of the polygon Ω, see Figure

5.7.1. We define singular functions Sl j by

Sl j
(
r j ,ϕ j

)=
r

lπ/ω j

j sin
(

lπ
ω j
ϕ j

)
if lπ/ω j ∉N

r
lπ/ω j

j

(
lnr j sin

(
lπ
ω j
ϕ j

)
+ϕ j cos

(
lπ
ω j
ϕ j

))
if lπ/ω j ∈N.

Then we can state a modified shift theorem as follows

Proposition 31. (See [77, Proposition 1.4.1]). Let Ω be a polygon with vertices A j , j = 1, ..., J

and corresponding interior angles ω j ∈ (0,2π). Let f ∈ H k (Ω). Then for some al j
(

f
) ∈ R and

u0 ∈ H k+1 (Ω) we can decompose the solution of (5.7.1) as

u =
J∑

j=1

∑
l∈N, lπ/ω j<k

al j
(

f
)

Sl j +u0,

where the coefficients al j (·), the so-called stress intensity factors, are linear functionals and

where for each k there exists a constant Ck > 0 independent of f such that

J∑
j=1

∑
l∈N, lπ/ω j<k

∣∣al j
(

f
)∣∣+‖u0‖H k+1(Ω) ≤Ck

∥∥ f
∥∥

H k−1(Ω) .

Similar decompositions hold for general elliptic boundary value problems.

As the singular functions Sl j
(
r j ,ϕ j

)
have a singularity only at r = 0 while they are smooth

for r > 0, the solution of problem (5.7.1) will be smooth in the interior of Ω as long as the right

hand side f is smooth. Therefore the singular behavior of the solution is restricted to the

corners A j . This justifies why when using higher order adaptive FEM on e.g. a domain with

reentrant corners we may get a better overall convergence rate than we would expect consid-

ering only the (reduced) regularity of the solution. This will be confirmed in the numerical

experiments in Section 7.6.1. A method very well suited for these kinds of problems is the
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hp-FEM, which exploits the restriction of the singular behavior to corners by choosing a low

polynomial degree and highly refined elements in the corner and a coarse elements with a

high polynomial degree where the solution is smooth, see [77, 105].

5.8 Summary
In this Chapter, we have reviewed single-scale residual-based and duality-based a posteriori

error estimates and the corresponding adaptive FEMs. We further pointed out challenges

that come with the dual-weighted residual method, such as the approximation of the dual

solution in a higher order FE space and its limited reliability, the choice of the function ψH or

regularization of the functional. We briefly presented marking schemes and mesh refinement

techniques. We illustrated adaptive techniques beyond mesh refinement, which aim at adap-

tivity of the model of multiscale problems. Further, the use of higher order FE in non-smooth

domains was motivated.

In the Chapters 6, 7 and 8, we will introduce residual-based and goal-oriented adaptive

multiscale FEMs, respectively. There, we will use techniques that allow us to relate the multi-

scale components of the FE-HMM to classical, single-scale components. This relation will

allow us to largely follow the single-scale analysis and techniques that we presented in this

Chapter.
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6 Adaptive FE-HMM

When combining multiscale finite element methods with adaptivity, new challenges arise.

These challenges involve the quantification of the interplay between the micro and macro

solutions. We seek for the design and analysis of an adaptive strategy that takes into account

both micro and macro errors. The main questions are: How does the solution in the mi-

croscopic problem influence which macroscopic element we should refine? If we refine a

macroscopic element, how do we need to refine the microscopic mesh of the corresponding

sampling domain? How does the accuracy of the estimator depend on the error we make in

the macro and micro solutions?

In this Chapter we present a detailed a posteriori error analysis for the FE-HMM and a

suitable efficient and reliable adaptive FE-HMM algorithm. The analysis will give us answers

to the above questions.

In order to analyze the multiscale FE-HMM, we relate its special multiscale components,

such as the multiscale bilinear form, the multiscale fluxes and jumps to their equivalent classi-

cal, single-scale FEM counterparts. Using the equivalent counterparts enables us to follow

classical residual-based adaptive FEM techniques in order to derive upper and lower error

bounds. The relation between multiscale components and their classical counterparts has

first been introduced in the context of the discontinuous Galerkin FE-HMM [5]. We will find

that adaptive multiscale methods are much more efficient than non-adaptive ones. The huge

gain in computational efficiency for multiscale methods is possible, because on the micro-

level expensive micro computations can be avoided or re-used through the adaptive cycle. In

this Chapter we restrict ourselves to piecewise linear FE for the macro and the micro problems.

In Section 6.1 we introduce the model problem. In Section 6.2 we state the main results

consisting of upper and lower a posteriori bounds for the FE-HMM in the energy norm. The

full analysis is presented in Section 6.3. Various numerical experiments that quantify both

efficiency and reliability of our bounds are given in Section 6.4. We conclude in Section 6.5

with a detailed comparison to the a posteriori estimates obtained by Ohlberger in the two-scale

norm [92].

The results presented in this Chapter have been announced in [10] (without proofs) and
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published in [12]. Sections 6.2 to 6.4 of this Chapter are reprinted from [12, Sections 4-7] with

permission from Elsevier. The references and citations were updated in order to fit into the

framework of this thesis.

6.1 Model Problem
Given f ∈ L2(Ω) and a domain Ω ⊂ Rd , d = 1,2,3, we consider the second-order elliptic

multiscale equation

−∇· (aε∇uε
)= f in Ω,

uε = 0 on ∂Ω,
(6.1.1)

where aε is symmetric, satisfies aε(x) ∈ (L∞(Ω))d×d and is uniformly elliptic and bounded. We

consider in what follows only homogeneous Dirichlet boundary conditions, but emphasize

that the a posteriori estimates can also be derived for more general boundary conditions (such

as Neumann or Robin) following the lines of the results presented in this Chapter.

6.2 Main results
The goal is to adapt the macro mesh according to potential singularities which may be caused

by reentrant corners or high contrast in macroscopic coefficients. Localized “macroscopic”

residuals determine how the macroscopic mesh has to be adapted. We have to recover these

residuals from suitably averaged microscopic quantities as they are not readily available. We

will see that the overhead for deriving these macroscopic residuals is minimal as they are

based on microscopic solutions already required for the computation of the macro stiffness

matrix.

For simplicity, piecewise linear macro FE (simplicial elements) will be used. As a conse-

quence, we will use a quadrature formula with L = 1 and integration node xK`
= xK localized

at the barycenter of the macro element K , and a weight ωK`
=ωK = |K | (see Chapter 2). More-

over, we choose piecewise linear or bilinear micro FE, i.e., q = 1 in (2.4.9) and R1 =P 1 or Q1.

The a posteriori error analysis will be generalized for higher order FEs in Chapter 7.

Let TH denote a conformal mesh and let EH be the set of interfaces. We label the two

elements sharing an interface e ∈ EH as K + and K −. We consider the micro functions uh
K + and

uh
K − , solutions of the micro problems (2.4.7), which correspond to the two sampling domains

K +
δ

and K −
δ

of the elements K + and K −, respectively. These micro functions are constrained

by the macro solution uH ∈V 1 (Ω,TH ) of problem (2.4.12). We then introduce the following

jump of multiscale fluxes

Jaε (x)∇uhKe :=


(
1∣∣K +
δ

∣∣ ∫K +
δ

aε (x)∇uh
K + d x − 1∣∣K −

δ

∣∣ ∫K −
δ

aε (x)∇uh
K − d x

)
·ne for e 6⊂ ∂Ω,

0 for e ⊂ ∂Ω,
(6.2.1)

where the unit outward normal ne is chosen to be ne = n+. We omit the index Kδ for the micro
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solutions uh in Jaε (x)∇uhKe as the jump over e involves two sampling domains in adjacent

elements. The multiscale fluxes are the building block in the derivation of our estimates and

were first introduced in the context of multiscale discontinuous Galerkin methods [5, 7].

For each vector e i , where {e i }d
i=1 is the canonical basis in Rd , we consider

ψi ,h
Kδ

∈ S1
h (Kδ,Th), the solution of the problem∫

Kδ

aε(x)∇ψi ,h
Kδ

·∇zhd x =−
∫

Kδ

aε(x)ei ·∇zhd x ∀zh ∈ S1
h(Kδ,Th). (6.2.2)

It will be convenient for our analysis to introduce a numerically homogenized tensor (see

[7]). We define this tensor a0
K , constant on each macro element K , by

a0
K = 1

|Kδ|
∫

Kδ

aε(x)

(
I + J T

ψh
Kδ

(x)

)
d x, (6.2.3)

where Jψh
Kδ

(x) is a d × d matrix whose entries are given by

(
Jψh

Kδ
(x)

)
i j

= (∂ψi ,h
Kδ

)/(∂x j ). We

emphasize that the above tensor is only used as a tool in the derivation of the a posteriori error

bounds and is never used for the computation of our error indicators.

Definition 32. Let f H be a piecewise constant approximation of f . Then the local error

indicator ηH (K ) on an element K is defined by

ηH (K )2 := H 2
K

∥∥ f H
∥∥2

L2(K ) +
1

2

∑
e⊂∂K

He

∥∥∥Jaε∇uhKe

∥∥∥2

L2(e)
.

We furthermore define the data approximation error ξH (K ) on an element K by

ξH (K )2 := H 2
K

∥∥ f H − f
∥∥2

L2(K ) +
∥∥(

a0
K −a0 (x)

)∇uH
∥∥2

L2(K ) ,

where a0 (x) is the unknown homogenized tensor of problem (2.4.2).

We will sometimes consider the indicators and data approximation terms on a subset

ω = Ki1

⋃
Ki2

⋃
...

⋃
Kin , Ki j ∈ TH of the domain Ω. In this case, we denote the expression

obtained by summing the above quantities over all elements K ⊂ω by ηH (ω)2 and ξH (ω)2.

Our first result establishes an a posteriori upper bound for the error between the macro-

scopic FE-HMM solution uH and the homogenized solution u0.

Theorem 33 (A posteriori upper bound). There exists a constant C > 0 depending only on the

shape regularity constant γ, the coercivity and continuity bound (2.1.2), the dimension d and

the domain Ω such that∥∥u0 −uH
∥∥2

H 1(Ω) ≤C
(
ηH (Ω)2 +ξH (Ω)2) .

The next result gives an a posteriori lower bound.
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Theorem 34 (A posteriori lower bound). There exists a constant C > 0 depending only on the

shape regularity constant γ, the coercivity and continuity bound (2.1.2) and the dimension d

such that

ηH (K )2 ≤C
(∥∥u0 −uH

∥∥2
H 1(ωK ) +ξH (ωK )2

)
,

where the domain ωK consists of all elements sharing at least one side with K .

Micro-macro refinement The above two theorems for the a posteriori lower and upper

bounds do not require any structure assumption on the oscillating tensor (such as periodicity)

and only minimal assumptions on regularity. As we assume singularities in the macro scale,

we do not consider explicit a posteriori estimates for the micro-problem (2.4.7). As the micro

sampling domains have simple geometries (typically squares or cubes), singularities can only

arise due to singularities in the microscale of the conductivity tensor. In that case, standard a

posteriori methods could be used to refine the micro meshes in a non-uniform way.

We emphasize that the error indicator ηH does depend on the micro solutions and hence

on the micro mesh. Thus, a criterion is needed to determine an appropriate size of the micro

mesh as we refine the macro mesh through our adaptive procedure. Such a criterion can be

deduced from the following theorem.

Theorem 35 (Micro-macro refinement coupling). Assume that (6.3.16) and (6.3.17) hold.

Assume further that the cell problem (2.4.7) is solved with periodic boundary conditions if aε is

periodic and δ/ε ∈N and solved with Dirichlet boundary conditions otherwise. Then

sup
x∈K

‖a0
K −a0(x)‖F ≤C

(
HK +

(
h

ε

)2)
+er rmod , (6.2.4)

where C is independent of H ,h,ε, and er rmod is independent of H ,h.

Remark 36. From estimate (6.2.4) we deduce that in order to minimize the error originating

from the micro FEM, we have to refine the micro mesh in each sampling domain Kδ as
h
ε ∝ p

HK . Here HK is the size of the macro element K of the mesh TH obtained by the

Algorithm 37 described below.

Comparison with single scale results. Our upper and lower bounds stated above are con-

sistent with the usual (single-scale) residual based a posteriori estimates. Indeed, suppose

aε = a
( x
ε

)
, that exact micro functions are used in (2.4.7) with periodic boundary conditions

and that δ = ε. Then ‖a0
K −a0‖F ≡ 0 (see Section 6.3.5.2) and we recover the usual residual

based indicator and data estimator [113, 33].

6.2.1 Algorithm
The adaptive algorithm for the FE-HMM follows the adaptive algorithm for standard FEM. It

consists of loops of the form

Solve → Estimate → Mark → Refine
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in order to generate the new, refined computational grid. However, due to the multiscale

nature of the problem, we need to modify the procedure accordingly as presented in the

following algorithm.

Algorithm 37 (Adaptive FE-HMM).

Solve. For the macro and micro meshes obtained by REFINE, compute the micro solutions

(only for the refined macro elements) and the macro solution uH of (2.4.12) and compute

and store the multiscale jumps Jaε (x)∇ϕh
i ,K Ke (based on the FE basis functions) for the

refined elements during the macro assembly process.

Estimate. Reconstruct the full multiscale jumps Jaε (x)∇uhKe using the macro solution uH of

SOLVE and estimate the error by computing the indicators ηH (K ) for all K ∈TH .

Mark. Identify a subset T̃H of TH based on the indicators ηH (K ) following Dörfler’s bulk-

chasing strategy (Marking Strategy E, see [113, Chap. 4.1] or Section 5.4).

Refine. Refine the elements in the subset T̃H and some neighboring elements in order to preserve

mesh conformity. Update the micro mesh in the sampling domains of the refined macro

elements according to hKδ
∝p

HK ε (see Remark 36).

We discuss two important details for the above algorithm, namely the carry-over of informa-

tion and the computation of the multiscale flux.

Remark 38. Carry-over of information. In contrast to standard (single-scale) adaptive FE

methods, in the adaptive FE-HMM most of the computation time is used for solving the micro

problems to obtain the entries of the macro stiffness matrix. A fundamental feature of an

efficient implementation of an adaptive FE-HMM should thus be the carryover of reusable

micro data from one iteration to the next.

In particular, this means that for every element we store the contributions

Ai j = B(ϕH
i ,K ,ϕH

j ,K ) (ϕH
i ,K are the macro basis functions) of the micro problems to the macro

stiffness matrix and the components of the corresponding multiscale flux Jaε (x)∇ϕh
i ,K Ke . This

is done with a small memory overhead in every iteration and we compute new data Ai j and

Jaε (x)∇ϕh
i ,K Ke only for those elements which are marked for refinement and carry-over the

existing data Ai j and Jaε (x)∇ϕh
i ,K Ke for the remaining, unrefined macro triangles to the next

iteration (see Figure 6.2.1 for an illustration). In the numerical experiments in Section 6.4 we

illustrate the amount of work that can be saved following this strategy.

Computation of the multiscale flux. Let
{
ϕH

i ,K

}
be the basis functions of V 1 (Ω,TH ) and let

ϕh
i ,K be the micro solution of (2.4.7) constrained by ϕH

i ,K , i.e., (ϕh
i ,K −ϕH

i ,K ) ∈ S1(Kδ,TH ), where
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(a) Iteration k (b) Iteration k +1

Figure 6.2.1: Adaptive mesh shown for two iterations. In Figure b), for all macro elements shown in

white, the multiscale flux Jaε (x)∇ϕh
i ,K Ke and the contributions Ai j to the macro stiffness matrix can

be carried over to the next iteration and re-used, whereas for all macro elements shown in red, new
solutions of the micro problems and corresponding multiscale fluxes must be computed.

Kδ ⊂ K . In SOLVE, we compute for every element K

%h
i ,K := 1

|Kδ|
∫

Kδ

aε (x)∇ϕh
i ,K d x

right after computing the solutions ϕh
i ,K of the micro problem (2.4.7) and store the three

corresponding %h
i ,K for later use. (In the case of two dimensions when using macro triangles

this represents a 2×3 matrix in each macro element K corresponding to the two components

of %h
i ,K for each macro basis function ϕH

i ,K , i = 1, ...,3). The advantage of computing this

quantity in the SOLVE instead of the REFINE step is that we do not need to store the full micro

solution of each macro element (if we are not interested in a reconstructed full solution, this

significantly reduces the memory requirement).

Denote by uH
K (x) =∑3

i=1αiϕ
H
i ,K (x) the representation of uH in the element K with respect

to the nodal basis. As the micro solution uh
i ,K (x) corresponding to uH

K is linear with respect

to uH
K (x), we can reconstruct uh

K (x) =∑3
i=1αiϕ

h
i ,K (x) =∑3

i=1 uH (xi )ϕh
i ,K (x) where xi are the

nodes of the macro triangle K . In the ESTIMATE step, where the macro solution uH is known

from the previous SOLVE step, we reconstruct(
1

|Kδ|
∫

Kδ

aε (x)∇uh
K d x

)
·ne =

3∑
i=1

uH (xi )%h
i ,K ·ne

and assemble Jaε (x)∇uh
i ,K Ke using the previously stored information. As can be seen from

the aforementioned procedure, the computation of Jaε (x)∇uh
i ,K Ke can be done with minimal

memory overhead and very small extra computational cost.

Remark 39 (Coarsening). We have not considered a coarsening strategy for two reasons. First,

for linear elliptic problems, a quasi-optimal mesh can usually be obtained without the need
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of coarsening strategies (see [104, Chapter 1.5.3]). Second, due to the macro-micro coupling,

new extra micro problems must be solved when elements are coarsened, whereas information

can be re-used if we omit to coarsen the macro elements.

6.3 Proof of the main results
6.3.1 Interpolation, trace and inverse estimates
Before proving the estimates for the upper and lower bound, we recall some interpolation,

trace and inverse estimates that we will need for our analysis.

Clément interpolation operator (see [46]).

Let I H : H 1 (Ω) →V 1(Ω,TH ) be the Clément interpolation operator. This is a linear operator

with the property that for all v ∈ H 1 (Ω) and K ∈TH∥∥v − I H v
∥∥

L2(K ) ≤C HK ‖∇v‖L2(N (K )) (6.3.1)

and ∥∥∇(
v − I H v

)∥∥
L2(K ) ≤C ‖∇v‖L2(N (K )) , (6.3.2)

where N (K ) is a neighborhood of K that consists of all elements of TH which have a non-

empty intersection with K .

Trace inequality (see [18, Thm. 3.10]).

Consider an element Ke of the triangulation TH with sides e ∈ EH . Then, for v ∈ H 1 (Ke ) we

have

‖v‖L2(e) ≤C H 1/2
e ‖∇v‖L2(Ke ) +C H−1/2

e ‖v‖L2(Ke ). (6.3.3)

Inverse inequality (see for example [44]).

For v H ∈V p (Ω,TH ) we have∥∥∇v H
∥∥

L2(K ) ≤C H−1
K

∥∥v H
∥∥

L2(K ) . (6.3.4)

Remark 40. The combination of the Clément interpolation estimates and the trace inequality

yields for an element Ke with side e ∈ EH

∥∥v − I H v
∥∥

L2(e) ≤C H 1/2
e

∥∥∇(
v − I H v

)∥∥
L2(Ke ) +C H−1/2

e

∥∥v − I H v
∥∥

L2(Ke )

≤C H 1/2
K ‖∇v‖L2(N (Ke )) .

(6.3.5)
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6.3.2 Error representation formula

The representation formula (6.3.7) in Lemma 42 is the central tool to derive our a posteriori

bounds, as it allows to link the bilinear form for the homogenized solution with the FE-HMM.

We first prove Lemma 41, needed to derive the representation formula.

Lemma 41. Let vh
K , wh

K be the solutions of (2.4.7) constrained by v H , w H ∈ V 1(Ω,TH ) with

boundary conditions given by (2.4.10) or (2.4.11). Then

1

|Kδ|
∫

Kδ

aε(x)∇vh
K ·∇wh

K d x = 1

|K |
∫

K
a0

K ∇v H ·∇w H d x.

Proof. The proof is similar to the proof of (A.1) in [14, App. A] or formula (63) in [6]. (For the

convenience of the reader we will recall it). While in the aforementioned results, a specific

structure of the tensor aε was used, we prove the result without any assumption on aε (except

for the positivity and ellipticity).

First, we notice that the (unique) solution of (2.4.7) can be written as

vh
K (x) = v H (x)+

d∑
i=1

ψi ,h
Kδ

(x)
∂v H (x)

∂xi
, (6.3.6)

where ψi ,h
Kδ

∈ S1 (Kδ,Th) , i = 1, ...,d are the solutions of (6.2.2).

From this we deduce

1

|Kδ|
∫

Kδ

aε (x)∇vh
K ·∇wh

K d x

= 1

|Kδ|
∫

Kδ

aε (x)∇vh
K ·∇

(
w H +

d∑
i=1

ψi ,h
Kδ

(x)
∂w H (x)

∂xi

)
d x

= 1

|Kδ|
∫

Kδ

aε (x)

(
∇v H

K +
d∑

i=1
ψi ,h

Kδ
(x)

∂v H (x)

∂xi

)
·∇w H d x,

where we used that ∂w H (x)
∂xi

is constant, ψi ,h
Kδ

∈ S1(Kδ,Th) and equation (2.4.7). Recalling the

definition (6.2.3) of a0
K we obtain

1

|Kδ|
∫

Kδ

aε (x)∇vh
K ·∇wh

K d x = 1

|Kδ|
∫

Kδ

aε (x)

(
I + J T

ψh
Kδ

(x)

)
d x

(∇v H ·∇w H )
=a0

K ∇v H ·∇w H = 1

|K |
∫

K
a0

K ∇v H ·∇w H d x,

where we used again that ∇v H and ∇w H are constant.

We define the error as eH := u0 −uH where u0 is the homogenized solution of (2.4.2) and

uH is the FE-HMM solution of problem (2.4.12). We shall now obtain an error representation

formula which is crucial for the derivation of the a posteriori bounds.
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Lemma 42 (Error representation formula). For all v ∈ H 1
0 (Ω), we have

B0(eH , v) =
∫
Ω

f vd x− ∑
e∈EH

∫
e
Jaε (x)∇uhKe vd s+ ∑

K∈TH

∫
K

(
a0

K −a0 (x)
)∇uH ·∇vd x (6.3.7)

where uH is the solution of (2.4.12) and uh
K are the corresponding micro solutions (2.4.7) and

where the multiscale jump Jaε (x)∇uhKe is defined in (6.2.1).

Proof. We proceed in two steps. First, we need the following formula

1

|Kδ|
∫

Kδ

aε (x)∇uh
K d x = a0

K ∇uH
K (6.3.8)

which is obtained by using the expansion (6.3.6) and similar arguments as used for the proof

of Lemma 41. Second, we prove that for all v ∈ H 1
0 (Ω) we have

∑
K∈TH

∫
K

a0
K ∇uH ·∇vd x = ∑

e∈EH

∫
e
Jaε (x)∇uhKe v d s. (6.3.9)

Integration by parts and the use of (6.3.8) gives

∑
K∈TH

∫
K

a0
K ∇uH ·∇v d x

= ∑
K∈TH

∫
∂K

(
a0

K ∇uH ) ·n v d s −
∫

K
∇· (a0

K ∇uH )
v d x︸ ︷︷ ︸

=0

= ∑
K∈TH

∫
∂K

(
1

|Kδ|
∫

Kδ

aε (x)∇uh
K d x

)
·n v d s

= ∑
e∈EH

∫
e

[(
1∣∣K +
δ

∣∣
∫

K +
δ

aε (x)∇uh
K + d x − 1∣∣K −

δ

∣∣
∫

K −
δ

aε (x)∇uh
K − d x

)
·ne

]
v d s

= ∑
e∈EH

∫
e
Jaε (x)∇uhKe v d s,

where we used the definition (6.2.1) of the multiscale flux. Finally, we obtain the error repre-

sentation formula

B0
(
eH , v

)=B0
(
u0, v

)−B0
(
uH , v

)
=

∫
Ω

f v d x − ∑
K∈TH

∫
K

a0 (x)∇uH ·∇v d x

=
∫
Ω

f v d x − ∑
e∈EH

∫
e
Jaε (x)∇uhKe v d s + ∑

K∈TH

∫
K

(
a0

K −a0 (x)
)∇uH ·∇v d x.
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6.3.3 Upper bound (Proof of Theorem 33)

To proceed with the proof of Theorem 33, we consider the error representation formula (6.3.7)

and choose the test function v := eH . We recall that I H denotes the Clément interpolation

operator (see (6.3.1),(6.3.2)) and f H denotes a piecewise constant approximation of f over

TH . By noting that

B
(
uH , I H eH )= ∑

K∈TH

∫
K

f
(
I H eH )

d x,

we obtain

B0
(
eH ,eH )

=
∫
Ω

f eH d x − ∑
e∈EH

∫
e
Jaε (x)∇uhKe eH d s + ∑

K∈TH

∫
K

(
a0

K −a0 (x)
)∇uH ·∇eH d x

=
∫
Ω

f eH d x − ∑
e∈EH

∫
e
Jaε (x)∇uhKe eH d s + ∑

K∈TH

∫
K

(
a0

K −a0 (x)
)∇uH ·∇eH d x

+B
(
uH , I H eH )− ∑

K∈TH

∫
K

f
(
I H eH )

d x

=
∫
Ω

f H (
eH − I H eH )

d x +
∫
Ω

(
f − f H )(

eH − I H eH )
d x

− ∑
e∈EH

∫
e
Jaε (x)∇uhKe

(
eH − I H eH )

d s + ∑
K∈TH

∫
K

(
a0

K −a0 (x)
)∇uH ·∇eH d x.

We define φH := eH − I H eH . Using the Cauchy-Schwarz inequality we obtain the following

estimate

B0
(
eH ,eH )≤C

( ∑
K∈TH

∥∥ f H
∥∥

L2(K )

∥∥φH
∥∥

L2(K ) +
∑

K∈TH

∥∥ f − f H
∥∥

L2(K )

∥∥φH
∥∥

L2(K )

+ ∑
e∈EH

∥∥∥Jaε (x)∇uhKe

∥∥∥
L2(e)

∥∥φH
∥∥

L2(e)

+ ∑
K∈TH

∥∥(
a0

K −a0 (x)
)∇uH

∥∥
L2(K )

∥∥∇eH
∥∥

L2(K )

)
.

With the help of the Clément interpolation estimates (6.3.1) and (6.3.5) we deduce that

B0
(
eH ,eH )

≤C

( ∑
K∈TH

HK
∥∥ f H

∥∥
L2(K )

∥∥∇eH
∥∥

L2(N (K )) +
∑

K∈TH

HK
∥∥ f − f H

∥∥
L2(K )

∥∥∇eH
∥∥

L2(N (K ))

+ ∑
e∈EH

H 1/2
e

∥∥∥Jaε (x)∇uhKe

∥∥∥
L2(e)

∥∥∇eH
∥∥

L2(N (Ke ))

+ ∑
K∈TH

∥∥(
a0

K −a0 (x)
)∇uH

∥∥
L2(K )

∥∥∇eH
∥∥

L2(K )

)
.
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The finite overlapping property of the neighborhoods N (K ) allows us to estimate∑
K∈TH

∥∥∇eH
∥∥2

L2(N (K )) ≤C
∑

K∈TH

∥∥∇eH
∥∥2

L2(K ) ,

where C depends only on the shape regularity of the triangulation and the dimension d . Using

the coercivity of B0(·, ·) and the triangle inequality yields

∥∥∇eH
∥∥2

L2(Ω) ≤C

( ∑
K∈TH

H 2
K

∥∥ f H
∥∥2

L2(K ) +
∑

e∈EH

He

∥∥∥Jaε (x)∇uhKe

∥∥∥2

L2(e)

+ ∑
K∈TH

H 2
K

∥∥ f − f H
∥∥2

L2(K ) +
∑

K∈TH

∥∥(
a0

K −a0 (x)
)∇uH

∥∥2
L2(K )

)
.

Using Poincaré inequality leads to∥∥u0 −uH
∥∥2

H 1(Ω) ≤C
(
ηH (Ω)2 +ξH (Ω)2)

as stated in Theorem 33.

6.3.4 Lower bound (Proof of Theorem 34)

To derive the lower bound, we will use a construction involving bubble functions in a space

Ṽ 1
H ⊃V 1

H which is defined over a refinement T̃H of TH . We assume that the refinement Ṽ 1
H is

chosen such that every K ∈TH has an interior node x̃K ∈ K \∂K in T̃H and every edge e of TH

not on the boundary ∂Ω has an interior node in T̃H . We emphasize once again that the use of

the representation formula (6.3.7) allows largely to follow the classical construction of [113].

In what follows we estimate successively interior and jump residuals.

6.3.4.1 Interior residual

For any K ∈ TH consider an interior bubble function, i.e., a function ψK ∈ Ṽ 1
H such that

0 ≤ψK ≤ 1, ψK (x̃K ) = 1 and ψK ≡ 0 onΩ\K .

We choose v :=ψK f H ∈ H 1
0 (Ω) as a test function in the error representation formula (6.3.7)

and obtain

∫
K

f H (
ψK f H )

d x =B0(eH ,ψK f H )−
∫

K

(
f − f H )

ψK f H d x

−
∫

K

(
a0

K −a0 (x)
)∇uH ·∇(

ψK f H )
d x.

Using the equivalence of norms on a finite-dimensional space we have (see [20, Theorem 2.2]

for details)

C
∥∥ f H

∥∥2
L2(K ) ≤

∫
K

f H (
ψK f H )

d x.

Furthermore, the continuity of B0 (·, ·) , the Cauchy-Schwarz inequality and the inverse in-
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equality (6.3.4) give∥∥ f H
∥∥2

L2(K ) ≤C
(∥∥∇eH

∥∥
L2(K )

∥∥∇(
ψK f H )∥∥

L2(K ) +
∥∥ f − f H

∥∥
L2(K )

∥∥ψK f H
∥∥

L2(K )

+∥∥(
a0

K −a0 (x)
)∇uH

∥∥
L2(K )

∥∥∇(
ψK f H )∥∥

L2(K )

)
≤C

(
H−1

K

∥∥∇eH
∥∥

L2(K ) +
∥∥ f − f H

∥∥
L2(K )

+H−1
K

∥∥(
a0

K −a0 (x)
)∇uH

∥∥
L2(K )

)∥∥ψK f H
∥∥

L2(K ) .

Finally, since 0 ≤ψK ≤ 1 we have
∥∥ψK f H

∥∥
L2(K ) ≤

∥∥ f H
∥∥

L2(K ) and we obtain the interior residual

H 2
K

∥∥ f H
∥∥2

L2(K ) ≤C
(∥∥∇eH

∥∥2
L2(K ) +H 2

K

∥∥ f − f H
∥∥2

L2(K )

+∥∥(
a0

K −a0 (x)
)∇uH

∥∥2
L2(K )

)
.

(6.3.10)

6.3.4.2 Jump residual

Let e ∈ EH be an interior interface and let K1 ∈ TH and K2 ∈ TH be such that K1 ∩K2 = e.

Furthermore, let xe ∈ e be an interior node andψe ∈ Ṽ 1
H a bubble function such thatψe (xe ) = 1

and ψe ≡ 0 on Ω\(K1 ∪K2). Using again the equivalence of norms on a finite-dimensional

space we have∫
e
ψe d s ≥C |e| ≥C H d−1

e ,

where |e| denotes the measure of e and where the constant C depends only on the shape

regularity and the dimension d . As the multiscale jump Jaε (x)∇uhKe is constant, we have

∫
e
Jaε (x)∇uhKe ψe d s = Jaε (x)∇uhKe

∫
e
ψe d s

≥C |e|−1/2
∥∥∥Jaε (x)∇uhKe

∥∥∥
L2(e)

H d−1
e

≥C H
d−1

2
e

∥∥∥Jaε (x)∇uhKe

∥∥∥
L2(e)

. (6.3.11)

Next, we set v =ψe in the representation formula (6.3.7) (recall that v ≡ 0 on Ω\(K1 ∪K2)) and

obtain∫
e
Jaε (x)∇uhKeψe d s = ∑

K1,K2

(∫
Ki

f ψe d x −
∫

Ki

a0 (x)∇eH ·∇ψe d x

+
∫

Ki

(
a0

Ki
−a0(x)

)
∇uH ·∇ψe d x

)
≤C

∑
K1,K2

(
HKi

∥∥ f H
∥∥

L2(Ki ) +
∥∥∇eH

∥∥
L2(Ki ) +HKi

∥∥ f − f H
∥∥

L2(Ki )

+
∥∥∥(

a0
Ki

−a0 (x)
)
∇uH

∥∥∥
L2(Ki )

)
H−1

Ki

∥∥ψe
∥∥

L2(Ki ) ,
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where we used
∥∥∇ψe

∥∥
L2(K ) ≤ C H−1

K

∥∥ψe
∥∥

L2(K ) ≤ C (HK )
d−2

2 , which follows from the inverse

inequality (6.3.4). The inequality (6.3.11) and the above estimate for
∥∥ψe

∥∥
L2(K ) yield

He

∥∥∥Jaε (x)∇uhKe

∥∥∥2

L2(e)
≤C

∑
K1,K2

(
H 2

Ki

∥∥ f H
∥∥2

L2(Ki ) +
∥∥∇eH

∥∥2
L2(Ki )

+H 2
Ki

∥∥ f − f H
∥∥2

L2(Ki ) +
∥∥∥(

a0
Ki

−a0 (x)
)
∇uH

∥∥∥2

L2(Ki )

)
. (6.3.12)

6.3.4.3 Combining interior and jump residuals

We use the interior residual (6.3.10) to eliminate
∥∥ f H

∥∥
L2(K ) from the jump residual

He

∥∥∥Jaε (x)∇uhKe

∥∥∥2

L2(e)
≤C

(∥∥∇eH
∥∥2

L2(ωe ) +H 2
ωe

∥∥ f − f H
∥∥2

L2(ωe )

+∥∥(
a0

K −a0 (x)
)∇uH

∥∥2
L2(ωe )

)
, (6.3.13)

where Hωe = maxi=1,2 Hi and ωe = K1 ∪K2. Adding the interior residual (6.3.10) to (6.3.13)

leads to the desired lower bound

ηH (K )2 ≤C
(∥∥u0 −uH

∥∥2
H 1(ωK ) +ξH (ωK )2

)
as stated in Theorem 34.

6.3.5 Data approximation

So far, to derive our a posteriori upper and lower bound, we did not make any specific spatial

assumption on the oscillating tensor (e.g., periodicity, random stationarity in the fast variable).

In addition, the sampling domain size as well as boundary conditions of the micro solution

for the HMM were quite general. We notice that upper and lower bounds involve the data

approximation term

ξH (K )2 := H 2
K

∥∥ f H − f
∥∥2

L2(K ) +
∥∥(

a0
K −a0 (x)

)∇uH
∥∥2

L2(K ) .

The first term of the right-hand side of this equality involves the usual data approximation term.

The second term quantifies the accuracy of the macro-micro algorithm and it depends on the

macro and micro meshes of the macro and micro FEMs, on the structure of the oscillating

tensor aε and on the coupling condition between micro and macro solver. We first notice that∥∥(
a0

K −a0 (x)
)∇uH

∥∥2
L2(K ) ≤ sup

x∈K
‖a0

K −a0(x)‖2
F

∥∥∇uH
∥∥2

L2(K ) ,

where we recall that for a given tensor ‖ ·‖F denotes its Frobenius norm. Let us then introduce

the following tensor

ā0
K = 1

|Kδ|
∫

Kδ

aε(x)
(
I + J T

ψK (x)

)
d x, (6.3.14)
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where JψK (x) is a d ×d matrix with entries
(

JψK (x)
)

i j = (∂ψi
K )/(∂x j ). This tensor is computed

similarly to the tensor a0
K in (6.2.3) but with functionsψi

K (x) solving (6.2.2) in the exact Sobolev

space W (Kδ) instead of its FE approximation S1(Kδ,Th). We then consider the following

decomposition

‖a0
K −a0‖F ≤ ‖a0 −a0(xK )‖F︸ ︷︷ ︸

er rmac

+‖a0(xK )− ā0
K ‖F︸ ︷︷ ︸

er rmod

+‖ā0
K −a0

K ‖F︸ ︷︷ ︸
er rmi c

, (6.3.15)

where xK ∈ K is the quadrature node located at its barycenter. In the above equation, er rmac

and er rmi c stands for macroscopic and microscopic error, respectively. The analysis of the

macroscopic and microscopic errors relies on regularity assumptions on the homogenized and

fine scale tensors. This will be analyzed in Section 6.3.5.1. The term denoted by er rmod (the

modeling error) needs additional assumptions on the structure of aε in order to be quantified

(e.g., periodicity and random stationarity). This part does not depend on the discretization

parameters. As it does not depend on the specific form of the numerical method, previously

derived results can be used to analyze this contribution to the error. We will examine in Section

6.3.5.2 the case of a non-uniformly periodic tensor and comment on the case of a random

tensor.

Regularity assumptions. For the oscillating tensor aε we assume

aε|K ∈W 1,∞(K ), ∀K ∈TH and |aεi j |W 1,∞(K ) ≤CK ε
−1 for i , j = 1, . . .d . (6.3.16)

In the analysis we will often use a constant C = maxK CK independent of K . It is clear that if

(6.3.16) is valid for an initial mesh, assumed to be aligned with the possible discontinuities of

aε, it is still valid (with the same value of C ) for every mesh obtained by refining the initial one.

In view of (6.3.16) we see that aε is allowed to be discontinuous in different macro elements

but we assume that the macro mesh (i.e., the interface between two neighboring elements) is

aligned with these discontinuities. For the homogenized tensor we assume

a0
i j are Lipschitz continuous in K for any K ∈TH . (6.3.17)

Remark 43. Without further knowledge about the structure of the oscillating tensor aε, we

will impose Dirichlet boundary conditions for (2.4.7) (or (6.2.3)). Assuming (6.3.16) one can

show |ψi
K |H 2(Kδ) ≤C ε−1

√|Kδ|, with C independent of ε, of the quadrature points xK and the

domain Kδ (this follows from classical H 2 regularity results, see for example [72, Chap. 2.6]).

If aε = a(x, x/ε) = a(x, y) is Y -periodic in y and δ/ε ∈N, then assuming (6.3.16), δ/ε ∈N and

periodic boundary condition for (2.4.7) (or (6.2.3)) one can show |ψi
K |H 2(Kδ) ≤C ε−1

√|Kδ| (this

follows from classical regularity results for solutions of periodic boundary value problems (see

[34, Chap. 3]). Notice that in the periodic case, for more regular tensors aε(x), one can obtain

higher order estimates |ψi
K |H q+1(Kδ) ≤C ε−q

√|Kδ|, q ∈N (see [9]).
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6.3.5.1 Micro and macro data approximation (Proof of Theorem 35)

We start with the macro error. Assuming (6.3.17) directly gives the following estimate

sup
x∈K

‖a0(x)−a0(xK )‖F ≤C HK , (6.3.18)

where C only depends on the dimension d and the Lipschitz constant. For the micro error,

we follow the ideas of [2]. In the precise form of (6.3.19), the micro error estimate has been

proved in [7]. Assuming that (2.1.2) and (6.3.16) hold, we have

‖ā0
K −a0

K ‖F ≤C

(
h

ε

)2

, (6.3.19)

where C depends only on the constant in (6.3.16) and the bound (2.1.2). Combining (2.1.2),

(6.3.18) and (2.4.9) we obtain

sup
x∈K

‖a0(x)−a0
K ‖F ≤C

(
HK +

(
h

ε

)2

+er rmod

)
, (6.3.20)

where C only depends on the coercivity and continuity bound (2.1.2), the dimension d , the

Lipschitz constant (6.3.16) and where emod is independent of the discretization parameter of

the micro and macro FE spaces.

Remark 44 (Micro mesh refinement). From the estimates (6.3.18) and (6.3.19), we obtain the

criterion for the micro mesh refinement used in Algorithm 37 in Section 6.2.

6.3.5.2 Modeling error

In this Section we discuss the error term ‖a0(xK )− ā0
K ‖F in (6.3.15). Additional assumption

on the spatial structure of the oscillating tensor aε is required in order to give convergence

rates for the modeling error. We will consider the case of non-uniformly periodic tensor and

assume

aε = a(x, x/ε) = a(x, y) Y -periodic in y, (6.3.21)

where for simplicity we set Y = (0,1)d . We will sometimes refer to the variables x and y as

slow and fast variables, respectively. Other tensors aε could be considered. For example,

following the results in [53] we could also consider an appropriate random field aε = a(ω, y)

(with invariant statistics under integer shifts). The modeling error estimates from [36] or

[53, Theorem 2.1] could be used directly to estimate ‖a0(xK )− ā0
K ‖F . We thus see that our a

posteriori error analysis applies to a variety of tensors and is not restricted to the periodic case.

In the periodic case, the homogenized tensor a0 can be computed explicitly (see e.g., [32]).

For xK ∈ K it reads

a0
i j (xK ) =

∫
Y

ai j (xK , y)+
d∑

k=1
ai k (xK , y)

∂χ j (xK , y)

∂yk
d y, i , j = 1, . . . ,d , (6.3.22)
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where the functions χ j (·, y) are solution of the cell-problem∫
Y

a(xK , y)∇χ j (xK , y) ·∇zd y =−
∫

Y

(
a(xK , y)e j

) ·∇zd y, ∀z ∈W 1
per (Y ), (6.3.23)

where e j is the j -th basis vector of Rd . We will consider separately the coupling conditions

(periodic and Dirichlet) for the micro FE space. To analyze the modeling error, we can use

results obtained for the FE-HMM in [53, 2, 14, 6].

Periodic micro boundary conditions.

We assume that S1(Kδ,Th) ⊂W 1
per (Kδ). In this case we assume that δ/ε ∈N∗, i.e., the sampling

domains cover an integer number of the exact period of the tensor a(·, x/ε). We then can

derive the following error estimates (see [7, Lemma 5.2]). Assume that (6.3.21) and (6.3.16)

hold. Then

‖a0(xK )− ā0
K ‖F ≤Cδ (6.3.24)

for the modeling error, where C is independent of H ,h, and ε. If the decomposition in fast and

slow variable of the tensor a(x, x/ε) is explicitly known, we can slightly modify the FE-HMM

macro bilinear form (2.4.6) and micro problems (2.4.7) by replacing aε with a(xK , x/ε). In this

case, performing a similar modification of the tensor aε of (6.2.3),(6.3.14), one can show that

the modeling error vanishes (see [7, Lemma 5.2] for details)

‖a0(xK )− ā0
K ‖F = 0. (6.3.25)

Dirichlet micro boundary conditions.

In the case where the exact period is not known but an estimation of the size of the periodicity

is available, the idea is to embed the periodic sampling domain Kε in a larger cube Kδ with

δ> ε. Here we do not assume that δ/ε ∈N. Artificial boundary conditions are chosen for the

micro solver. Various conditions are possible and we assume S1(Kδ,Th) ⊂ H 1
0 (Kδ) , see (2.4.9).

Assume that (6.3.21) and (6.3.16) hold. Then

‖a0(xK )− ā0
K ‖F ≤C

(
δ+ ε

δ

)
, (6.3.26)

where C only depends on the domain Ω and the bound (2.1.2). This estimate can be obtained

following the line of the proof of [53, Thm. 3.2].

6.4 Numerical experiments
We present in this section a series of numerical experiments which verify the sharpness of the

theoretical a posteriori estimates and confirm that our adaptive scheme is both efficient (i.e.,

the mesh is near optimal) and effective, i.e., the solution is reliable.

We will present various elliptic problems with a two-scale, quasi 1D tensor on a square

domain (Section 6.4.1), a crack problem with a highly oscillating 2D tensor and a random

tensor (Section 6.4.2), and finally an L-shaped problem with a highly oscillating 2D tensor
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(Section 6.4.3).

We emphasize that the oscillating tensor of the various problems (with the exception of

the random one) are chosen such that an analytical solution of the homogenized problem is

available. As various contributions to the error arise in our a posteriori estimator (due to the

multiscale nature of the numerical scheme), avoiding to use a refined FEM reference solution

allows to assess accurately the quality of our estimator. Of course, in practice our theory

and method apply to general tensors for which there is no need to derive an analytic tensor

beforehand. This is further illustrated with the random tensor problem.

Notation. We will use the following notation for various quantities measured in our numeri-

cal experiments.

• #el , number of macro elements for the specific mesh. It reflects the number of degrees

of freedom.

• EOC
(
eH

)
, experimental order of convergence.

EOC := d
log

(
eH

k−1/eH
k

)
log(#el (k)/#el (k −1))

,

where eH
k refers to the error

∥∥u0 −uH
k

∥∥
H 1(Ω)

in the kth refinement step and d is the

physical dimension of the problem (the scaling with d allows to get a convergence rate

independent of the dimension).

• EOC
(
η
)
, experimental order of convergence of the indicator ηH (Ω).

EOC
(
η
)

:= d
log

(
ηk−1

H /ηk
H

)
log(#el (k)/#el (k −1))

,

where ηk
H refers to the indicator in the kth refinement step and d is the physical dimen-

sion of the problem.

• Ze , the reduction factor Ze := eH
k

eH
k−1

of the error.

• Eff, the effectivity index Eff := ηk
H

eH
k

allows an estimate to the upper bound constant C .

Furthermore we denote by ĥ := (Nmi c )−(1/d) the scaled (i.e., independent of ε) micro mesh

size, where Nmi c denotes the degrees of freedom of the micro problem on Kδ and d is the

spatial dimension. Notice that h/ε=C ĥ, where C = δ/ε is usually of moderate size.

The numerical experiments were performed using the FE-HMM code presented in [11]

and the implementation of the mark and refine steps are based in part on the AFEM@Matlab

code (see [43]).

Remark 45. In most of the following experiments, as we refine the mesh, we reach the point

when HK < δ for some elements K ∈TH , i.e., the macro element K is smaller than the sampling

domain. Refining beyond this point is not computationally efficient and one should switch to
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Figure 6.4.1: Errors and error estimate in the H 1-norm for the highly oscillatory problem described in
section 6.4.1.

the fine scale solver for the whole (macro) triangle K . A precise study and analysis for such a

modified algorithm will be presented elsewhere. We notice here that in the case of periodic

coefficients taking a sampling domain larger than some macro elements still makes sense and

allows us to check the efficiency and reliability of our estimates.

6.4.1 Uniform refinement test

We consider the quasi-1D problem taken from [92],

−∇· (aε (x)∇uε
)= −1 in Ω := (0,1)2

uε = 0 on ΓD := {0}× (0,1)∪ {1}× (0,1)

aε (x)∇uε = 0 on ΓN := ∂Ω\ΓD ,

where aε (x) = a
(
x, x

ε

)= 2
3 (1+x1)

(
1+cos2

(
2π x1

ε

)) · I2 and I2 is the unit matrix. The exact ho-

mogenized solution is given by u0 (x) = 3
2
p

2

(
x1 − log(x1+1)

log(2)

)
. We choose ε= δ= 10−5.

As no singularity appears in the domain, we uniformly refine the macro triangles in every

iteration step and compare the error to the indicator ηH (Ω). Parallel to the macro refinement,

we refine the micro mesh according to Remark 36. The initial mesh for the micro FE spaces is

chosen as ĥ = 1
8 .

We show in Figure 6.4.1 that the error in the H 1 norm and the indicator ηH (Ω) both

converge to zero with rate O (H) and thus match the prediction obtained by the a priori and a

posteriori estimates, respectively.

Finally, we indicate the effect of inappropriate macro-micro coupling by plotting the errors

obtained with the same adaptive strategy, but computing the micro solutions on a micro mesh

of fixed size ĥ = 1
8 . It can be seen that the correct asymptotic convergence rate is not achieved.

Thus an appropriate simultaneous mesh refinement is crucial.
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In Table 6.4.1 we list various quantities (explained in detail at the beginning of this section)

illustrating the quality of the refinement procedure.

The experimental order of convergence for both the error as well as the indicator confirm

the theoretical linear convergence. The ratio Eff between them remains nearly constant, which

confirms that our (here uniform) refinement is both effective and efficient; it furthermore gives

an estimate for the effectivity index, the constant in the upper bound of Theorem 33. As the

unspecific constant depends on e.g. the Clément interpolation estimates and the coercivity

and continuity of the tensor, it is difficult to estimate, and may even be larger in more complex

problems.

H
∥∥u0 −uH

∥∥
H 1(Ω) ηH (Ω) EOC

(
eH

)
EOC

(
ηH

)
Eff := ηH

eH

2−2 3.44e-02 3.54e-01
2−3 1.31e-02 1.76e-01 1.40 1.00 13.51
2−4 6.33e-03 9.04e-02 1.04 0.97 14.29
2−5 3.11e-03 4.57e-02 1.03 0.98 14.71
2−6 1.54e-03 2.30e-02 1.01 0.99 14.93
2−7 7.65e-04 1.15e-02 1.01 1.00 15.15
2−8 3.82e-04 5.77e-03 1.00 1.00 15.15

Table 6.4.1: Grid size H , H 1-error, error indicator, experimental order of convergence for the error and
the error indicator and the effectivity of the problem described in Section 6.4.1.

6.4.2 Crack problem

In our next experiment we consider a crack problem based on [82, Example 5.2] that ex-

hibits a singularity in the macro domain. But unlike Example 5.2 of [82], we use here a

two-dimensional, highly oscillating conductivity tensor. We consider the following problem

−∇· (aε (x)∇uε
)= 1 inΩ

uε = gD on ΓD = ∂Ω

on a domain Ω = {|x1|+ |x2| < 1}\{0 ≤ x1 ≤ 1, x2 = 0} with a crack along the positive x1-axis

(see Figure 6.4.2). We use the tensor

a
( x

ε

)
= 64

9
p

17

(
sin

(
2π

x1

ε

)
+ 9

8

)(
cos

(
2π

x2

ε

)
+ 9

8

)
· I2,

where we chose the coefficients of the tensor in such a way that the homogenized tensor

coincides with the unit tensor I2 (see [70, Chap. 1.2]). The Dirichlet boundary conditions

gD = u0 match the exact homogenized solution u0 of the problem which is given (in polar

coordinates) by

u0 (r,ϑ) = r
1
2 sin

ϑ

2
− 1

4
r 2,
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Figure 6.4.2: FE-HMM solution and mesh after 10 iterations for the crack-problem described in Section
6.4.2.

where x1 = r cos(ϑ), x2 = r sin(ϑ). We emphasize that we use an analytically homogenizable

tensor only to be able to compare our solution to the exact solution. Any other oscillating

tensor could be used (see Section 6.4.2.2 for an experiment using a random tensor).

A solution of the problem is shown in Figure 6.4.2.

We choose ε= δ= 10−3 and periodic micro boundary conditions. This time, we use our

adaptive strategy to refine the mesh and select a total of 23 refinement steps (Dörfler’s bulk-

chasing strategy is used for marking, with a parameter of θ = 0.3, see [113, Chap. 4.1] or Section

5.4). We again use the relation ĥK =p
HK for our micro refinement strategy (see Algorithm 37)

with an initial mesh of ĥK = 1
8 .

In Figure 6.4.3 we show the errors in the H 1 norm. The rate of convergence of the error

and the error indicator confirms the theoretical rate of O
(
N−1/d

mac

)
, where Nmac denotes the

macro degrees of freedom. We again plot the error obtained by using the same adaptive strat-

egy without refining the micro mesh (fixed to ĥ = 1
8 ). As expected, the obtained asymptotic

convergence rate is incorrect.

Finally, we provide a comparison with a uniformly refined FE-HMM starting from the

same initial mesh. Obviously, the order of convergence is significantly lower than what can be

obtained using adaptive methods. In order to get an accuracy of e.g.,
∥∥u0 −uH

∥∥
H 1(Ω) ≈ 0.07

we need 16,384 macro elements in the fourth iteration of the uniformly refined FE-HMM,

whereas only 796 macro elements are used in the 10th iteration of the adaptive FE-HMM. In

order to reach an accuracy of O
(
10−2

)
, approximatively O

(
108

)
DOF would be needed for the

uniform scheme.

For uniform refinement, micro solutions in the sampling domain of every triangle of the

macro mesh have to be refined and recomputed at each step. In contrast, for the adaptive
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Figure 6.4.3: Errors and error estimate in the H 1-norm for the crack problem described in Section
6.4.2.

ĥ 1/8 1/16 1/24 1/32 1/40 1/48

adaptive FE-HMM, 10th iteration 278 218 60 24 28 40
uniform FE-HMM, 4th iteration - - - 16384 - -

Table 6.4.2: Amount of micro problems with various ĥ (due to refinement) to be solved for the specific
iteration in which we reach the accuracy

∥∥eH
∥∥

H 1(Ω) ≤ 0.07 in the Crack problem described in Section
6.4.2.

FE-HMM this needs only to be done for the macro triangles marked for refinement. In Table

6.4.2 we list the number of micro problems with a mesh size (complexity) of ĥ that need to be

solved in the specific iteration when we reach an accuracy of
∥∥eH

∥∥
H 1(Ω) ≤ 0.07 for the adaptive

and uniform refinement, respectively. Looking at the first line of Table 6.4.2, we see that with

an adaptive scheme, the sampling domains of most of the macro elements need a micro mesh

with a relative coarse resolution. This is in sharp contrast with a uniformly refined mesh,

where all the sampling domains need to be solved with the same (fine) resolution.

As mentioned in Section 6.2.1, in an efficient implementation, one should store the con-

tributions of the micro problems and the corresponding multiscale flux in every iteration

and re-use these results for those elements which are not marked to be refined. In this way,

the computational cost per iteration can be dramatically reduced, as only a fraction of the

elements is refined at each iteration. For the Crack problem and the adaptive FE-HMM, we

start with 256 micro problems with a micro mesh size chosen as ĥ = 1
8 in the first iteration.

Four elements are refined into 8 elements, which require the solution of eight new micro

problems with a micro mesh size ĥ = 1
8 (we round to get ĥ = 1

n·8 , n ∈N∗). On the other hand,

the solutions of the 252 other micro problems will be re-used in the next iteration. After the

second iteration, those 8 elements are yet again refined and we need to solve 16 new micro

problems with micro mesh size ĥ = 1
16 and re-use all of the 252 solutions of the micro problems

with micro mesh size ĥ = 1
8 . Summing over the 10 iterations, we only need to compute 436
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ĥ 1/8 1/16 1/24 1/32 1/40 1/48

adaptive FE-HMM, total cost 436 360 108 48 48 40
uniform FE-HMM, total cost 256 1024 4096 16384 - -

Table 6.4.3: Total amount of micro problems with various ĥ (due to refinement) to be solved to achieve
an accuracy of

∥∥eH
∥∥

H 1(Ω) ≤ 0.07 in the Crack problem described in Section 6.4.2. (here we take into
account all the iterations needed to reach the prescribed accuracy).

different micro problems of micro mesh size ĥ = 1
8 . In Table 6.4.3 we list the total amount of

different micro problems (with different micro mesh) to be solved. For the uniform refinement,

every triangle is divided into four new triangles, thus no information can be carried over from

one iteration to the other.

In Table 6.4.4 we list various quantities illustrating the quality of the refinement procedure.

It reveals that the error indicator converges with the same rate as the error itself. This is

confirmed by the effectivity index which remains nearly constant over the iterations, showing

that our adaptive refinement strategy is both effective and efficient.

In Table 6.4.5 we show the error and the experimental order of convergence when using a

uniform refinement strategy. A comparison between Table 6.4.4 and 6.4.5 shows that a desired

given accuracy of the numerical solution can be obtained with a much lower computational

cost using an adaptive method (compare e.g., the number of elements needed to reach a

certain accuracy).

6.4.2.1 Sampling domain size

We consider the crack problem in the situation when the size δ of the sampling domain is

not an integer multiple of ε. This situation might even arise for periodic problems when the

exact size of the period is not known. We select Dirichlet boundary conditions in the micro

problems and so estimates (6.3.26) apply.

We choose the same initial mesh size h for four different sampling domain sizes δ1 = 4
3ε,

δ2 = 5
3ε, δ3 = 11

3 ε and δ4 = 17
3 ε (i.e., ĥ differs), where ε= 10−5. According to (6.3.26) one should

take δ∝p
ε (of course the value of δ is unknown if ε is unknown. Furthermore, taking δ=p

ε

can be computationally too expensive). We verify here that increasing the sampling domain

size δ does reduce the modeling error er rmod and hence improves the convergence rates. This

is illustrated in Figure 6.4.4.

6.4.2.2 Random tensor

Many problems of interest are not periodic. As mentioned earlier, our adaptive algorithm

does not rely on periodic problems (although the relation between micro and macro mesh

does). To illustrate the versatility of the method, we test the behavior of the adaptive FE-HMM

on the crack problem in Section 6.4.2 with a random tensor. This tensor is a log-normal

114



6.4 Numerical experiments

iteration #el
∥∥u0 −uH

∥∥
H 1(Ω) ηH (Ω) EOC

(
eH

)
EOC

(
ηH

)
Ze Eff

1 256 1.92e-01 1.22e+00 6.33
2 260 1.73e-01 9.41e-01 13.696 33.123 0.899 5.43
3 268 1.52e-01 8.31e-01 8.715 8.255 0.876 5.49
4 284 1.24e-01 7.58e-01 6.844 3.167 0.820 6.10
5 298 1.16e-01 7.19e-01 2.960 2.170 0.931 6.21
6 329 1.02e-01 6.43e-01 2.584 2.255 0.880 6.33
7 370 9.09e-02 5.90e-01 1.934 1.485 0.893 6.49
8 432 8.12e-02 5.23e-01 1.459 1.543 0.893 6.45
9 522 7.15e-02 4.74e-01 1.340 1.036 0.881 6.62

10 648 6.41e-02 4.23e-01 1.010 1.055 0.897 6.58
11 830 5.58e-02 3.74e-01 1.125 1.005 0.870 6.71
12 1040 5.13e-02 3.36e-01 0.746 0.940 0.919 6.54
13 1326 4.50e-02 3.00e-01 1.082 0.948 0.877 6.67
14 1670 4.05e-02 2.68e-01 0.896 0.964 0.902 6.62
15 2138 3.52e-02 2.36e-01 1.136 1.019 0.869 6.71
16 2738 3.08e-02 2.08e-01 1.085 1.022 0.874 6.76
17 3614 2.69e-02 1.82e-01 0.988 0.965 0.872 6.76
18 4782 2.34e-02 1.59e-01 0.989 0.970 0.871 6.80
19 6268 2.03e-02 1.39e-01 1.057 1.010 0.867 6.85
20 8310 1.78e-02 1.21e-01 0.940 0.961 0.876 6.80
21 10948 1.55e-02 1.06e-01 1.009 0.998 0.870 6.85
22 14534 1.32e-02 9.11e-02 1.114 1.036 0.854 6.90
23 19360 1.14e-02 7.89e-02 1.031 1.010 0.863 6.94

Table 6.4.4: Iteration number, number of macro elements, H 1-error, error indicator, experimental
order of convergence for the error and the error indicator, reduction factor and effectivity index for the
crack problem described in Section 6.4.2.

iteration 1 2 3 4

#el 256 1024 4096 16384∥∥u0 −uH
∥∥

H 1(Ω) 1.92e-01 1.36e-01 9.67e-02 6.85e-02

EOC
(
eH

)
0.496 0.495 0.497

Table 6.4.5: Iteration number, number of macro elements and experimental order of convergence of
the H 1 error for the crack problem described in Section 6.4.2 when using uniform refinement instead
of an adaptive strategy.
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Figure 6.4.4: Errors and error estimate in the H 1-norm for the crack problem with δ 6= ε described in
Section 6.4.2.1. We see that despite a further refinement of the macro and micro mesh, the error in
the H 1-norm stagnates due to the dominating modeling error er rmod (see Section 2.4.1 and (2.4.15)).
We further see that increasing the sampling domain size δ decreases er rmod and therefore we obtain a
lower overall error

∥∥u0 −uH
∥∥

H 1(Ω).

stochastic field generated by the moving ellipse average method (see [115, Section 4.1]). The

numerically generated values of the tensor are given at 90002 discrete points and we use

bilinear interpolation to obtain a smooth representation of aε (x).

We set the correlation lengths of the stochastic field to εx1 = 0.0045 and εx2 = 0.0065 and

choose the mean equal to be 1 and variance to be σ= 0.25. A snapshot of this tensor is shown

in Figure 6.4.5.

As no analytical solution exists, we use the error eH between a finescale solution com-

puted using a highly resolved standard adaptive FEM with 107 DOF, which acts as a refer-

ence solution, and the FE-HMM solution. We denote by PH uH
F E M the L2-projection of the

resolved FEM solution uH
F E M onto the FE-space V 1

(
Ω,TH ,F E−H M M

)
, where TH ,F E−H M M de-

notes the mesh obtained in the adaptive algorithm for the FE-HMM. We define the error as

eH := ∥∥PH uH
F E M −uH

F E−H M M

∥∥
H 1(Ω).

We choose an initial micro mesh size ĥ = 1
8 and sampling domains of size δ1 = 0.005,

δ2 = 0.010, δ3 = 0.020 and δ4 = 0.040 (we keep h fixed when increasing the sampling domain

size). In Figure 6.4.6 we see that the indicator and the error follow the expected (optimal)

convergence rate. Furthermore, increasing the sampling domain size reduces the modeling

error and thus leads to a more accurate solution.

Remark 46. For H < ε, there is less than a period of the fine scale solution that is averaged

(by the L2-projection) on each macro element of the mesh TH ,F E−H M M and as H → 0 the

L2-projection restores the behavior of the fine scale solution whose gradient has an O (1)

discrepancy with the solution obtained by the FE-HMM (see Section 2.4.1 and recall e.g.,

Remark 45).
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(a) Snapshot of random conductivity tensor. (b) Zoom into snapshot of random conductivity ten-
sor.

Figure 6.4.5: Snapshot of the random conductivity tensor used in the crack problem described in
Section 6.4.2.2.

6.4.3 L-shape problem

In our final example we consider a non-convex L-shape domain with two different conductivity

tensors. We consider the following problem

−∇· (aε (x)∇uε
)= 1 inΩ,

uε = gD on ΓD = ∂Ω,

with Ω= (−1,1)2 \[0,1]× [−1,0] (see Figure 6.4.7). As a first test, we consider the tensor

aε1(x) = a1

( x

ε

)
= 64

9
p

17

(
sin

(
2π

x1

ε

)
+ 9

8

)(
cos

(
2π

x2

ε

)
+ 9

8

)
· I2,

introduced in Section 6.4.2, where I2 is the 2×2 unit matrix. The tensor has coefficients chosen

such that the homogenized tensor matches the identity tensor. We will further investigate the

same tensor with different coefficients

aε2(x) = a2

( x

ε

)
= 400

21
p

41

(
sin

(
2π

x1

ε

)
+ 21

20

)(
cos

(
2π

x2

ε

)
+ 21

20

)
· I2.

The homogenized problem corresponding to this latter tensor again leads to a problem with

a homogenized tensor equal to I2. As the tensor aε2 has a coercivity bound closer to zero,

one expects a larger error than with the tensor aε1 (recall that our a posteriori error estimates

depend on the bound (2.1.2)). For both aε1 and aε2, an analytical homogenized solution exists

and is given by u0 (r ) = r
2
3 sin

(2
3ϑ

)
where x1 = r cos(ϑ) and x2 = r sin(ϑ). We take the value of

this exact solution for the Dirichlet boundary condition gD = u0 (in the computation below
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Figure 6.4.6: Error and error estimates in the H 1-norm for the crack problem with a random tensor
described in Section 6.4.2.2 (for plotting reasons the indicator is scaled by a factor of 0.1). For the
H 1-error, a continuous line is used in the case H > ε, where the projection (that is solely used for
the computation of the error between the FE-HMM solution uH and the fine-scale solution uH

F E M ) is
expected to resemble the error of the homogenized solution. For the case when for some K we have
H < ε, where we expect the projection to resemble the error between uH and the fine-scale solution, a
dotted line is used. In the latter case of H < ε the error computed via projection therefore approaches
an O (1) discrepancy. See Remark 46.
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Figure 6.4.7: FE-HMM solution and refined grid after 10 iterations using tensor aε1 of L-shape problem
described in Section 6.4.3.
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(a) L-shape problem using tensor aε1.
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(b) L-shape problem using tensor aε2.

Figure 6.4.8: Errors and error estimate in the H 1-norm for the L-shape problem described in section.
For the left plot we used tensor aε1, for the right-hand side we used aε2.
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we use Algorithm 37 with Dörfler’s bulk-chasing marking strategy with parameter θ = 0.3).

In Figure 6.4.8 we compare the error and the indicator ηH (Ω) in the H 1 norm for the

tensors aε1 and aε2. We choose an initial mesh-size of ĥ = 1
8 and δ = ε = 10−5 with periodic

boundary conditions in the micro problems. For both problems we find that the correspond-

ing indicator converges with the same (optimal) rate of O
(
N−1/d

mac

)
as the errors between the

FE-HMM solution and the exact homogenized solution, thus confirming numerically our

theoretical estimates. As noted earlier we verify again that the asymptotic convergence rate is

incorrect when using a constant micro mesh size ĥ = 1
8 . The asymptotic limit of the macro-

scopic error in Figure 6.4.8b (green continuous line with disks) reflects the error introduced

through the micro problems and illustrates that the error stagnates even though we keep

refining our macro grid. A comparison between Figures 6.4.8a and 6.4.8b shows that with

constant micro mesh size the error is significantly larger when using aε2 as compared to aε1
(the tensor aε2 is closer to being singular and thus needs a higher resolution of the micro mesh

in order to avoid a singular stiffness matrix).

Various quantities illustrating the quality of the refinement procedure and confirming the

correct experimental order of convergence are reported in Table 6.4.6. In particular, we see

that the effectivity index is approximatively constant indicating that our adaptive scheme is

both effective and efficient. It is furthermore robust with respect to the change of tensors in the

problem. In Tables 6.4.7 and 6.4.8 we compare again the number of sampling domains and the

resolution of the mesh needed to solve the micro problems with adaptive and non-adaptive

strategies. The results illustrate once more the importance of adaptive methods for multiscale

problems.
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iteration #el
∥∥u0 −uH

∥∥
H 1(Ω) ηH (Ω) EOC

(
eH

)
EOC

(
ηH

)
Ze Eff := ηH

eH

1 96 1.43e-01 1.061 0.135
2 100 1.30e-01 0.880 4.886 9.145 0.905 6.80
3 110 1.10e-01 0.763 3.423 2.995 0.850 6.94
4 130 1.01e-01 0.682 1.064 1.343 0.915 6.76
5 164 8.72e-02 0.604 1.235 1.048 0.866 6.94
6 206 8.85e-02 0.534 -0.133 1.082 1.015 6.02
7 265 8.10e-02 0.456 0.708 1.263 0.915 5.62
8 335 8.15e-02 0.408 -0.052 0.943 1.006 5.00
9 435 7.97e-02 0.372 0.166 0.707 0.979 4.67

10 542 6.34e-02 0.329 2.090 1.128 0.795 5.18
11 670 4.13e-02 0.285 4.043 1.347 0.651 6.90
12 866 3.18e-02 0.246 2.036 1.143 0.770 7.75
13 1156 2.79e-02 0.211 0.907 1.064 0.877 7.58
14 1545 2.45e-02 0.181 0.882 1.039 0.880 7.41
15 2123 2.19e-02 0.154 0.729 1.014 0.891 7.04
16 2787 2.05e-02 0.134 0.483 1.022 0.936 6.58
17 3876 1.73e-02 0.114 1.030 0.998 0.844 6.58
18 5238 1.25e-02 0.097 2.148 1.060 0.724 7.75
19 7312 1.05e-02 0.083 1.062 0.977 0.838 7.87
20 9934 9.30e-03 0.071 0.765 1.020 0.889 7.58
21 13772 7.80e-03 0.060 1.074 0.998 0.839 7.69
22 19010 6.70e-03 0.051 0.996 1.008 0.852 7.63
23 26430 5.50e-03 0.043 1.129 1.011 0.830 7.81

Table 6.4.6: Iteration number, number of macro elements, H 1-error, error indicator, experimental
order of convergence for the error and the indicator, reduction factor and effectivity of the L-shape
problem using tensor aε1 described in Section 6.4.3.

ĥ 1/8 1/16 1/24 1/32 1/40 1/48 1/56 1/64 1/80

adaptive FE-HMM, it. 13 0 862 246 64 72 30 18 24 24

uniform FE-HMM, it. 5 - - - - - 24576 - - -

Table 6.4.7: Amount of micro problems with various ĥ (due to refinement) to be solved for the specific
iteration in which we reach an accuracy

∥∥eH
∥∥

H 1(Ω) ≤ 0.025 in the L-Shape problem described in Section
6.4.3.

ĥ 1/8 1/16 1/24 1/32 1/40 1/48 1/56 1/64 1/80

adaptive FE-HMM, total 288 1556 388 112 96 48 36 36 24

uniform FE-HMM, total 96 384 1536 6144 0 24576 - - -

Table 6.4.8: Total amount of micro problems with various ĥ (due to refinement) to be solved to reach
an accuracy of

∥∥eH
∥∥

H 1(Ω) ≤ 0.025 in the L-Shape problem described in Section 6.4.3 (here we take into
account all the iterations needed to reach the prescribed accuracy).
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6.5 A comparison to the a posteriori FE-HMM obtained in a two-

scale framework
A first a posteriori error analysis for the FE-HMM was obtained by Ohlberger [92], where the

problem (6.1.1) is considered. While we will use techniques close to the standard residual-

based and goal-oriented FEM a posteriori analysis of [113, 20], the work in [92] relies on a

reformulation of the FE-HMM in a two-scale framework. We briefly sketch the ansatz of the

method in [92] with the goal of bringing the notation of [92] in accord to the notation of this

thesis. We then put our results and the results of [92] in perspective.

The two-scale convergence was introduced by Nguetseng in [84] and generalized by Allaire

in [23]. We recall its definition and state the two-scale homogenized equation.

Definition 47. (See [84]). Let
{

vε
}

be a sequence of functions in L2 (Ω). One says that
{

vε
}

two-scale converges to v0 = v0
(
x, y

)
with v0 ∈ L2 (Ω×Y ) if for any function ψ = ψ

(
x, y

) ∈
L2

(
Ω;C∞

per (Y )
)

we have

lim
ε→0

∫
Ω

vε (x)ψ
(
x,

x

ε

)
d x = 1

|Y |
∫
Ω

∫
Y

v0
(
x, y

)
ψ

(
x, y

)
d y d x.

Based on the two-scale convergence theory, the so-called two-scale homogenized equation

can be defined.

Definition 48 (Two-scale homogenized equation). (See [23]). A pair(
u0,u1) ∈ H 1

0 (Ω)×L2
(
Ω,W 1

per (Y )
)

is called the homogenized solution to problem (2.1.1) if it satisfies∫
Ω

∫
Y

a
(
x, y

)(∇x u0 (x)+∇y u1 (
x, y

)) (∇xΦ (x)+∇yϕ
(
x, y

))
d x d y

=
∫
Ω

f (x)Φ (x)d x

for all (
Φ,ϕ

) ∈ H 1
0 (Ω)×L2

(
Ω,W 1

per (Y )
)

.

See also [45, Chapter 9] for a comprehensive introduction to two-scale convergence.

The crucial component of [92] is the reformulation of the FE-HMM in terms of the two-

scale homogenized equation. We introduce the solution pair as(
uH ,Kh

[
uH ]) ∈V 1(Ω,TH )×V 0

H

(
Ω,S1(Kδ` ,Th)

)
,
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where

V 0
H

(
Ω,S1(Kδ` ,Th)

)
:=

{
ϕh ∈ L2

(
Ω;W 1

per (Y )
)

, |ϕh
(·, y

) |K is constant ∀y ∈ Y

and ϕh (x, ·) ∈ S1(Kδ` ,Th)∀x ∈Ω}
,

where the micro FE space S1(Kδ` ,Th) is defined in (2.4.9).

Here Kh
[
uH

]
is the so-called discrete fine scale corrector Kh

[
uH

]
obtained from a recon-

struction uH ,ε (x)−uH (x) with uH ,ε (x) as in (2.4.13). (The reconstruction corresponds to the

extension of
(
uh −uH

)
, which is only defined on Kε on the whole macro element K ). Then we

can state the following Lemma [92].

Lemma 49 (Reformulation of the FE-HMM). Under appropriate assumptions (see [92, Lemma

3.5]), the pair
(
uH ,Kh

[
uH

])
is the solution of

∫
Ω

∫
Y

ah
(
x, y

)(∇x uH (x)+∇yKh
[
uH ](

x, y
)) (∇xΦ (x)+∇yϕ

(
x, y

))
d x d y

=
∫
Ω

f (x)Φ (x)d x

for all(
Φ,ϕ

) ∈V 1 (Ω,TH )×L2 (
Ω,S1(Kδ` ,Th)

)
,

where ah
(
x, y

) |K j×Ti = a
(
x j , yi

)
is a discretized tensor.

Based on the reformulation, a posteriori upper and lower bounds are obtained in terms of

the error∥∥∇x e0 +∇y e1
∥∥

L2(Ω×Y )

in the two-scale norm, where e0 := u0 −uH and e1 := u1 −Kh
[
uH

]
.

A posteriori error estimates for problems in perforated domains were considered in [61];

there error estimates in the macroscopic L2 (Ω)-norm are obtained using the reformulation of

the FE-HMM as above and subsequently employing duality arguments. Recent extensions

include advection-diffusion problems [60] and problems with monotone operators [62].

Comparison of the results of [92] to our results.

The following discussion is taken in part from [12].

In the approach described in [92], the reformulation of the FE-HMM is based on a tensor

product FEM with quadrature in the slow variable. Therefore, the a posteriori estimates are

obtained in the two-scale norm over Ω×Y (with the physical domain Ω and the domain

of the microscopic variable Y ) and not in a norm related to the physical domain. It is not

straightforward to derive a posteriori (or a priori) estimates in the energy norm – or in general
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quantities of interest – for the physical domain from the results obtained in [92] and to our

knowledge, such results have not yet been obtained. In the approach we follow, the a poste-

riori error estimates for the upper and lower bounds are derived in the energy norm of the

physical domain. While the analysis in [92] is restricted to a class of homogenization problems

where the tensor is given in an explicit two-scale form aε (x) = a (x, x/ε) and where the tensor

features periodicity in the fast variables x/ε (see [92, Assumption 3.1]), we do not require

an explicit decomposition of the tensor. Furthermore our analysis also applies to general

(non-periodic) tensors (although it involves a data approximation error, which can only be

explicitly estimated when we make additional spatial assumptions on the fast variable, such

as periodicity or random homogeneity). The analysis in [92] requires an a priori knowledge of

the exact periodicity ε of the problem in order to make the sampling domains Kδ span exactly

one period in each spatial direction, see [92, Remark 3.6] (in the more general case δ> ε an

extra error will be introduced). We derive estimates, which hold for general sampling domains

of size δ> ε. Further, the analysis in [92] assumes piecewise linear macro FE.

Our a posteriori error estimator ηH (K ) only depends on aε; the data approximation error

however does involve the unknown homogenized tensor a0 (x). As our techniques are designed

to follow the classical framework to derive a posteriori error estimates, we obtain a data

approximation error of the tensor, which reads in its most general form∥∥(
a0

K −a0 (x)
)∇uH

∥∥
L2(K )

(for piecewise linear macro FE), whereas the data approximation error in [92] is given by∥∥(
ah

(
x, y

)−a
(
x, y

))(∇x uH (x)+∇yKh
[
uH ](

x, y
))∥∥

L2(K×T ) .

This means that our data approximation error involves the (unknown) exact homogenized

tensor a0 (x), whereas the data approximation error obtained in [92] involves estimates in

terms of the (known) a
(
x, y

)
. Under the assumptions of [92], i.e. aε (x) is given in the form

a (x, x/ε), ε is known exactly, aε is periodic and using periodic boundary conditions in the

micro problems, we can choose δ= ε and collocate in the slow variable, i.e. evaluate the tensor

as a
(
xK`

, x/ε
)

and the modeling error vanishes. The remaining macro and micro error can be

estimated as C HK and C
(

h
ε

)2
and therefore our estimates can be made independent of the

unknown homogenized tensor a0 (x).

Our results also hold for higher order FE. The a posteriori error estimates in the energy

norm obtained in this thesis are also instrumental for deriving a posteriori error estimates

in quantities of interest, which are expressed by a linear bounded functional in the physical

domain (see Chapter 8).
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6.6 Summary
This summary is taken in part from [12].

In this chapter we have given an a posteriori error analysis for a multiscale FE method, the

FE-HMM, and derived explicit localized error indicators for efficient and reliable adaptive

mesh refinement. These are the first rigorous a posteriori results for the FE-HMM derived in

the energy norm of the physical variables. Our numerical results confirm that the adaptive

strategy is both reliable and efficient. Up to a data approximation term, upper and lower

bounds are obtained without specific structure assumptions (as periodicity, random station-

arity) on the oscillating tensor of the elliptic problem. A (non-uniform) refinement of the

macro mesh should be coupled to a refinement of the micro mesh covering the sampling

domain. A strategy for such a micro refinement has been proposed and justified in the case

of non-uniform periodic coefficients. The adaptive algorithm does not rely on a fixed size

of the sampling domain. Estimates of the error introduced by artificial (Dirichlet) boundary

conditions and domain size larger than a typical length of the small scale have been derived

for the case of non-uniformly periodic oscillating coefficients. The framework that we used to

derive our results allowed us to use the strategy developed for single scale problems. Further-

more, the derived a posteriori estimates are consistent with classical explicit residual-based

a posteriori error estimators applied to the homogenized problems in the case of periodic

tensors and resolved micro calculations.

The analysis and the method presented in this Chapter are limited to piecewise linear

macro FE; in Chapter 7 we will present the extension of the analysis and method to higher

order FE. This will allow us to find in Chapter 8 an estimate of the error in quantities of interests

that are needed for a specific design purpose.
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7 Higher order Adaptive FE-HMM

In Chapter 6 we introduced the multiscale flux and multiscale jump, which allowed us to derive

a posteriori error estimates for the multiscale FE-HMM for piecewise linear FE. The derivation

largely followed the error analysis of the classical single-scale residual-based adaptive FEM.

We now want to extend the method for higher order FE. Can we find a higher order multiscale

flux and multiscale jump similarly as before? While the multiscale jump for the piecewise

linear case is a constant over the element interface, in the higher order case it is not. The

challenge is now to construct a higher order multiscale jump that is continuous and that is

solely based on the discrete solutions of micro problems within two adjacent macro elements.

We will see how this can be done in this Chapter and derive a posteriori error estimates for

the higher order FE-HMM. We mention that these constructions have first been used in the

context of the discontinuous Galerkin FE-HMM [7].

In Section 7.1 we state the model problem. In Section 7.2 we introduce the higher order

multiscale components and relate them to the classical, single-scale counterparts. In Section

7.3 we state the main results of our a posteriori error analysis for higher order FE. We further

give algorithmic details. The main results are proved in Section 7.4 and the data approximation

error is estimated in the separate Section 7.5. We present a numerical example, which confirms

the theoretical estimates in Section 7.6.

7.1 Model problem
Let TH denote a conformal mesh and let EH be the set of interfaces. Given f ∈ L2(Ω) and a

domainΩ⊂Rd , d = 1,2,3, we consider the second-order elliptic multiscale equation

−∇· (aε∇uε
)= f in Ω,

uε = 0 on ∂Ω,
(7.1.1)

where aε is symmetric, satisfies aε(x) ∈ (L∞(Ω))d×d and is uniformly elliptic and bounded. We

consider in what follows only homogeneous Dirichlet boundary conditions, but emphasize

that the a posteriori estimates can also be derived for more general boundary conditions

(such as Neumann or Robin) following the lines of the results presented in this Chapter. We

discretize problem (7.1.1) using the FE-HMM, so that the problem in its weak, discrete form
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reads: find uH ∈V p (Ω,TH ) s.t.

B
(
uH , v H )= ∫

Ω
f v H d x ∀v H ∈V p (Ω,TH ) , (7.1.2)

where V p (Ω,TH ) is given in (7.2.1) and where B (·, ·) is given in (2.4.6).

7.2 Preliminaries
In this Section we present the necessary tools that are needed for extending our adaptive

FE-HMM to higher order FEs. In what follows, we show how to relate the special higher

order FE-HMM components such as the multiscale bilinear form, the multiscale fluxes and

jumps to their equivalent classical, single-scale FEM counterparts. This will allow us to largely

follow classical adaptive FEM techniques in order to derive error bounds, similarly to what

we presented in Chapter 6. These techniques have first been introduced in the context of

the discontinuous Galerkin FE-HMM [7]. The equivalence of the components builds the

foundation for both the residual-based adaptive FE-HMM in Chapter 7 as well as the adaptive

goal-oriented FE-HMM in Chapter 8.

7.2.1 Quadrature rules and interpolation
We consider the higher order FE space

V p (Ω,TH ) = {
v H ∈ H 1

0 (Ω) ; v H |K ∈P p (K ) ,∀K ∈TH
}

, (7.2.1)

where P p is the space of piecewise polynomials on the element K of degree p, see Chapter

2, and where for simplicity, we restrict ourselves to simplicial elements in what follows. We

consider a given quadrature formula (QF)
{

xK`
,ωK`

}L
`=1 as defined in Section 2.4 that satisfies

condition (Q2) (see (2.4.5) on page 24). Condition (Q2) requires that the QF for simplicial

elements, which is based on L points is exact for polynomials of degree 2p −2 if p > 1.

For two spatial dimensions, the bound L ≥ 1
2 p

(
p +1

)
holds (see [103, Section 1]), and

similarly for three spatial dimensions we have that L ≥ 1
6 p

(
p +1

)(
p +2

)
. There exist some

well-known quadrature formulae which minimize these inequalities in the following sense:L = 1
2 p

(
p +1

)
for d = 2,

L = 1
6 p

(
p +1

)(
p +2

)
for d = 3.

(7.2.2)

For a QF satisfying (7.2.2), we consider the following interpolation problem: for v ∈C 0 (K ) find

Πv (x) ∈P p−1 (K ) s.t.

Πv
(
xK`

)= v
(
xK`

)
, `= 1, ...,L (7.2.3)

where the interpolation nodes xK`
are given by the quadrature nodes of the QF

{
xK`

,ωK`

}L
`=1.

Proposition 50. Assume that (Q2) (see (2.4.5)) holds for σ = 2p −2. Then, the interpolation

problem (7.2.3) has a unique solution.
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Proof. The space of polynomials in d variables of degree at most
(
p −1

)
on the element K is

denoted by P
p−1
d (K ). The dimension of the vector space is (see [47, Section 3])

dimP
p−1
d =

( (
p −1

)+d

p −1

)
=L .

We now show that the interpolating polynomial Πv (x) is uniquely defined. For that, let us

assume that there exists a polynomial Πv (x) in P
p−1
d (K ) such that Πv

(
xK`

)= 0, `= 1, ...,L ,

but Πv (x) 6≡ 0. The integration (2.4.5) of QF condition (Q2) is exact for polynomials up to a

degree of 2
(
p −1

)
, i.e., we have

∫
K

(Πv (x))2 d x =
L∑
`=1

ωK`

(
Πv

(
xK`

))2 = 0.

This is in contradiction with Πv (x) 6≡ 0, and therefore, it follows that Πv (x) ≡ 0 and that the

interpolation problem has a unique solution.

We remark that condition (7.2.2) is satisfied by various well-known QF (see e.g. [55, Chap.

8] or [119]). We refer the reader to [103] for a general discussion on the assumed condition

and to [47] for an overview of the construction of cubature formulae. It is strongly advised

to choose such a QF, as it minimizes the number of quadrature points and therefore the

number of micro problems needed to be solved at each macro element. It is also possible

to generalize the FE-HMM to the general case – for the analysis however, this will lead to

additional technicalities.

7.2.2 Higher order multiscale fluxes and jumps
The goal is now to generalize the multiscale flux defined in (6.2.1) for higher order FE. We in-

troduced in Section 6.2 an expression that relates the macro and the micro fluxes for piecewise

linear FE-HMM. We found, for v H ∈V 1 (Ω,TH ) the equation (6.3.8), which is

1

|Kδ|
∫

Kδ

aε (x)∇vh
K d x = a0

K ∇v H
K

with a numerically homogenized tensor a0
K (from eq. (6.2.3)), which is given by (see also [12,

Lemma 9])

a0
K = 1

|Kδ|
∫

Kδ

aε(x)

(
I + J T

ψh
Kδ

(x)

)
d x.

For higher order FE-HMM, we can write equivalent expressions for all L micro solutions vh
K`

on the L sampling domains Kδ` located around the quadrature nodes xK`
within the macro

element K . For each vector ei ∈Rd , i = 1, . . . ,d we consider in every sampling domain Kδ` the

solution ψi ,h
Kδ`

∈ Sq
(
Kδ` ,Th

)
of the problem

∫
Kδ`

aε(x)∇ψi ,h
Kδ`

·∇zhd x =−
∫

Kδ`

aε(x)ei ·∇zhd x ∀zh ∈ Sq (Kδ` ,Th). (7.2.4)
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We again introduce a numerically homogenized tensor denoted as a0
K

(
xK`

)
,

a0
K

(
xK`

)= 1

|Kδ` |
∫

Kδ`

aε(x)

(
I + J T

ψh
Kδ`

(x)

)
d x, (7.2.5)

where Jψh
Kδ`

(x) is a d ×d matrix whose entries are given by

(
Jψh

Kδ`
(x)

)
i j
= (∂ψi ,h

Kδ`

)/(∂x j ). Notice

that a0
K

(
xK`

)
does now depend on the quadrature point xK`

that is corresponding to the

sampling domain Kδ` . The tensors a0
K

(
xK`

)
are solely a tool for the analysis but need not be

used for the computation of our error estimators. The following relation between the fluxes in

the micro problem and the fluxes of the higher order macro problem holds (see Corollary of

Lemma 51).

1∣∣Kδ`

∣∣
∫

Kδ`

aε (x)∇vh
K`

d x = a0
K

(
xK`

)∇v H (
xK`

)
, `= 1, ...,L . (7.2.6)

This will allow us to extend the multiscale jump (6.2.1) to higher order FE. On every macro

element K we define the interpolating polynomial Πaε∇vh
K`

(x) in
(
P p−1 (K )

)d
, which satisfies

Πaε∇vh
K`

(
xK`

)= 1∣∣Kδ`

∣∣
∫

Kδ`

aε (x)∇vh
K`

d x, `= 1, ...,L . (7.2.7)

We will refer to the interpolating polynomial Πaε∇vh
K`

(x) as the higher order multiscale flux.

Using (7.2.6) we see that

Πaε∇vh
K`

(
xK`

)= a0
K

(
xK`

)∇v H (
xK`

)
, `= 1, ...,L . (7.2.8)

Generalizing (6.2.1), we introduce for each interior interface e of two elements K + and K − the

following jump of higher order multiscale fluxes

JΠaε∇vh
K`

Ke (s) :=


(
Πaε∇vh

K+
`

(s)−Πaε∇vh
K−
`

(s)

)
·ne for e 6⊂ ∂Ω,

0 for e ⊂ ∂Ω,
(7.2.9)

where the unit outward normal ne is chosen to be ne = n+. We will omit the index K +
`

and

K −
`

for the micro solutions vh
K`

in JΠaε∇vh
K`

Ke (s) to emphasize that the jump over the edge e

involves sampling domains Kδ` in two adjacent elements K + and K −.

7.2.3 FE-HMM bilinear form

We will now relate the FE-HMM bilinear form B (·, ·), which is given in (2.4.6) and reads

B(v H , w H ) = ∑
K∈TH

L∑
`=1

ωK`

|Kδ` |
∫

Kδ`

aε(x)∇vh
K`

·∇wh
K`

d x, (7.2.10)
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to a single-scale homogenized bilinear form (2.1.7) with quadrature, B0,H (·, ·), which reads

B0,H (v H , w H ) := ∑
K∈TH

L∑
`=1

ωK`
a0 (

xK`

)∇v H (
xK`

) ·∇w H (
xK`

)
. (7.2.11)

Lemma 51. For all micro solutions vh
K`

, wh
K`

of (2.4.7) in Sq (Kδ,Th) that are constrained by the

linearized macro solutions v H
lin,`, w H

lin,` ∈V 1(Ω,TH ) as defined in (2.4.8), we have

1

|Kδ` |
∫

Kδ`

aε(x)∇vh
K`

·∇wh
K`

d x = 1

|K |
∫

K
a0

K

(
xK`

)∇v H
lin,` ·∇w H

lin,`d x.

Proof. The proof can be found in Lemma 41 (or [12, Lemma 8]), we apply it for all numerically

homogenized tensors a0
K

(
xK`

)
corresponding to the `= 1, ...,L sampling domains as before.

Corollary 52. Formula (7.2.6) holds.

Proof. Immediately follows from Lemma 51.

Lemma 53. Consider the FE-HMM bilinear form (7.2.10) and a QF
{

xK`
,ωK`

}L
`=1 that is exact

for polynomials of degree 2p −2 (i.e. (Q2) with σ= 2p −2 holds). Then, we have the following

chain of equalities:

B
(
v H , w H )= ∑

K∈TH

L∑
`=1

ωK`

|Kδ` |
∫

Kδ`

aε(x)∇vh
K`

·∇wh
K`

d x

= ∑
K∈TH

L∑
`=1

ωK`

|K |
∫

K
a0

K

(
xK`

)∇v H
lin,` ·∇w H

lin,`d x

= ∑
K∈TH

L∑
`=1

ωK`
a0

K`
∇v H (

xK`

) ·∇w H (
xK`

)
= ∑

K∈TH

L∑
`=1

ωK`

(
Πaε∇vh

K`

(x)

)
·∇w H (

xK`

)
= ∑

K∈TH

∫
K

(
Πaε∇vh

K`

(x)

)
·∇w H d x.

Proof. Follows immediately from Lemma 51, (7.2.6) and the definition of the higher order flux

(7.2.7) and the exactness of the numerical quadrature (Q2), where

Πaε∇vh
K`

(x) ∈ (
P p−1 (K )

)d
.

This completes the required tools we need in order to extend the FE-HMM to higher order

polynomial degrees.

7.3 Main results
We now present the main results of the adaptive FE-HMM, extended to higher orders. In what

follows we only point out differences compared to the piecewise linear case. For more details
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on the algorithm, we refer to Chapter 6.

Let f H be an approximation of f in the space
{

g H ∈ L2 (Ω) ; g H |K ∈P m (K ) , ∀K ∈TH
}

. The

choice of m will depend on p and one usually chooses m = p −1.

Definition 54. The local error indicator ηH (K ) on an element K is defined by

ηH (K )2 :=H 2
K

∥∥∥∥ f H +∇·Πaε∇uh
K`

(x)

∥∥∥∥2

L2(K )
+ 1

2

∑
e⊂∂K

He

∥∥∥∥JΠaε∇uh
K`

Ke (s)

∥∥∥∥2

L2(e)
. (7.3.1)

The data approximation error ξH (K ) on an element K is defined by

ξH (K )2 := H 2
K

∥∥ f H − f
∥∥2

L2(K ) +
∥∥∥∥Πaε∇uh

K`

(x)−a0 (x)∇uH
∥∥∥∥2

L2(K )
, (7.3.2)

where a0 (x) is the unknown homogenized tensor of problem (2.4.2).

In what follows we will sometimes consider the indicators ηH (K ) and data approximation

terms ξH (K ) on a subset ω= Ki1

⋃
Ki2

⋃
...

⋃
Kin , Ki j ∈TH of the domain Ω. We will denote the

summation of these quantities over all elements K ⊂ω as ηH (ω)2 and ξH (ω)2.

The following theorem gives an a posteriori upper bound for the error between the macro-

scopic FE-HMM solution uH and the homogenized solution u0.

Theorem 55 (A posteriori upper bound). There exists a constant C > 0 depending only on the

shape regularity constant γ, the coercivity and continuity bound (2.1.2) and the dimension d

such that∥∥u0 −uH
∥∥2

H 1(Ω) ≤C
(
ηH (Ω)2 +ξH (Ω)2) .

We will present the proof in Section 7.4.1. The next result gives an a posteriori lower bound.

Theorem 56 (A posteriori lower bound). There exists a constant C > 0 depending only on the

shape regularity constant γ, the coercivity and continuity bound (2.1.2) and the dimension d

such that

ηH (K )2 ≤C
(∥∥u0 −uH

∥∥2
H 1(ωK ) +ξH (ωK )2

)
,

where the domain ωK consists of all elements sharing at least one side with K .

The proof will be shown in Section 7.4.2.

Comparison with single scale results. We suppose that aε (x) = a (x, x/ε) = a
(
x, y

)
is Y -

periodic in y and a
(·, y

) |K is constant for K ∈ TH , i.e. the homogenized tensor a0 (x) is

piecewise constant in any K ∈TH . We further assume that exact micro functions are used in

(2.4.7) and that δ = ε with periodic micro boundary conditions, then a0
K = a0 (x) |K and we

recover again the usual (classical) residual based indicator and data estimator as in [113, 33].
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Algorithm. The algorithm for the higher order adaptive FE-HMM follows the algorithm for

the piecewise linear case presented in Chapter 6.2.1 consisting in the cycle

Solve → Estimate → Mark → Refine.

The micro-macro refinement strategy accounts for the higher macro FE polynomial degree

according to Theorem 57.

7.3.1 Macro-micro refinement
In the same manner as in the piecewise linear case, the above two theorems for the a posteriori

lower and upper bounds do not require any structural assumption on the oscillating tensor

(such as periodicity) and only minimal assumptions on regularity. We assume singularities

to appear in the macro scale and thus do not consider explicit a posteriori estimates for the

micro-problem (2.4.7). Again, as the error indicator ηH does depend on the micro solutions

and hence on the micro mesh, we need a new criterion which determines how to choose the

size of the micro mesh when we refine a macro element. We can adapt Theorem 35 to the

higher order case as follows

Theorem 57 (Micro-macro refinement coupling). Let Assumption 61 hold. Assume further

that the cell problem (2.4.7) is solved with periodic boundary conditions if aε is periodic and

δ/ε ∈N; the cell problem (2.4.7) is solved with Dirichlet boundary conditions otherwise. We

furthermore consider the case where aε = a (x, x/ε) = a
(
x, y

)
is Y -periodic in y and a

(·, y
) |K is

constant. Then

sup
x∈K

∥∥∥∥a0 (x)∇uH (x)−Πaε∇uh
K`

(x)

∥∥∥∥
L2(K )

≤C

(
h

ε

)2q

+er rmod (7.3.3)

where C is independent of H ,h,ε, and er rmod is independent of H ,h.

The proof will be provided in Section 7.5.

Remark 58. From equation (7.3.3) we can deduce the ideal coupling (in the sense of minimiz-

ing the macro and micro error at the same rate). The limitation to the case where a0 (x) is

constant on K leads to an estimate, which does not explicitly depend on H . As we want the

data approximation error to be of the same size as the error

∥∥u0 −uH M M
∥∥

H 1(Ω) ≤C

(
H p +

(
h

ε

)2q

+er rmod

)
itself, it follows that we refine the micro mesh in each sampling domain Kδ` according to
hK
ε ∝ (HK )

p
2q , where HK is the size of macro element K ∈TH . The size hK := h (K ) may vary in

different macro elements K , but is kept constant within K for all of the L sampling domains

Kδ` . We can rewrite the micro mesh size hK as a scaled (i.e., independent of ε) micro mesh

size ĥK = hK
ε = (Nmi c )−1/d , where Nmi c denotes the degrees of freedom of the micro problem

on Kδ` and d is the spatial dimension. Assuming appropriate regularity on the micro problem,
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we have that as q gets larger hK
ε ∝ 1 or ĥK = (Nmi c )−1/d ∝ 1, hence almost no micro DOF are

used for the micro problem. This approach is followed in [9], where a spectral method is used

in the micro problems.

Standard a posteriori methods could be used on the micro problems to refine the micro

meshes differently in the various sampling domains Kδ` (depending for example on different

contrast of the small scale tensor). Accordingly, the micro mesh could also be refined in a

non-uniform way.

The pitfalls and remedy of following the asymptotic refinement.

While the coupling in Theorem 57 is asymptotically correct, strictly keeping this strategy might

(depending on the order of the macro and micro FE p and q , respectively) quickly lead to micro

problems with an overwhelming number of degrees of freedom. We will see this happening in

the numerical experiment in Section 7.6.1, where we start with a micro problem of Nmi c = 82

DOF and after only 20 iteration cycles we reach (4,194,304)2 DOF. Ideally, we would like the

macro and micro error to be of the same size, not of the same asymptotic convergence rate, i.e.

the proportionality factor might be obstructive.

To overcome this problem, we could apply a posteriori estimates on the micro problem.

An alternative approach is the use of a reduced basis approach for the solution of the micro

problems. There, a few representative basis functions with a large information content are

computed once at an offline stage. Typically, only a few reduced basis functions are needed

if there is some regularity w.r.t. the slow parameter. In the online stage, the reduced basis

functions are used to approximate the solution of the micro problems with high accuracy. As

the conductivity tensor of the micro problems will not change significantly from one macro

element to its neighbors (provided regularity w.r.t. the slow variable), this approach can lead

to a remarkable reduction in computation cost. See [95, 101, 38] for an overview of reduced

basis methods and [37] for an application in context of homogenization. We mention the

recent effort of using reduced basis techniques in context of the FE-HMM [8].

7.4 Proof of the main results

We define the error as eH := u0 −uH , where u0 (x) is the homogenized solution of (2.1.5) and

uH (x) is the FE-HMM solution of (7.1.2).

We first obtain the following error representation formula, which is the crucial component

to relate the homogenized bilinear form B0 (·, ·) as defined in (2.1.7) to the FE-HMM solution

uH . We remind the reader that the FE-HMM bilinear form is denoted as B (·, ·) and is defined

in (2.4.6).

Lemma 59 (Error representation formula). For all v ∈ H 1
0 (Ω), we have
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B0
(
eH , v

)=∫
Ω

f v d x − ∑
e∈EH

∫
e
JΠaε∇uh

K`

Ke (s) v d s

+ ∑
K∈TH

∫
K
∇·

(
Πaε∇uh

K`

(x)

)
v d x (7.4.1)

+ ∑
K∈TH

∫
K

(
Πaε∇uh

K`

(x)−a0 (x)∇uH
)
·∇v d x

where we used the multiscale flux Πaε∇uh
K`

(x) as defined in (7.2.7), the multiscale jump as

defined in (7.2.9), and where uH is the solution of (7.1.2).

Proof. We integrate the homogenized bilinear form by parts to obtain

B0
(
eH , v

)
=B0

(
u0, v

)−B0
(
uH , v

)
=

∫
Ω

f v d x − ∑
K∈TH

∫
K

(
Πaε∇uh

K`

(x)

)
·∇v d x

+ ∑
K∈TH

∫
K

(
Πaε∇uh

K`

(x)−a0 (x)∇uH
)
·∇v d x

=
∫
Ω

f v d x − ∑
K∈TH

∫
∂K

(
Πaε∇uh

K`

(x)

)
·n v d s

+ ∑
K∈TH

∫
K
∇·

(
Πaε∇uh

K`

(x)

)
v d x

+ ∑
K∈TH

∫
K

(
Πaε∇uh

K`

(x)−a0 (x)∇uH
)
·∇v d x

=
∫
Ω

f v d x

− ∑
e∈EH

∫
e

((
Πaε∇uh

K+
`

(s)−Πaε∇uh
K−
`

(s)

)
·ne

)
︸ ︷︷ ︸

(∗)

v d s

+ ∑
K∈TH

∫
K
∇·

(
Πaε∇uh

K`

(x)

)
v d x

+ ∑
K∈TH

∫
K

(
Πaε∇uh

K`

(x)−a0 (x)∇uH
)
·∇v d x.

By noticing that (∗) = JΠaε∇uh
K`

Ke (s), the proof is complete.

7.4.1 Upper bound (Proof of Theorem 55)

We now prove the a posteriori upper bound. In what follows, I H stands for the Clément

interpolation operator (see (6.3.1),(6.3.2)) and f H denotes a P m approximation of f over TH .

We consider the error representation formula (7.4.1) and choose the test function v := eH . We
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have for the FE-HMM bilinear form that

B
(
uH , I H eH )= ∑

K∈TH

∫
K

f
(
I H eH )

d x

and therefore using (7.4.1)

B0
(
eH ,eH )=∫

Ω
f eH d x − ∑

e∈EH

∫
e
JΠaε∇uh

K`

Ke (s) eH d s

+ ∑
K∈TH

∫
K
∇·

(
Πaε∇uh

K`

(x)

)
eH d x

+ ∑
K∈TH

∫
K

(
Πaε∇uh

K`

(x)−a0 (x)∇uH
)
·∇eH d x

+B
(
uH , I H eH )− ∑

K∈TH

∫
K

f
(
I H eH )

d x.

(7.4.2)

From Lemma 53 we get, as I H eH ∈V p (Ω,TH )

B
(
uH , I H eH )= ∑

K∈TH

∫
K

(
Πaε∇uh

K`

(x)

)
·∇(

I H eH )
d x,

=− ∑
K∈TH

∇·
(
Πaε∇uh

K`

(x)

)(
I H eH )

d x (7.4.3)

+ ∑
e∈EH

∫
e

(
JΠaε∇uh

K`

Ke (s)

)(
I H eH )

d s.

We insert (7.4.3) into (7.4.2) to obtain

B0
(
eH ,eH )

=
∫
Ω

f H (
eH − I H eH )

d x +
∫
Ω

(
f − f H )(

eH − I H eH )
d x

− ∑
e∈EH

∫
e

(
JΠaε∇uh

K`

Ke (s)

)(
eH − I H eH )

d s

+ ∑
K∈TH

∇·
(
Πaε∇uh

K`

(x)

)(
eH − I H eH )

d x

+ ∑
K∈TH

∫
K

(
Πaε∇uh

K`

(x)−a0 (x)∇uH
)
·∇eH d x.
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Let φH := eH − I H eH . Using the Cauchy-Schwarz inequality, we estimate

B0
(
eH ,eH )≤( ∑

K∈TH

∥∥∥∥ f H +∇·
(
Πaε∇uh

K`

(x)

)∥∥∥∥
L2(K )

∥∥φH
∥∥

L2(K )

+ ∑
K∈TH

∥∥ f − f H
∥∥

L2(K )

∥∥φH
∥∥

L2(K )

+ ∑
e∈EH

∥∥∥∥JΠaε∇uh
K`

Ke (s)

∥∥∥∥
L2(e)

∥∥φH
∥∥

L2(e)

+ ∑
K∈TH

∥∥∥∥Πaε∇uh
K`

(x)−a0 (x)∇uH
∥∥∥∥

L2(K )

∥∥∇eH
∥∥

L2(K )

)
.

With the Clément interpolation estimates (6.3.1) and (6.3.5), it follows that

B0
(
eH ,eH )≤C

( ∑
K∈TH

HK

∥∥∥∥ f H +∇·
(
Πaε∇uh

K`

(x)

)∥∥∥∥
L2(K )

∥∥∇eH
∥∥

L2(N (K ))

+ ∑
K∈TH

HK
∥∥ f − f H

∥∥
L2(K )

∥∥∇eH
∥∥

L2(N (K ))

+ ∑
e∈EH

H
1/2
e

∥∥∥∥JΠaε∇uh
K`

Ke (s)

∥∥∥∥
L2(e)

∥∥∇eH
∥∥

L2(N (e))

+ ∑
K∈TH

∥∥∥∥Πaε∇uh
K`

(x)−a0 (x)∇uH
∥∥∥∥

L2(K )

∥∥∇eH
∥∥

L2(K )

)
.

We finally use the finite overlapping property of the neighborhoods N (Ke ) which allows us

to estimate
∑

K∈TH

∥∥∇eH
∥∥2

L2(N (K )) ≤C
∑

K∈TH

∥∥∇eH
∥∥2

L2(K ) , where C only depends on the shape

regularity of the triangulation and the dimension d . With the triangle inequality and the

coercivity of B0 (·, ·), we arrive at the upper a posteriori estimate

∥∥∇eH
∥∥2

L2(Ω) ≤C

( ∑
K∈TH

H 2
K

∥∥∥∥ f H +∇·
(
Πaε∇uh

K`

(x)

)∥∥∥∥2

L2(K )

+ ∑
K∈TH

H 2
K

∥∥ f − f H
∥∥2

L2(K )

+ ∑
e∈EH

He

∥∥∥∥JΠaε∇uh
K`

Ke (s)

∥∥∥∥2

L2(e)

+ ∑
K∈TH

∥∥∥∥Πaε∇uh
K`

(x)−a0 (x)∇uH
∥∥∥∥2

L2(K )

)
,

where we used the coercivity of B0(·, ·). Applying Poincaré inequality and using definitions

(7.3.1) and (7.3.2) leads to∥∥u0 −uH
∥∥2

H 1(Ω) ≤C
(
ηH (Ω)2 +ξH (Ω)2)

as stated in Theorem 55.
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7.4.2 Lower bound (Proof of Theorem 56)

The derivation of the lower bound will involve bubble functions in a space Ṽ p
H ⊃V p

H , defined

over a refinement T̃H of TH . We choose the refinement Ṽ p
H such that every K ∈ TH has an

interior node x̃K ∈ K \∂K in T̃H and every edge e which does not lie on the boundary ∂Ω has

an interior node in T̃H . We proceed by estimating the interior residual and the jump residual.

Interior residual. For any K ∈TH we consider an interior bubble function, i.e., a function

ψK ∈ Ṽ 1
H such that 0 ≤ψK ≤ 1, ψK (x̃K ) = 1 and ψK ≡ 0 on Ω\K . We choose the appropriate

test function vK (x) ∈ H 1
0 (Ω) as vK (x) :=ψK

[
f H +∇·

(
Πaε∇uh

K`

(x)

)]
. We therefore have that

vK (x) :=


ψK

[
f H +∇·

(
Πaε∇uh

K`

(x)

)]
in K ,

0 inΩ\K ,

0 on ∂K .

We insert the test function vK (x) into the representation formula (7.4.1) and obtain

∫
K

[
f H +∇·

(
Πaε∇uh

K`

(x)

)](
ψK

[
f H +∇·

(
Πaε∇uh

K`

(x)

)])
d x

= B0

(
eH ,ψK

[
f H +∇·

(
Πaε∇uh

K`

(x)

)])∣∣∣∣
K

−
∫

K

(
f − f H )(

ψK

[
f H +∇·

(
Πaε∇uh

K`

(x)

)])
d x

−
∫

K

(
Πaε∇uh

K`

(x)−a0 (x)∇uH
)
·∇

(
ψK

[
f H +∇·

(
Πaε∇uh

K`

(x)

)])
d x.

First, the equivalence of norms on a finite dimensional space (see [19, Theorem 2.2] for details)

yields

C

∥∥∥∥ f H +∇·
(
Πaε∇uh

K`

(x)

)∥∥∥∥2

L2(K )

≤
∫

K

[
f H +∇·

(
Πaε∇uh

K`

(x)

)](
ψK

[
f H +∇·

(
Πaε∇uh

K`

(x)

)])
d x.
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Second, we use the continuity of B0 (·, ·) , the Cauchy-Schwarz inequality and the inverse

inequality (6.3.4) to arrive at∥∥∥∥ f H +∇·
(
Πaε∇uh

K`

(x)

)∥∥∥∥2

L2(K )

≤C

(∥∥∇eH
∥∥

L2(K )

∥∥∥∥∇(
ψK

[
f H +∇·

(
Πaε∇uh

K`

(x)

)])∥∥∥∥
L2(K )

+∥∥ f − f H
∥∥

L2(K )

∥∥∥∥ψK

[
f H +∇·

(
Πaε∇uh

K`

(x)

)]∥∥∥∥
L2(K )

+
∥∥∥∥Πaε∇uh

K`

(x)−a0 (x)∇uH
∥∥∥∥

L2(K )

∥∥∥∥∇(
ψK

[
f H +∇·

(
Πaε∇uh

K`

(x)

)])∥∥∥∥
L2(K )

)
≤C

(
H−1

K

∥∥∇eH
∥∥

L2(K ) +
∥∥ f − f H

∥∥
L2(K )

+H−1
K

∥∥∥∥Πaε∇uh
K`

(x)−a0 (x)∇uH
∥∥∥∥

L2(K )

)∥∥∥∥ψK

[
fH +∇·

(
Πaε∇uh

K`

(x)

)]∥∥∥∥
L2(K )

.

Finally, we use

∥∥∥∥ψK

[
fH +∇·

(
Πaε∇uh

K`

(x)

)]∥∥∥∥
L2(K )

≤
∥∥∥∥ fH +∇·

(
Πaε∇uh

K`

(x)

)∥∥∥∥
L2(K )

, which holds

as 0 ≤ψK ≤ 1, in order to obtain the interior residual

H 2
K

∥∥∥∥ f H +∇·
(
Πaε∇uh

K`

(x)

)∥∥∥∥2

L2(K )

≤C
(∥∥∇eH

∥∥2
L2(K ) +H 2

K

∥∥ f − f H
∥∥2

L2(K )

+
∥∥∥∥Πaε∇uh

K`

(x)−a0 (x)∇uH
∥∥∥∥2

L2(K )

)
.

(7.4.4)

Jump residual. Let e ∈ EH be an interior interface and let K1 ∈ TH and K2 ∈ TH be such

that K1 ∩K2 = e. We rearrange (7.4.1) for
∑

e∈EH

∫
eJΠaε∇uh

K`

Ke (s) v d s and add and subtract∫
Ω f H v d x. The continuity of B0 (·, ·) and the Cauchy-Schwarz inequality lead to
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∑
e∈E

∫
e
JΠaε∇uh

K`

Ke (s) v d s

=
∫
Ω

(
f H +∇·

(
Πaε∇uh

K`

(x)

))
v d x −B0(eH , v)

+
∫
Ω

(
f − f H )

v d x + ∑
K∈TH

∫
K

(
Πaε∇uh

K`

(x)−a0 (x)∇uH
)
∇v d x

≤C

( ∑
K∈TH

∥∥∥∥ f H +∇·
(
Πaε∇uh

K`

(x)

)∥∥∥∥
L2(K )

‖v‖L2(K )

+ ∑
K∈TH

∥∥∇eH
∥∥

L2(K ) ‖∇v‖L2(K ) +
∑

K∈TH

∥∥ f − f H
∥∥

L2(K ) ‖v‖L2(K ) (7.4.5)

+ ∑
K∈TH

∥∥∥∥Πaε∇uh
K`

(x)−a0 (x)∇uH
∥∥∥∥

L2(K )
‖∇v‖L2(K )

)
.

We then need a lifting operator as described in the following Lemma (see [33] for details and a

proof).

Lemma 60. Let P
p+d+1
0 (e) be the space of polynomials P p+d+1 (e) that vanish on ∂e. Then

for every element K ∈ TH and every interface e ⊂ ∂K there exists an operator RK ,e : ϕ 7→
RK ,e

(
ϕ

)
, P

p+d+1
0 (e) →P p+d+1 (K ) such that for each function ϕ ∈P

p+d+1
0 (e) we have

i) RK ,e
(
ϕ

)≡ϕ on e

ii) RK ,e
(
ϕ

)≡ 0 on ∂K \e

and the following estimate holds∥∥∇RK ,e
(
ϕ

)∥∥
L2(K ) +H−1

K

∥∥RK ,e
(
ϕ

)∥∥
L2(K ) ≤C H−1/2

e

∥∥ϕ∥∥
L2(e) . (7.4.6)

Let e be an interior interface of K1 and K2 and let xe ∈ e be an interior node on that

interface. Letψe ∈ Ṽ 1 (Ω) be an edge bubble function inωe = K1∪K2 which satisfiesψe (xe ) = 1,

ψe |∂ωe = 0, 0 ≤ψe ≤ 1 and especially supp
(
ψe

)=ωe . We choose the test function as

ve (x) =


RK1,e

(
JΠaε∇uh

K`

Ke (s) ψe

)
in K1

RK2,e

(
JΠaε∇uh

K`

Ke (s) ψe

)
in K2

0 inΩ\(K1 ∪K2) .

(7.4.7)

By definition,ψe vanishes on ∂e, therefore ve (x) vanishes on ∂ (K1 ∪K2). A direct consequence

of Lemma 60 are the following estimates

‖∇ve‖L2(K ) ≤C H−1/2
e

∥∥∥∥JΠaε∇uh
K`

Ke (s) ψe

∥∥∥∥
L2(e)
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and

H−1
K ‖ve‖L2(K ) ≤C H−1/2

e

∥∥∥∥JΠaε∇uh
K`

Ke (s) ψe

∥∥∥∥
L2(e)

.

Inserting the test function (7.4.7) for any e into (7.4.5) and using 0 ≤ψe ≤ 1, we obtain∫
e
JΠaε∇uh

K`

Ke (s) ve d s

≤C H−1/2
e

( ∑
K1,K2

HKi

∥∥∥∥ f H +∇·
(
Πaε∇uh

K`

(x)

)∥∥∥∥
L2(Ki )

+ ∑
K1,K2

∥∥∇eH
∥∥

L2(Ki ) +
∑

K1,K2

HKi

∥∥ f − f H
∥∥

L2(Ki ) (7.4.8)

+ ∑
K1,K2

∥∥∥∥Πaε∇uh
K`

(x)−a0 (x)∇uH
∥∥∥∥

L2(Ki )

)∥∥∥∥JΠaε∇uh
K`

Ke (s)

∥∥∥∥
L2(e)

.

From the equivalence of norms in finite dimensional spaces follows that

C

∥∥∥∥JΠaε∇uh
K`

Ke (s)

∥∥∥∥2

L2(e)

≤
∥∥∥∥JΠaε∇uh

K`

Ke (s)ψ1/2
e

∥∥∥∥2

L2(e)
=

∫
e

(
JΠaε∇uh

K`

Ke (s)

)2

ψe d s,

which we insert into (7.4.8) to arrive at the jump residual estimate

He

∥∥∥∥JΠaε∇uh
K`

Ke (s)

∥∥∥∥2

L2(e)

≤C

( ∑
K1,K2

H 2
Ki

∥∥∥∥ f H +∇·
(
Πaε∇uh

K`

(x)

)∥∥∥∥2

L2(Ki )

+ ∑
K1,K2

∥∥∇eH
∥∥2

L2(Ki ) +
∑

K1,K2

H 2
Ki

∥∥ f − f H
∥∥2

L2(Ki ) (7.4.9)

+ ∑
K1,K2

∥∥∥∥Πaε∇uh
K`

(x)−a0 (x)∇uH
∥∥∥∥2

L2(Ki )

)
.

Combining interior and jump residuals. We eliminate

∥∥∥∥ f H +∇·
(
Πaε∇uh

K`

(x)

)∥∥∥∥
L2(K )

from

the jump residual (7.4.9) with the help of the interior residual (7.4.4) to obtain

He

∥∥∥∥JΠaε∇uh
K`

Ke (s)

∥∥∥∥2

L2(e)
≤C

(∥∥∇eH
∥∥2

L2(ωe ) +H 2
ωe

∥∥ f − f H
∥∥2

L2(ωe )

+
∥∥∥∥Πaε∇uh

K`

(x)−a0 (x)∇uH
∥∥∥∥2

L2(ωe )

)
, (7.4.10)
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where Hωe = maxi=1,2 HKi . Adding the interior residual (7.4.4) to (7.4.10) provides the desired

lower bound

ηH (K )2 ≤C
(∥∥u0 −uH

∥∥2
H 1(ωK ) +ξH (ωK )2

)
as stated in Theorem 56.

7.5 Proof of Theorem 57 (Estimation of the data approximation er-

ror)

In this Section we will estimate the data approximation error and obtain the results given in

Theorem 57.

The term
∥∥ f H − f

∥∥
L2(K ) of the data approximation error (7.3.2) can be easily estimated

using classical FEM techniques, see [44, 40, 39]. We obtain∥∥ f H − f
∥∥

L2(K ) ≤C H m+1.

One typically chooses m = p −1 such that∥∥ f H − f
∥∥

L2(K ) ≤C H p .

Let us introduce the tensor ā0
K

(
xK`

)
, which is defined as a0

K

(
xK`

)
given in (7.2.5) but where

the corresponding functions ψi
Kδ`

are found in the exact Sobolev space W
(
Kδ`

)
instead of its

FE approximation space Sq
(
Kδ` ,Th

)
. We decompose the term∥∥∥∥a0 (x)∇uH −Πaε∇uh

K`

(x)

∥∥∥∥
L2(K )

of the data approximation error (7.3.2) as follows

∥∥∥∥a0 (x)∇uH (x)−Πaε∇uh
K`

(x)

∥∥∥∥
L2(K )

(7.5.1)

=
∥∥∥a0 (x)∇uH (x)−Πa0

K`
∇uH (x)

∥∥∥
L2(K )

(7.5.2)

≤
∥∥∥∥a0 (x)∇uH (x)−Π

a0
(
xK`

)
∇uH

K`

(x)

∥∥∥∥
L2(K )︸ ︷︷ ︸

er rmac

(7.5.3)

+
∥∥∥∥Πa0

(
xK`

)
∇uH

K`

(x)−Πā0
K`

∇uH
K`

(x)

∥∥∥∥
L2(K )︸ ︷︷ ︸

er rmod

(7.5.4)

+
∥∥∥Πā0

K`
∇uH

K`
(x)−Πa0

K`
∇uH

K`
(x)

∥∥∥
L2(K )︸ ︷︷ ︸

er rmi c

, (7.5.5)

142



7.5 Proof of Theorem 57 (Estimation of the data approximation error)

where xK`
∈ K are the quadrature nodes of element K , and Π

a0
(
xK`

)
∇uH

K`

(x), Πā0
K`

∇uH
K`

(x) and

Πa0
K`

∇uH
K`

(x) are the interpolating polynomials based on the interpolation nodes xK`
with

function values a0
(
xK`

)∇uH
(
xK`

)
, ā0

K

(
xK`

)∇uH
(
xK`

)
, and a0

K

(
xK`

)∇uH
(
xK`

)
, respectively.

In the above equation, er rmac and er rmi c denote the macroscopic and microscopic error,

respectively and their analysis depends on both the finescale and homogenized tensor. While

the modeling error emod is independent of the discretization parameters such as H and h, it

does depend on the structure of aε such as periodicity, etc.

Assumptions

As in the piecewise linear case (see Remark 43), we need to have an appropriate regularity

of the cell functions ψi
Kδ`

. Here ψi
Kδ`

∈W
(
Kδ`

)
are the exact cell functions, where W

(
Kδ`

)
is

defined as in (2.4.10) or (2.4.11). The exact cell functions ψi
Kδ`

are defined as the discrete cell

functionsψi ,h
Kδ`

, solutions of equation (7.2.4), but are chosen in W
(
Kδ`

)
instead of Sq

h

(
Kδ` ,Th

)
.

We need further regularity and growth conditions on the small scale tensor aε, which read as

follows for Dirichlet micro boundary conditions (see (2.4.11)) and periodic micro boundary

conditions (see (2.4.10)). We refer to [16, Section 3] for a detailed discussion.

Dirichlet coupling, W
(
Kδ`

)= H 1
0

(
Kδ`

)
. We assume that aεi j |K ∈W 1,∞ (K ) ∀K ∈TH and that∣∣∣aεi j

∣∣∣
W 1,∞(K )

≤ Cε−1. For the case q = 1 we can use classical H 2 regularity results by

applying the second fundamental inequality for elliptic operators (see [72, Chap. 2.6])

to the cell problem. We find that we have the regularity
∣∣∣ψi

Kδ`

∣∣∣
H 2

(
Kδ`

) ≤ Cε−1
√∣∣Kδ`

∣∣
provided that ψi

Kδ`

∈ H 2
(
Kδ`

)
.

Periodic coupling, W
(
Kδ`

)= H 1
per

(
Kδ`

)
. We assume that aεi j is locally periodic and thatδ/ε ∈

N. We further assume that the slow variable x is collocated at xK in each sampling do-

main, i.e., we use a tensor of form a
(
xK , y

)= a
(
xK , x

ε

)
, where y is Y -periodic and where

the map x 7→ ai j (x, ·) is Lipschitz continuous and bounded from Ω̄×R into W 1,∞
per (Y ). If

aε is sufficiently smooth, then higher regularity
∣∣∣ψi

Kδ`

∣∣∣
H q+1

(
Kδ`

) ≤Cε−q
√∣∣Kδ`

∣∣ of ψi
Kδ`

can be shown (see [34, Chap. 3]).

It is more convenient, though, to assume the regularity conditions directly on the cell functions

instead for both Dirichlet and periodic coupling.

Assumption 61. We assume that the cell functions ψi
Kδ`

∈W
(
Kδ`

)
satisfy

∣∣∣ψi
Kδ`

∣∣∣
H q+1

(
Kδ`

) ≤Cε−q
√∣∣Kδ`

∣∣, (7.5.6)

where C is independent of ε, the quadrature node xK`
and the domain Kδ` for all i = 1, ...,d.

For simplicity, we furthermore make the following assumption.
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Assumption 62. We assume that aε (x) = a (x, x/ε) = a
(
x, y

)
is Y -periodic in y and

a
(·, y

) |K is constant (7.5.7)

for K ∈TH .

Assumption 62 implies that the homogenized tensor a0 is constant in any K ∈TH .

7.5.1 Macro error
Due to Assumption 62, we have that a0 (x) = const in any K ∈TH . Therefore the interpolation

(7.2.7) is exact, i.e. Π
a0

(
xK`

)
∇uH

K`

(x) ≡ a0 (x)∇uH (x) for x ∈ K , and we have for the macro error

er rmac = 0.

7.5.2 Modeling and micro error
For the estimation of the modeling error ‖Π

a0
(
xK`

)
∇uH

K`

(x)−Πā0
K`

∇uH
K`

(x)‖L2(K ) and micro error

‖Πā0
K`

∇uH
K`

(x)−Πa0
K`

∇uH
K`

(x)‖L2(K ) we relate the error of two interpolating polynomials to the

error of the function values at the corresponding interpolation nodes. This relation will allow

us to use the estimates of the data approximation error obtained for the piecewise linear

adaptive FE-HMM presented in Section 6.3.5.

Lemma 63. For v, ṽ ∈C 0 (K ) we consider the interpolation polynomialsΠv` (x) ∈P p−1 (K ) and

Πṽ` (x) ∈ P p−1 (K ), respectively, which are defined by (7.2.3) and are assumed to satisfy (Q2)

(see (2.4.5)), i.e.,

Πv`

(
xK`

)= v
(
xK`

)
, `= 1, ...,L

and

Πṽ`

(
xK`

)= ṽ
(
xK`

)
, `= 1, ...,L .

We assume that the interpolation nodes xK`
are chosen to be the quadrature nodes of a quadra-

ture formula
{

xK`
,ωK`

}L
`=1 that satisfies condition (7.2.2). Then∥∥Πv` (x)−Πṽ` (x)
∥∥

L2(K ) ≤C
√

|K | max
1≤`≤L

|v`− ṽ`| ,

where the constant C only depends on the dimensionality d, the polynomial degree p, the

shape regularity constant γ, the quadrature formula {x̂`,ω̂`}L
`=1 and the basis

{
q̂ j

}L

j=1 of

P p−1
(
K̂

)
on the reference element K̂ .

Proof. From (7.2.3) follows that we can introduce an interpolating polynomial Πv`−ṽ` (x) ∈
P p−1 (K ) s.t.

Πv`−ṽ`

(
xK`

)= v
(
xK`

)− ṽ
(
xK`

)
, `= 1, ...,L . (7.5.8)
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We use the transformation FK between K and the reference element K̂ and have

Πv`−ṽ` (x) =Πv`−ṽ` (FK (x̂)) = áΠv`− ˜v̀ (x̂) . (7.5.9)

It follows that [39]∥∥Πv`−ṽ` (x)
∥∥

L2(K ) ≤C |det(∂FK )|1/2
∥∥∥áΠv`− ˜v̀ (x̂)

∥∥∥
L2(K̂ )

. (7.5.10)

Let
{

q̂ j
}L

j=1 be a basis of P p−1
(
K̂

)
, in which we expand áΠv`− ˜v̀ (x̂) as

áΠv`− ˜v̀ (x̂) =
L∑
`=1

β̂`q̂` (x̂) (7.5.11)

with coefficients β̂` ∈R, `= 1, ...,L . We evaluate (7.5.9) at x̂` = F−1
K

(
xK`

)
and use (7.5.8) to get

L∑
j=1

Â` j β̂ j =
L∑

j=1
β̂ j q̂ j (x̂`) = �Πv−ṽ (x̂`) =Πv−ṽ

(
xK`

)= v
(
xK`

)− ṽ
(
xK`

)
, (7.5.12)

where Â` j = q̂ j (x̂`). We write equation (7.5.12) as Âβ̂= δv , where
(

Â
)

i j = Âi j ,
(
β̂

)
i = β̂i and

(δv )` = v
(
xK`

)− ṽ
(
xK`

)
. From Proposition 50 follows that (7.5.12) has a unique solution β̂ and

that Â is invertible. Then we can estimate (7.5.10) further as follows using (7.5.11) and (7.5.12):∥∥Πv`−ṽ` (x)
∥∥

L2(K ) ≤C |det(∂FK )|1/2
∥∥∥áΠv`− ˜v̀ (x̂)

∥∥∥
L2(K̂ )

≤C
√

HK

∥∥∥∥∥ L∑
`=1

β̂`q̂` (x̂)

∥∥∥∥∥
L2(K̂ )

≤C
√

HK

L∑
`=1

∣∣β̂`∣∣∥∥q̂` (x̂)
∥∥

L2(K̂ )

≤C
√

HK

L∑
`=1

∥∥q̂` (x̂)
∥∥

L2(K̂ )
∥∥β̂∥∥∞

≤C
√

HK
∥∥Â−1 (δv )

∥∥∞
≤C

√
HK max

1≤`≤L

∣∣v (
xK`

)− ṽ
(
xK`

)∣∣ ,

where ‖·‖∞ is the supremum matrix and vector norm, respectively, and the constant C only

depends on the dimensionality d , the polynomial degree p, the shape regularity constant γ,

the quadrature formula {x̂`,ω̂`}L
`=1 and the basis

{
q̂ j

}L

j=1 of P
p−1
d

(
K̂

)
(via

∥∥q̂` (x̂)
∥∥

L2(K̂ ) and∥∥Â−1
∥∥∞) on the reference element K̂ .

Modeling error. Applying Lemma 63 to (7.5.1) and using the inverse inequality on the space

L∞ (K ) (see [44, Thm. 17.2])√
|K |∥∥∇uH (x)

∥∥
L∞(K ) ≤C

∥∥∇uH (x)
∥∥

L2(K )
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leads to the following estimate for the modeling error

er rmod =
∥∥∥∥Πa0

(
xK`

)
∇uH

K`

(x)−Πā0
K`

∇uH
K`

(x)

∥∥∥∥
L2(K )

≤C
√

|K | max
1≤`≤L

∥∥(
a0 (

xK`

)− ā0
K

(
xK`

))∇uH (
xK`

)∥∥
2

≤C
√

|K |
(

max
1≤`≤L

∥∥(
a0 (

xK`

)− ā0
K

(
xK`

))∥∥
2

)(
max

1≤`≤L

∥∥∇uH (
xK`

)∥∥
2

)
(7.5.13)

≤C

(
max

1≤`≤L

∥∥(
a0 (

xK`

)− ā0
K

(
xK`

))∥∥
F

)√
|K |∥∥∇uH (x)

∥∥
L∞(K ) (7.5.14)

≤C

(
max

1≤`≤L

∥∥a0 (
xK`

)− ā0
K

(
xK`

)∥∥
F

)∥∥∇uH (x)
∥∥

L2(K ) , (7.5.15)

where ‖·‖2 is the Euclidean norm, and where the constant C only depends on the dimension-

ality d , the polynomial degree p, the shape regularity constant γ, the quadrature formula

{x̂`,ω̂`}L
`=1 and the basis

{
q̂ j

}L

j=1 of P
p−1
d

(
K̂

)
(via

∥∥q̂` (x̂)
∥∥

L2(K̂ ) and
∥∥Â−1

∥∥∞) on the reference

element K̂ . The term (7.5.15) the maximal modeling error over all sampling domains Kδ`

within K , and can be estimated as described in Section 6.3.5.2.

Micro error. For the micro error we similarly get

er rmi c =
∥∥∥Πā0

K`
∇uH

K`
(x)−Πa0

K`
∇uH

K`
(x)

∥∥∥
L2(K )

≤C max
1≤`≤L

∥∥(
ā0

K

(
xK`

)−a0
K

(
xK`

))∇uH (
xK`

)∥∥
2

≤C

(
max

1≤`≤L

∥∥ā0
K

(
xK`

)−a0
K

(
xK`

)∥∥
F

)∥∥∇uH (x)
∥∥

L2(K ) .

We can use the results obtained in Section 6.3.5 in context of the piecewise linear FE-HMM,

but here under the Assumption 61, to estimate

er rmi c ≤C max
1≤`≤L

∥∥ā0
K

(
xK`

)−a0
K

(
xK`

)∥∥
F

∥∥∇uH (x)
∥∥

L2(K ) ≤C

(
h

ε

)2q

.

7.6 Numerical experiments
We reproduce the experiment presented in Section 6.4.2, however we now use piecewise

quadratic instead of piecewise linear macro FE.

The numerical experiments were implemented in Matlab and are based on the FE-HMM

code presented in [11]; for the element bisection we use code that is based in part on i FEM

(see [41]). We will follow the notation presented in Section 6.4.

7.6.1 Crack problem
We consider a crack problem, which exhibits a singularity on the macro domain. This problem

features a two-dimensional, highly oscillating tensor and is based upon [82, Example 5.2].

We investigated the crack problem in the piecewise linear case in Section 7.6.1 (see also [12]).
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Here we use piecewise quadratic finite element functions in the macro problem and piecewise

linear functions in the micro problems. We consider the problem

−∇· (aε (x)∇uε
)= 1 inΩ

uε = gD on ΓD = ∂Ω

on a domain Ω = {|x1|+ |x2| < 1}\{0 ≤ x1 ≤ 1, x2 = 0} with a crack along the positive x1-axis

(see Figure 7.6.1a). The conductivity tensor is given by

a
( x

ε

)
= 64

9
p

17

(
sin

(
2π

x1

ε

)
+ 9

8

)(
cos

(
2π

x2

ε

)
+ 9

8

)
· I2,

and has coefficients chosen such that the homogenized tensor coincides with the unit tensor

I2 (see [70, Chap. 1.2]). The exact homogenized solution u0 of the problem is given (in polar

coordinates) by

u0 (r,ϑ) = r
1
2 sin

ϑ

2
− 1

4
r 2,

where x1 = r cos(ϑ), x2 = r sin(ϑ). We use Dirichlet boundary conditions gD = u0 matching

the exact homogenized solution u0.

We choose ε= δ= 10−3 and periodic boundary conditions for the micro problems. Fur-

thermore we let Dörfler’s bulk-chasing strategy (Marking Strategy E, see Section 5.4) with a

parameter of θ = 0.3 drive the marking and choose the coupling between micro and macro

refinement as hK = HK , where we start with an initial mesh of ĥK = 1
8 . We refine the mesh

twice in every iteration (i.e. after two iterations, two elements can be divided in up to eight).

Remark 64. If we strictly follow the refinement strategy hK = HK then as soon as in iteration

20 a very large micro problem with (4,194,304)2 DOF is required. At the same time, at iteration

8 the highest resolved numerically homogenized tensor a0
K

(
xK`

)
computed with (1024)2 DOF

is exact up to
∥∥a0

K

(
xK`

)−a0
(
xK`

)∥∥
∞ < 9.2 ·10−7, which is much smaller than the macro error.

We therefore keep this micro-resolution and do not refine the micro mesh any further for every

macro element already refined at least 8 times. A posteriori estimates on the micro problem

could be used to choose the micro-macro coupling rate adaptively. See also the Remark at the

end of Section 7.3.1.

In Figure 7.6.1 we show the error in the H 1-norm. There, Nmac denotes the macro degrees

of freedom. Our experiments confirm the theoretical asymptotic rate of O
(
N−2/d

mac

)
. As a

comparison we also plot the error when using hK = p
HK for coupling micro and macro

meshes. We get a convergence rate that is not asymptotically optimal, therefore confirming

our ideal coupling rate of Remark 58. We remark that, despite being expensive, the coupling

hK ∝ HK is required for optimal O
(
N−2/d

mac

)
convergence.

In Table 7.6.1 we list various quantities that reveal the quality of the adaptive method,

where we use the notation introduced in Section 6.4. After a few iterations, the error estimator

and the error itself converge with the same convergence rate, which matches the asymptotic
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(a) FE-HMM solution after 10 iterations of the crack
problem presented in Section 7.6.1.
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Figure 7.6.1: FE-HMM solution and errors for the crack problem described in Section 7.6.1.

rate we would expect theoretically. Furthermore, the effectivity remains nearly constant which

implies that our adaptive method is both efficient and effective.
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Iteration #el
∥∥u0 −uH M M

∥∥
H 1(Ω) ηH (Ω) EOC

(
eH

)
EOC

(
ηH

)
Ze Eff := ηH

eH

1 256 1.04e-01 7.42e-01 0.140

2 260 9.47e-02 5.09e-01 11.79 48.64 0.913 0.186

3 270 7.31e-02 3.80e-01 13.69 15.46 0.772 0.192

4 292 5.39e-02 3.39e-01 7.79 2.93 0.737 0.159

5 302 5.22e-02 2.75e-01 1.92 12.29 0.968 0.189

6 316 3.92e-02 2.50e-01 12.61 4.36 0.751 0.157

7 328 3.56e-02 2.04e-01 5.23 10.95 0.907 0.175

8 344 3.02e-02 1.71e-01 6.87 7.41 0.849 0.177

9 382 2.25e-02 1.49e-01 5.61 2.62 0.746 0.151

10 416 1.90e-02 1.22e-01 3.92 4.74 0.846 0.157

11 472 1.56e-02 1.01e-01 3.12 2.99 0.821 0.155

12 516 1.31e-02 8.19e-02 3.97 4.61 0.838 0.160

13 609 1.12e-02 6.58e-02 1.91 2.65 0.854 0.170

14 729 9.88e-03 5.20e-02 1.39 2.62 0.883 0.190

15 939 7.65e-03 3.71e-02 2.02 2.67 0.774 0.206

16 1293 5.59e-03 2.66e-02 1.96 2.08 0.731 0.211

17 1834 4.69e-03 1.98e-02 1.01 1.67 0.838 0.236

18 2444 2.31e-03 1.48e-02 4.92 2.04 0.494 0.156

19 3463 1.38e-03 1.00e-02 2.96 2.23 0.597 0.138

20 5122 9.32e-04 6.70e-03 2.01 2.07 0.674 0.139

21 7565 6.39e-04 4.53e-03 1.94 2.00 0.685 0.141

22 11196 4.39e-04 3.10e-03 1.91 1.94 0.688 0.142

23 16440 3.01e-04 2.12e-03 1.97 1.97 0.686 0.142

24 24002 2.08e-04 1.47e-03 1.97 1.95 0.689 0.142

25 34936 1.45e-04 1.01e-03 1.93 1.96 0.697 0.143

26 50537 1.01e-04 7.05e-04 1.93 1.97 0.700 0.143

27 72674 7.12e-05 4.92e-04 1.94 1.98 0.703 0.145

28 104440 5.00e-05 3.45e-04 1.95 1.96 0.702 0.145

29 149224 3.49e-05 2.42e-04 2.01 1.99 0.699 0.144

30 212688 2.46e-05 1.70e-04 1.98 1.98 0.704 0.144

Table 7.6.1: Iteration number, number of macro elements, H 1 error, error indicator, experimental order
of convergence for the error and the indicator, reduction factor and effectivity for the Crack problem
presented in Section 7.6.1.

149



Chapter 7. Higher order Adaptive FE-HMM

7.7 Summary
In the previous Chapter 6 we derived the a posteriori error analysis for the FE-HMM in the

energy norm for piecewise linear macro FE. In this Chapter we extended the analysis and the

design of the adaptive method to higher order macro (and micro) FE. The extended analysis

is based on the construction of the higher order multiscale flux and multiscale jump; this

construction allowed us to largely follow the strategy and analysis of residual-based a posteriori

error estimators developed for single-scale problems.

These are the first rigorous a posteriori results for the FE-HMM with higher order FE de-

rived in the energy norm of the physical variables. The efficiency and reliability of our adaptive

strategy is confirmed by numerical results.

The a posteriori error analysis for higher order FE-HMM clears the way to introduce a

posteriori estimates for the FE-HMM in terms of errors in quantities of interest, as they rely on

finding the approximation of a so-called dual solution in a space of higher order FE than the

space where the original, primal solution was found. We will derive a posteriori error estimates

in quantities of interest and design a goal-oriented adaptive FE-HMM in Chapter 8.
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8 Goal-Oriented Adaptive FE-HMM

The residual-based adaptive FE-HMM we have seen so far was designed in order to adapt

the macro mesh according to potential singularities (such as reentrant corners). We are now

concerned with the problem of adapting the mesh to control the error in a desired quantity of

interest. These quantities of interest are obtained with the help of a linear, bounded functional

J (u). The dual weighted residual (DWR) FE-HMM is based upon the division of the problem

into the primary (standard) FE-HMM problem and an auxiliary, dual FE-HMM problem. The

dual problem enables us to “extract” information required to express the error in terms of

quantities of interest. We construct an exact error representation using macroscopic error

estimators that allow us to find an approximation of the error in the quantity of interest. We fur-

ther design localized macroscopic refinement indicators, which are used to drive an adaptive

mesh refinement. These refinement indicators and error estimators depend on information

from the microscopic quantities. As they are not readily available, we recover the required

information on the fly. We will again use the relation between the special FE-HMM compo-

nents such as the multiscale fluxes and jumps to their equivalent classical, single-scale FEM

counterparts, which we derived in Section 7.2 in the context of higher order residual-based

FE-HMM. We therefore can largely follow the derivation of single-scale dual weighted residual

FE methods.

In Section 8.2 we state the main results of the a posteriori analysis for the DWR FE-HMM,

and present details of the algorithm in Section 8.3. We provide a proof of our a posteriori error

estimates in Section 8.4 and estimate the data approximation error in Section 8.5. Finally, nu-

merical experiments in Section 8.6 demonstrate the capabilities of the goal-oriented adaptive

FE-HMM.

The results of this Chapter will be published in [13].
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Chapter 8. Goal-Oriented Adaptive FE-HMM

8.1 Model problem
Let TH denote a conformal mesh and let EH be the set of interfaces. Given f ∈ L2(Ω) and a

domainΩ⊂Rd , d = 1,2,3, we consider the second-order elliptic multiscale equation

−∇· (aε∇uε
)= f in Ω,

uε = 0 on ∂Ω,
(8.1.1)

where aε is symmetric, satisfies aε(x) ∈ (L∞(Ω))d×d and is uniformly elliptic and bounded. We

consider in what follows only homogeneous Dirichlet boundary conditions, but emphasize

that more general boundary conditions (such as Neumann or Robin) can be considered by

following the lines of the results presented in this Chapter.

8.2 Main results
We want to remind the reader once more of the terminology we use. The word error estimate

denotes a quantity that is used to approximate the unknown error; upper and lower bound

denote quantities that are always larger and smaller, respectively, than the actual error. There-

fore, error estimates are close to the actual error, but cannot be guaranteed. In contrast, the

upper and lower bound might be more inaccurate, but are always guaranteed. We furthermore

use the word (local) refinement indicator (typically obtained from a localization of the error

estimator) to denote local quantities on an element, which are used to drive an adaptive mesh

refinement.

Notation 65. In what follows we will frequently use the primal and dual Galerkin orthogonality

property. To emphasize the difference between the FE-HMM solution and a general function

in V H =V p (Ω,TH ), we will thus write uHMM instead of uH for the FE-HMM solution of prob-

lem (2.4.12) and v H and ψH will refer to any function in V H =V p (Ω,TH ). Here, V p (Ω,TH ) is

the macro higher-order FE space (7.2.1). We further use V = H 1
0 (Ω).

We will only use simplicial elements in what follows, as quadrature formulae for quadrilat-

erals or hexahedra do not meet condition (7.2.2); they still can be used in the implementation

of the method, but the proof involves additional technicalities. We let f H be an element-wise

P m (K ) approximation of f , we will find out how to choose m appropriately in Section 8.5.

Let J : V → R be a linear, bounded functional. We seek the error eH := u0 −uHMM in

quantities of interest, i.e.

J
(
eH )= J

(
u0)− J

(
uHMM)

.

As we mentioned, the DWR method relies on the solution of a primal and a dual problem,

which are given as follows.
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8.2 Main results

Primal problem. The primal problem for the homogenized solution u0 is given by (2.1.7),

i.e.

B0
(
u0, v

)= ∫
Ω

f v d x ∀v ∈ H 1
0 (Ω) . (8.2.1)

We approximate u0 by the FE-HMM solution uHMM ∈V H , where

V H :=V p (Ω,TH ) , (8.2.2)

which is the solution of

B
(
uHMM , v H )= ∫

Ω
f v H d x ∀v H ∈V H (Ω,TH ) ,

where B (·, ·) refers to the FE-HMM bilinear form (2.4.6).

Dual problem. Then let the dual solution z0 ∈ H 1
0 (Ω) be the solution of the dual problem

B0
(
ϕ, z0)= J

(
ϕ

) ∀ϕ ∈ H 1
0 (Ω) . (8.2.3)

The dual solution necessary for the DWR method must be found in a space that is richer than

the original FE space, see Remark 20 in Chapter 5.2. We cannot simply solve for a dual solution

in V H . We choose the richer space

V H :=V p̃ (Ω,TH ) (8.2.4)

to consist of polynomials with p̃ > p. The discretized dual problem (using the FE-HMM) is

then

B
(
ϕH ,zHMM

)
= J

(
ϕH

)
∀ϕH ∈V H , (8.2.5)

where B (·, ·) is the FE-HMM bilinear form.

Remark 66. We want to remind the reader again that when replacing z0 by zHMM we get

reliable error estimates only if we can neglect the approximation error
∥∥∥z0 −zHMM

∥∥∥. We refer

to Remark 21 for a discussion.

8.2.1 Exact error representation

Definition 67. We define the interior and jump residuals RI ,H in K and R J ,H on e, respectively

as

RI ,H (x) |K = f H +∇·
(
Πaε∇uh

K`

(x)

)
R J ,H (s) |e =− 1

2
JΠaε∇uh

K`

Ke (s) ,
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where the multiscale fluxΠaε∇uh
K`

(x) is defined in (7.2.7) and the higher order multiscale jump

JΠaε∇uh
K`

Ke (s) is defined in (7.2.9) in Section 7.2.2.

We now state the DWR FE-HMM error representation, which we will derive in Section 8.4.

Theorem 68 (Exact DWR FE-HMM error representation). The error in quantities of interest is

given by the exact representation

J
(
u0 −uHMM)= ∑

K∈TH

ηH (K )+ξH (K ) ,

where the local error estimator is given by

ηH (K ) :=
∫

K
RI ,H (x)

(
zHMM −ψH

)
d x +

∫
∂K

R J ,H (x)
(
zHMM −ψH

)
d s, (8.2.6)

and the data approximation error ξH (K ) is defined as in Definition 69.

Proof. We give the proof in Section 8.4.

Definition 69 (Data approximation error). We define the data1 approximation error ξH (K ) on

an element K as

ξH (K ) =
∫

K

(
Πaε∇uh

K`

(x)−a0 (x)∇uH M M
)
·∇

(
zHMM −ψH

)
d x (8.2.7a)

+B0,K

(
u0 −uH M M , z0 −zHMM

)
(8.2.7b)

+B0,K
(
u0 −uH M M ,ψH )

(8.2.7c)

−
∫

K

(
f H − f

)(
zHMM −ψH

)
d x, (8.2.7d)

where the subscript K in B0,K (·, ·) indicates the restriction of B0 (·, ·) onto the element K . The

function ψH ∈V H is an arbitrary function; there are various strategies for the choice of ψH ,

see also Section 5.3.1. We will investigate the choice of ψH in Section 8.5.1.

Remark 70. The components of the data approximation error (8.2.7) can be understood as

follows.

(8.2.7a) Approximation error caused by using an inaccurate tensor (implicitly computed

within the micro problem) and numerical quadrature instead of using the exact, contin-

uous a0 (x) in the estimator, i.e. the macro, micro and modeling error.

(8.2.7b) Approximation error for using zHMM instead of z0.

1In contrast to the residual-based approach, ξH (K ) here not only involves errors due to approximation of data
but also an additional error introduced by using zHMM instead of z0.
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(8.2.7c) Approximation error caused by the introduction of ψH and the lack of Galerkin

orthogonality due to the discrepancy between uHMM and u0,H
ex . Here, u0,H

ex is the exact

FEM solution of problem (8.2.1).

(8.2.7d) Approximation error caused by approximating the right-hand side f (x) in the esti-

mator.

Theorem 71 (Estimation of the data approximation error). Under the assumption 78 and 79

and given a quadrature formula
{

xK`
,ωK`

}L
`=1 that satisfies condition (7.2.2), we can estimate

the data approximation error ξH (Ω) as follows.

|ξH (Ω)| ≤C

((
h

ε

)2q

+er rmod

)∥∥∥∇(
zHMM −ψH

)∥∥∥
L2(Ω)

+C

(
H p +

(
h

ε

)2q

+er rmod

)(
H p̃ +

(
h

ε

)2q

+er rmod ,dual

)
+C

(
H p +

(
h

ε

)2q

+er rmod

)∥∥∇ψH
∥∥

L2(Ω)

+C H m+1
∥∥∥∇(

zHMM −ψH
)∥∥∥

L2(Ω)

(8.2.8)

Proof. The proof follows in Section 8.5.

Remark 72. In Section 8.5.1 we will evaluate the estimates of Theorem 71 for two choices of

ψH , namely ψH ≡ 0 and ψH ≡ zHMM , where zHMM is the dual solution found in V H instead of

V H of problem (8.2.5). We will usually choose m = p −1.

Error estimators involving the Cauchy-Schwarz inequality do not allow for cancelations of

errors among different elements of the domain and therefore typically overestimate the error

significantly; many explicit error estimators further involve unspecific constants. In contrast,

the DWR method allows for cancelation of errors among elements and does not depend on

unspecific constants. Cancelation over elements, however, would not be possible if we had

a positive local estimator on every element and then summed over all elements, as it was

done in the residual-based case. Instead, we need to distinguish between the (global) error

representation formula (Theorem 68) and local refinement indicators η̄H (K ). The (global)

error representation formula consists of local (signed) error estimators ηH (K ) and is used

for estimating the global error of the approximate solution uHMM , where we want to have

cancelation of errors. The local refinement indicators η̄H (K ) presented in Definition 73 are

used to drive the adaptive mesh refinement procedure. We thus take the (positive) refinement

indicator to drive the adaptive scheme, i.e. to refine those elements whose indicator is “largest”

in some sense to be defined; see the different marking schemes presented in Section 5.4.

Definition 73 (A posteriori DWR refinement indicators). We define the following local refine-

ment indicators

η̄H (K ) :=
∣∣∣∣∫

K
RI ,H (x)

(
zHMM −ψH

)
d x +

∫
∂K

R J ,H (s)
(
zHMM −ψH

)
d s

∣∣∣∣ .
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Corollary 74 (A posteriori DWR upper bound). We have an a posteriori upper bound given by∣∣J
(
u0 −uHMM)∣∣≤ ∑

K∈TH

η̄H (K )+|ξH (K )| . (8.2.9)

Proof. Follows immediately from Definition 73.

The term (8.2.9) can be further estimated as in the following Proposition (see [28]).

Proposition 75 (A posteriori error estimate). We have an alternative a posteriori upper bound

given by

∣∣J
(
u0 −uHMM)∣∣≤ ∑

K∈TH

η̄H (K )+|ξH (K )| (8.2.10)

≤ ∑
K∈TH

ρKωK + ξ̃H (K ) , (8.2.11)

where the cell-residuals ρK and the weights ωK are given by

ρK :=
(∥∥RI ,H (x)

∥∥2
L2(K ) +

1

HK

∥∥R J ,H (s)
∥∥2

L2(∂K )

)1/2

ωK :=
(∥∥∥zHMM −ψH

∥∥∥2

L2(K )
+HK

∥∥∥zHMM −ψH
∥∥∥2

L2(∂K )

)1/2

,

and where ξ̃H (K ) is given by (8.2.7b), but where we sum over the norms (using Cauchy-Schwarz

inequality for the integrals and bilinear forms, together with boundedness) of every single

component.

By separating the error into cell residuals and weights, we not only eliminate cancela-

tion over elements but also eliminate cancelation of data approximation errors between the

element and cell residuals.

We remark as mentioned in Section 5.3 that since going from (8.2.10) to (8.2.11) does

not add any additional information on either the approximate dual solution zHMM or on the

approximation of the tensor a0 (x), the expression
∑

K∈TH
ρKωK + ξ̃H (K ) will be bigger than∑

K∈TH
η̄H (K )+|ξH (K )| without increased reliability (see [87]). We will therefore use (8.2.10)

in what follows.

8.3 Algorithm
Our adaptive algorithm for the DWR FE-HMM again follows the framework of the adaptive

algorithm for standard FEM and consists of loops of the form

Solve → Estimate → Mark → Refine.

However, due to the multiscale nature of the problem and due to the primal-dual aspect of the

goal-oriented method, we need to modify the algorithm accordingly.
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8.3 Algorithm

Algorithm 76 (Adaptive DWR-FE-HMM).

Solve. For the macro and micro meshes obtained by REFINE, compute the micro solutions

(only for the refined macro elements) and the macro solutions uHMM and zHMM for the

primal and the dual problem, respectively. Compute ψH if appropriate. Compute and

store the high-order multiscale fluxesΠaε∇ϕh
K`

(x) (based on the FE basis functions ϕH ) for

the refined elements during the macro assembly process.

Estimate. Reconstruct the full multiscale fluxes Πaε∇uh
K`

(x) and jumps JΠaε∇uh
K`

Ke (s). Es-

timate the error in the quantity of interest J
(
u0 −uHMM

)
by computing the estimate∑

K∈TH
ηH (K ). (This can serve as a stopping criterion using

∣∣∑
K∈TH

ηH (K )
∣∣< tol , for a

certain prescribed tolerance tol .)

Mark. Mark the elements on a subset T̃H of TH based on the refinement indicators η̄H (K )

following the strategy described below.

Refine. Refine the marked elements (and some neighbors for mesh conformity) and update the

mesh for the primal and the dual problem. Update the micro meshes of the sampling

domains corresponding to the refined macro elements (see below for a discussion about

an optimal coupling).

Mesh adaption strategy Depending on the problem to be solved, a suitable mesh adaption

strategy has to be chosen. See also Section 5.4. For the marking strategy we will follow the

maximum marking strategy (used in [96]) and refine the elements which contribute the most

to J
(
u0 −uHMM

)
. An element K of the mesh is refined if

ηH (K )

maxK̃∈TH
ηH

(
K̃

) ≥ϑ,

where 0 <ϑ< 1 is a user-defined parameter.

As in the case of the adaptive, residual-based FE-HMM we will re-use the solution of the

micro problems obtained in previous iterations, see Remark 38. Since the polynomial degree

p we use for the primal FE problem is different from the polynomial degree p̃ we use for the

dual FE problem, typically also different quadrature rules will be used. For example in the

case p = 1, p̃ = 2, we have one quadrature node, and therefore one micro problem per macro

element in the primal problem, but three in the dual problem, all at different locations. A

naive approach would be to compute all four micro problems. As the computation of the

micro problems is computationally very expensive, we should only compute the three micro

problems for the assembly of the dual stiffness matrix and use these result for the assembly of

the primal stiffness matrix. An elegant way to do this is described in the following remark.

Remark 77. The following choice of FEM shape functions will reduce the computational cost

of the primal and dual problem. We can use the (somewhat non-standard) choice of piecewise

quadratic shape functions as in [30], where out of the six shape functions per element, three
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are piecewise linear (and coincide with the standard piecewise linear shape functions) and

three are quadratic. Then, when assembling the dual stiffness matrix, the computation of

every entry of the primal stiffness matrix with piecewise linear functions is already done and

comes for free. This way, we need to compute only three instead of four micro problems

per macro element (for p = 1, p̃ = 2). Furthermore, we then have also in the primal problem

a quadrature formula which is correct up to piecewise quadratic tensors a0 (x) instead of

piecewise linear ones.

However, the downside of this choice of basis functions is that we no longer have a nodal

basis.

8.3.1 Macro-micro coupling
In the residual-based adaptive FE-HMM case, we found that – under appropriate assumptions

– the ideal coupling for the data approximation error of the estimator is given by hK ∝ (HK )
p

2q .

Here p and q refer to the polynomial degree of the (primal) macro and micro FE space,

respectively. The polynomial degree of the dual macro FE space is denoted as p̃. The coupling

rate suggested for the estimator coincides with the coupling rate for the solver suggested by the

a priori results for the error in the H 1-norm. In our residual-based FE-HMM implementation,

we therefore use the same coupling for both the solver (to obtain uHMM ) as well as for the

estimator (to obtain ηH (K )). In the general DWR FE-HMM case, the optimal coupling for

the solution uHMM does not necessarily coincide with the optimal coupling for the estimator

ηH (K ). We only require the functional J (·) to be linear and bounded. It is not straightforward

to obtain a priori estimates for errors in general quantities of interest that could be used

to extract an (optimal) macro-micro coupling rate. We know a priori coupling rates for the

error J
(
eH

)
for a few quantities of interest, such as (presented for the case of piecewise linear

elements)

• for the global H 1-norm we expect a convergence rate of J
(
eH

)∝ H ,

• for the global L2-norm we expect a convergence rate of J
(
eH

)∝ H 2,

• for the point-wise error we have a very rough estimate of J
(
eH

)∝ H 3, see [28, Section

3.3].

For each case, the data approximation error of the estimator has to be studied in order to find

an optimal coupling rate for the estimator.

If we simply follow the a priori estimates for the H 1-norm to obtain the coupling for the

primal and dual solver, we obtain the following macro-micro coupling scheme: refine the

micro mesh in each sampling domain Kδ` according to

hK ∝ (HK )
p

2q for the primal problem

and

hK ∝ (HK )
p̃

2q for the dual problem,

158



8.4 Proof of Theorem 68 (Exact DWR FE-HMM error representation)

where HK is the size of the macro element K ∈TH and where the subscript K and K indicate

the primal and dual coupling, respectively. We emphasize, that for reasons of computational

efficiency, all of the micro problems should be solved with one specific coupling and the

results should be used for the primal and dual solver and for the estimator.

For the error estimator, we will derive upper bounds in Section 8.5, which will lead to

equations from which we can derive a coupling scheme. We emphasize though that to obtain

these results, the cancelations of errors amongst the elements is ignored, which may lead to a

significant overestimation of the data approximation error.

In the numerical experiment in Section 8.6.1 we will further analyze different macro-micro

couplings.

8.3.2 Approximation of the linear functional

In our analysis we ignore the approximation error originating from the (numerical) approx-

imation of the functional J (·). In general, we have to approximate the functional in some

way, which introduces a discretization error. For example, as mentioned in Remark 22, we

might use mollification in the case of point-wise directional derivative errors and approximate

J (u) = ∂nu
(
x?

)
at a point x? by an approximation

Jε (u) :=
∫
Ω
∂nu (x)kε

(
x −x?

)
d x,

where u stands for the exact or FE-HMM solution of the primal problem. In an adaptive

algorithm, ε should also be chosen adaptively. Difficulties might not only arise from point-

wise quantities of interest. For example, consider a quantity of interest such as the average

over a certain area J (u) := ∫
S u d x, S ⊂Ω as J (u) = ∫

ΩΘ (x)u d x with a step function

Θ (x) :=
1 if x ∈ S

0 otherwise,

i.e. the dual problem in its strong form

−∇· (a0 (x)∇z0 (x)
)=Θ (x)

has a non-smooth right hand side, which can impair the regularity of the dual solution z0.

When using regularization or mollification, the regularity can be improved, but this comes at

the cost of introducing an additional modeling error for the functional. We will not take this

kind of modeling error into account for our analysis.

8.4 Proof of Theorem 68 (Exact DWR FE-HMM error representation)
We prove Theorem 68, the exact DWR FE-HMM error representation. On the way, we will

justify Definition 69 of the data approximation error.
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We proceed in three steps. First, we use duality arguments to state the error in quantities

of interest, but still depending on the unknown dual function z0. Second, we introduce a

function ψH . Third, we replace all numerically unavailable quantities, such as z0 or f , by their

computable, discrete approximations such as zHMM and f H , respectively in order to obtain

a computable error estimator. All unknown discrepancy terms (e.g. f H − f ) are put into the

data approximation error.

Step I: error in quantities of interest through duality arguments. Let J
(
uHMM

)
denote the

quantity of interest, where J : V →R is a linear and bounded error functional in the dual space

V ′. We want to find the exact error representation for the error eH := u0 −uHMM in quantities

of interest J (·)

J
(
eH )= J

(
u0)− J

(
uHMM)

.

The dual problem (8.2.3)

B0
(
ϕ, z0)= J

(
ϕ

)
holds for all ϕ ∈V . We therefore choose ϕ= eH to obtain

J
(
eH )= B0

(
eH , z0) . (8.4.1)

Step II: Introduction ofψH and dealing with the lack of Galerkin orthogonality. In classi-

cal FEM, we have Galerkin orthogonality of the homogenized bilinear form for the primal

problem

B0
(
u0 −u0,H

ex ,ψH )= 0 ∀ψH ∈V H , (8.4.2)

and the dual problem

B0
(
ϕH , z0 − z0,H

ex

)= 0 ∀ϕH ∈V H ,

where u0,H
ex ∈V H is the FEM solution of the homogenized bilinear form B0 (·, ·) (without quadra-

ture, as indicated by the subscript ex ) (8.2.3) and z0,H
ex ∈V H is defined likewise.

While the classical FEM without quadrature is free of variational crimes, and therefore

Galerkin orthogonality holds, the FE-HMM bilinear form B (·, ·) is based by construction on

quadrature. Therefore, we commit variational crimes in the FE-HMM and in general, Galerkin

orthogonality B0
(
eH ,ψH

) 6= 0 does not hold for the FE-HMM solution uHMM .

We now introduce an arbitrary ψH ∈ V H in equation (8.4.1), which we will later choose

with the aim of increasing the accuracy or reduce the computational cost of the error estimator,

see Section 8.5.1. We will add the discrepancy terms to the data approximation error term

ξH (K ). We introduce ψH and obtain

160



8.4 Proof of Theorem 68 (Exact DWR FE-HMM error representation)

J
(
u0 −uH M M )

=B0
(
u0 −uH M M , z0)

=B0
(
u0 −uH M M , z0 −ψH )+B0

(
u0 −uH M M ,ψH )

. (8.4.3)

Step III: Making the estimate computable. In (8.4.1), the dual solution z0 is the exact solu-

tion of (8.2.3). Furthermore, the bilinear form B0 (·, ·) involves the exact homogenized tensor,

and the primal solution u0 of (8.2.1) depends on the exact right hand side f of (8.1.1). These

are all quantities, which in general cannot be evaluated exactly in the a posteriori error esti-

mate. We therefore replace them in what follows step by step by computable quantities, e.g.

we replace f by an approximation f H , and add the introduced disparity terms, such as f − f H ,

to the data approximation error ξH (K ).

We start by replacing the exact dual solution z0 by the computable FE-HMM dual solution

zHMM in (8.4.3). We obtain

J
(
u0 −uHMM)

=B0
(
u0 −uHMM , z0 −ψH )+B0

(
u0 −uHMM ,ψH )

.

=B0

(
u0 −uHMM ,zHMM −ψH

)
︸ ︷︷ ︸

(∗)

+B0

(
u0 −uHMM , z0 −zHMM

)
+B0

(
u0 −uHMM ,ψH )

.

(8.4.4)

The second term in (8.4.4) corresponds to using the approximation zHMM instead of the exact

z0 and the third term arises from the introduction ofψH and the lack of Galerkin orthogonality

between eH and ψH . We now only consider expression (∗) of eq. (8.4.4). We split it into two

parts, which are

(∗) = B0

(
u0 −uHMM ,zHMM −ψH

)
=

∫
Ω

f
(
zHMM −ψH

)
d x −B0

(
uHMM ,zHMM −ψH

)
, (8.4.5)

where we used (8.2.1). We replace the exact f in the first term of (8.4.5) by its approximation

f H and get∫
Ω

f
(
zHMM −ψH

)
d x =

∫
Ω

f H
(
zHMM −ψH

)
d x −

∫
Ω

(
f H − f

)(
zHMM −ψH

)
d x. (8.4.6)

We then substitute the flux a0∇uHMM (x) involving the exact homogenized tensor a0 (x) by the
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computable multiscale flux (7.2.7) in the second term of (8.4.5). This leads to

B0

(
uHMM ,zHMM −ψH

)
= ∑

K∈TH

∫
K

(
a0 (x)∇uHMM) ·∇(

zHMM −ψH
)

d x

= ∑
K∈TH

∫
K

(
Πaε∇uh

K`

(x)

)
·∇

(
zHMM −ψH

)
d x (8.4.7)

− ∑
K∈TH

∫
K

(
Πaε∇uh

K`

(x)−a0 (x)∇uHMM
)
·∇

(
zHMM −ψH

)
d x.

We divide the estimate into element terms and jump terms. We therefore integrate (8.4.7) by

parts to get

B0

(
uHMM ,zHMM −ψH

)
=− ∑

K∈TH

∫
K
∇·

(
Πaε∇uh

K`

(x)

)(
zHMM −ψH

)
d x

+ 1

2

∑
K∈TH

∑
e⊂∂K

∫
e
JΠaε∇uh

K`

Ke (s)
(
zHMM −ψH

)
d s (8.4.8)

− ∑
K∈TH

∫
K

(
Πaε∇uh

K`

(x)−a0 (x)∇uHMM
)
·∇

(
zHMM −ψH

)
d x,

where we used the definition of the multiscale jump (7.2.9). We plug (8.4.5), (8.4.6) and (8.4.8)

into (8.4.4) and obtain the error representation formula

J
(
u0 −uHMM)= ∑

K∈TH

ηH (K )+ξH (K ) ,

where ηH (K ) and ξH (K ) are defined in (8.2.6) and (8.2.7), respectively, and the proof is com-

plete.

8.5 Proof of Theorem 71 (Estimation of the data approximation er-

ror)
Up to this point we did not make any specific spatial assumptions on the oscillating tensor,

such as periodicity in the micro scale, to derive our error estimate. Furthermore, we kept both

sampling domain size and boundary conditions of the micro problem for the FE-HMM rather

general. We now find estimates of the data approximation error (8.2.7) by using the results we

obtained in Section 7.5, where we analyzed the data approximation error of the residual-based

FE-HMM.

Assumptions.

Similarly to our analysis in the higher-order residual-based FE-HMM, make the following

assumptions. See Section 7.5 and [16, Section 3] for details.
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Assumption 78. We assume that the cell functions ψi
Kδ`

∈W
(
Kδ`

)
satisfy

∣∣∣ψi
Kδ`

∣∣∣
H q+1

(
Kδ`

) ≤Cε−q
√∣∣Kδ`

∣∣, (8.5.1)

where C is independent of ε, the quadrature node xK`
and the domain Kδ` for all i = 1, ...,d.

For simplicity, we furthermore make the following assumption.

Assumption 79. We assume that aε = a (x, x/ε) = a
(
x, y

)
is Y -periodic in y and

a
(·, y

) |K is constant (8.5.2)

for K ∈TH .

Assumption 79 implies that the homogenized tensor a0 is constant in any K ∈TH .

Decomposition and estimation of the data approximation error.

The data approximation error (8.2.7) consists of four components and is given by

ξH (K ) =
∫

K

[
Πaε∇uh

K`

(x)−a0 (x)∇uH M M
]
·∇

(
zHMM −ψH

)
d x (8.5.3a)

+B0,K

(
u0 −uH M M , z0 −zHMM

)
(8.5.3b)

+B0,K
(
u0 −uH M M ,ψH )

(8.5.3c)

−
∫

K

(
f H − f

)(
zHMM −ψH

)
d x. (8.5.3d)

We will estimate some components using the global a priori estimates for the FE-HMM

that were obtained in [2] and that we presented in (2.4.15). The a priori estimates are given for

the primal problem as

∥∥u0 −uHMM
∥∥

H 1(Ω) ≤C

(
H p +

(
h

ε

)2q)
+er rmod , (8.5.4)

and similarly we have for the dual problem

∥∥∥z0 −zHMM
∥∥∥

H 1(Ω)
≤C

(
H p̃ +

(
h

ε

)2q)
+er rmod ,dual , (8.5.5)

where we assume the same micro mesh size for both primal and dual problem.

We further use the results we obtained in context of the data approximation error for the

higher order FE-HMM in Section 7.5, where we found that∥∥∥∥a0 (x)∇uHMM (x)−Πaε∇uh
K`

(x)

∥∥∥∥
L2(K )

≤C

((
h

ε

)2q)
+er rmod .
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We estimate each of the four different components as follows. For the approximation error

caused by using inaccurate tensor instead of a0 (x) (due to micro and modeling errors) in the

estimator, which is given by (8.5.3a), we obtain

∣∣∣∣∫
K

[
Πaε∇uh

K`

(x)−a0 (x)∇uH M M
]
·∇

(
zHMM −ψH

)
d x

∣∣∣∣
≤

∥∥∥∥Πaε∇uh
K`

(x)−a0 (x)∇uH M M
∥∥∥∥

L2(K )

∥∥∥∇(
zHMM −ψH

)∥∥∥
L2(K )

≤C

((
h

ε

)2q

+er rmod

)∥∥∥∇(
zHMM −ψH

)∥∥∥
L2(K )

. (8.5.6)

The dual solution approximation error (8.5.3b) for using zHMM instead of z0 reads∣∣∣B0,K

(
u0 −uH M M , z0 −zHMM

)∣∣∣
≤C

∥∥∇(
u0 −uH M M )∥∥

L2(K )

∥∥∥∇(
z0 −zHMM

)∥∥∥
L2(K )

where we used boundedness of B0 (·, ·). We can further find the global estimate∣∣∣B0

(
u0 −uH M M , z0 −zHMM

)∣∣∣
≤C

(
H p +

(
h

ε

)2q

+er rmod

)(
H p̃ +

(
h

ε

)2q

+er rmod ,dual

)
, (8.5.7)

where we used the a priori estimates (8.5.4) and (8.5.5) for the primal and dual solution,

respectively. The approximation error caused by the introduction of ψH and the lack of

Galerkin orthogonality (8.5.3c) can be estimated as∣∣B0,K
(
u0 −uH M M ,ψH )∣∣

≤C
∥∥∇(

u0 −uH M M )∥∥
L2(K )

∥∥∇ψH
∥∥

L2(K ) ,

and we again can find the global estimate∣∣B0
(
u0 −uH M M ,ψH )∣∣

≤C

(
H p +

(
h

ε

)2q

+er rmod

)∥∥∇ψH
∥∥

L2(Ω) . (8.5.8)

And finally the approximation error (8.5.3d) for approximating the (sufficiently regular) right

hand side f (x) with its piecewise P m (K ) interpolation f H is∣∣∣∣∫
K

(
f H − f

)(
zHMM −ψH

)
d x

∣∣∣∣
≤C

∥∥ f − f H
∥∥

L2(K )

∥∥∥∇(
zHMM −ψH

)∥∥∥
L2(K )

≤C H m+1
∥∥∥∇(

zHMM −ψH
)∥∥∥

L2(K )
. (8.5.9)
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Summing up equations (8.5.6), (8.5.7), (8.5.8), and (8.5.9) completes the proof.

8.5.1 Choice ofψH

As explained in Section 5.3.1, we can choose the arbitrary ψH ∈V H in many different ways.

While Bangerth and Rannacher [28] aim at reducing the computational effort to obtain the

estimator, we aim at reducing its data approximation error. We consider two different choices,

ψH ≡ 0, which will act as a benchmark we compare other choices to, and ψH ≡ zHMM , the dual

solution zHMM ∈ V H . The motivation behind choosing ψH ≡ zHMM is that it is expected to

reduce the norm
∥∥∥∇(

zHMM − zHMM
)∥∥∥

L2(Ω)
since zHMM ≈ zHMM and that we can find an upper

bound for the norm, similar to our choice ψH ≡ I H eH with the Clément interpolant I H in

context of the residual-based estimates.

ψH ≡ 0. With this choice, we obtain

|ξH (Ω)| ≤C

((
h

ε

)2q

+er rmod

)∥∥∥∇zHMM
∥∥∥

L2(Ω)

+C

(
H p +

(
h

ε

)2q

+er rmod

)(
H p̃ +

(
h

ε

)2q

+er rmod ,dual

)
(8.5.10)

+C H m+1
∥∥∥∇zHMM

∥∥∥
L2(Ω)

ψH ≡ zHMM . We choose ψH to be solution zHMM ∈ V H of the dual problem. Then we can

further estimate∥∥∥∇(
zHMM − zHMM

)∥∥∥
L2(Ω)

≤
∥∥∥∇(

z0 −zHMM
)∥∥∥

L2(Ω)
+∥∥∇(

z0 − zHMM)∥∥
L2(Ω)

≤C

(
H p +

(
h

ε

)2q)
+er rmod +er rmod ,dual ,

where we used estimates a priori estimates (8.5.4) and (8.5.5) and that H p > H p̃ as

p < p̃. We get

|ξH (Ω)| ≤C

((
h

ε

)2

+er rmod

)(
H p +

(
h

ε

)2q

+er rmod +er rmod ,dual

)
+C

(
H p +

(
h

ε

)2q

+er rmod

)(
H p̃ +

(
h

ε

)2q

+er rmod ,dual

)
(8.5.11)

+C

(
H p +

(
h

ε

)2q

+er rmod

)∥∥∇zH M M
∥∥

L2(Ω)

+C H m+1
(

H p +
(

h

ε

)2q

+er rmod +er rmod ,dual

)
.

Looking at (8.5.10) and (8.5.11) we see that the convergence rate may be considerably limited

by
∥∥∥∇zHMM

∥∥∥
L2(Ω)

and
∥∥∇zHMM

∥∥
L2(Ω), respectively. We therefore expect the data approxima-

tion error for ψH ≡ 0 to be of similar size as for ψH ≡ zHMM . In general, with a macro or

modeling error, it is not straightforward to say which choice of ψH will be more beneficial.
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Further investigation is required to explain the influence of ψH on the data approximation

error. We emphasize that the error estimator of the DWR method exploits cancelation of

errors over different elements and we therefore expect the above estimates to significantly

overestimate the real data approximation error.

8.6 Numerical Experiments
The numerical experiments were carried out using an implementation in Matlab. Our imple-

mentation is based on the FE-HMM code presented in Chapter 3 and in [11]. The code for the

mesh bisection is based in part on i FEM (see [41]).

8.6.1 Point-wise directional derivative
In this example (which is chosen similarly to the one-dimensional problems presented in [96])

we consider a square domain, where we are interested in the directional derivative error at a

certain point x?

J (u) :=∇u
(
x?

) ·n, (8.6.1)

with the normed vector n. We consider the problem

−∇· (aε (x)∇uε
)= f in Ω

uε = gD on ΓD = ∂Ω

on a domain Ω̄= [0,1]2. We choose ε= 10−5 and set the tensor to

a
(
x,

x

ε

)
:= ãε

( x

ε

)
a0 (x) ,

where the exact homogenized tensor a0 (x) is given as

a0 (x) :=
(
9e−1000(x1−0.5)2−1000(x2−0.5)2 +1

)
I2. (8.6.2)

Here

ãε (x) := 16

15

(
sin

(
2π

x1

ε

)
+ 5

4

)(
cos

(
2π

x2

ε

)
+ 5

4

)
,

whose coefficients are chosen in such a way that they give the unit tensor when homogenized.

We define the exact solution as

u0 (x) := 100(1−x1)2x1(1−x2)2x2e−20
(
x1− 1

3

)2−(
x2− 1

4

)2

,

which determines the Dirichlet boundary conditions as gD = u0 on ∂Ω, and choose the right

hand side f accordingly. An illustration of the exact solution and the homogenized tensor are

given in Figure 8.6.1. We use piecewise linear macro FE for the solution uHMM of the primal

problem and piecewise quadratic FE for the solution zHMM of the macro dual problem. The
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(a) Exact homogenized solution u0 (x). We are inter-
ested in the directional derivative error at the point
x? = (0.3,0.3), which is marked in green.

(b) Exact homogenized tensor a0 (x).

Figure 8.6.1: Exact solution and tensor of the goal-oriented problem of Section 8.6.1.

micro problems are solved with piecewise linear FE.

As a measure of the quality of our error estimator, we define the effectivity indices

Eff :=
∣∣∣∣ ηH (Ω)

J
(
u0 −uHMM

) ∣∣∣∣ , (8.6.3)

which ideally are equal to one. Furthermore we inspect the data approximation error

|ξH (Ω)| =
∣∣∣∣∣J

(
u0 −uHMM)− ∑

K∈TH

ηH (K )

∣∣∣∣∣ . (8.6.4)

Let ĥ := (Nmi c )−1/d be the scaled (i.e. independent of ε) micro mesh size, where Nmi c denotes

the degrees of freedom of the micro problems in one micro sampling domain corresponding

to a certain macro element. We choose our quantity of interest to be the point-wise directional

derivative error at the point x? = (0.3,0.3) (slightly off the peak of the “bump”) in direction

n = (
1/
p

2,1/
p

2
)
. The exact solution is given by J = 3.25819. As the point-wise derivatives

of FE solutions are in general not defined on edges of elements (see also Remark 22), we

approximate the functional (8.6.1) at point x? ∈Ω with a regularized output functional J (u) =
1

|Sε|
∫

Sε∇u ·n d x, where the small domain Sε is an ε-ball centered around the point x?, see [28].

To evaluate the integral in the numerical implementation we choose a node of the macro

mesh to coincide with the point x? and take the average of the gradient on the supporting

elements of the corresponding hat function evaluated at point x? 2.

For the macro mesh we start from a mesh with 441 DOF. We do not choose a uniform grid

but one where the points are slightly distorted compared to uniform mesh, see Figure 8.6.10.

The distortion will resemble to more realistic meshes originating from practical applications

and reduce aliasing-effects. We use an initial mesh size for the micro mesh of ĥ = 1
8 and

2See the code corresponding to exercise 3.3 provided with [28].
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Figure 8.6.2: Numerical dual solution zHMM for the goal-oriented problem after 4 iterations. We are
interested in the point-wise directional derivative error at x? = (0.3,0.3).

δ= ε= 10−5 with periodic boundary conditions for the micro problems. We use the Maximum

marking scheme [104, 96] described in Section 8.3 and choose a parameter of ϑ= 0.25.

Since we are interested in multiscale problems and therefore in finding how the numerical

homogenization, and thus the approximate homogenized conductivity tensor, influences the

convergence rate and quality of the indicator, we choose f H to be a piecewise P 4 approxima-

tion. The approximation error is then
∥∥ f − f H

∥∥
L2 ≈O

(
H 5

)
, which ensures that the influence

of the approximation f H is negligible in comparison to the whole data approximation error.

We remark that, although the numerical evaluation of f is computationally much cheaper

than the solution of the micro problems, the polynomial degree of the approximation f H

should be chosen such that the convergence rate of the approximation error of f coincides

with the convergence rate of the approximation error of the tensor. In Figure 8.6.2 we present

the numerical dual solution zHMM after 4 iterations, which is very localized around x? and

has very small support.

For a first test, we use the macro-micro coupling rate ĥ ∝ HK and set ψH ≡ 0. In Figure

8.6.3 we compare the exact quantity of interest J
(
u0

)
with the numerically obtained J

(
uHMM

)
.

As we have given a (signed) error estimator ηH (Ω) ≈ J
(
u0

)− J
(
uHMM

)
we can compute an

estimated confidence interval where we predict – based only upon our numerical solution –

the exact quantity of interest to be. To take the data approximation error |ξH (Ω)| into account,

we assume that it is of similar size as the estimated error
∣∣ηH (Ω)

∣∣ and thus we define the

confidence interval to be the area between J
(
uHMM

)−ηH (Ω) and J
(
uHMM

)+ηH (Ω). The
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confidence interval is therefore rather an indication than a reliable bound, see also Remark

23. Estimating the data approximation error ξH (K ) itself is rather difficult, computationally

expensive and problem dependent. The data approximation error might be, in some cases,

significantly larger than the indicator. Our asymptotic analysis presented in 8.5 gives an

asymptotic upper bound of the data approximation error; we remark again that due to the

cancelation of errors, this upper bound might significantly overestimate the true error.

The estimated confidence interval is marked with the shaded blue area in Figure 8.6.3.

We see that starting from the iteration four, the exact quantity of interest lies within our

predicted confidence interval. We further notice that J
(
uHMM

)
converges to J

(
u0

)
and the

confidence interval width converges to zero. However, in the first three iterations, the exact

quantity of interest is outside the predicted confidence interval and therefore the interval is –

as mentioned in Remark 23 – not unconditionally reliable.

We emphasize again that a confidence interval as given in the DWR method is difficult to

construct for the residual-based error estimate, as we can quantify the residual-based estimate

only up to an unspecific constant (even when neglecting the data approximation error). This

unspecific constant is in general very difficult to estimate.

In Figure 8.6.4 we compare the point-wise derivative value at x? of our goal-oriented

refinement scheme with a residual-based adaptive refinement. While the adaptive strategy for

the goal-oriented refinement optimizes the mesh for a minimal point-wise derivative error

at x?, the residual-based refinement optimizes the mesh for a minimal error in the energy

norm. Therefore, we see that the DWR-FE-HMM has an error in the quantity of interest, which

is significantly smaller than the error for the residual-based method. We now turn to a more

rigorous study of the DWR FE-HMM.

Main observations.

In what follows we will find four main observations from our numerical experiment:

1. The convergence rate of the error in the quantity of interest can be significantly better

for the goal-oriented DWR FE-HMM than for the residual-based or uniform FE-HMM.

2. We can get an effectivity index close to one, depending on the choice of parameters

(ψH , the optimal macro-micro coupling rate for the primal and dual problem); how the

parameters influence the effectivity index is not fully understood.

3. A good refinement indicator might not be a good local estimator. A bad local estimator

might not be a bad refinement indicator.

4. Cancelation of errors is essential for an accurate global estimator.

We now study different aspects of the numerical experiment, which will lead to the main

observations above. As there are various sources of errors, which influence the convergence

rate and the effectivity index, we proceed in two steps.
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Figure 8.6.3: Plot of the point-wise directional derivative at a point x? vs. the macro degrees of freedom.
The green line marks the exact value J

(
u0

)= ∂nu0 (x) |x=x? , which the engineer or scientist is interested
in. The red line indicates the numerically obtained quantity of interest J

(
uHMM )

. The DWR method
allows to specify – by introducing upper and lower error approximation estimates J

(
uHMM )+ηH (Ω)

and J
(
uHMM )−ηH (Ω), respectively – a confidence interval (shaded blue), where we expect the exact

solution J
(
u0

)
(green line) to be in.
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(b) Adaptive global residual-based refinement.

Figure 8.6.4: Plot of the point-wise directional derivative at a point x? vs the macro degrees of freedom.
The green line marks the exact value J

(
u0

)= ∂nu0 (x) |x=x? , which the engineer or scientist is interested
in. The red line indicates the numerically obtained quantity of interest J

(
uHMM )

. The DWR method
allows to specify – by introducing upper and lower error approximation estimates J

(
uHMM )+ηH (Ω)

and J
(
uHMM )−ηH (Ω), respectively – a confidence interval (shaded blue), where we expect the exact

solution J
(
u0

)
(green line) to be in. Comparison of the DWR-FE-HMM (a) with a global residual-based

refinement scheme (b).
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1. We will first consider the case where we assume that we have an exact homogenized

tensor given; we will use the explicitly available tensor (8.6.2) (of course, in general, this

tensor is unknown). Thus, both the micro and the modeling errors vanish and we simply

have a standard DWR FEM with quadrature.

2. We will use the FE-HMM to approximate the conductivity tensor. Thus, we have an

additional error from the micro-problems and (in general) a modeling error.

The DWR FEM case. We start with the standard DWR FE method and the primal FEM (with

quadrature) solution u0,H
QF of (8.2.1), where we evaluate the exact homogenized tensor a0 (x`)

numerically at the quadrature nodes x`, thus the subscript QF . In this case, both the micro

and the modeling error vanish. We first set ψH ≡ 0. In Figure 8.6.5 we see that the error in the

quantity of interest converges with a rate between O
(
N−1

)
and O

(
N−2

)
(for the H 1-norm we

would obtain O
(
N−1/2

)
. The effectivity index is very close to one. The data approximation

error converges with a rate between O
(
N−1

)
and O

(
N−2

)
, it is comparable to the error J

(
eH

)
itself.

We then choose ψH ≡ z0,H
QF ; where z0,H

QF ∈V H is the piecewise linear FEM solution of the

dual problem (8.2.3), where we use numerical quadrature but the exact a0 (x`). The error in

the quantity of interest again converges with a rate between O
(
N−1

)
and O

(
N−2

)
. But the

effectivity index varies between 0 and 14 and the convergence rate data approximation error

deteriorates to O
(
N−1

)
.

The error estimates for the data approximation obtained in Section 8.5 do not take the

cancelation of the error among elements into account. Hence, we inspect how the cancelation

of errors influences the error estimator and therefore the data approximation error. As the data

approximation error (8.2.8) may involve the terms
∥∥∥∇z0 ,H

QF

∥∥∥
L2(K )

(or∥∥∥∇(
z0 ,H

QF −ψH
)∥∥∥

L2(K )
), where z0 ,H

QF is the piecewise quadratic dual FEM solution of (8.2.3),

we also want to have a closer look at how these terms.

Inter-element cancelations and gradient of the dual solution. We set again ψH ≡ 0. In Fig-

ure 8.6.6 (top) we look at the element-wise error estimator ηH (K ) (notice the different range

of the color bars). We see that the error estimators have similar positive and negative values,

therefore we expect the error cancelation among the elements to be highly effective. Moreover,

we compare in Figure 8.6.7(a) the error estimator
∑

K∈TH
ηH (K ) with cancelation to the error

estimator
∑

K∈TH

∣∣ηH (K )
∣∣ without cancelation. We see that

∑
K∈TH

∣∣ηH (K )
∣∣≈O (1). We empha-

size that while the error estimator without cancelation stays nearly constant with increasing

DOF, the error estimator with cancelation converges and features good accuracy. Furthermore,

although the error estimator without cancelation is inappropriate for quantifying the error in

the quantity of interest, the local component η̄ (K ) = ∣∣ηH (K )
∣∣ is very suitable for driving the

adaptive mesh refinement, i.e. for indicating which elements have to be refined.
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(b) Effectivity index EFF (8.6.3).
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(c) Data approximation error (8.6.4).

Figure 8.6.5: Error and error indicator, effectivity index and approximation error (from top to bottom)
for the DWR FEM solution with an exact homogenized tensor a0 (x`) for the goal-oriented problem of
Section 8.6.1. Comparison of the choices ψH ≡ 0 (left) and ψH ≡ z0,H

QF (right). The jagged convergence
plots are a consequence of the cancelation of errors, see Remark 80.
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Figure 8.6.6: ηH (K ) and
∥∥∥∇z0 ,H

QF

∥∥∥
L2(K )

for the point-wise directional derivative single-scale DWR FEM.

We now look at the gradient of z0 ,H
QF , where we use an exact a0 (x`) with numerical quadra-

ture. We remark that in our analysis of the data approximation error in Section 8.5 is based on

Assumption 79. As the analysis hence did not cover the general case aε (x) = a
(
x, x

ε

)
, we cannot

directly compare the experiment with the theoretical results. In Figure 8.6.6 (bottom) we show∥∥∥∇z0 ,H
QF

∥∥∥
L2(K )

for iteration 1 and 2. The norm is highly localized around the point of interest

x? and it increases from iteration 1 to 2. This is due to the numerical implementation of the

functional J (·), as described above. With increasing DOF, the support for the shape-function,

which is used to evaluate the average point-wise directional derivative, shrinks. Hence, its

numerically evaluated derivative and also
∥∥∥∇z0 ,H

QF

∥∥∥
L2(K )

increases. In Figure 8.6.7(b) we show

that we have an increasing global norm
∥∥∥z0 ,H

QF

∥∥∥
H 1(Ω)

≈O (N ). A regularization or mollification

could be used in order to obtain a more regular dual solution, as mentioned in Remark 22

and Section 8.3.2. This would come with a modeling error for the functional J (·). We remark

that this behavior is not particular to point-wise errors, but will also be apparent e.g. for the
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Figure 8.6.7: Estimated error and norms
∥∥∥z0 ,H

QF

∥∥∥
L2(Ω)

and
∥∥∥∇z0 ,H

QF

∥∥∥
L2(Ω)

for the point-wise directional

derivative single-scale DWR FEM.

average over a domain S ⊂Ω, see Section 8.3.2.

Remark 80 (Error cancelations). In explicit error estimates, such as the residual-based error

estimates, the a posteriori error estimates provide estimates on the norm of the error. In

contrast, the dual-weighted residual error estimates (and all implicit-type error estimates)

provide rather an error function. In the DWR case, errors (and data approximation errors) on

different elements can cancel each other out, leading to very accurate estimates. The error

convergence curve, however, may not be a smooth line, but may be rather jagged. This is

caused, as the mesh might not always take the symmetry into account that allowed for error

cancelations on different elements. See Figure 8.6.8 for an illustration. We emphasize that this

is an effect that shows both in the single-scale DWR FEM as well as in the DWR FE-HMM.

The DWR FE-HMM case. Up until now we looked at the single scale DWR FE method. We

now consider the multiscale DWR FE-HMM. When moving from the DWR FEM to the DWR

FE-HMM, additional sources of errors, such as the micro and modeling errors are introduced;

we analyze how they affect the point-wise derivative error, the effectivity index and data

approximation error.

We start with comparing in Figure 8.6.9 the error and effectivity index when using a

uniform, a global residual-based (as in Chapter 7) and the DWR goal-oriented approach. We

set ψH ≡ 0 and choose a coupling of ĥ ∝ Hk for both the solution of the primal and dual

problem and for the evaluation of the a posteriori estimator.

In Figure 8.6.9(a) we see that the point-wise derivative error J
(
eH

)
converges with an

order of O
(
N−1/2

mac

)
for the uniform refinement and for the adaptive, residual-based refine-

ment scheme. For the DWR FE-HMM we obtain a (mean) convergence rate of approximately

O
(
N−3/2

mac

)
, which varies between O

(
N−1

mac

)
and O

(
N−2

mac

)
. We notice that the convergence rate

is much larger than the O
(
N−1/2

mac

)
we would have in the global energy-norm. In Figure 8.6.9(b)
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(a) Iteration k (b) Iteration k̃ > k

Figure 8.6.8: Schematic of error cancelation in the DWR method. The brown disk symbolizes a
conductivity tensor or quantity of interest which is such that – due to symmetry – the error as well
as the data approximation error among the elements marked in green and purple cancel each other
(left figure). After a few iterations, the mesh might not take the symmetry into account anymore (right
figure), and the error and data approximation error in the elements marked in green (with a significantly
reduced error) do not cancel with the error in the unrefined element marked in purple anymore.

we see that the effectivity index for the DWR FE-HMM varies between 0.5 and 8, whereas the

efficiencies for the residual-based and uniformly refined FE-HMM are very close to 1. We will

further examine the effectivity index in the DWR FE-HMM case below. In Figure 8.6.10 we see

the corresponding mesh after 4 iterations for both the goal-oriented and the residual-based

adaptive FE-HMM. While the residual-based scheme mostly refines around the peak of the

conductivity tensor, the goal-oriented additionally refines around the point of interest x?.

We now have a closer look at the error J
(
eH

)
, the effectivity index and the data approxima-

tion error and their dependence on several parameter choices.

Macro-micro coupling. As it is not clear what convergence rate we should expect a priori

for this quantity of interest (see Section 8.3), we test the coupling ĥ ∝ Hk and ĥ ∝ H 3/2
k for

all primal and dual problem and the estimator. In Figure 8.6.11 we show the error and error

indicator, the effectivity index and the data approximation error for the different coupling

rates and choices of ψH .

The error J
(
eH

)
lies for all parameter choices between O

(
N−1

mac

)
and O

(
N−2

mac

)
, with small

variations. The data approximation error follows the asymptotic rate of O
(
N−1

mac

)
and therefore

does not converge as fast as J
(
eH

)
. The quality of the effectivity index depends strongly on

the choice of parameters. While the effectivity index improves as expected from Figure (a)

to (b) due to a smaller micro error and is very close to 1 in Figure (b), further investigation is

required to understand the deterioration of the effectivity index from Figure (c) to (d). Finally,
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Figure 8.6.9: Errors and effectivity index for the goal-oriented problem described in Section 8.6.1.
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Figure 8.6.10: Mesh after 4 iterations for global residual-based and goal-oriented refinement for the
point-wise directional derivative problem.
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we see that the indicator
∣∣ηH (Ω)

∣∣ is of comparable magnitude as the data approximation error

|ξH (Ω)| (although the asymptotic convergence rates are slightly different), which justifies our

choice of the confidence interval chosen in Figures 8.6.3 and 8.6.4.

In Figure 8.6.12 we finally choose different coupling schemes for the primal and dual

problem and the estimator. We see from Figure (a) and (b) that the coupling ĥ ∝ √
Hk for

the solution of the primal problem deteriorates the convergence rate of J
(
eH

)
to approxi-

mately O
(
N−1

mac

)
, even if we select the coupling ĥ ∝ Hk for the dual problem (and estimator).

In Figure (c) we see that the convergence rate of the error J
(
eH

)
is indeed less affected by

choosing ĥ ∝√
Hk for the dual problem than for the primal problem. Further investigation

is required to fully understand this behavior. We remark that while here we chose different

coupling schemes for the different components, this is usually not done in practice. For

reasons of computational effectivity index, the micro problems are computed once (with a

specific coupling scheme) and the multiscale fluxes are stored for later use. Therefore one

specific coupling scheme is used for both the solution of the primal and dual problem and the

estimator.

From Figures 8.6.11 and 8.6.12 it is evident that while the effectivity index is highly sensitive

to the choice of parameters such as the function ψH or the coupling scheme, the refinement

indicators η̄ (K ) are still suitable for driving the adaptive mesh refinement.
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(a)ψH ≡ 0 and ĥ ∝ Hk .
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(b)ψH ≡ 0 and ĥ ∝ H3/2
k .
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(c)ψH ≡ zHMM and ĥ ∝ Hk
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(d)ψH ≡ zHMM and ĥ ∝ H3/2
k

Figure 8.6.11: Choice of ψH and coupling rate. Error and error indicator, effectivity index and the data
approximation error (from left to right) of the four parameter choices. The jagged convergence plots are
a consequence of the cancelation of errors, see Remark 80; we emphasize that this effect also appears
in the single-scale DWR FEM case.
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(a) primal: ĥ ∝√
Hk , dual: ĥ ∝√

Hk , estimator: ĥ ∝√
Hk .
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(b) primal: ĥ ∝√
Hk , dual: ĥ ∝ Hk , estimator: ĥ ∝ Hk .
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(c) primal: ĥ ∝ Hk , dual: ĥ ∝√
Hk , estimator: ĥ ∝ Hk .

Figure 8.6.12: Different macro-micro coupling for the primal and dual solution uHMM and zHMM ,
respectively and the estimator ηH (K ). Error and error indicator, effectivity index and the data approxi-
mation error (from left to right) of the three parameter choices for the DWR-FE-HMM.
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8.7 Summary

8.7 Summary
We have derived the first a posteriori error estimates for the FE-HMM for errors in quantities

of interest (often needed to make a proper engineering design decision). The techniques we

have developed in Chapter 6 and Chapter 7, which relate the special multiscale FE-HMM

components to the equivalent classical, single-scale counterparts, allowed us to follow the

analysis of classical, single scale goal-oriented adaptive FEM. Except for a data approximation

term, the a posteriori error representation formula was obtained without special assumptions

on the structure of the oscillating tensor.

We derived and analyzed the adaptive, goal-oriented FE-HMM, which is a multiscale

counterpart of the classical dual-weighted residual method by Bangerth and Rannacher [28].

The efficiency of the method was demonstrated in numerical experiments with a quantity of

interest chosen to be the point-wise directional derivative.
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9 Conclusion and Outlook of Part II

In this thesis we have proposed adaptive and efficient numerical methods for multiscale prob-

lems that will provide engineers with reliable data that allow them to make proper engineering

design decisions.

We derived the first rigorous a posteriori results for the FE-HMM in the energy norm of

the physical variables. The a posteriori error analysis allowed us to find estimates on the

accuracy (and therefore the reliability) of a numerical FE-HMM solution. The error analysis

further allowed us to derive explicit localized error indicators that we use to drive a robust

and reliable adaptive mesh refinement. Since these error indicators depend on macroscopic

data (such as the macroscopic diffusion tensor) that are not readily available, we constructed

error indicators that only depend on the available macro and micro FE solutions (computed

previously). The crucial components for this construction are the so-called multiscale bilinear

forms, fluxes and jumps. We showed that it is possible (thanks to a representation formula)

to relate our multiscale strategy to adaptive strategies for single-scale adaptive FEM [20, 113].

Furthermore, the derived a posteriori estimates are consistent with classical explicit residual-

based a posteriori error estimators applied to the homogenized problems in the case of

periodic tensors and resolved micro calculations.

Up to a data approximation term, upper and lower bounds were obtained without specific

structure assumptions (as periodicity, random stationarity) on the oscillating tensor of the

elliptic problem. The error indicator provides information that is used to refine the macro

mesh. As singularities in the micro problems could only arise in the micro scale of the conduc-

tivity tensor, we used a uniform refinement for the micro problems (there, standard adaptive

FEM could be used). We proposed a strategy to couple the refinement of the micro mesh to

the refinement of the corresponding macro element and demonstrated – under appropriate

assumptions – that our strategy leads to an optimal convergence. Our numerical results

demonstrated that the adaptive strategy is both reliable and efficient. We furthermore showed

that through adaptivity, we can significantly improve the efficiency of multiscale methods.

We extended our adaptive, residual-based FE-HMM to support higher order FEs in the

macro and micro spaces. The extension to higher order FE is a crucial component for the

development of our goal-oriented adaptive FE-HMM, where higher-order dual solutions are
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required.

In order to provide error estimates in quantities of interest (often needed for appropriate

engineering design decisions), we derived the first a posteriori results for the FE-HMM in

quantities of interest. These quantities of interest are expressed by bounded linear functionals.

Our analysis is based on the framework we developed for the adaptive, residual-based FE-

HMM. Except for a data approximation term, the a posteriori error representation formula

was obtained without special assumptions on the structure of the oscillating tensor. The goal-

oriented FE-HMM, a multiscale counterpart of the classical dual-weighted residual method

by Bangerth and Rannacher [28], was derived and analyzed. Extensive numerical experiments

were reported, which illustrate the efficiency and versatility of the method.

9.1 Outlook
There are still many areas of improvement that can provide the adaptive FE-HMM with better

efficiency, an applicability to a broader set of problems and with an increased reliability of the

error estimates. We summarize the most important suggestions in what follows.

Efficiency. In order to increase the efficiency of the adaptive FE-HMM, it is strongly sug-

gested to use a reduced basis technique for the solution of the micro problems (see [101, 8]).

The conductivity tensor of the micro problems often does not change significantly from one

macro element to its neighbors (provided regularity w.r.t. the slow variable), and therefore

this approach can lead to a remarkable reduction in computational cost. Furthermore, for

the goal-oriented FE-HMM, we could employ interpolation techniques as described in [28]

to obtain an approximate solution of the dual problem that avoids the computation of the

full dual solution. An alternative is to reduce the degrees of freedom of the discretized dual

problem by using specially designed FE spaces, e.g., involving bubble basis functions [96]

or solve the dual solution on a refined mesh instead of using higher order polynomials with

respect to the primal problem.

Our strategy for the macro-micro mesh refinement is based on a priori estimates. It is,

however, not straightforward to obtain a priori estimates for errors in general quantities of

interest that could be used to extract an (optimal) macro-micro coupling rate. We notice that

the coupling rate could be steered adaptively using additional a posteriori error estimates on

the micro problems.

Applicability. The adaptive FE-HMM has been developed for elliptic problems. It would be

of interest to extend this multiscale adaptive framework for problems in linear elasticity [3] or

for non-linear elliptic problems (see [15] for non-linear problems of non-monotone type) or

non-linear quantities of interest.

Reliability. Arguably the most important area for improvement is however the reliability of

the adaptive FE-HMM. For both the residual-based adaptive and the goal-oriented adaptive

FE-HMM, we neither estimate the micro error nor the modeling error a posteriori. An a
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posteriori estimation of the micro error could easily be integrated in our adaptive algorithm

using standard a posteriori error estimates on the micro problems. A rigorous adaptive strategy

for an a posteriori estimate of modeling errors, though, is still to be derived.

For macro-to-micro multiscale methods as considered in this thesis, it is desirable to

change the physical model in those regions of the computational domain where the size of

the macro elements becomes smaller than the corresponding sampling domain. Combining

model adaptivity [90] with the adaptive strategies proposed in this thesis is therefore of high

interest. Furthermore, it is also desirable to adaptively select the size of the micro sampling

domains (or the domain size when using oversampling techniques) based on a posteriori

modeling error estimates, similar to the adaptive selection of the size of patches in [73, 74] in

the context of the variational multiscale method.

For the adaptive FE-HMM in quantities of interest, there exist further challenges that

concern the reliability of the estimates. We introduced confidence intervals that give an

estimate of the exact solution in the quantity of interest. By doing so, we assume that the data

approximation error is of the same order as the (estimated) error in the quantity of interest.

Therefore, the confidence interval is rather an indication than a reliable bound. Finding a

reliable estimate on the data approximation error (that in general involves a macro, micro and

modeling error) that is inexpensive to compute is however not straightforward.

One of the most important challenges when it comes to the reliable estimation of error in

quantities of interest is the substitution of the (unknown) exact dual solution by a numerical

approximation. It was shown in [87] in the context of the single-scale DWR FE method, that

replacing the exact dual solution by a numerical approximation (in a higher order FE space)

can lead to a significant underestimation of the approximation error, thus causing the adaptive

algorithm to stop even though the accuracy of the solution in the quantity of interest might

be insufficient to make a proper engineering decision. In [87] a safeguarded DWR FEM is

proposed. There has furthermore been very recent effort to develop guaranteed and fully

computable bounds on the error in quantities of interest [21]. It could be of interest to extend

these results in our multiscale context.
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