
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. A. Wegmann, président du jury
Prof. W. Zwaenepoel, directeur de thèse

Prof. R. Bianchini, rapporteur
Dr C. Cadar, rapporteur

Prof. D. Kostic, rapporteur

An Integrated Framework for Improving the Quality and
Reliability of Software Upgrades

THÈSE NO 5087 (2011)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 24 juin 2011

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE SYSTÈMES D'EXPLOITATION

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2011

PAR

Olivier Crameri

Abstract

Despite major advances in the engineering of maintain-

able and robust software over the years, upgrading software

remains a primitive and error-prone activity. In this disser-

tation, we argue that several problems with upgrading soft-

ware are caused by a poor integration between upgrade de-

ployment, testing, and problem reporting. To support this

argument, we present a characterization of software upgrades

resulting from a survey we conducted of 50 system adminis-

trators. Motivated by the survey results, we present Mirage,

a distributed framework for integrating upgrade deployment,

testing, and problem reporting into the overall upgrade de-

velopment process.

Mirage’s deployment subsystem allows the vendor to de-

ploy its upgrades in stages over clusters of users sharing simi-

lar environments. Staged deployment incorporates testing of

the upgrade on the users’ machines. It is effective in allowing

the vendor to detect problems early and limit the dissemina-

tion of buggy upgrades.

Oasis, the testing subsystem of Mirage, improves on cur-

rent state-of-the-art concolic and symbolic engines by imple-

menting a new heuristic to prioritize the exploration of new

or affected code in the upgrade. Furthermore, interactive

symbolic execution, a new approach exposing the problem of

path exploration to the tester using a graphical user inter-

face, can be used to develop new search heuristics or manu-

ally guide testing to important areas of the source code.

In spite of all of these efforts, some bugs are bound to

remain in the software when it is deployed, and will be dis-

covered and reported only later by the users. With the last

component of Mirage, we consider the problem of instru-

menting programs to reproduce bugs effectively, while keep-

ing user data private. In particular, we develop static and

dynamic analysis techniques to minimize the amount of in-

strumentation, and therefore the overhead incurred by the

users, while considerably speeding up debugging.

By combining up-front testing, stage deployment, testing

on user machines, and efficient reporting, Mirage successfully

reduces the number of problems, minimizes the number of

users affected, and shortens the time needed to fix remaining

problems.

Keywords: Upgrade testing, Clustering of machines,

Staged software upgrade deployment, Testing, Regression

testing, Debugging, Bug Reporting, Symbolic Execution, Static

Analysis

iii

Résumé

Malgré d’importantes avancées dans l’ingénierie de logi-

ciels robustes ces dernières années, mettre à jour un logi-

ciel reste une activité primitive et sujette à de nombreux

problèmes. Dans cette thèse, nous prétendons que de nom-

breux problèmes de mise à jour sont causés par une mau-

vaise intégration entre le déploiement, le test et le rapport

de problèmes.

Pour supporter cet argument, nous présentons une cara-

ctérisation des mises à jour de logiciel obtenue à travers un

sondage de cinquante administrateurs système. Sur la base

des résultats du sondage, nous présentons Mirage, un système

distribué intégrant le déploiement, le test et le rapport de

problèmes dans le processus de développement de mises à

jour.

Le sous-système de déploiement de Mirage permet au

vendeur de déployer ses mises à jour par étapes réparties sur

des groupes d’utilisateurs partageant des caractéristiques de

leur environnement. Le déploiement par étapes incorpore le

test des mises à jour sur les machines appartenant aux utilisa-

teurs. C’est une méthode efficace pour détecter les problèmes

rapidement et limiter la propagation de ces derniers à de

nombreux utilisateurs.

Oasis, le sous-système de test de Mirage, améliore l’état

de l’art dans les moteurs d’exécution symbolique en met-

tant en oeuvre une nouvelle heuristique d’exploration du

nouveau code, ou du code affecté par la mise à jour. De

plus, l’exécution symbolique interactive, une nouvelle tech-

nique qui expose le problème de l’exploration des chemins au

testeur via une interface graphique, peut être utilisée pour

développer de nouvelles heuristiques de recherche ou pour

manuellement diriger le test vers des régions du code source

importantes.

Malgré tous ces efforts, certains problèmes persisteront

toujours dans les logiciels déployés, et seront découverts et

rapportés plus tard par les utilisateurs. Avec le dernier com-

posant de Mirage, nous étudions le problème de l’instrumen-

tation de programmes pour permettre une reproduction facile

des problèmes, sans compromettre la confidentialité des do-

nnées. En particulier, nous développons de nouvelles métho-

des d’analyse statique et dynamique permettant de minimiser

la quantité d’instrumentation nécessaire, et par conséquent

la surcharge imposée aux utilisateurs, tout en accélérant con-

sidérablement le déboguage de problèmes.

v

En combinant le test, le déploiement par étapes, le test

sur les machines d’utilisateurs, et un système de rapport de

problèmes efficace, Mirage réduit significativement le nombre

de problèmes, l’exposition des utilisateurs à ces derniers, et

raccourcit le temps nécessaire pour déboguer les problèmes

restants.

Mots-clés: Test de mises à jour, Classification de ma-

chines, Déploiement de mises à jour par étapes, Test, Test de

régression, Déboguage, Rapport de bogues, Execution sym-

bolique, Analyse statique

vi

Acknowledgments

This dissertation is the culmination of an exciting albeit

long and difficult journey. There are many people that have

been a part of my life during those years. They all played an

important role in allowing me to get to the end.

First and foremost, I would like to thank Aline, my girl-

friend. She made tremendous efforts and sometimes even put

aside her own busy life so that I could focus on my work. Her

tireless support and kindness provided me with the necessary

moral relief to keep moving forward.

I would like to thank my mom and dad for their un-

conditional support and unwavering belief that I would be

successful in my life. I am extremely lucky to have them.

Getting through a Ph.D. requires a significant amount of

work. I could always count on the help of my advisor, Willy

Zwaenepoel, despite his already busy schedule as a Dean.

Aside from Willy, I was very fortunate to work with Ricardo

Bianchini, whom I now consider my mentor and friend. Both

Willy and Ricardo were instrumental in helping me find a

topic that was interesting and relevant. They invested sig-

nificant efforts in my work and never let me down, even when

it involved working at unexpected hours in various parts of

the world to make a deadline. Thank you Willy and Ricardo!

I had the pleasure to collaborate with talented students

and professors during my Ph.D. I would like to thank Nikola

Knezevic, Rekha Bachwani, Dejan Kostic and Tim Brecht

for working with me.

There is more to life than just work. Many thanks to

Gilles Dubochet, Nicolas Jones and Renault John Lecoultre

for providing me with an endless supply of coffee breaks at

EPFL during which we always had fun and stimulating con-

versations. I would also like to thank all my friends outside

of EPFL for bearing with me and my deadlines.

Finally, I thank my past and current colleagues in the

lab: Aravind Menon, Steven Dropsho, Sameh Elnikety, Ro-

drigo Schmidt, Ming Iu , Emmanuel Cecchet, Denisa Ghita,

Katerina Argyraki, Simon Schubert, Dan Dumitriu, Jiaqing

Du, and Mihai Dobrescu. They all contributed in one way or

another to my work, and I had a really great time interacting

with them over the years.

vii

Contents

Contents ix

1 Introduction 1

2 Characterizing Upgrades 7

2.1 Methodology . 7

2.2 Survey Results . 7

2.3 Categories of Upgrade Problems 10

2.4 Discussion . 12

3 Staged Deployment and Clustering 13

3.1 Introduction . 13

3.2 Design and Implementation 14

3.3 Discussion and Current Limitations 22

3.4 Evaluation . 22

3.5 Conclusion . 37

4 Concolic Execution for Testing Software Upgrades 39

4.1 Introduction . 39

4.2 Overview . 44

4.3 Design and Implementation 47

4.4 Evaluation and Discussion 55

4.5 Conclusion . 57

5 Bug Reporting 63

5.1 Introduction . 63

5.2 Program Analysis and Instrumentation 68

5.3 Reproducing a Bug 74

5.4 Implementation and Methodology 77

5.5 Evaluation . 78

5.6 Discussion and Future Work 91

5.7 Conclusion . 92

6 Related Work 95

ix

6.1 Characterizing Upgrades 95

6.2 Upgrade Deployment 95

6.3 Testing . 97

6.4 Bug Reporting . 98

7 Conclusion 101

A Survey about software upgrades 103

B Curriculum Vitae 107

Bibliography 109

x

Chapter 1

Introduction

Software upgrades involve acquiring a new version of an application,

an improved software module or component, or simply a “patch” to

fix a bug, and integrating it into the local system. Upgrades for

Linux and Windows are released almost every month, while up-

grades of user-level utilities and applications are frequent as well.

For software users, system administrators, and operators (here-

after collectively called users, for conciseness), integrating upgrades

is often an involved proposition. First, an upgrade can affect multi-

ple applications, and all of them may need to be tested for correct

behavior after the upgrade. Second, the effects of buggy upgrades

may need to be rolled back. Third, upgrades are prone to a variety of

incompatibility and unexpected behavior problems, especially when

components or modules, rather than entire applications or systems,

are upgraded.

For software vendors, distributors, and open-source contributors

(hereafter collectively called vendors, for conciseness), it is difficult

to deploy the upgrades with high confidence that they will integrate

properly into the users’ systems and that they will behave as users

expect. Recent significant advances in testing, such as symbolic exe-

cution, can improve the quality of the software upgrade. They suffer

however from severe scalability problems and are not tailored to re-

gression testing of software upgrades. For these reasons, vendors

simply cannot anticipate and test their upgrades for all the appli-

cations and configurations that may be affected by the upgrades

at the users’ machines. To lessen this problem, vendors sometimes

rely on “beta testing”. However, beta testers seldom provide com-

plete coverage of the environments and uses to which upgrades will

be exposed. Another approach to reduce integration problems is

for vendors to use package-management systems to deploy their up-

grades. Dependency enforcement in these systems, however, only

1

tries to enforce that the right packages are in place. They do not

provide any help with locally testing the upgrades for correct be-

havior or reporting problems back to vendors.

When problems occur, vendors receive only limited and often un-

structured information to pinpoint and correct the problems. Most

of the time, the vendor at best receives core dumps of applications

that crash because of the upgrade or often incomplete problem re-

ports posted to mailing lists or Web forums. Because of this limited

information, it may take several iterations of deployment, testing,

and debugging before an upgrade becomes useful to all of its in-

tended users. Furthermore, because reports may come from any

source, e.g., multiple beta testers or regular users with similar in-

stallations, there is often much repetition in the information received

by the vendor, requiring significant human resources to filter out.

Although much anecdotal evidence suggests a high frequency of

upgrade problems, there is surprisingly little information in the lit-

erature characterizing upgrades in detail. To start bridging this gap

in the literature, we perform a characterization of upgrades, using

responses to a survey that we conduct among 50 system adminis-

trators. The results confirm that upgrades are done frequently, that

problems are quite common, that these problems can cause severe

disruption and that therefore upgrades are often delayed, and that

users seldom fully report the problems to the vendor. Addition-

ally, many of the problems are caused by differences between the

environment at the vendor and at the users. Broken dependencies,

incompatibilities with legacy applications, and improper packaging

issues are among this class of problems.

In this dissertation, we argue that the problems plaguing soft-

ware upgrades are fundamental. To improve the quality of upgrades,

and reduce the impact of problems, it is therefore necessary to re-

vise the entire software upgrade life cycle. To this end, we present

Mirage, a framework that integrates upgrade deployment, testing,

and problem reporting. Figure 1.1 shows a high level overview of

the components of Mirage. In the current state of the art, these

three activities are loosely linked in an ad-hoc manner. Mirage in-

tegrates them into a structured and efficient upgrade development

cycle that encompasses both vendors and users. Mirage tests up-

grades before deployment using state of the art concolic execution.

Then, it deploys complex upgrades in stages based on the cluster-

ing of the user machines according to their environments. It tests

the upgrades again at the users’ machines, and sends information

back to vendors regarding the success/failure of each user’s upgrade.

2

Chapter 1: Introduction

User-
machine
testing
(user)

Bug
Reporting
(vendor &

user)

Upgrade
deployment

(vendor)

Up-front
testing

(vendor)

Figure 1.1: High-level overview of Mirage

3

In case of failure, whether during staged deployment or later, Mi-

rage sends back a trace of branches simplifying reproduction of the

problem. This trace is obtained using lightweight instrumentation

to minimize the instrumentation overhead and only collect infor-

mation that is determinant in helping the vendor reproducing the

problem. By combining up-front testing, staged deployment, test-

ing on user machines, and efficient reporting, Mirage successfully

reduces the number of problems, minimizes the number of users

affected, and shortens the time needed to fix remaining problems.

A key goal of Mirage is to guarantee that upgrades behave prop-

erly before they are widely deployed. Clustering machines as in

Mirage helps achieve this goal, while simplifying debugging at the

vendor. We also identify a fundamental trade-off between the num-

ber of upgrade problems at the user machines and the speed of

deployment. To address this trade-off, Mirage provides a few ab-

stractions on top of which different staged deployment protocols can

be implemented.

In addition to staged deployment, Mirage provides a testing fa-

cility and a bug reporting system. Both components make extensive

use of symbolic execution as well as dynamic and static analysis. We

have designed and implemented Oasis, a state-of-the-art concolic ex-

ecution engine (a variation of symbolic execution) specifically built

to support user-machine testing and bug reporting in Mirage.

For testing, Oasis improves on state-of-the-art symbolic execu-

tion by implementing techniques to focus the testing on areas of the

code affected by the changes in the upgrade. Our first technique is

a new search heuristic that identifies the changes in the upgrade. It

then uses a control-flow graph to direct the testing of the code to ar-

eas that have been modified. During each execution of the program,

the heuristic tracks the effect of the changed code on the old code

and subsequently strives to test the affected code more intensively.

Our second technique is interactive symbolic execution, a new ap-

proach that exposes the problem of path explosion to the tester

through a graphical user interface. This interface allows the tester

to better understand the bottlenecks in trying to cover interesting

parts of the code, and is therefore very useful in developing new

search heuristics. Interactive symbolic execution can also be used

to manually influence the exploration of the code by interfering with

the scheduling of new paths to be explored.

Finally, to improve over the ad-hoc reporting seen in the sur-

vey, Mirage provides a structured reporting facility, which can use

different combinations of static analysis and symbolic execution to

4

Chapter 1: Introduction

balance the trade-off between instrumentation overhead and debug-

ging time. It allows users to report problems by sending the vendor

a partial branch trace. This trace allows the vendor to easily repro-

duce the problem, therefore significantly speeding up debugging.

Overview of the results

We evaluate Mirage’s clustering algorithm with respect to real up-

grades and problems reported in our survey. The results demon-

strate that our algorithm can cluster the users’ machines effectively.

Our algorithm works best when used in combination with vendor-

provided information about the importance of certain aspects of the

application’s environment. Further, our simulations show that de-

ploying upgrades in stages significantly reduces the amount of test-

ing effort required of the users, while quickly deploying the upgrade

at a large fraction of machines. Although we occasionally delay de-

ploying certain upgrades, by increasing the users’ confidence, they

may actually apply the upgrades sooner.

The testing component of Mirage, Oasis, is evaluated using an

open source web server. We show that our heuristic targeting new or

affected code is able to test the upgrade much more intensively with-

out sacrificing code coverage. Our preliminary experiments with

interactive symbolic execution allowed us to better understand the

progression of the heuristic and identify key areas where improve-

ments are needed.

For bug reporting, we study the trade-off between instrumenta-

tion overhead and debugging time using an open-source Web server,

the diff utility, and four coreutils programs. Our results shows that

using a combination of dynamic and static analysis, our system is

capable of limiting both the overhead of branch logging and the bug

reproduction time. We conclude that our techniques represent an

important step in improving bug reporting and making symbolic

execution more practical for bug reproduction.

Contributions

At a high level, the main contributions of this thesis are the follow-

ing:

1. The characterization of software upgrade problems using a

survey of fifty system administrators.

2. The design, implementation and evaluation of Mirage, a frame-

work that integrates deployment, user machine testing and

5

bug reporting into a structured and efficient upgrade develop-

ment cycle that encompasses both vendors and users.

3. The design, implementation and evaluation of Oasis, a state-

of-the-art concolic execution engine. Oasis supports regression

testing of software upgrades through a directed search heuris-

tic and a new technique called interactive symbolic execution.

4. The study of the trade-off between instrumentation overhead

and debugging time for bug reporting using different tech-

niques including symbolic execution, dynamic and static anal-

ysis.

We detail each of the contributions in the corresponding chapters

of the dissertation.

Organisation of the dissertation

The rest of this dissertation is organized as follows. Chapter 2

presents the results of a survey characterizing upgrade problems.

Chapter 3 describes our technique for staging upgrade deployment

in order to reduce the impact of problems. Chapter 4 describes

our implementation of Oasis, a state-of-the-art concolic engine and

its application to regression testing. Chapter 5 describes our bug

reporting technique using static and dynamic analysis to balance

the trade-off between debugging time and instrumentation overhead.

Chapter 6 presents the related works. Finally, Chapter 7 concludes

the dissertation.

6

Chapter 2

Characterizing Upgrades

2.1 Methodology

We conducted an online survey to estimate the frequency of software

upgrades, the reasons for the upgrades, the frequency of software

upgrade problems, the classes of problems that occur, and the fre-

quency of the different classes. We posted the survey (reproduced

in appendix A) to the USENIX SAGE mailing list, the Swiss net-

work operators group, and the EliteSecurity forum in Serbia. We

received 50 responses.

The majority of the respondents to our survey (82%) have more

than five years of administration experience, and 78% manage more

than 20 machines. Our respondents were allowed to specify mul-

tiple, non-disjoint choices of operating systems, making it difficult

to correlate upgrade problems with an operating system version.

In our survey, 48 of the administrators manage a Linux system or

some other UNIX-like system, 29 administrators manage Windows

desktops and server platforms, while 12 respondents manage Mac

OS machines.

2.2 Survey Results

Frequency of Software Upgrades

As Figure 2.1 demonstrates, upgrades are frequent. Specifically,

90% of administrators perform upgrades once a month or more of-

ten.

Reasons for Upgrades

We asked respondents to rank (from 1 to 5, 1 being most impor-

tant) each of five possible reasons: 1) bug fix, 2) security patch,

7

Survey Results

0 5 10 15 20

More than once a week

Once a week

Once every couple of weeks

Once a month

Once per quarter

Once per semester

Once a year

Not even once a year

Number of respondents

U
pg

ra
de

 F
re

qu
en

cy
 0-2

2-5

5-10

Experience

Figure 2.1: Upgrade frequencies.

3) new feature, 4) user request, and 5) other reason. Security fixes

get the highest priority (average rank 1.6), followed by bug fixes

(average rank 2.2) with user requests and new features trailing (av-

erage ranks of 3.3 and 3.5, respectively). Given that the primary

reason for performing an upgrade is a security fix, it can be harmful

if administrators delay upgrading.

Upgrade Installation Delays

Nevertheless, 70% of our respondents report that they refrain from

installing a software upgrade, regardless of their experience level.

This is the case even though 70% of administrators have an upgrade

testing strategy (Figure 2.2 shows these results). An overwhelming

majority (86%) of administrators use the software packaged with

the operating system to install upgrades.

Upgrade Failure Frequency

We asked respondents to estimate this rate. As Figure 2.3 shows,

66% of them estimate that between 5 and 10% of the upgrades

that are applied have problems. Given the potential damage and

extra effort that a faulty upgrade can entail (discussed next), such

a failure rate is unacceptable. Over all the responses, the average

failure rate is 8.6% and the median is 5%.

8

Chapter 2: Characterizing Upgrades

0

5

10

15

20

25

30

35

40

Refrain to install Does not refrain

N
um

be
r o

f r
es

po
nd

en
ts

No testing strategy

Have testing strategy

Figure 2.2: Reluctance to upgrade.

Another reason for avoiding upgrades may be the damage that

a faulty upgrade can cause. An important fraction of the admin-

istrators (48%) experience problems that pass initial testing, with

18% reporting catastrophic upgrade failures.

Testing Strategies

The majority of the testing strategies our respondents use involve

having a testing environment (25 respondents). Six of the adminis-

trators report testing the upgrade on a few machines, then moving

on to a larger fraction, before finally applying the upgrade to the

entire machine set. However, only 4 respondents use an identical

machine configuration in the testing environment. Two of the re-

spondents rely on reports of successful upgrades on the Internet

without an additional testing strategy. Although 70% of the re-

spondents have an upgrade testing strategy, only 18% of the admin-

istrators report that they do not have upgrade problems because

they use it.

Causes of Failed Upgrades

We asked the administrators to assign a rank to each of the failure

categories that we provided, including an optional “other categories”

field. Our respondents identified broken dependencies, removed be-

9

Categories of Upgrade Problems

0

5

10

15

20

25

1 5 10 20 25 30 40 50 60 80 90 100

N
um

be
r o

f r
es

po
nd

en
ts

% of upgrade failures

Figure 2.3: Perceived upgrade failure rate.

havior, and buggy upgrades as the most prevalent causes (average

ranks of 2.5, 2.5 and 2.6, respectively). They deemed incompati-

bility with legacy configurations and improper packaging to be less

common (average ranks of 3.1 and 3.2, respectively). We detail some

of the reported problems in Section 2.3. Here we conclude that no

single cause of upgrade failure is dominant.

Problem Reporting

Only half of the respondents consistently report upgrade problems

to the vendor. When they do so, the information they typically

include is the versions of the operating system and related software,

type of hardware, and any error messages.

2.3 Categories of Upgrade Problems

Here we describe the major categories of upgrade problems (in de-

creasing order of importance assigned by respondents) and a few

examples. We combined the reported problems with some that we

found on Web forums.

10

Chapter 2: Characterizing Upgrades

Broken Dependency

This category captures subtle dependency issues that often cause

severe disruption. Typically, application AX is compiled with a

specific library LY or depends on some application AY . Upgrad-

ing some other application AZ that depends on LY (or AY) can

upgrade LY (or AY) as well, causing application AX to fail. For

example, when upgrading the MySQL DBMS from version 4 to 5,

the PHP scripting language crashes if it was compiled with MySQL

support [41]. PHP still tries to use libraries from the old version.

Some of these broken dependency issues could be caught by the

package management system. However, package-management sys-

tems cannot catch these issues if the administrator upgrades some

files manually.

Important Feature was Removed, or Behavior was

Altered

A significant number of upgrade problems is caused by the removal

of an important feature of the software. A related problem is altered

behavior of an application or a changed API. An example of this

category is an upgrade of PHP4 to PHP5 that caused some scripts

(.php pages) to stop working due to a new Object Model [48]. The

problems in this category cannot be alleviated by improved packag-

ing, as it becomes almost impossible to search and upgrade all cases

of deprecated behavior across all user files.

Buggy Upgrades

A natural category of the failed upgrades captures the bugs in the

upgrade itself. For example, Firefox crashes when displaying some

Web pages with JavaScript on Ubuntu, after the 1.5.0.9 upgrade is

applied [21]. Some of the problematic upgrades our survey respon-

dents reported have serious consequences, such as wireless, RAID,

and other driver upgrades that caused the system to fail to boot.

Incompatibility with Legacy Configurations

Another category of upgrades involves machine-specific data that

causes an upgraded application to fail. This kind of data includes

environment variables and configuration files. For example, the up-

grade of Apache from 1.3.24 to 1.3.26 caused Apache configurations

that included an access control list to fail [2]. The contents of the in-

cluded file had to be moved to the main configuration file for Apache

11

Discussion

to start working again. Again it is difficult for upgrade packaging

to handle all possible configurations at user machines.

Improper Packaging

This category of upgrade problems occurs when the creator of the

new package (that contains the upgrade) does not correctly upgrade

all application components. Typically, this includes an omission

of some application file, as it was the case with SlimServer 6.5.1.

Here, the database was not automatically upgraded during the up-

grade process, and the server consequently would not start due to a

changed database format. Issues like this one can be addressed by

a more careful packaging procedure.

Minor Problems

The final category comprises problems that are not obvious bugs but

represent an annoyance. Often, the problem arises when a cached

file is overwritten instead of upgraded. Some of these seemingly

minor problems can have serious consequences. For example, one

administrator was unable to log into the Zertificon application due

to an administrator password that was overwritten.

2.4 Discussion

We did not seek to perform a comprehensive, statistically rigorous

survey of upgrade management in the field. Our main goals were

to motivate Mirage, while collecting a sampling of data on real up-

grades and their problems. These restricted goals allowed to focus

on a group of administrators, mostly from USENIX SAGE, that vol-

unteered information about their practical experiences. Admittedly,

this approach may have been affected by self-selection, bias, and

coverage problems. Nevertheless, our survey does provide plenty of

information on real upgrades and is broader than the few compara-

ble works in the literature [5, 50], which focused solely on security

upgrades and have their own limitations. In fact, these other works

confirm some of our observations: Beattie et al. [5] state that the

initial security upgrade failure rate is even higher than that reported

by our respondents for all upgrades. An inspection of 350,000 ma-

chines by Secunia [50] finds 28% of all major applications to be

lacking the latest security upgrades, which is in line with the high

fraction of our respondents who delay upgrades.

12

Chapter 3

Staged Deployment and

Clustering

3.1 Introduction

Many approaches are available to reduce the burden of upgrades.

For instance, improved development and testing methods at the

vendor may reduce the number of buggy upgrades. As can be seen,

however, from the results of the survey, several of the frequently

occurring categories of upgrade problems are due to differences be-

tween the development and testing environment at the vendor and

the many different environments at user machines. Broken depen-

dencies and incompatibility with legacy configurations clearly fall

into this category, whereas improper packaging may also result from

environmental differences.

The goal of the Mirage project is to reduce the upgrade problems

associated with such environmental differences between vendors and

users. To do so, the Mirage framework provides three components

that cooperate in a structured manner: staged deployment, testing,

and problem reporting (see Figure 1.1). This chapter describes in

details the staged deployment and clustering component of Mirage.

It assumes that users are able to test upgrades before installing them

and report success or failure. The next chapter describes a system

capable of fulfilling this task automatically.

To correct problems with environmental differences between ven-

dor and users, an upgrade would need to be tested in all possible user

environments. In-house vendor testing of all possible user environ-

ments is infeasible, because the vendor cannot possibly anticipate

all possible uses and environments. Exhaustive testing techniques

such as symbolic execution may help, however they currently do

not scale to real life software, and are unlikely to in the foreseeable

13

Design and Implementation

future. Indiscriminate testing at all user sites is also undesirable,

because the problematic upgrades may inconvenience a large num-

ber of users. The current practice of beta-testers tries to reduce this

inconvenience, but provides only limited coverage.

To address these issues, Mirage provides staged deployment.

Machines are clustered based on their environments such that ma-

chines in the same cluster are likely to behave the same with re-

spect to an upgrade. Within clusters, one or a few machines (called

representatives) test the upgrades first, before other machines are

allowed to download and test the upgrade. Finally, staged deploy-

ment allows control over the order in which upgrades are deployed

to clusters.

With staged deployment, the vendor does not need to anticipate

all possible user environments, but at the same time indiscriminate

user-machine testing is avoided. With clustering, the representa-

tives can provide better coverage than current beta-testing. As the

survey shows, users are typically willing to wait to install upgrades,

so the extra delay potentially introduced by staging is acceptable,

especially in light of the reduction in inconvenience.

The rest of this chapter is organized as follows. Section 3.2

presents the design and implementation of our clustering and staged

deployment techniques. Section 3.3 discusses the current limita-

tions. Section 3.4 evaluates our clustering algorithm in the context

of realistic upgrade problems, and analyzes the performance of two

staged deployment protocols using a simulator. Finally, section 3.5

concludes the paper.

3.2 Design and Implementation

Mirage provides a small number of abstractions to support staged

deployment. Upon these basic abstractions, vendors can build dif-

ferent deployment protocols to reach different objectives. Objec-

tives may include reducing upgrade overhead (which we define as

the number of machines that test a faulty upgrade), reducing up-

grade latency (the delay between the upgrade being available at

the vendor and it being applied at the user), reducing the number

of redundant problem reports, front-loading the problem debugging

effort, or combinations thereof.

Abstractions

The three basic deployment abstractions provided by Mirage are:

clusters of deployment, representatives, and distance between ven-

14

Chapter 3: Staged Deployment and Clustering

dor and clusters. (1) User machines are clustered into groups that

are likely to behave similarly with respect to upgrades of a partic-

ular application. (2) Each cluster has at least one representative

machine. The representative tests the upgrade before any of the

non-representative machines in its cluster do, playing a role simi-

lar to today’s beta-testers. (3) In addition, a measure of distance

may be defined between the vendor and a cluster, indicating the

degree of difference between the vendor’s environment and that of

the machines in the cluster. Intuitively, if a machine is more dis-

similar from the vendor’s machine, the likelihood of a problem with

the upgrade is higher. The vendor can take this additional informa-

tion into account in guiding the deployment protocol. These three

abstractions, and in particular the underlying clustering algorithm,

are the main focus of this chapter.

Clustering is done per application, but has to be evaluated in

the context of a particular upgrade. The quality of the clustering

is critical for many of the potential vendor objectives. For exam-

ple, the upgrade overhead is directly related to the quality of the

clustering. To see this relationship, consider the following types of

clustering assuming that user-machine testing detects an upgrade

problem if and only if there is one.

In an ideal clustering, all machines in a cluster behave identi-

cally with respect to an upgrade and differently from machines in

other clusters. If the upgrade behaves correctly at one machine in

a cluster, it behaves correctly at all machines in that cluster. Fur-

ther, all machines at which the upgrade behave correctly are in the

same cluster. If the upgrade exhibits a problem, it exhibits that

same problem everywhere in the cluster. Moreover, all machines

that exhibit that problem are in the same cluster. If other machines

exhibit a different problem, they are in a different cluster. Thus,

upgrade overhead is limited to the number of representatives, which

is minimal, as is the number of reports sent to the upgrade result

repository.

While ideal, this form of clustering is difficult to achieve in prac-

tice. For this reason, we consider the following slightly less ambi-

tious goal. In a sound clustering, all machines in a cluster behave

identically with respect to an upgrade, as with ideal clustering, but

there may be multiple clusters with the same behavior. In other

words, multiple clusters may exhibit correct behavior or the same

incorrect behavior. The upgrade overhead is no longer minimal,

but as long as the the number of clusters with problems remains

small relative to the total number of machines, there is considerable

15

Design and Implementation

improvement.

Clustering becomes considerably worse, if machines within the

same cluster behave differently with respect to an upgrade. In this

imperfect clustering, if an upgrade problem does not manifest itself

at the representative, non-representa-tives are bothered with testing

incorrect upgrades. This problem can be marginally improved by

having a few rather than one representative. If the upgrade fails at

the representative but works correctly at some other machines, then

upgrades to those machines are needlessly delayed.

Protocols

Using these basic abstractions and a particular clustering algorithm,

the vendor may implement different deployment protocols to opti-

mize different criteria. In terms of structure, a protocol is defined by

the degree of deployment parallelism it embodies and, when certain

phases are sequential, the particular sequential orders it imposes.

In any staged deployment protocol, the upgrade is tested on the

representative(s) of a cluster before it goes to non-representatives of

that cluster. That constraint leaves open many variations in terms

of parallelism and ordering.

A vendor may wait for all representatives of all clusters to suc-

cessfully test an upgrade before it sends it to any non-representatives.

Within this basic paradigm, it can send the upgrade in parallel to

all or some representatives or sequentially one at the time to each of

them. The same applies applies to the non-representatives: the up-

grade may be sent to all or some clusters in parallel, or sequentially

to one at a time.

An alternative approach is for the vendor to send the upgrade to

the non-representatives of a cluster as soon as testing finishes suc-

cessfully on the representatives of that cluster. This approach again

leaves open the choice of sending the upgrades to the representatives

of a cluster sequentially or in parallel.

When deployment should proceed one cluster after the other, the

protocol needs to define the exact ordering of cluster deployments.

To support this ordering, the vendor can use Mirage’s distance met-

ric. Going from smaller to larger distances may reduce the average

upgrade latency, whereas going in the inverse order may allow the

vendor to front-load its problem debugging effort.

Different upgrades may be treated differently. In fact, the ven-

dor’s objective for each upgrade typically depends on the charac-

teristics of the upgrade. If the upgrade is a major new release, the

vendor may decide to go slowly. If the upgrade is urgent and the

16

Chapter 3: Staged Deployment and Clustering

Cluster 1

3

Vendor Cluster 1

Cluster 2
Cluster 3

Cluster n
Rep

1

2

Upgrade
Report

Repository
4

Rep
Rep

Non
Rep

Figure 3.1: Mirage deployment: clusters of machines, cluster represen-

tatives and non-representatives, and cluster ordering. Some interactions

of a deployment protocol are also shown.

vendor has high confidence in its correctness, it may bypass the en-

tire cluster infrastructure, and distribute the upgrade to all users

at once. Figure 3.1 depicts the key Mirage deployment abstractions

and a few interactions of a generic deployment protocol.

Mirage does not advocate any specific protocol. In Section 3.4 we

evaluate two specific protocols to illustrate some of the possibilities,

but many other variations exist.

Clustering Machines

For upgrade deployment, Mirage seeks to cluster together user ma-

chines that are likely to behave similarly with respect to an upgrade.

Since many of the most common upgrade problems result from dif-

ferences in environment at the vendor and at the user machine,

Mirage clusters machines with similar environments. Thus, before

clustering, Mirage needs to identify the environmental resources on

which the application to be upgraded depends. These resources typ-

ically include the operating system, various runtime libraries, exe-

cutables, environment variables, and configuration files that each

application uses (the environmental resources on a Windows-based

system would include the registry as well).

Next, we detail the steps taken to collect and fingerprint (derive

a compact representation) the set of environmental resources. After

that, we describe our clustering algorithm.

Identifying Environmental Resources

We instrument, both at the vendor and at the user machines, the

process creation, read, write, file descriptor-related and socket-related

system calls. For environment variables, we intercept calls to the

17

Design and Implementation

getenv() function in libc. Using this instrumentation, we create

a log of all external resources accessed. This log may include data

files in addition to environmental resources. Clustering becomes

ineffective if data files are considered as environmental resources.

We use a four-part heuristic to identify environmental resources

among the files accessed by the application in a collection of traces,

combined with an API that allows the vendor to explicitly include

or exclude sets of files. The heuristic identifies as environmental

resources: (1) all files accessed in the longest common prefix of the

sequence of files accessed in the traces, (2) all files accessed read-only

in all execution traces, (3) all files of certain types (such as libraries)

accessed in any single trace, and (4) all files named in the package of

the application to be upgraded. In our current implementation, we

concentrate on files and environment variables. We plan to address

machine hardware properties, network protocols, and other aspects

of the environment in our future work.

The first part of the heuristic is based on the observation that

the execution of applications typically starts with a single-threaded

initialization phase in which the application loads libraries, reads

configuration files and environment variables, etc. Most often, no

data files are read in this initialization phase, and hence all files

accessed in this phase are considered environmental resources. To

find the end of the initialization phase, we compute the longest

common sequence of files from the beginning that are accessed in

every trace.

The second and third parts of the heuristic deal with applications

that access environmental resources after the initialization phase,

for example, applications that use late binding or load extensions

at runtime. To identify those environmental resources, our heuristic

considers all files opened read-only after the initialization sequence.

To separate environmental resources from read-only data files, we

only classify as environmental resources those files that are opened

in every execution or those files that are of a few vendor-specified

types, such as libraries.

The final part of our heuristic includes all files bundled in the

package of the application to be upgraded.

The heuristic may erroneously designate certain files as environ-

mental resources. For instance, the initialization phase may access

a log or some initial data files, or sample data files may also be

included in a package. Conversely, certain environmental resources

are accessed in read-write mode and therefore not included by the

heuristics, typically because the files contain both (mutable) data

18

Chapter 3: Staged Deployment and Clustering

and configuration information. To address these issues, a simple

API provided by Mirage allows the vendor to include or exclude

files or directories. By default, we exclude some system-wide direc-

tories, such as /tmp and /var.

As we show in Section 3.4, our heuristic combined with a very

small number of vendor-provided API directives allows Mirage to

correctly identify the environmental resources of popular applica-

tions with no false positives and no false negatives.

Resource Fingerprinting

To produce inputs to the clustering algorithm, we need a concise

representation (a fingerprint) for each environmental resource at

the vendor and at the user machines. Depending on its type, we

have three different ways of fingerprinting a resource. First, for

common types such as libraries, Mirage provides a parser that pro-

duces the fingerprint. Second, the vendor may provide parsers for

certain application-specific resources, like configuration files. Third,

if neither Mirage nor the vendor provides a parser for a resource,

the fingerprint is a sequence of hashes of chunks of the file that are

content-delineated using Rabin fingerprinting. In general, we ex-

pect that for many applications the vast majority of the resources

are handled by parsers, and we resort to Rabin fingerprinting only

in rare circumstances.

A resource’s fingerprint contains a hierarchical set of keys and

their values (items for short). The items produced by the parsers

have a common structure but a meaning that is dependent on the

resource type. Each parser is responsible for determining the granu-

larity of the items that are produced. Indeed, producing fine-grained

items might be useful for some types of resources (such as configura-

tion files) and useless for others (such as executables). In addition,

some resources may contain user-specific data (such as user names

and IP addresses) and other information (such as comments) that

are irrelevant in clustering machines; it is up to each parser to ex-

tract the useful information from the resource and discard the rest.

The parsers for the most common resource types produce items

in the following formats:

• Executables: Executablename.FILE HASH

• Shared libraries: LibraryName.Version#.HASH

• Text files: Filename.Line#.LINE HASH

• Config files: Filename.SectionName.KEY.HASH

• Binary files: Filename.CHUNK HASH

19

Design and Implementation

In contrast, the content-based fingerprinting creates items of

the form: Filename.CHUNK HASH. Clearly, these fingerprints are

more coarsely grained than what is possible with parsers. In fact,

using this method, all the irrelevant data contained in the environ-

mental resources are fingerprinted together with the relevant infor-

mation. We leverage the publicly available Rabin fingerprint imple-

mentation [39], and use the default 4 KB average chunk size.

Once the vendor produces its list of items for the environmental

resources on the reference machine, it sends it to the user machines.

Each user machine compares the list of items from the vendor to its

own list and produces a new list with the set of items that differ from

those of the vendor. The new list contains both items present on

the reference machine but not on the user machine and vice-versa.

This new list is sent back to the vendor, triggering the clustering

algorithm.

Clustering Algorithm

The algorithm is divided into two phases. In the first phase, clus-

tering is performed with respect to the resources for which there

are parsers. Because for these resources we have precise informa-

tion about the relevant aspects of the environment, two machines

are assigned to the same cluster if and only if their sets of items

that differ from the vendor are the same. We refer to the clusters

produced in this first phase as “original clusters”.

In the second phase, the environmental resources for which the

vendor does not provide a parser are taken into account. In this

phase, we need to decide whether to split the original clusters based

on these resources. Since content-based fingerprints do not lever-

age semantic information about the resources, they are imprecise

representations of the resources’ contents. To cope with this im-

precision, we use a diameter-based algorithm that is a variation of

the QT (Quality Threshold) clustering algorithm [30] (we dismissed

the traditional k-means algorithm because it is non-deterministic)

on each of the original clusters.

Considering the user machines of only one original cluster at

a time, the diameter-based algorithm starts with one machine per

cluster. It then iteratively adds machines to clusters while trying

to achieve the smallest average inter-machine distance, without ex-

ceeding the vendor-defined cluster diameter d. The distance metric

is the Manhattan distance between two machines, defined as the

number of different items associated with the resources for which

there are no parsers. When the algorithm cannot merge any addi-

20

Chapter 3: Staged Deployment and Clustering

tional clusters, it moves on to the next original cluster. After the

final set of clusters is produced, we also explicitly split clusters that

contain machines with different sets of applications with overlap-

ping environmental resources. The final clusters are labeled with

their set of differing items.

Discussion

At this point, it should be clear that it is advantageous for the

vendor to provide parsers for as many environmental resources as

possible. Doing so allows the vendor to cluster machines more ac-

curately. In addition, using parsers, the vendor can exercise greater

control over the clustering process. For example, the vendor can

specify which items it believes to be less important. The vendor

can create bigger clusters by removing those items from the set of

differing items of each machine. It is also possible to discard only a

suffix of some of the hierarchical items. For example, assume that

many machines have version 2.4 of libc, but a significant portion

of them have a different library hash. This discrepancy probably

means that there are machines that have version 2.4 of libc com-

piled with different flags. In deploying a non-critical upgrade to the

graphical interface of Firefox, the vendor might decide to discard

this information, thus putting all machines using version 2.4 of libc

in one bigger cluster.

Relative to performance and scalability, the user-side fingerprint-

ing and comparison processes are efficient and distributed, regard-

less of how many parsers are provided. However, producing as many

parsers as possible has advantages in terms of the vendor’s compu-

tational effort. The first phase of the clustering algorithm runs effi-

ciently in time that is proportional to the number of user machines.

In contrast, the second phase performs a number of comparisons

that is quadratic in the number of machines in each original clus-

ter, and each comparison takes time proportional to the number of

items associated with resources for which there are no parsers. Thus,

the second phase can become computationally intensive if there are

many such resources. The running time of the QT algorithm is also

quadratic in the number of machines in each original cluster. In our

future work, we plan to develop an efficient incremental reclustering

approach, since a relevant change in a machine’s environment can

change that machine’s cluster.

21

Discussion and Current Limitations

3.3 Discussion and Current Limitations

Although the presentation above focuses on vendors and individ-

ual users, Mirage can benefit the administrators of large systems as

well. In fact, a large system with uniform machine configurations

is represented as a single machine in Mirage’s deployment proto-

col. Even when system administrators are required to certify all

upgrades manually before deploying them, Mirage can help them

by keeping track of the applications that need to be tested, auto-

matically testing each of them, and reporting unexpected behavior.

Furthermore, by increasing the administrators’ confidence in the up-

grades, Mirage encourages administrators to apply upgrades sooner.

In addition, by automating the reporting of failed upgrades, Mirage

makes it easier for vendors to fix the problems with their upgrades.

Despite its many potential benefits, the current implementation

of Mirage has some limitations.

The information that the vendor stores about the similarities

between the user machines could be used by an attacker to quickly

identify the targets of a known vulnerability. Although items con-

tain hashes of the environmental resources’ contents, the file names

are currently stored in the clear. Computing a cryptographic hash

of file names would not help, as the attacker could install the appli-

cation and check for identical hashes of vulnerable files. However,

we could enhance the security and privacy of our “original”, parser-

aided clustering, by letting each machine determine the cluster it

belongs to locally based just on the comparison with the vendor’s

set of files and fingerprints and by communicating a single crypto-

graphic hash of its items to the vendor. To enable staging, the ven-

dor could transmit only the list of clusters’ hashes to each machine.

If necessary, machines could use some of the anonymity-preserving

techniques [13] to communicate with the vendor. During deploy-

ment, the vendor could publicly advertise the cluster being tested

currently and use only the number of nodes that belong to each

cluster to determine when it is appropriate to move to the next

stage.

3.4 Evaluation

We address the following three questions:

1. Can we accurately identify the environmental resources on

which an application depends?

22

Chapter 3: Staged Deployment and Clustering

A
p

p
li

c
a
ti

o
n

F
il

e
s

to
ta

l

E
n
v
.

re
so

u
rc

e
s

F
a
ls

e
p

o
si

ti
v
e
s

F
a
ls

e
n

e
g
a
ti

v
e
s

R
e
q
u

ir
e
d

v
e
n

d
o
r

ru
le

s

firefox 907 839 1 23 7
apache 400 251 133 0 2

php 215 206 0 0 0
mysql 286 250 0 33 1

Table 3.1: Effectiveness of the heuristic in identifying environmental

resources.

2. Can we cluster machines into meaningful clusters such that

members of a cluster behave similarly or identically with re-

spect to an upgrade?

3. Can we use staged deployment to significantly reduce upgrade

overhead with little or no impact on deployment latency?

Identifying Environmental Resources

We study a desktop application (Firefox) and three server applica-

tions (Apache, PHP, and MySQL). To determine false positives (files

the heuristic erroneously flags as environmental resources) and false

negatives (environmental resources the heuristic missed), we man-

ually inspect the set of files produced by the heuristic, as well as

their contents.

Table 3.1 shows, for each application, the number of files ac-

cessed in the traces, the number of environmental resources, the

number of false positives and false negatives generated by the heuris-

tic, and the number of vendor-specified rules necessary to obtain a

perfect classification of the files.

The heuristic by itself is able to correctly classify a large frac-

tion of the environmental resources. Combining the heuristic with

a small number of vendor-specified rules correctly identifies all en-

vironmental resources, without false positives or false negatives.

For PHP, the heuristic correctly identifies all environmental re-

sources, without false positives or false negatives.

For Apache, the heuristic erroneously classifies the access log and

some HTML files from the root document directory as environmen-

23

Evaluation

tal resources – the log because it is accessed during initialization,

and the HTML files because they are accessed read-only in each

run.

For MySQL, the heuristic erroneously omitted the directory in

which the mysql database is stored, because by default it excludes

files from /var. These files, however, also contain configuration data

and are part of the environmental resources of MySQL.

For Firefox, not all extension, theme, and font files are included

properly by the heuristic, because Firefox loads them whenever they

are needed (i.e., after the initialization phase). We had to specify

the important file types so they are correctly classified.

As can be seen from the table, the number of files misclassified

can vary significantly from one application to the other. The num-

ber of rules, however, stays very small because each of these rules

recognizes one special case of misclassification under which a vari-

able number of files may fall. For this reason, the number of rules

required to obtain a perfect classification gives a better appreciation

of the effectiveness of the heuristic in terms of its ability to classify

files automatically.

Defining the rules is an easy matter of invoking the regular

expression-based Mirage API. In general, however, some files and

directories are located at different places on different machines. In

this case, the vendor can easily provide a script to automatically

extract the correct location of files and directories from relevant

configuration files or environment variables and generate the regu-

lar expressions locally on each machine.

Clustering

As mentioned in Section 3.2, a clustering is evaluated relative to a

particular upgrade and a set of problems. We start by introducing

metrics that quantify the “goodness” of clustering. The first metric

captures the number of unnecessarily created clusters (C), while the

second metric captures the number of wrongly-placed machines (w),

i.e., machines that behave differently than the rest of their clusters.

If there are p different problems, an ideal clustering creates p+1

clusters (a cluster for every problem, and a cluster containing all

other machines), has no unnecessary clusters (C = 0), and has no

misplaced machines (w = 0). A sound clustering has C ≥ 0 and

w = 0. With a sound clustering, therefore, multiple clusters may

exhibit correct behavior or the same incorrect behavior. A clustering

that is imperfect has w > 0 and potentially C > 0.

24

Chapter 3: Staged Deployment and Clustering

M
a
ch

in
e

N
a
m

e
D

e
sc

ri
p

ti
o
n

fc
5-

m
s4

F
ed

or
a

C
or

e
5

fc
5-

m
s4

/p
h

p
4

F
ed

or
a

C
or

e
5

w
it

h
P

H
P

4
.4

.6
fc

5-
m

s4
/p

h
p

4/
ap

13
9

F
ed

or
a

C
or

e
5

w
it

h
P

H
P

4
.4

.6
a
n

d
A

p
a
ch

e
1
.3

.9
fc

5-
m

s4
/p

h
p

4-
co

m
m

en
ts

F
ed

or
a

C
or

e
5,

P
H

P
4
.4

.6
(c

o
m

m
en

ts
in

/
et

c/
m

y
sq

l/
m

y.
cn

f
a
lt

er
ed

)
u

b
t-

m
s4

,
u

b
t-

m
s4

(2
)

U
b

u
n
tu

6.
06

(D
a
p

p
er

D
ra

ke
)

(t
w

o
id

en
ti

ca
l

m
a
ch

in
es

)
u

b
t-

m
s4

/p
h

p
4

U
b

u
n
tu

6.
06

w
it

h
P

H
P

4
.4

.6
u

b
t-

m
s4

/p
h

p
4/

ap
13

9
U

b
u

n
tu

6.
06

w
it

h
P

H
P

4
.4

.6
,

a
n

d
A

p
a
ch

e
1
.3

.9
(c

o
m

p
il

ed
w

it
h

P
H

P
su

p
p

o
rt

)
u

b
t-

m
s4

/w
it

h
co

n
fi

g
U

b
u

n
tu

6.
06

(a
d

d
ed

co
n

fi
g
.

fi
le

/
et

c/
m

y
sq

l/
m

y.
cn

f)
u

b
t-

m
s4

/u
se

rc
on

fi
g

U
b

u
n
tu

6.
06

(a
d

d
ed

a
u

se
r

co
n

fi
g

fi
le

$
H

O
M

E
/
.m

y.
cn

f)
u

b
t-

m
s4

/c
on

fd
ir

ec
ti

ve
-a

d
d

ed
U

b
u

n
tu

6.
06

(a
d

d
ed

a
co

n
fi

g
.

d
ir

ec
ti

ve
to

/
et

c/
m

y
sq

l/
m

y.
cn

f)
u

b
t-

m
s4

/c
on

fd
ir

ec
ti

ve
-d

el
et

ed
U

b
u

n
tu

6.
06

(d
el

et
ed

a
co

n
fi

g
.

d
ir

ec
ti

ve
fr

o
m

/
et

c/
m

y
sq

l/
m

y.
cn

f)
u

b
t-

m
s4

/c
om

m
en

t-
ad

d
ed

U
b

u
n
tu

6.
06

(a
d

d
ed

so
m

e
co

m
m

en
ts

to
/
et

c/
m

y
sq

l/
m

y.
cn

f)
u

b
t-

m
s4

/c
om

m
en

t-
d

el
et

ed
U

b
u

n
tu

6.
06

(d
el

et
ed

so
m

e
co

m
m

en
ts

fr
o
m

/
et

c/
m

y
sq

l/
m

y.
cn

f)
u

b
t-

m
s4

/l
ib

c-
u

p
g

U
b

u
n
tu

6.
06

(u
p

gr
a
d

ed
to

a
n

ew
ve

rs
io

n
o
f

li
b

c)
u

b
t-

m
s4

/l
ib

c-
u

p
g/

w
it

h
co

n
fi

g
U

b
u

n
tu

6.
06

(a
d

d
ed

co
n

fi
g
.

fi
le

/
et

c/
m

y
sq

l/
m

y.
cn

f,
li

b
c

u
p

g
ra

d
ed

)
u

b
t-

m
s4

/l
ib

c-
u

p
g/

u
se

rc
on

fi
g

U
b

u
n
tu

6.
06

(a
d

d
ed

a
u

se
r

co
n

fi
g
.

fi
le

$
H

O
M

E
/
.m

y.
cn

f,
li

b
c

u
p
g
ra

d
ed

)
u

b
t-

m
s4

/l
ib

c-
u

p
g/

co
n

fd
ir

ec
ti

ve
-a

d
d

ed
U

b
u

n
tu

6.
06

(a
d

d
ed

a
co

n
fi

g
.

d
ir

ec
ti

ve
to

/
et

c/
m

y
sq

l/
m

y.
cn

f,
li

b
c

u
p

g
ra

d
ed

)
u

b
t-

m
s4

/l
ib

c-
u

p
g/

co
n

fd
ir

ec
ti

ve
-d

el
et

ed
U

b
u

n
tu

6.
06

(d
el

et
ed

a
co

n
fi

g
.

d
ir

ec
ti

ve
fr

o
m

/
et

c/
m

y
sq

l/
m

y.
cn

f,
li

b
c

u
p

g
ra

d
ed

)
u

b
t-

m
s4

/l
ib

c-
u

p
g/

co
m

m
en

t-
ad

d
ed

U
b

u
n
tu

6.
06

(a
d

d
ed

co
m

m
en

ts
to

/
et

c/
m

y
sq

l/
m

y.
cn

f,
li

b
c

u
p

g
ra

d
ed

)
u

b
t-

m
s4

/l
ib

c-
u

p
g/

co
m

m
en

t-
d

el
et

ed
U

b
u

n
tu

6.
06

(d
el

et
ed

co
m

m
en

ts
fr

o
m

/
et

c/
m

y
sq

l/
m

y.
cn

f,
li

b
c

u
p

g
ra

d
ed

)

T
ab

le
3.

2:
S
a
m

p
le

L
in

u
x

co
n
fi
g
u
ra

ti
o
n
s

u
se

d
in

o
u
r

ex
p

er
im

en
ts

.
A

ll
m

a
ch

in
es

h
av

e
M

y
S
Q

L
4
.1

.2
2
.

25

Evaluation

ubt-ms4/confdirective-added

fc5-ms4/php4

fc5-ms4/php4-comments
2

fc5-ms41

ubt-ms4/libc-upg/withconfig

ubt-ms4/libc-upg/comment-deleted

ubt-ms4/libc-upg/comment-added

4

ubt-ms4/libc-upg8

ubt-ms4

ubt-ms4(2)

ubt-ms4/php4

ubt-ms4/php4/ap139

fc5-ms4/php4/ap1393

ubt-ms4/libc-upg/confdirective-added5

ubt-ms4/libc-upg/confdirective-deleted6

ubt-ms4/libc-upg/userconfig7

ubt-ms4/confdirective-deleted9

ubt-ms4/userconfig

ubt-ms4/withconfig

ubt-ms4/comment-deleted

ubt-ms4/comment-added

10

11

12

13

14

15

Figure 3.2: Clustering obtained by using parsers for all environmental

resources. Entries in boldface experience the PHP problem with a MySQL

upgrade, whereas entries in bold-italics will exhibit the my.cnf problem.

Unfortunately, an ideal clustering is typically not achievable in

practice. Since a particular problem may affect only a subset of

environments, there may be multiple clusters with machines that

do not experience the problem. In contrast, sound clustering is

achievable and useful in limiting the upgrade overhead, so it is the

type of clustering that we seek to obtain.

We have reproduced a number of machine environments that

exhibit real, non-trivial upgrade problems with two applications:

MySQL and Firefox.

MySQL

Table 3.2 describes the machine configurations used in the MySQL

experiment. On some of these configurations, the upgrade to a

26

Chapter 3: Staged Deployment and Clustering

ubt-ms4/php4/ap139

ubt-ms4/php4

fc5-ms4/php4

fc5-ms4/php4-comments
2

fc5-ms41

ubt-ms4/libc-upg/confdirective-deleted

ubt-ms4/libc-upg/withconfig

ubt-ms4/libc-upg/confdirective-added

ubt-ms4/libc-upg/comment-deleted

ubt-ms4/libc-upg/userconfig

ubt-ms4/libc-upg/comment-added

4

ubt-ms4/libc-upg5

ubt-ms4/confdirective-deleted

ubt-ms4/withconfig

ubt-ms4/confdirective-added

ubt-ms4/comment-deleted

ubt-ms4/userconfig

ubt-ms4/comment-added

ubt-ms4

ubt-ms4(2)

fc5-ms4/php5/ap1393

6

7

8

9

Figure 3.3: Clustering obtained by using only parsers supplied by Mirage

and a diameter value of 3 for the remaining environmental resources.

Entries in boldface experience the PHP problem, whereas entries in bold-

italics will exhibit the my.cnf problem.

new version is successful. Other configurations (the ones with php4

in their names) are known to exhibit broken-dependency problems

with PHP [41] after a MySQL upgrade. Still others (the ones with

userconfig in their name) exhibit legacy-configuration problems with

the my.cnf MySQL configuration file.

Figure 3.2 shows the results of our clustering algorithm when we

use application-specific parsers for all environmental resources. En-

tries in boldface denote machines that experience the PHP problem

when upgrading MySQL, whereas the entries in bold-italics denote

machines that experience the my.cnf problem.

As we see from Figure 3.2, the machines that experience the

MySQL upgrade problems are not clustered together with machines

experiencing other problems or machines behaving correctly, thus

satisfying our main clustering goal (w = 0). During deployment,

problems would be observed in only two clusters.

27

Evaluation

The results also show that the algorithm creates separate clusters

for the different distributions, versions of libc, dependent applica-

tions, and differences in the configuration files. Although these dif-

ferences have no bearing on the behavior of this particular upgrade,

another upgrade could be problematic in one of these different en-

vironments. Thus, the algorithm must conservatively cluster these

machines separately. Overall, this clustering created 12 additional

clusters (C = 12) with respect to this upgrade.

We now examine the results of the clustering algorithm without

using any MySQL-specific parsers; the initial phase of the algorithm

relies on Mirage-supplied parsers only. As described in Section 3.2,

the Mirage-supplied parsers deal with executables, shared libraries,

and system-wide configuration files. Therefore, we have to exe-

cute the second phase of the clustering algorithm, which uses the

QT algorithm for the resources that are fingerprinted with content-

delineation. We show the final clustering results obtained with a

diameter value of 3 in Figure 3.3.

The figure shows that, even without the application-specific par-

sers, our clustering algorithm correctly clusters the machines with

the PHP-related problem. However, we see that clusters 4 and 6

both contain a machine that experiences a problem along with ma-

chines that do not. This clustering is thus not sound (w = 2) for an

upgrade that triggers the my.cnf problem. This happens because

the number of differences between the machines in this cluster is

smaller than the diameter value. Specifically, the differences in this

case are in the hash of the my.cnf file. Since the file is rather small

and our Rabin fingerprinting takes hashes at the granularity of 4KB,

only one hash is different. Using a diameter value of 0 would have

separated the machines in this cluster, but it would also have sep-

arated machines that have benign differences (the machines with

-comment in the name). In a real-world scenario with thousands of

machines, this choice of the diameter could result in a large number

of clusters that would slow down the deployment. This example

shows that picking an adequate diameter value is difficult and that

clustering might be imperfect, regardless of the diameter value cho-

sen, when some parsers are missing.

The vendor can decide to vary the size of the resulting clusters

depending on the upgrade that is to be deployed. For instance,

in our setup we have 5 different types of changes to the MySQL

configuration file my.cnf. If the vendor is providing a parser for this

file and wants to deploy an upgrade that is unlikely to be affected

by any of those changes, it can choose to ignore the corresponding

28

Chapter 3: Staged Deployment and Clustering

firefox15-fresh

firefox15-fresh(2)
1

firefox15-from10

firefox15-from10(2)
2

firefox15-fresh-nojava3

firefox15-from10-nojava4

Figure 3.4: Firefox clustering obtained by using parsers for all environ-

mental resources. Entries in boldface experience problems when upgrad-

ing to version 2.0.

firefox15-fresh

firefox15-fresh(2)

firefox15-fresh-nojava

firefox15-from10

firefox15-from10(2)

firefox15-from10-nojava

1

firefox15-fresh

firefox15-fresh(2)

firefox15-fresh-nojava

firefox15-from10

firefox15-from10(2)

firefox15-from10-nojava

2

1

Figure 3.5: Firefox clustering results obtained by using only Mirage-

supplied parsers. On the left, results with a diameter value of 4. On the

right, results with a diameter value of 6. Entries in boldface experience

problems when upgrading to version 2.0.

items. The resulting merge of clusters 4,5,6 and clusters 9,10,11 in

Figure 3.2 can speed up the staged deployment. This regrouping of

clusters still correctly separates the problematic configurations from

other, “good” clusters. Such an effect cannot easily be achieved if

the vendor does not provide a parser. Without a parser, creating

larger clusters can only be done by increasing the diameter, which

does not give any guarantee over how machines are going to be

re-clustered.

Firefox

Table 3.3 describes the machine configurations used in the Firefox

experiment. The three first configurations are fresh installations

of version 1.5.0.7 of Firefox, with the third one having Java and

JavaScript disabled. The other three configurations have been up-

graded from version 1.0.4, and the last one has Java and JavaScript

turned off. The latter three configurations exhibit a legacy-

configuration problem when upgraded to Firefox 2.0. In particular,

two preference files that existed in version 1.0.x (and were upgraded

to 1.5.x) cause erratic behavior when Firefox is upgraded to version

2.0 [20].

Figure 3.4 shows results obtained using application-specific par-

29

Evaluation

sers for Firefox’s configuration files, in addition to Mirage’s supplied

parsers. The clustering is sound (w = 0, C = 2) for this upgrade;

there are two extra clusters with the two machines with Java and

JavaScript disabled.

Figure 3.5 shows two clustering results using only Miragesupplied

parsers. On the left, a diameter value of 4 is used. The problematic

configurations are all in one cluster, and all the other ones in an-

other cluster. For the upgrade we are considering, this clustering is

ideal, with w = 0 and C = 0. On the right, a diameter value of 6 is

used. This clustering is imperfect, as the problematic configurations

are clustered with other machines (w = 3). These results show that

picking the right clustering diameter is difficult and that a small

difference potentially has a non-trivial impact.

The comparison between the clustering results in Figures 3.4

and 3.5(left) might suggest that it is sometimes better for the vendor

not to provide parsers for its applications. However, this conclusion

is incorrect. The reason is that, when the vendor is about to de-

ploy an upgrade, it does not know if or where problems may occur.

Thus, it would be improper to assume, as done in Figure 3.5(left),

that machines with features turned off always behave the same as

their counterparts with those features turned on. Firefox’s configu-

ration files contain many irrelevant parameters (such as timestamps

and window coordinates) as well as relevant configuration settings

(such as Java settings). Since diameter clustering only considers the

number of differences, it is unable to make a distinction between rel-

evant and irrelevant differences. If the vendor supplies the required

parsers, it can discard the irrelevant differences to guarantee sound

clustering.

Deployment Protocols

We still need to evaluate the impact of staged deployment on up-

grade overhead and latency. Toward this end, out of the space of

possible staged deployment protocols described in Section 3.2, in

this section we evaluate two: one that seeks to front-load most of

the vendor’s debugging effort while reducing the upgrade overhead

(i.e., the number of machines testing a faulty upgrade); and one

that seeks to reduce upgrade overhead without disregarding the up-

grade latency (i.e., the time elapsed until the upgrade is successfully

applied and running on a machine). For both protocols, we assume

that the representatives are always online and ready to fully test

an upgrade, perhaps as a result of a financial arrangement with the

vendor.

30

Chapter 3: Staged Deployment and Clustering

M
a
ch

in
e

N
a
m

e
D

e
sc

ri
p

ti
o
n

fi
re

fo
x
15

-f
re

sh
,

fi
re

fo
x
15

-f
re

sh
(2

)
F

ir
ef

ox
v
.1

.5
.0

.7
fr

es
h

ly
in

st
a
ll

ed
(t

w
o

id
en

ti
ca

l
m

a
ch

in
es

)
fi

re
fo

x
15

-f
re

sh
-n

o
ja

va
F

ir
ef

ox
v
.1

.5
.0

.7
fr

es
h

ly
in

st
a
ll

ed
,

J
av

a
a
n

d
J
av

a
S

cr
ip

t
d

is
a
b

le
d

fi
re

fo
x
15

-f
ro

m
10

,
fi

re
fo

x
15

-f
ro

m
1
0(

2
)

F
ir

ef
ox

v
.1

.5
.0

.7
,

u
p

g
ra

d
ed

fr
o
m

v
.1

.0
.4

(t
w

o
id

en
ti

ca
l

m
a
ch

in
es

)
fi

re
fo

x
15

-f
ro

m
10

-n
o

ja
va

F
ir

ef
ox

v
.1

.5
.0

.7
,

u
p

g
ra

d
ed

fr
o
m

v
.1

.0
.4

,
J
av

a
a
n

d
J
av

a
S

cr
ip

t
d

is
a
b

le
d

T
ab

le
3.

3:
C

o
n
fi
g
u
ra

ti
o
n
s

u
se

d
in

o
u
r

ex
p

er
im

en
ts

w
it

h
F

ir
ef

ox
.

A
ll

m
a
ch

in
es

ru
n

th
e

sa
m

e
L

in
u
x

d
is

tr
ib

u
ti

o
n
.

31

Evaluation

Front-loading the debugging effort while reducing the

upgrade overhead.

The first protocol (called FrontLoading, for short) is divided into two

phases. In the first phase, the vendor starts by notifying all repre-

sentatives of all clusters in parallel that an upgrade is available. The

representatives then download and test the upgrade using Mirage’s

user-machine testing subsystem (or another appropriate testing ap-

proach). Any problems during this phase are reported back to the

vendor using Mirage’s reporting subsystem. Once the problems are

fixed by the vendor, all representatives are again concurrently noti-

fied about the corrected upgrade and can download, test, and report

on it. This process is repeated until no more problems are reported

by the representatives, ending the first phase of the protocol. No

non-representatives test before the end of this phase.

During the second phase, the vendor proceeds by handling one

cluster at a time, sequentially, starting from the cluster that is most

dissimilar to the vendor’s environment and proceeding (in reverse

order of similarity) toward the cluster that is most similar to it.

Ideally, no new problem should be discovered in this phase. How-

ever, because of imperfect testing or clustering, some problems may

still be encountered. The vendor starts this phase by simultane-

ously notifying the non-representative machines of the first cluster

in the order. The non-representatives of this cluster then down-

load the upgrade, test it, and report their results. It is possible

that the upgrade succeeds at some non-representative machines but

fail at others. When this occurs, the non-representative machines

that passed testing are allowed to integrate the upgrade, but are

later notified of a new upgrade fixing the problems with the origi-

nal upgrade. The machines that failed testing do not integrate the

upgrade and are later notified of a (hopefully) corrected version of

the upgrade. When there are no more failures and a large fraction

(according to a vendor-defined threshold) of the non-representatives

have passed upgrade testing successfully, the process is repeated for

the next cluster in the order. The reason we only wait for a (large)

fraction of the non-representative machines to report success is that

some machines may stay offline for long periods of time; it would

be impractical to wait for all these machines to pass testing be-

fore moving to the next cluster. When these “late arrivals” come

back online, they are notified, download, test, and report on all the

upgrades they missed.

This protocol front-loads the debugging effort in two ways: (1)

it collects reports from all representatives of all clusters right from

32

Chapter 3: Staged Deployment and Clustering

the start, getting a broad picture of all the problems that can be

expected; and (2) in its second phase, it proceeds in the reverse

order of cluster distance from the vendor, as farther clusters are

more likely to experience problems. These two characteristics also

allow the protocol to reduce the upgrade overhead.

Reducing upgrade overhead with better upgrade latency.

In our second staged protocol (called Balanced, for short), deploy-

ment starts with the cluster that most closely resembles the ven-

dor’s installation, progresses sequentially to the next cluster that

most closely resembles the vendor, and so on. The similarity be-

tween clusters and the vendor is evaluated by a distance function

accounting for the number of differences in the environmental re-

sources of machines belonging to the clusters. Each time the pro-

tocol progresses to a new cluster, the representatives of that cluster

are notified about it in parallel and can then download, test, and re-

port on it. This process is repeated until the upgrade passes testing

successfully at all the representatives of the cluster. At this point,

the non-representative machines of the cluster are notified and go

through the same process. As in FrontLoading, non-representatives

that pass testing successfully can integrate the upgrade, but may

later receive a new upgrade. When all (or a significant fraction

of) the machines in a cluster have successfully tested an upgrade,

deployment progresses to the next cluster.

This protocol promotes low upgrade overhead by testing up-

grades at the representatives of each cluster before allowing the

much larger number of non-representatives to test them. Interest-

ingly, it also promotes low latency for a large set of machines, as

compared to our first protocol, in two ways: (1) by allowing many

non-representatives to successfully pass testing before problems with

all clusters are debugged by the vendor; and (2) by ordering clus-

ters so that clusters that are more likely to pass testing receive the

upgrades first. However, debugging at the vendor is more spread

out in time, as compared to the first protocol.

Evaluation Methodology

The evaluation is based on an event-driven simulator of different

deployment protocols and clustering schemes. The main simulator

inputs are the number of clusters, the clusters’ sizes, the clustering

quality, the number of representatives per cluster, in which clusters

the upgrade problems appear, and the times to download, test, and

33

Evaluation

fix an upgrade. Because our goal here is not to present an exten-

sive set of results for a large number of simulator inputs, we select

a particular scenario and discuss the corresponding results. The

behaviors that we observe with this example scenario are represen-

tative of those of the other scenarios we considered.

Our example scenario has 100,000 simulated machines running

Mirage. The times to download and test an upgrade are 5 and 10

time units, respectively. The time to fix each upgrade problem at

the vendor is set at 500 time units. We choose the ratio between

upgrade download and test vs. debugging time to mimic the ratio

between the expected times in the field; download and test taking

a few tens of minutes, with debugging (entire cycle at the vendor)

taking at least one day. In all cases, we cluster machines into 20

clusters.

We consider two main categories of upgrade problems: prevalent

(a large number of machines are affected by the problem) and non-

prevalent (a smaller number of similar machines are affected). The

results we show are for a case of one prevalent problem affecting

15% of machines (resembling the upgrade failure results reported in

the literature [5]) and two non-prevalent problems in two different

clusters.

We use two different clusterings. The first is sound with re-

spect to the problems we defined; it has 16 more clusters than ideal

clustering, with no misplaced machines. We create the second, im-

perfect, clustering by injecting a single misplaced machine in one of

the clusters from the sound clustering setup. This machine is not a

representative in the affected cluster. We assume that user-machine

testing correctly identifies a problem if there is one, with no false

positives. Hence, we assign one representative per cluster.

Given the lack of large-scale machine characterizations that we

would require in this scenario, we assume that all clusters have the

same size and study per-cluster, rather than per-machine, upgrade

latencies. In the cases we consider, the vast majority of machines

behave the same within a cluster. Hence, this setup enables us to

discuss the qualitative features of our staged deployment protocols.

We compare our two protocols, FrontLoading and Balanced,

against baselines called “NoStaging” and “RandomStaging”. The

NoStaging protocol places all machines into a single cluster and

treats them all as representatives to promote deployment speed at

the possible cost of a high upgrade overhead. For this reason, NoS-

taging should be used for simple and urgent upgrades, such as secu-

rity patches. The RandomStaging protocol resembles Balanced, but

34

Chapter 3: Staged Deployment and Clustering

the order of deployment to clusters is random. Although Random-

Staging may not have any real use in practice, it does allow us to

isolate the benefit of staged deployment from that of intelligent ma-

chine clustering. To evaluate this protocol, we create a scenario in

which the problems are uniformly distributed across the deployment

order.

Since we do not have an underlying set of machine environments,

we consider two deployment scenarios for the Balanced protocol:

1) “best-case”, in which the representatives discover problems at

the latest possible time, producing the most favorable latency; and

2) “worst-case”, with the problems being encountered early on, re-

sulting in the worst latency. We compare the protocols in terms of

their latencies and upgrade overheads.

Deployment Results

Most importantly, we expect our staged protocols to have signifi-

cantly lower upgrade overhead than NoStaging. This benefit should

come with little or no penalty in terms of upgrade latency.

Sound clustering. Our protocols indeed exhibit much lower up-

grade overhead than NoStaging. With NoStaging, all machines that

exhibit problems (m, in total) fail testing, whereas many fewer do

so with the other three protocols thanks to their staged deployment

(presumably, m >> p, i.e., the number of problematic machines is

much greater than the number of problems, p). The main reason for

this result is that staging forces the deployment to halt at the first

cluster that exhibits a problem, sparing other machines from expe-

riencing the same problem. Since the clustering is sound with no

misplaced machines and we assume that user-machine testing finds

the problem if one exists, the representative of each cluster with

a problem experiences it. Hence, the total number of test failures

is p for Balanced and RandomStaging. As expected, Balanced has

lower overhead than FrontLoading. With FrontLoading, representa-

tives of all clusters with machines exhibiting the prevalent problem

(p+Cp in total, where Cp is the number of additional clusters with

problematic machines) fail testing.

Figure 3.6 shows the CDF of the upgrade latency, confirming

our intuition about the protocols we consider. In NoStaging, 75%

of the machines pass the upgrade test right away (at the cost of

the high upgrade overhead we just discussed). In the best-case sce-

nario, Balanced quickly applies the upgrade successfully at a large

fraction of machines, significantly sooner than FrontLoading. Since

35

Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

Fr
ac

tio
n

of
 c

lu
st

er
s

Time (units)

NoStaging
Balanced (best)
RandomStaging

FrontLoading
Balanced (worst)

Figure 3.6: CDF of the per-cluster upgrade latency under sound clus-

tering.

FrontLoading has an initial parallel testing and debugging phase,

most successful upgrades are delayed by several debugging times

at the vendor (500 time units each). Nevertheless, the last clus-

ter applies the upgrade sooner under FrontLoading than the other

staged protocols, especially when the number of clusters is large,

since FrontLoading’s second phase does not have an extra step of

testing at representatives. RandomStaging’s latency lies between

that of the best-case and the worst-case scenarios for Balanced. We

also see that additional clusters (when C > 0) slow down the se-

quential phases of the staged protocols.

Imperfect clustering. Figure 3.7 shows the CDF of the per-

cluster latency when we position the misplaced machine (a prob-

lematic machine that behaves differently from the rest of its cluster)

in the first or the last cluster in the order.

We see that FrontLoading can be further slowed down if the mis-

placed machine is in the first cluster. Arguably, this is in agreement

with this protocol’s main strategy. With its best-case scenario, Bal-

anced is similarly slowed down in this case when the entire first

cluster tests the upgrade and we encounter the misplaced machine.

When the misplaced machine is in the last cluster in the order, this

protocol is only marginally affected. Since it tests on all machines,

NoStaging is not affected by the presence of the misplaced machine.

Overall, the main trends among the protocols remain and the up-

grade overhead is simply augmented by one extra machine that fails

testing for all protocols.

36

Chapter 3: Staged Deployment and Clustering

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

Fr
ac

tio
n

of
 c

lu
st

er
s

Time (units)

NoStaging
Balanced-best (last)
Balanced-best (first)

FrontLoading (last)
FrontLoading (first)

Figure 3.7: CDF of the upgrade latency under imperfect clustering. The

position of the misplaced machine (its cluster in the deployment order)

is shown in parenthesis after protocol names.

3.5 Conclusion

We introduce Mirage, a distributed framework that integrates de-

ployment, user-machine testing, and problem reporting into the de-

velopment cycle of software upgrades. The design of Mirage is moti-

vated by our survey of system administrators, described in chapter

2, that points to a high incidence of problematic upgrades, and to

the difference between vendor and user environments as one of the

important causes of upgrade problems. We describe in detail two

key innovations in Mirage: the clustering of user machines accord-

ing to their environments and the staged deployment of upgrades

to these clusters.

Our evaluation demonstrates that our clustering algorithm a-

chieves its goal of separating machines with dissimilar environments

in different clusters, while not creating an impractically large num-

ber of clusters. The algorithm performs substantially better when

the vendor provides parsers for all of the environmental resources of

the application. A simulation study of two staged deployment pro-

tocols demonstrates that staging significantly reduces upgrade over-

head, while still achieving low deployment latency. Furthermore, a

suitable choice of protocol allows a vendor to achieve different ob-

jectives.

37

Chapter 4

Concolic Execution for

Testing Software Upgrades

4.1 Introduction

Deriving a correct software implementation is a difficult and ardu-

ous task. Programmers are often under time constraints to meet

release deadlines, and therefore use a variety of static and dynamic

analysis techniques to improve software reliability. In chapter 2, we

presented a survey which demonstrates that software upgrades rou-

tinely ship with problems. To reduce the impact of those problems,

in chapter 3, we described staged deployment, a technique that al-

lows the vendor to deploy the upgrade in multiple stages, detect

problems early, and reduce the exposure of users to these problems.

Of course, this technique only makes sense after the vendor has

gained enough confidence that most problems have already been

eliminated. Even with staged deployment, the vendor needs to test

the application up-front, requiring suitable techniques and tools.

Then, during staged deployment, users (and in particular cluster

representatives) must again test the upgrade and report problems.

Since users in general do not have the skills necessary to test an

application, it is necessary to provide a fully automated solution.

Static analysis [4, 6] can automatically check many useful prop-

erties, e.g., whether the API is being used properly. Unfortunately,

static analysis can be incomplete and miss many important prob-

lems, or it can overwhelm the tester with a large number of spurious

warnings. For user-machine testing, it is inadequate, as it is too ab-

stract and fails to take into the account the actual environment in

which the application is running.

A larger class of programming errors can be identified using dy-

namic analysis or testing [40]. Any mature program has a test suite

39

Introduction

that has been put together over time. A classic goal for testing is ad-

equate code coverage. Ideally, testing should cover each statement of

a program at least once. This seemingly simple task is complicated

by the exponential explosion in the number of paths, resulting from

branches in the source code. Many tools can maximize the code cov-

erage achieved by a set of inputs [53]. Unfortunately, achieving full

coverage is difficult, even for mature code with several decades of

development [10]. Furthermore, manual test generation is a labor-

intensive task and requires significant investment from the software

vendor. For user-machine testing, it is difficult to use test cases and

make sure that they are compatible with the user environment. For

instance, a test case may exercise a feature of the application that is

not meant to work given the current configuration of the application

at the user site, and may therefore trigger a false positive.

An approach for comprehensive, automatic test generation that

has gained considerable attention recently is symbolic execution

[10, 11, 27]. The goal of symbolic execution is to systematically

explore all possible paths in a program, looking for conditions that

may lead the program to crash (e.g., de-referenced null pointers,

divisions by zero, off-by-one array accesses, and failed asserts). In

more detail, a symbolic execution engine marks all program input as

symbolic (i.e., having arbitrary value), and then runs the code while

propagating the symbolic inputs to program variables. When it en-

counters a branch, the engine queries a constraint solver to compute

the conditions that can lead to the two sides of the branch, updates

the cumulative constraints for each side, and takes both sides in

parallel. The engine proceeds to systematically cover all branches

and explore all paths, if sufficient time is available. As it traverses

the entire program, the engine also creates and explores constraints

that check for potential crash situations.

A variation of symbolic execution, called concolic execution [9],

has the same full-coverage goal but explores paths in a different

manner. In concolic execution, the program is first executed with a

random set of inputs, e.g., all zeros. Every time the program exe-

cutes a branch, the concolic execution engine records the constraints

on the input that led to the taken side of the branch. It also records

constraints that check for possible crashes. After execution with

this input is completed, the engine has a list of constraints. It then

negates, one at a time, each of these constraints, and invokes the

constraint solver to find a set of inputs that satisfies the constraints.

The engine then re-executes the program, using as inputs the values

selected by the solver. As before, it records the constraints it finds.

40

Chapter 4: Concolic Execution for Testing Software Upgrades

The process repeats until all paths are explored or the available time

expires.

Although promising, these approaches have several problems.

Most obviously, the number of paths to explore is usually extremely

large, typically exponential in the size of the code. Several heuristics

can be used to try and optimize the code coverage given a certain

time budget, but those heuristics tend to get overwhelmed and get

stuck in various places of the code. The consequence is that symbolic

(or concolic) execution currently does not deliver on the promise of

providing thorough, exhaustive testing. Instead, it provides only

partial coverage of potentially uninteresting parts of the code. This

problem is further exacerbated when doing regression testing. In

this case, running symbolic or concolic execution is not ideal, as

it always starts testing the application from the beginning and will

therefore test over and over again the same parts of the code instead

of focusing on the new or modified code.

In this chapter, we argue that it is necessary to develop new tech-

niques to make symbolic execution suitable for regression testing of

software upgrades. We present Oasis, a state-of-the-art concolic ex-

ecution engine designed as the testing component of Mirage. Oasis

can be used for up-front testing at the vendor or for integration test-

ing on user machines. In Oasis, we experiment with novel techniques

to enable focused testing of the new code in a software upgrade. In

particular, we extend state of the art concolic execution [28, 10] in

the following ways:

• Oasis implements a new search heuristic which uses a com-

bination of static and dynamic analysis to identify the parts

of the code modified in, or affected by, the upgrade. It then

steers the exploration to cover those parts earlier and more in-

tensively. This heuristic can be used at the vendor for up-front

testing, or on the user machine to detect integration problems.

• We propose interactive symbolic execution, a new technique

allowing the vendor to understand and influence the explo-

ration of the code through a graphical user interface. This

enables development of better search heuristics or interactive

guidance to manually force the concolic execution engine to

explore interesting parts of the code.

• For user-machine testing, Oasis leverages existing input on the

user machines (such as configuration files) to avoid spending

a large amount of time exploring input parsing code.

41

Introduction

Oasis includes an optimization for testing upgraded code. Specif-

ically, Oasis pinpoints the differences between the old and the new

versions of the program (hereafter called ”new code”), and priori-

tizes the exploration of paths and constraints relating to new code.

During exploration, each time Oasis can choose to follow a specific

side of a branch, it uses an inter-procedural control flow graph to

compute the distance between the branch and the closest piece of

yet uncovered new code. The distance is expressed as the number

of branches (i.e., nodes in the cfg) and represents the expected dif-

ficulty in reaching this part of the code. Oasis thus systematically

schedules the next path for exploration that is the closest to yet

uncovered new code. During execution of each path, Oasis dynami-

cally tracks the effect of the new code on the rest of the code. This

way, it identifies regions of the old code who would have behaved

differently had the new code not been executed. When schedul-

ing paths for exploration, if several branches are at equal distance

from the next block of uncovered new code, Oasis favors branches

who themselves have been affected by the execution of new code.

This heuristic allows Oasis to more thoroughly test the new code,

which is the most likely place to find bugs when regression testing.

Other engines (symbolic or concolic) do not explicitly target new

code and may waste precious time exhaustively exploring parts of

the program that have already been tested in previous versions.

Along the lines of trying to cover hard-to-reach parts of the

code, previous work has demonstrated that using existing test cases

to bootstrap the exploration of the code allows symbolic execution

to reach deep parts of the program much faster [28]. We extend

this by leveraging existing input when doing integration testing on

user machines. Oasis starts the execution of the program and uses

concrete input for each configuration and systems file. The list of

those files can be specified by the developer, or inferred by Mirage

(see chapter 3). For regular input (i.e., not coming from the envi-

ronment), Oasis uses symbolic memory and proceeds as a normal

concolic engine. If available, Oasis uses previously recorded concrete

input. For instance, some representatives (such as system admin-

istrators in companies) may want to record specific input scenarios

to test important features of an application after an upgrade. Oasis

provides infrastructure so simplify recording of the input and uses it

to speed up testing. Leveraging the input from the environment and

the recorded scenarios, Oasis quickly passes input validation and is

able to test deep paths in the application. Other engines (symbolic

or concolic) would have difficulty reaching these deep paths within

42

Chapter 4: Concolic Execution for Testing Software Upgrades

the same time budget.

In some cases, even with the help of concrete input, existing test

cases, and fancy heuristics, it may be difficult to cover the interest-

ing parts of the code (such as the new code) in a reasonable amount

of time. Others have experimented with state-merging [7] or us-

ing higher level constraints solver [26, 33] to address the problem

of state explosion and improve coverage. While those techniques

are very interesting and promising, much research is still needed

before they scale and become practical for large software systems.

In this dissertation, we propose a completely different and new ap-

proach called ”Interactive symbolic execution”. Instead of trying

to improve the technology to scale symbolic execution, ”interactive

symbolic execution” exposes the problem of path explosion to the

tester. Through a graphical user interface, the tester can visualize

the state and progress of the symbolic exploration. Each path is

displayed with its input, set of symbolic constraints and coverage

statistics. Interactive symbolic execution is very useful to under-

stand how the heuristic progresses and develop new ones tailored to

the particular program or testing goal at hand. Furthermore, the

tester can decide to interactively guide the exploration, for instance

by changing the priority of some paths or canceling others. This al-

lows the tester to manually drive the exploration towards interesting

parts of the code.

When Oasis detects a problem, it automatically produces a de-

tailed report including the input necessary to reproduce the bug.

This considerably simplifies the problem of debugging for the ven-

dor. When used for user-machine testing, Mirage stops deployment

of the upgrade as soon as Oasis detects a problem. Oasis then sends

the bug report to the vendor. While reporting the complete input

is likely to leak privacy, we assume here the existence of business

agreements between the vendor and the representatives that guar-

antee confidentiality. In chapter 5 we describe another technique to

report problems in a way that better preserves privacy.

We present a preliminary evaluation of Oasis and its novel tech-

niques: the heuristic to drive exploration of the code towards new

or affected code in the upgrade, and interactive symbolic execution.

Our results suggest that our heuristic is effective in more intensively

testing upgraded code, and that interactive symbolic execution is a

useful addition to understand and complement exploration heuris-

tics in symbolic execution.

The contributions of this chapter are the following:

• The design and implementation of Oasis, a state-of-the-art

43

Overview

1 main () {
2 /∗ Memory fo r 200 con f i g parameter s t r i n g s ,
3 each max of 80 chars long ∗/
4 char con f igVars [2 0 0] [8 1] ;
5 for (int j = 0 ; j < 200 ; j++)
6 s t r cpy (con f igVars [j] , ””) ;
7
8 int c f = open (c o n f i g f i l e) ;
9 int i = 0 ;

10 while (!EOF(c f) && i < 200) {
11 char∗ r = r e a d l i n e (&conf igVars [i] , c f) ;
12 i f (! r | | ! i s V a l i d (con f igVars [i])) {
13 e x i t (−1);
14 }
15 i ++;
16 }
17
18 /∗ Buf fer to read f i l e content s ∗/
19 char∗ b u f f e r ;
20 b u f f e r = (char∗) mal loc (s izeof (char)∗1024) ;
21 do something (bu f f e r , con f i gVars) ;
22 f r e e (b u f f e r) ;
23
24 /∗ The p r i n t f i s an i n v a l i d mem re f e r ence ∗/
25 i f (! strcmp (con f igVars [1 0] , ” va lue ”)) {
26 p r i n t f (”\%c” , b u f f e r [someindex]) ;
27 }
28 }//end main

Listing 4.1: This example bug demonstrates the difficulty that con-
colic executions have in discovering bugs ”deep” in the code and
how execution with valid inputs can alleviate the problem.

concolic execution engine supporting heuristics to effectively

test software upgrades.

• A new heuristic to drive symbolic execution towards new or

affected code in an upgrade.

• A new approach called Interactive Symbolic Execution allow-

ing the tester to interactively understand and influence the

exploration of the program in a symbolic execution engine

The rest of this chapter is organized as follows. Section 4.2

provides additional background and motivation. Section 4.3 details

the design and implementation of Oasis. Section 4.4 presents our

preliminary evaluation. Finally section 4.5 concludes the chapter.

4.2 Overview

We motivate the design of Oasis using the example in Listing 4.1.

This listing is a small variation of a real bug in the ssh − keysign

44

Chapter 4: Concolic Execution for Testing Software Upgrades

EOF?

EOF?

EOF?

?

? ?

? ? ?

in
p

u
t
v
a

lid
a

ti
o

n

s
y
m

b
o

lic
 i
n

p
u

t
e

x
p

lo
ra

ti
o

n
 (

u
p

 t
o

 m
a

x
 I
n

p
u

t
s
iz

e
)

in
p

u
t
v
a

lid
a

ti
o

n

s
y
m

b
o

lic
 i
n

p
u

t
e

x
p

lo
ra

ti
o

n
 (

u
p

 t
o

 m
a

x
 I
n

p
u

t
s
iz

e
)

c
o

m
p

u
ta

ti
o

n

…

Figure 4.1: Path exploration by a conventional concolic execution
engine on typical code. EOF in this figure refers to the check for
the end of file or any other way of limiting input. Boxes with ques-
tion marks refer to symbolic input that grows in size during path
exploration.

tool of OpenSSH version 3.0 [44]. The code reads a line at a time

from the configuration file and validates it (lines 8−16). When this

is done, it allocates a buffer, uses it (line 21), and frees it (line 22).

However, under a very specific condition, it tries to print the now

freed buffer (line 26).

We now describe how a conventional concolic execution engine

would handle this program. The first input to the program is the

configuration file. We assume that this file has 1000 bytes, for ex-

ample. Concolic execution starts execution with all inputs set to

a random value, e.g., all zeros. Thus, the entire configuration file

would have 1000 bytes of zeros. We then start execution of the

program with this input. The function readline (line 11) reads the

input until it sees a line termination character (LTC) or until it has

read 80 bytes, whichever comes first. With the given input, readline

would read 80 zeros, which would fail to validate, and the program

would exit. At that point, the execution would have generated 80

constraints of the form bytei 6= LTC, where 0 ≤ i ≤ 80. The engine

would then negate each of these constraints in turn, causing it to

take an input sequence that does not have 80 zeros as its first 80

bytes. For instance, it could try a 1 followed by 79 zeros next. With

this input, the same sequence of events would occur, and so on. It

is easy to see that the concolic engine would spend an enormous

45

Overview

amount of time, simply exploring the very first part of the program,

where input is read and validated. It would do so until it guessed

a set of string values that pass the validation tests, and, until it

did so, it would never reach the code past the input validation, and

therefore it would not be aware of the code that causes the bug.

Figure 4.1 illustrates path exploration by a conventional concolic

execution engine on our example code.

Let’s now consider the situation where we have a number of valid

configurations from a test suite or from an actual user environment.

For simplicity, assume we have just one such configuration file. Oa-

sis leverages this input as we described in the previous section. It

would start executing with this configuration file as input, pass the

input validation, buffer allocation and free, and arrive at the if state-

ment on line 25. Most likely, the if condition would not hold, and

Oasis would exit without accessing the buffer in the body of the if

statement. In this execution, Oasis would have collected constraints

on each byte of input during the validation phase, a certain num-

ber of constraints in the doSomething() function, plus a constraint

stating that the if condition on line 25 is false.

In the next step, Oasis would now negate one of these con-

straints. Let’s say that our strategy is to negate them one by one,

starting from the first recorded one. This would cause us to pick an

input different from the one we had on the first line of the config-

uration file, and most likely fail input validation. The same would

happen for all the constraints related to the input variables and the

doSomething() function, but then we would hit on the the con-

straint that says that the if condition was false. We would negate

this one, find an input, and this one would trigger the bug.

Exploring this line of thought a little further, assume that the

printf was a new line of code that was added as the result of a

new version. In that case, since it is the closest to the new code,

we would negate the condition right before printf and immediately

find the problem. A concolic engine could not have found this bug

so soon, because it would have had trouble generating valid input

and then would spend a large amount of time exploring the input

validation code and the code in doSomething().

In a more general case, the tester may be interested in testing

specific parts of the code, whether because they are part of the

new version, or simply because they have not been tested enough

yet. In that case, given the high number of constraints collected

and the resulting number of possible paths to explore, with any

given heuristic, the tester is left waiting and hoping that those parts

46

Chapter 4: Concolic Execution for Testing Software Upgrades

are going to be explored by the concolic engine. An alternative

is to manually write test cases, but this is tedious and difficult.

With interactive symbolic execution, Oasis would expose the list of

constraints yet to be explored, along with possible input solutions

and computed distances to uncovered code in the control flow graph.

Let’s say that the tester is more interested in testing the code in

doSomething() than the input validation code. The tester would

be able to identify the corresponding constraints easily and ask the

engine to explore them immediately. Alternatively, the tester could

decide to remove some or all of the constraints related to parsing the

input and therefore allow the engine to focus on the doSomething()

constraints immediately.

This style of program is quite common: an extensive first phase

in which the input is read, parsed and validated, followed by a

second phase in which the program performs its real function with

inputs that have been validated. Web servers are another example.

They read a large configuration file, before they start accepting

incoming requests. Even in the handling of an individual request,

the input string is first parsed and validated, before the requested

operation is executed.

It is this observation that motivated the use of valid inputs to

start Oasis execution along with a heuristic directing exploration to-

wards new code and ”interactive symbolic execution”. The heuristic

and interactive symbolic execution are two different ways to keep

the exploration focused on interesting parts of the code, and using

existing input Oasis can proceed past the input validation phase and

test the part of the program in which it does its real work. With

regular concolic execution, the engine is liable to get bogged down

for a long time in testing less relevant parts of the code.

We want to stress that we do not argue that Oasis is better than

regular concolic execution in some absolute sense, in terms of finding

more bugs, or finding them more quickly, or providing much better

coverage. Rather, we argue that we are able to explore certain parts

of a program much sooner than a regular engine, in particular new

parts of the code that are deep in the execution.

4.3 Design and Implementation

Oasis Overview

We have derived Oasis through extensive modification of the Crest

open-source concolic execution engine [9]. Oasis instruments C pro-

grams using CIL [42]. The instrumentation is used to propagate

47

Design and Implementation

symbolic information and to flag crash-prone statement (i.e., state-

ments such as assertions, divisions, memory reads and writes). Oasis

incorporates many of the features of current state-of-the-art concolic

and symbolic execution engines [10, 11, 9].

Programs being tested with Oasis always run with concrete in-

puts. This makes interaction with the external environment simple:

programs running with Oasis can interact with outside libraries or

the filesystem. However, in order to be able to track symbolic con-

straints on input that is passed to external libraries, Oasis needs

visibility into the library functions. This is achieved by either re-

compiling those libraries with the instrumentation, or by providing

models. Oasis provides its own instrumented version of uclibc, a

simple libc implementation. In addition, Oasis provides a set of

functions modeling interaction with the filesystem and the network.

This allows Oasis to consider input coming from these sources as

being symbolic (i.e., to log the constraints imposed on this input),

and to support system calls operating on symbolic memory.

To generate inputs exploring different paths in the program, Oa-

sis uses an off-the-shelf constraint solver, called STP [22]. Because

the running time of the solver can be quite high, Oasis tries to re-

duce the complexity of the query to the solver by determining the

minimal set of dependent constraints that need to be solved. To

reduce the number of queries to the solver, Oasis caches previous

solutions from the solver.

When running with previous test cases, Oasis maintains an tree

of constraints, called the exploration tree. This allows it to avoid

exploring several times the same path, for instance when several test

cases share an identical prefix of constraints.

Oasis takes advantages of multi-core architectures by running

the exploration in parallel on multiple-threads. A main scheduling

thread is responsible for running the exploration heuristic and fork-

ing off path to be explored in parallel. A set of worker threads are

responsible for invoking the solver and running the program under

test.

What is Symbolic?

Oasis tracks symbolic constraints on the input, therefore it needs to

know what in the address space of the program is input. There

are different ways of marking input as symbolic. By using the

−symbolic argv parameter of the oasis command, the user can

specify the number of symbolic command line parameters, along

with their size. By inserting calls to oasis sym(address, size) within

48

Chapter 4: Concolic Execution for Testing Software Upgrades

the program, the user can mark a specific address as the beginning

of symbolic input of size size. This is very helpful to mark input

coming from uninstrumented libraries.

Collecting Symbolic Constraints

Oasis instruments the program under test using CIL[42]. For each

statement in the program, the instrumentation adds a few calls to

a library that is used to keep track at runtime of the statements

executed in the program and record the symbolic constraints. The

way Oasis instruments the program is inherited from Crest[9] and

extended in order to allow tracking for bugs. We therefore only

describe here the main aspects of our approach and refer the reader

to the literature for further details.

During execution, Oasis maintains a map of addresses to ex-

pressions, representing the address space of the program, hereafter

named symbolic address space or SAS. An expression in Oasis is

a tree composed of symbolic variables, constants, memory objects

(arrays of expressions), and operators. Whenever input is marked

as being symbolic, Oasis inserts in the SAS, at the address of the

real input, one symbolic variable per byte of input. Oasis records in

the SAS an expression composed of a memory object for each array1

which is allocated (either statically or dynamically) in the program.

Similarly, Oasis deletes memory objects from the SAS, when their

corresponding array is freed. When the program executes a binary

operation, such as an addition or a subtraction, Oasis maintains the

corresponding binary expressions in the SAS.

We refer to an expression as being symbolic if, somewhere in the

tree, the expression references a symbolic variable. In other words,

an expression is symbolic if it involves the input of the program.

While maintaining the symbolic address space, Oasis logs the

symbolic constraints corresponding to control flow in the program.

For instance, when a conditional branch is executed, and the expres-

sion corresponding to the condition is symbolic, a new constraint is

logged. If the program takes the true side of the program, the con-

straint logged is the symbolic expression. If, however, the program

follows the false side of the branch, the constraint logged is the

negation of the symbolic expression.

Before letting the program execute any crash-prone statement,

such as a division or a memory read/write, Oasis checks that the

statement is not going to crash the program. For divisions, it checks

1We handle C structures and buffers similarly.

49

Design and Implementation

that the divisor is not zero, and if it is, it reports a bug. Otherwise,

if the divisor is a symbolic expression, Oasis logs a constraint stating

that the divisor was not zero. Similarly, for memory reads or writes,

Oasis checks that the address being accessed points to a memory

object and is within the bounds of this object. If this is not the case,

Oasis reports a bug. If it is, and the memory accessed is symbolic,

Oasis logs a constraint stating that the offset is within the range of

the memory object (i.e., 0 < offset < memory object size− 1).

Oasis handles reads and writes to memory through symbolic

pointers in the same way it handles reads and writes to arrays and

structures. Oasis supports symbolic pointers to pointers. For each

access, Oasis logs a constraint stating the current value of the sym-

bolic pointer. During path exploration, it then enumerates every

possible location to which the symbolic pointer to pointer can point.

Handling System Calls

In a way similar to KLEE [10], Oasis provides a set of system call

wrappers that are able to return either symbolic memory or concrete

input, depending on whether the user has decided to treat a certain

file or socket as symbolic input or not. The user can decide how

many symbolic files will be used and their maximum size.

System calls do not always behave deterministically. For in-

stance, when executing the read() system call, the kernel can de-

cide to return between 0 and the amount of memory requested. For

this reason, programs are required to check the return value of read

and behave accordingly. To allow exploration of those paths, Oasis

provides an option to turn the return value of those system calls

symbolic. When this option is enabled, Oasis associates a symbolic

variable and a constraint to the return value of each system call,

allowing subsequent paths to explore different values. This is par-

ticularly helpful with some system calls, such as read or select,

which can return any combination of file descriptors ready for I/O.

Constraint Solving

To drive the exploration of different code paths, after each execu-

tion of the program, Oasis negates one of the logged constraints

and invokes STP to try to find a set of input values satisfying the

symbolic constraints.

Because of the way constraints are modeled in Oasis, the transla-

tion of those constraints into STP is straightforward. Each symbolic

50

Chapter 4: Concolic Execution for Testing Software Upgrades

variable is translated into an 8-bit STP bitvector, memory objects

into STP arrays, and binary operations into STP operations.

During an execution, Oasis routinely collects hundreds or even

thousands of constraints. To explore a different path, Oasis negates

one of those constraints and seeks to find a suitable input satisfying

the negated constraint and all the previous constraints. The time

needed for the solver to find a solution can be considerable. For-

tunately, the negated constraint most of the time only involves one

or a few symbolic variables, which are themselves involved only in

a few other constraints. Thus, it suffices to query the solver for a

solution to the set of constraints involving the variables appearing

in the negated constraint. For example, consider the following set

of recorded constraints: {x + y = 10; y < 10; z = 3}. Solving the

constraint z 6= 3 does not require solving the two first constraints.

We therefore only query the solver for the constraint z 6= 3, and

reuse previous values of x and y. Oasis inherits from Crest its abil-

ity to compute subsets of dependent constraints before querying the

solver.

Constraint Cache

Despite trying to optimize the query to the solver, the time needed

for the solver to find a solution can still be considerable.

To avoid expensive calls to the solver, state-of-the-art concolic

(and symbolic) execution engines implement a cache of solutions. In

Oasis, we use a simple table mapping a set of dependent constraints

to the corresponding solution. For instance, reusing the example

of the previous section, assume that we collect constraints {x +

y = 10; y < 10; z = 3} with solution {x = 4; y = 6; z = 3}, after

executing the program. We insert two entries into the cache: one

lists the constraints {x + y = 10; y < 10; } mapping to the solution

{x = 4; y = 6}, whereas the other lists the constraint {z = 3}
mapping to solution {z = 3}.

Because programs frequently re-execute the same parts of the

code with different inputs, they impose the same constraints on dif-

ferent symbolic variables. Oasis uses this observation to increase

hit rates. Specifically, before inserting a solution for a set of de-

pendent constraints in the cache, we rename the symbolic variables

in the constraints in the order in which they appear. Returning to

the previous example, we rename the variables x and y in the con-

straint {x+y = 10} to {v0 +v1 = 10}. If we ever encounter another

constraint of the same form, but referencing different variables, we

quickly find a solution in the cache.

51

Design and Implementation

Running with Actual Inputs

Oasis leverages any valid input available in order to explore deeper

and longer code paths sooner than traditional concolic engines. The

input can come from a test suite or from actual files present on the

machine on which Oasis is running.

To take advantage of these valid inputs, Oasis needs to know

the constraints resulting from the execution of the program with

those inputs. This is done by running the program within Oasis in

”recording” mode, and feed the input normally to it. In recording

mode, the models of the filesystem and the network described in

Section 4.3 operate as simple pass-through, in which they read from

the filesystem or the network normally and tag the input as being

symbolic.

This has to be done only once for each set of inputs. Oasis saves

the inputs and the constraints to disk, and reuses them whenever

the program needs to be tested again. Of course, if a new version

of the program is to be tested, then the new version needs to be

executed with the old inputs, and new constraints collected. Oasis

does that automatically.

When using Oasis for user-machine testing, only some files are

used with concrete values, the rest of the input is symbolic. In this

case, no recording is required. An environment variable is used to

tell Oasis which files will be used concretely (for instance, all files

in /etc). All files specified by this variable will be treated normally

and the system call models will act as pass-through to the actual

system calls.

Prioritizing new Code

When doing regression testing, Oasis takes advantage of the code

differences between the old and the new version of the program.

It uses this information to prioritize the exploration of paths and

constraints that are affected by new code.

In the current version of Oasis, we use a very simple code differ-

encing scheme: we simply compute a (textual) diff between the old

version and the new version. More sophisticated approaches could

be used, e.g., relying on information from a program development

environment. These techniques could do a better job of identifying

the precise differences, but the principle of how to use the informa-

tion in Oasis remains the same.

During an Oasis execution, when a statement creates or manip-

ulates an expression, Oasis checks if the statement is present in the

52

Chapter 4: Concolic Execution for Testing Software Upgrades

diff. If so, it flags the symbolic expression as being “new”. This

new flag is propagated to every expression in which a new expres-

sion is referenced. The propagation continues until the expression is

logged in a symbolic constraint, which is then also flagged as being

new. Such new constraints will be given priority in the exploration

of different paths, as explained below.

To direct the search towards new code, Oasis builds an inter

procedural control-flow graph of the program (hereafter called cfg).

This graph is a binary tree with each node representing a branch in

the program and edges representing the code in between branches.

After each program execution, Oasis updates coverage statistics by

marking which nodes and edges of the cfg have been covered. It then

computes the distance between each explorable constraint (branch)

and the closest node or edge in the graph which has not been covered

yet. It also computes the distance to the next uncovered node or

edge which is part of the new code. The distance is expressed as the

number of nodes in the cfg that need to be crossed before reaching

the target. The distance metric is therefore inversely proportional to

the likelihood of reaching the targeted code by exploring the source

branch.

Search Strategy

Listing 4.2 shows pseudo-code for the heuristic that Oasis imple-

ments. There are three important data structures: the CACHE

that holds solutions to constraints obtained in earlier executions,

CONSTRAINTS which is a sorted list of constraints yet to be ex-

plored, and a QUEUE that holds the next constraints scheduled for

exploration.

During initialization, Oasis executes the program under test with

random input first, then with each set of the valid inputs (if avail-

able), inserting the results in CACHE and CONSTRAINTS. The

worker threads and the main thread are subsequently started.

In the main thread, Oasis keeps the CONSTRAINTS list sorted

according to the heuristic, and pushes work to the worker threads’

QUEUE. When a worker thread finishes his job, the main thread

updates the coverage statistics, resorts the CONSTRAINTS and

pushes more work to the QUEUE.

Each worker thread waits until there are constraints in the

QUEUE. It then pops one, negates it, finds a solution for the negated

constraint (either from the cache or by invoking the solver), executes

the program with the new set of inputs, and finally inserts the new

53

Design and Implementation

execution, with its inputs and constraints, in CACHE and CON-

STRAINTS.

The constraints are sorted for exploration in the following order.

First, we examine constraints that involve crash-prone operations

(those that may crash the program) coming from new code. Sec-

ond, we consider the remaining constraints that involve crash-prone

operations. Third, we examine constraints that are at the closest

distance from yet uncovered new code. If several constraints are

at the same distance, constraints affected by the new code are fa-

vored. Fourth, we pick constraints that are affected by the new

code. Finally, we pick constraints that are at the closest distance

from uncovered code.The idea behind this ordering is to drive the

search first towards new code that can potentially cause bugs, then

to new code, and finally to other code. Within each of these five

priorities, we look at the constraint in the order that they were

recorded in the program. Since Oasis starts execution from valid

input, it already reaches parts of the code deep in the execution.

Exploring constraints in the order in which they appear allows to

explore those paths with more breadth.

Interactive Symbolic Execution

Oasis exposes to the tester its main data structures through a graph-

ical user interface. Figure 4.2 shows a screenshot of the main win-

dow. This interface is built using the QT toolkit and presents win-

dows and buttons allowing to understand and interfere with the

exploration. This is particularly helpful when using Oasis for up-

front testing, for instance, by the vendor.

The main window exposes the list of sorted constraints. For

clarity, those constraints are displayed as a tree. Each top level en-

try displays the informations for a branch in the code, such as its

location in the source code, the distance to the uncovered code and

the distance to uncovered new code. Second level entries represent

the instances of the branches that have been discovered during ex-

ploration. For each branch in the code, there may be from a few

to several hundreds of instances collected during the various paths

explored.

A second panel displays the scheduling decisions and whether

the worker threads were able to solve the particular constraints and

run with input. This allows the tester to visualize the progress of

the heuristic and to realize if Oasis is currently stuck exploring a

large number of uninteresting branches.

54

Chapter 4: Concolic Execution for Testing Software Upgrades

Because Oasis keeps running while the tester inspects its behav-

ior, it may be difficult for the tester to make a decision before the

state of Oasis changes. Therefore, a button allows the tester to put

the exploration on hold while he decides on the best course of action,

at which point clicking on the same button resumes exploration.

The tester can select one or more constraints in the list of con-

straints and decide to kill them. This instantly removes them from

the CONSTRAINTS data structure. Because Oasis keeps explor-

ing new paths, it is possible that new instances of the constraints

that were killed are discovered again in subsequent executions. In

order to avoid having the tester repeatedly kill constraints from the

same branches over and over again, Oasis allows the tester to in-

sert them in a blacklist. This way, newly discovered constraints for

blacklisted branches are discarded immediately and do not clog the

CONSTRAINTS queue anymore.

Finally, the tester can decide to schedule some constraints im-

mediately, in which case the selected constraints are pushed to the

QUEUE and explored by the worker threads.

The graphical user interface allows the tester to drive Oasis’s

exploration in a focused way. Instead of letting the heuristic spend a

large amount of time in potentially uninteresting places of the code,

the tester can decide to interfere with it and optimize the coverage.

While very useful when regression testing an upgrade, this can also

be used for other purposes, such as for instance debugging, when

the developer suspects the area of the code in which the bug lies

but does not know exactly where.

4.4 Evaluation and Discussion

In this section, we present a preliminary qualitative evaluation of

the novel aspects of Oasis. We leave a more thorough, quantitative

evaluation for future work.

We run Oasis with two versions of the uServer, an open-source

Web server with approximatively 32K lines of code. We configure

Oasis to provide the following input to the program: between 0 and

3 arguments of up to ten bytes of symbolic memory, and between 0

and 2 sockets returning up to 50 bytes of symbolic memory.

Prioritizing New Code

To compare our heuristic prioritizing new code (hereafter called

diff search), we implement a heuristic optimized for code cov-

erage and inspired by the one used in KLEE [10]. This heuristic

55

Evaluation and Discussion

is very similar to diff search except that it ignores all the prior-

ities related to the new code. It therefore always seeks to schedule

branches which are at the smallest distance from the next uncovered

block of code. We call this heuristic cover search. In addition to

cover search, we also compare with a simple depth first search

approach (dfs).

Figure 4.3 shows the code coverage obtained with the three con-

figurations of Oasis. As can be seen from the figure, diff search

and cover search end up covering the same amount of code af-

ter 30 minutes of exploration. DFS performs slightly worse, which

is surprising considering that the literature describing similar tech-

niques shows much greater benefits over DFS. This can be explained

by the fact that the uServer is a complicated program processing

highly structured input. It is therefore difficult for any strategy to

make significant progress. In this example, diff search is actually

the fastest strategy to reach the maximum code coverage achieved.

This result shows that prioritizing new code does not necessarily

penalize code coverage in general.

Figure 4.4 shows the coverage results for the new code only. In

this case again, the diff search performs best, albeit only slightly.

Exploration of the new code in this example is bottlenecked by the

difficulty to cover new areas of the code.

Finally, Figure 4.5 shows how many times the symbolic explo-

ration chose to explore constraints that were affected by the new

code. This reflects the intensity with which the new code is ex-

plored. In this case, diff search is the clear winner, with almost

twice as many affected constraints scheduled as the other heuristics.

We do not claim with these results that Oasis is better in an

absolute sense. Rather, we advocate that our heuristic makes it

possible to explore the new or affected code much more intensively

without sacrificing coverage in general.

Interactive Symbolic Execution

Interactive symbolic execution has proven a valuable tool to imple-

ment and debug the heuristics in Oasis. Furthermore, we have used

it to observe the progression of the diff search heuristic in the ex-

periment described above. We report here on several observations

that we made while trying to understand the results:

• Looking at the exploration of the uServer, it is easy to iden-

tify some areas of the code responsible for a lot of exploration.

For instance, the argument processing code keeps generating

56

Chapter 4: Concolic Execution for Testing Software Upgrades

dozens of constraints for exploration. Next is the http parser.

While it may be undesirable to skip those code areas alto-

gether, using the blacklist to avoid testing them intensively

should prove useful in getting to test other areas of the code

more intensively.

• Any heuristic selects branches based on a set of criteria and

metrics. In the case of the diff search heuristic, those met-

rics are distances measured in the control flow graph of the

program. While running we observed that the relevance of the

metrics varies over time. At the very beginning of the explo-

ration, the metrics tend to be relevant and coincide well with

our expectations looking at the set of constraints and their

location in the source code. However, the more exploration

progresses the more difficult it is to relate the distance metric

to opportunities for better coverage. When this happens, a

possible solution would be to switch to a different heuristic.

• When trying to guide the exploration of the code, the fine

granularity of branches and constraints makes it difficult to

pick a relevant set of branches manually. For instance, many

branches are generated in library routines such as strcmp().

Grouping constraints based on the outcome of library routines

would probably allow better manual control over the symbolic

exploration.

While we have not yet conducted a thorough evaluation of In-

teractive Symbolic Execution, our preliminary experiments allowed

us to gain a better understanding of the problems and difficulties

faced by the search heuristic. Interactive Symbolic Execution shows

promise as a key technique in advancing the state of the art in sym-

bolic execution and automatic search heuristics.

4.5 Conclusion

In this chapter, we introduce Oasis, a new concolic execution engine.

The design of Oasis is motivated by the key observation that tradi-

tional concolic and symbolic execution engines are not well suited

to regression testing of software upgrades.

Oasis improves on current state-of-the-art concolic and symbolic

engines by implementing a new heuristic to prioritize the exploration

of new or affected code in the upgrade. Furthermore, we propose in-

teractive symbolic execution, a new approach exposing the problem

of path exploration to the tester using a graphical user interface.

57

Conclusion

The tester can use interactive symbolic execution as a learning tool

to develop new heuristics or as a way to manually influence the

exploration and steer it toward interesting areas of the code.

We present a preliminary evaluation of our system. Our results

indicate that our heuristic successfully explores the new or affected

code more intensively than existing techniques without sacrificing

code coverage. We used interactive symbolic execution to under-

stand the behavior of the heuristic and we conclude that it is a

promising technique to advance the state of the art in symbolic

execution.

In the future, we plan to use Oasis to find new bugs in popular

open source applications. We are especially interested in using Oasis

with applications that already have a large test suite to further

demonstrate its ability to explore some parts of the code sooner

than traditional symbolic/concolic execution engines.

58

Chapter 4: Concolic Execution for Testing Software Upgrades

1 Result = (inputs , c o n s t r a i n t s)
2
3 I n i t i a l i z a t i o n {
4 run with random input
5 put r e s u l t in CACHE and CONSTRAINTS
6 run each t e s t case
7 put r e s u l t in CACHE and CONSTRAINTS
8 s t a r t worker threads
9 s t a r t main thread

10 }
11
12 Main Thread {
13 while (CONSTRAINTS i s not empty) {
14 so r t ed = Sort (CONSTRAINTS)
15 push top e n t r i e s from sor t ed to QUEUE
16 s i g n a l worker threads
17 wait for worker threads to f i n i s h
18 update coverage
19 }
20 }
21
22 Worker Thread {
23 while (t rue) {
24 i f (QUEUE i s empty) {
25 wait for s i g n a l from main thread
26 }
27 pop c o n s t r a i n t C from QUEUE
28 negate C
29 input = FindSolut ion (!C, E)
30 {
31 run the program with input
32 put r e s u l t i n to CACHE and CONSTRAINTS
33 }
34 s i g n a l main thread
35 }
36 }
37
38 FindSolut ion (C, E) {
39 query cache for input s a t i s f y i n g C
40 i f not there , query s o l v e r
41 return input
42 }
43
44 Sort (c o n s t r a i n t s) {
45 s o r t c o n s t r a i n t s accord ing to the f o l l o w i n g p r i o r i t y :
46 1 . dangerous c o n s t r a i n t s in new code
47 2 . remaining dangerous c o n s t r a i n t s
48 3 . c o n s t r a i n t s at the s h o r t e s t d i s t anc e from
49 new uncovered code . Break t i e s by f avo r i ng
50 c o n s t r a i n t s a f f e c t e d by the new code .
51 4 . c o n s t r a i n t s a f f e c t e d by new code
52 5 . c o n s t r a i n t s at the s h o r t e s t d i s t anc e from
53 uncovered code
54 }

Listing 4.2: Search heuristic used in Oasis

59

Conclusion

F
igu

re
4
.2

:
S

creen
sh

o
t

o
f

O
a
sis’s

g
ra

p
h

ica
l

u
ser

in
terfa

ce

60

Chapter 4: Concolic Execution for Testing Software Upgrades

Figure 4.3: Code coverage obtained with the three configurations of
Oasis on the uServer

Figure 4.4: Coverage of the new code obtained with the three con-
figurations of Oasis on the uServer

61

Conclusion

Figure 4.5: Coverage of the new or affected constraints obtained
with the three configurations of Oasis on the uServer

62

Chapter 5

Bug Reporting

5.1 Introduction

Despite considerable advances in testing and verification, programs

routinely ship with a number of undiscovered bugs. In chapter 2 we

presented a survey of system administrators, detailing some of the

problems facing users when deploying upgrades. In chapter 3 we

describe staged deployment, a technique that significantly reduces

the number of users impacted by problems by deploying upgrades

in stages over clusters of users with similar environments. Subse-

quently, in chapter 4, we described Oasis, a state of the art concolic

engine that can be used to test upgrades before they are deployed,

or on user machines as part of the staged deployment protocols.

In spite of all of these efforts, some bugs are bound to remain

in the software when it is deployed, and will be discovered and

reported only later by the users. Debugging is an arduous task

in general, and it is even harder when bugs are uncovered by users.

Before the developer can start working on a fix, the problem must be

reproduced. Reporting systems are meant to help with this task, but

they need to strike a balance between privacy concerns, recording

overhead at the user site, and time for the developer to reproduce

the cause of the bug.

Reporting Systems

The current commercial state of the art is represented by the Win-

dows Error Reporting System [24], which automatically generates a

bug report when an application crashes. The bug report includes a

per-thread stack trace, the values of some registers, the name of the

libraries loaded, and portions of the heap. While that information

is helpful, the developer must manually find the path to the bug

63

Introduction

1int main (int argc , char ∗∗ argv) {
2char opt ion = read opt i on (input) ;
3int r e s u l t = 0
4i f (opt ion == ’ a ’)
5r e s u l t = f i b o n a c c i (2 0) ;
6else i f (opt ion == ’b ’)
7r e s u l t = f i b o n a c c i (4 0) ;
8
9p r i n t f (” Result : %d\n” , r e s u l t) .
10return 0 ;
11}

Listing 5.1: A simple program computing the fibonacci sequence.

among an exponential number of possible paths. Furthermore, the

information contained in the report may leak private information,

which is undesirable and in certain circumstances prevents the use of

the tool altogether. Recently, Zamfir and Candea have shown that

symbolic execution can be used to partially automate the search for

the path to the bug. However, as the manual approach, symbolic

execution suffers from a potentially exponential number of paths to

be explored [58].

An alternative is to record the inputs to the program at the user

site. Inputs leading to failures can be transmitted to the developer,

who uses them to replay the program to the occurrence of the bug.

While avoiding the problem of having to search for the path to the

bug, divulging user inputs is often considered unacceptable from a

privacy viewpoint. Castro et al. generate a set of inputs that is

different from the original input but still leads to the same bug [12].

Their approach does not transfer the original input to the developer,

but requires input logging, whole-program replay, and invocation of

a constraint solver at the user site.

A more direct approach is to record the path to the bug at the

user site, for instance, by instrumenting the program to record the

direction of all branches taken. In its naive form, this approach is

infeasible because of the CPU, storage and transmission overhead

incurred, but in this chapter we demonstrate that the approach can

be optimized by instrumenting only a limited number of branches.

Our Approach

We base our work on the following three observations. First, a

large number of branches do not depend on the program input, and

therefore their outcome need not be logged, because it is known a

priori. We denote branches whose outcome depends on program

input as symbolic. Other branches are denoted as concrete.

Consider the example program in Listing 5.1. Depending on

64

Chapter 5: Bug Reporting

the input parameter, the program computes the fibonacci number

Fn for one of two different values of n. The only input to this

program is the parameter that indicates for which value to compute

the fibonacci number. While this program may have many branches

(especially in the fibonacci function, not shown for conciseness), it

is sufficient to know the outcome of the branches at line 4 and 6

to fully determine the behavior of the program. Indeed, those two

branches are the only symbolic ones, and it suffices to record their

outcome.

A second, related observation is that application branches are

typically either always symbolic or always concrete. In other words,

it is rare that a particular branch at some point in the execution

depends on input and at other points does not. An example of

this can also be seen in Listing 5.1. The branches at lines 4 and

6 always depend on input, the others never do. This property is

almost always true for branches in the application, and often, albeit

not always, true for branches in the libraries.

Restricting our attention to branches that do depend on the in-

put, the third observation is that it is not strictly necessary to record

the outcome of all of those. When we record all such branches, the

result is a unique program path, and therefore no search is required

at the developer’s site. When we record a subset of those branches,

their outcomes no longer define a unique path but a set of possible

paths, among which the developer has to search to find the path to

the bug. In other words, there is a spectrum of possibilities between

(1) no recording at the user site and a search at the developer site

among all possible paths, and (2) complete recording of the out-

come of all branches at the user site and no search at the developer

site. Various points in this spectrum constitute different tradeoffs

between instrumentation overhead at the user and bug reproduction

time at the developer site. (We define bug reproduction as finding

a set of inputs that leads the execution to the bug, or, equivalently,

finding the direction of all branches taken so that they lead the ex-

ecution to the bug.) It is this tradeoff that is explored further in

this chapter.

In particular, we propose three approaches for deciding the set of

branches to instrument. The first approach uses dynamic analysis to

determine the set of branches that depend on input. This approach

is constrained in its effectiveness by the limited coverage of the pro-

gram that the symbolic execution engine used for dynamic analysis

can achieve in a given amount of time. It tends to under-estimate

the number of branches that need to be instrumented, therefore

65

Introduction

leading to reduced instrumentation cost but increased bug repro-

duction time. The time that the symbolic execution engine is al-

lowed to execute gives the developer an additional tuning knob in

the tradeoff: the more time invested in symbolic execution, the bet-

ter the coverage can be, and therefore the more precise the analysis.

The second approach is based on static analysis of the program.

Data flow analysis is used to determine the set of branches that

depend on the input. This approach is limited by the precision of

the static analysis, and in general tends to over-estimate the num-

ber of branches to be instrumented. Thus, this approach favors

increased instrumentation cost in exchange for reduced bug repro-

duction time. The third approach combines the above two. It uses

symbolic execution for a given amount of time, and then marks the

branches that have not yet been visited according to the outcome

of the static analysis.

When a bug in the program occurs, the developer runs the pro-

gram in a modified symbolic execution engine that takes the partial

branch trace as input. At each instrumented branch, the symbolic

execution engine forces the execution to follow the branch direction

specified by the log. In case a symbolic branch has not been logged,

the engine explores both alternatives. Symbolic execution along the

incorrect alternative eventually causes a further branch to take a

direction different from the one recorded in the log. The symbolic

execution engine then aborts the exploration of this alternative, and

turns its attention to the other, correct branch direction.

Non-deterministic events add another dimension to the tradeoff

between logging overhead and bug reproduction time. Either we log

all non-deterministic events during execution so that we can repro-

duce them exactly during replay, but we add overhead at runtime.

Or we do not log all of them, but then a non-deterministic event

during replay may produce an outcome different from the one dur-

ing actual execution. The importance of this tradeoff is amplified if

some branches are not logged. If all branches are logged, then with

high likelihood a different outcome of a non-deterministic event dur-

ing replay is detected quickly, because a subsequent branch takes a

direction different from the one logged during execution. If, how-

ever, not all branches are logged and in particular branches that

follow the non-deterministic event are not logged, then the replay

may require considerable searching to discover the path followed

during the actual execution. We explore this tradeoff for system

calls, one of the principal sources of non-determinism during se-

quential execution.

66

Chapter 5: Bug Reporting

Overview of Results

We have implemented the three branch instrumentation methods

described above, in addition to the naive approach that logs all

branches. We explore the tradeoff between instrumentation over-

head and bug reproduction time using an open-source Web server,

the diff utility, and four coreutils programs. We find that the com-

bined approach strikes a better balance between instrumentation

overhead and bug reproduction time than the other two. Moreover,

it enables bug reproduction times that are only slightly higher than

those for the approach based solely on static analysis. In contrast,

this latter approach only marginally reduces logging overhead com-

pared to logging all branches, whereas the approach based solely on

dynamic analysis leads to excessively long times to reproduce bugs.

More concretely, our results show that the combined approach re-

duces instrumentation overhead between 10% and 92%, compared

to the approach based solely on static analysis. At the same time, it

always reproduces the bugs we considered within the allotted time

(1 hour), whereas the dynamic approach fails to do so in 6 out of

16 cases. In all circumstances, we find that selectively logging the

results of system calls is advantageous: it limits bug reproduction

time, and adds only marginally to instrumentation overhead.

Contributions

The contributions of this chapter are:

1. The use of symbolic execution prior to shipping the program

to discover which branches depend on input and which not.

2. An optimized approach to symbolic execution for bug repro-

duction that is guided by a symbolic branch log collected at

the user’s site.

3. The exploration of the tradeoffs between the amount of pre-

deployment symbolic execution, the instrumentation overhead

resulting from logging the outcome of branches, and the time

necessary to reproduce a bug at the developer’s site.

4. A combined static-dynamic method for deciding which branches

to instrument. The method leads to a better tradeoff than pre-

vious systems, making the approach of logging branches more

practical and reducing the debugging time.

5. A quantification of the impact of logging the result of selected

system calls, demonstrating that it only marginally increases

67

Program Analysis and Instrumentation

the instrumentation overhead, but considerably shortens the

bug reproduction time.

Roadmap

The rest of this chapter is organized as follows. Section 5.2 describes

the program analysis and instrumentation methods we study. Sec-

tion 5.3 shows how we modify a symbolic execution engine to take

as input a partial branch recorded at the user site to reproduce a

bug. Section 5.4 describes some implementation details and our

experimental methodology. Section 5.5 presents the results for an

open-source Web server, diff, four coreutils programs, and two mi-

crobenchmarks. Section 5.6 discusses the results and our future

work. Finally, Section 5.7 concludes the chapter.

5.2 Program Analysis and Instrumentation

Our approach involves analyzing the program to find the symbolic

branches and instrument them for logging. We study both dynamic

and static analyses. Our instrumentation may use the results of the

dynamic analysis only, those of the static analysis only, or combine

the results of both analyses. Next, we describe our analyses and

instrumentation methods.

Dynamic Analysis

Our dynamic analysis is based on symbolic execution. We mark

input to the program as symbolic and then use symbolic execution

to determine whether or not a branch condition depends on input.

Symbolic execution repeatedly and systematically explores all

paths (and thus branches) in a program. In the particular form

of symbolic execution used in this dissertation (sometimes called

concolic execution [51], see chapter 4), the symbolic engine executes

a number of runs of the program, each with a different concrete

input. Initially, it starts with a randomly chosen set of values for

the input and proceeds down the execution path of the program.

At each symbolic branch, it computes the branch condition for the

direction of the branch followed, and adds this condition to the

constraint set for this run. When the run terminates, the overall

constraint set describes the set of branch conditions that have to

be true for the program to follow the path that occurred in this

particular run. One of the conditions is then negated, the constraint

set is solved to obtain a new input, and a new run is started.

68

Chapter 5: Bug Reporting

We initially mark argv as symbolic, as well as the return values

of any functions that return input. During symbolic execution, we

track which variables depend on input variables, and mark those

as symbolic as well. When we execute a branch for the first time,

we label it symbolic if any of the variables on which the branch

condition depends is symbolic, and concrete otherwise. If during

further symbolic execution we revisit a branch labeled symbolic, it

stays that way. If, however, we revisit a branch labeled concrete, and

now its branch condition depends on at least one symbolic variable,

we relabel that branch as symbolic.

Symbolic execution tries to explore all program paths, and is

therefore very time-consuming. If it is able to explore all paths,

then all branches are visited, with some marked symbolic and some

marked concrete. However, this usually can only be done for very

small programs. For others, it is necessary to cut off symbolic execu-

tion after some amount of time. As a result, at the end of the anal-

ysis, in addition to branches labeled symbolic and concrete, some

branches remain unlabeled.

All branches marked symbolic are indeed symbolic, but some

branches marked concrete may actually be symbolic, because sym-

bolic execution was terminated before the branch was visited with

a condition depending on input. The unvisited branches may be

either symbolic or concrete.

Static Analysis

We use interprocedural, path-sensitive static analysis, in which we

use a combination of dataflow and points-to analysis. The basic

idea of the algorithm is to identify the sources of input (typically

I/O functions or arguments to the program), and construct a list

of variables whose values depend on input and are thus symbolic.

Symbolic branches are then identified as the branches whose condi-

tion depends on at least one symbolic variable.

The algorithm works by maintaining a queue of functions to an-

alyze. Initially, the queue only contains the main function. New

entries are queued in as function calls are discovered. The set of

symbolic variables is initialized to argv. In the initialization, the

functions that are normally used to read input are marked as re-

turning symbolic values.

Algorithms 1 and 2 show a simplified version of the algorithm

that analyzes each function. Each instruction in the program is vis-

ited, and the doInst method is called. The dataflow algorithm takes

care of loops by using a fixed-point algorithm so that instructions

69

Program Analysis and Instrumentation

Algorithm 1: Static analysis algorithm propagating symbolic
information (simplified)

/* called on each instruction in the program as many

times as required by the fixed point dataflow

algorithm */

1 method doInstr(instruction i):;
2 begin
3 match i with begin

/* assignment */

4 case target variable = expression;
5 begin

/* If any of the variables referenced by

expression symbolic is symbolic mark

targe variable symbolic */

6 if isSymbolic(e) then
7 makeSymbolic(target variable);
8 end

9 end
/* function call */

10 case: target variable = fun name(parameters);
11 begin
12 symbolic params =

getSymbolicParameters(parameters);
/* If we already visited fun name with this

combination of symbolic parameters,

propagate symbolic flag */

13 if alreadyV isited(fun name, symbolic params) then
14 if returnsSymbolicMemory(fun name) then
15 makeSymbolic(target variable);
16 end

17 end
18 else

/* fun name not visited yet. Queue it and

stop analysis of current function. The

algorithm will return to this location

once fun name has been visited */

19 queueFunction(fun name, symbolic parameters,
i);

20 return abort

21 end

22 end

23 end
24 return continue

25 end

in a loop body are revisited (and doInst is called) only as long as

the algorithm output changes.

For an assignment instruction (i.e., an instruction of the form

variable = expression;), doInstr resolves the variables to which

the expression may be pointing, and checks whether any of these is

already known to be symbolic. If this is the case, it adds variable

to the list of symbolic variables, otherwise it continues. If the in-

70

Chapter 5: Bug Reporting

Algorithm 2: Static analysis algorithm identifying symbolic
branches (simplified)

/* called on each control flow statement of the program.

*/

1 method doStatement(statement s): begin
2 match s with;
3 begin
4 Branch(condition expression) begin
5 if isSymbolic(condition expression) then
6 logThisBranch();
7 end

8 end

9 end
10 return continue;

11 end

struction is a function call, the algorithm first checks whether the

function has already been analyzed or not. If it has, it looks up

the results to determine whether with the current set of parameters

the function can propagate symbolic memory or not, and updates

the list of symbolic variables accordingly. If the function has not

yet been visited 1, the algorithm enqueues it for analysis with a

reference to the current instruction, so that analysis of the current

function can resume when the function has been visited.

The doStatment method in algorithm 2 is called by the dataflow

framework on each control flow statement. For if statements, it re-

solves the list of variables to which the condition expression may be

pointing. If any of them is symbolic, the branch is labeled symbolic.

While the algorithm in Figure 1 is simplified for the sake of clar-

ity, our actual implementation handles the fact (1) that symbolic

variables can be propagated to global variables; (2) that the state

of global variables changes depending on the path that is being ana-

lyzed; and (3) that functions may propagate symbolic variables not

only to their return variables, but also to their parameters (passed

by reference) or to global variables.

Static analysis is imprecise because the points-to analysis tends

to over-estimate the set of aliases to which a variable may point.

As a result, all symbolic branches in the program are labeled sym-

bolic by the static analysis, but some concrete branches may also be

labeled symbolic. All branches labeled concrete are indeed concrete.

1More precisely, if the function has not been visited with the particular
combination of symbolic and concrete parameters encountered here.

71

Program Analysis and Instrumentation

Program Instrumentation

The developer instruments the branches in the program before the

code is shipped. We consider four methods for instrumentation:

• dynamic instruments branches according to dynamic analysis.

• static instruments branches according to static analysis.

• dynamic+static instruments branches according to a combi-

nation of dynamic and static analysis.

• all branches instruments all branches.

Regardless of which method is used, the list of instrumented branches

is retained by the developer, because it is needed to reproduce the

bug (Section 5.3).

Dynamic method. After dynamic analysis, branches are labeled

symbolic or concrete, or remain unlabeled. The dynamic method

only instruments the branches labeled as symbolic. By the nature

of the dynamic analysis, we are certain that these branches are

symbolic. We do not instrument the branches labeled as concrete,

since application branches are typically either always symbolic or

always concrete. We also do not instrument the unlabeled branches.

The dynamic method thus potentially underestimates the number of

branches that need to be instrumented. In essence, dynamic favors

reducing instrumentation overhead at the expense of increased bug

reproduction time.

Static method. After static analysis, branches are labeled sym-

bolic or concrete. We instrument the branches labeled as symbolic.

By the nature of static analysis, the static method guarantees that

all symbolic branches are instrumented, but it may instrument a

number of concrete branches as well. Static therefore favors bug

reproduction time at the expense of increased instrumentation over-

head.

Dynamic+static method. In the combined method, we run both

the static and the dynamic analysis, the latter for a limited time.

The dynamic analysis labels branches as symbolic or concrete, or

they may remain unlabeled. The static analysis labels branches

as symbolic or concrete. The combined method instruments the

branches (1) that are labeled symbolic by the dynamic analysis,

and (2) that are labeled symbolic by the static analysis, with the

exception of those labeled concrete by the dynamic analysis. In

other words, when a branch is not visited by dynamic analysis, we

72

Chapter 5: Bug Reporting

instrument it based on the outcome of the static analysis, because

this is the only information about this branch. When a branch is

visited by dynamic analysis, we instrument it based on the outcome

of this analysis. For branches labeled symbolic by dynamic analysis,

this is obvious as they are guaranteed to be symbolic and have been

labeled symbolic by static analysis as well. For branches labeled

concrete by dynamic analysis, this means that we potentially over-

ride the outcome of static analysis which may have labeled these

branches symbolic. The reasons for this decision are that (1) static

analysis may conservatively label concrete branches symbolic, due

to an imprecise points-to analysis, and (2) application branches are

typically always concrete or always symbolic, as mentioned above.

Dynamic+static may be imprecise in two ways. Symbolic branches

may or may not be instrumented. The latter case occurs if they are

left concrete by the symbolic execution (for instance, due to the lim-

ited coverage of the symbolic execution). Concrete branches may or

may not be instrumented. The former case occurs when the static

analysis mistakenly labels them as symbolic and they are not visited

during symbolic execution.

Although seemingly suffering from a greater degree of impreci-

sion than the other methods, our evaluation shows that this method

actually leads to the best tradeoff between instrumentation overhead

and time necessary to reproduce the bug.

Logging system calls. In addition to deciding which branches to

instrument, we also consider the choice of whether or not to log the

results of certain system calls. Doing so adds to the runtime over-

head, but can be very beneficial for system calls that can produce

a large number of possible outcomes during replay. For example,

consider a select() system call for reading from any of N file descrip-

tors. Without information about which descriptors became ready

and when, symbolic execution during replay would have to explore

all combinations of N available descriptors upon each return from

select(). To avoid having to explore all possible combinations, we

instrument the code to log the descriptors that are available when

a call to select() returns. During replay, we simply re-create these

conditions. For the same reasons, it makes sense to instrument calls

to read to log the number of bytes read.

We log the results of all system calls for which logging consider-

ably simplifies replay, including select() and read(). The input data

itself is never logged. In principle, all instrumentation methods can

be combined with logging system calls.

73

Reproducing a Bug

5.3 Reproducing a Bug

Replay Algorithm

We use Oasis (see chapter 4 to reproduce bugs. The following in-

formation is available to the engine prior to bug reproduction: a

list of all instrumented branches (saved when the program was in-

strumented – see Section 11), and the bitvector indicating which

way the instrumented branches were taken (one bit for each in-

strumented branch taken during execution at the user site). When

the symbolic execution engine encounters a branch, it immediately

knows whether or not the branch is symbolic, because it can check

whether the branch condition depends on the input.

We refer to a run of the symbolic execution engine as the exe-

cution of the engine with a single set of inputs, until it either finds

the path to the bug or aborts. A run is aborted when the engine

discovers that it is on a path that deviates from the path described

by the received bitvector. Each run is started with the bitvector

as received from the user site. A constraint set is associated with

each run, describing the path followed by the run through the pro-

gram, and consisting of the conjunction of the conditions for the

branch directions taken so far in the run. To later explore alterna-

tive paths should the current run abort, the engine also maintains

a list of pending constraint sets, describing these alternative unex-

plored paths.

The engine performs a number of these runs. The initial run is

done with random inputs. Subsequent runs use an input resulting

from the solution of a constraint set by the constraint solver. For

example, in Listing 5.1, the set of constraints: {not (option ==

’a’); option == ’b’} needs to be solved to take the program in the

else if branch at line 6. When visiting the else if branch at line

6, the engine puts in the pending list the following constraint set:

{not (option == ’a’); not (option == ’b’)}.
During a run, the engine proceeds normally for instructions other

than branches. For branches, because of the imprecision of the

decision of which branches to instrument, the following four cases

have to be distinguished.

1. The branch is symbolic and not instrumented. The

constraint for the particular direction of the branch taken is

added to the constraint set for the run, and symbolic execution

proceeds. In addition, a new constraint set is formed by adding

the negated constraint to the constraint set for the run. The

74

Chapter 5: Bug Reporting

new constraint set is put on the list of pending constraint sets.

The bitvector is left untouched.

2. The branch is symbolic and instrumented: The engine

takes the next bit out of the bitvector, and compares the direc-

tion that was taken during recorded execution to the direction

the symbolic execution would take with its input.

a) If the two are the same, the constraint is added to the

constraint set for the run, and the symbolic execution

proceeds.

b) If not, the constraint implied by the direction of the

branch taken during recorded execution is negated and

added to the constraint set for the run. This constraint

set is added to the list of pending constraint sets, and

the run aborts.

3. The branch is concrete and instrumented: The engine

takes the next bit out of the bitvector, and compares if the

direction that was taken during recorded execution is the same

as the direction the symbolic execution would take with the

current input.

a) If yes, it proceeds further.

b) If not, this run of the symbolic execution is aborted.

The latter case can only occur as a result of the run earlier

having taken the wrong direction on a branch that (because of

insufficient instrumentation) was not instrumented but should

have been.

4. The branch is concrete and not instrumented: The

engine proceeds. The bitvector is left untouched.

When a run is aborted, the engine looks at the pending list of

constraint sets, picks one, solves it, and starts another run with

the input resulting from the solver. When this new run passes the

branch at which it was produced, the new input, by construction,

causes the symbolic execution to take the direction opposite from

the one followed in the run during which the constraint set was

produced.

Replay Under Different Instrumentation Methods

The all branches instrumentation method instruments all symbolic

branches (and all concrete ones as well). Thus, cases 1 and 4 above

75

Reproducing a Bug

cannot occur with this method. Furthermore, case 3(b) cannot oc-

cur either. The reason is that the engine always proceeds past a

symbolic branch in the same direction as recorded during execu-

tion. When the run hits a concrete branch, since this branch does

not depend on input, the engine is bound to follow the correct di-

rection.

The static method also instruments all symbolic branches, since

imprecision in the points-to analysis is resolved conservatively (if

a pointer might depend on input, it is flagged symbolic). Under

this method, cases 1 and 3(b) cannot occur. The latter case cannot

occur for the same reason above.

The dynamic method may not instrument all symbolic branches,

because it may not run long enough to find them. Similarly, the dy-

namic+static method may fail to instrument all symbolic branches,

but only when symbolic execution does not run long enough and

static analysis is inaccurate. In these cases, a run can take the

wrong direction at a symbolic branch that was not instrumented,

and later hit a concrete branch for which the input fails to satisfy

the branch condition. In this case, the engine needs to back up and

explore an alternative direction at a symbolic but uninstrumented

branch. The constraint sets for these alternative directions reside

on the pending list. The search can use any heuristic for deciding

which constraint set to pick from the pending list. We currently use

a simple depth-first approach.

Replaying System Calls

As mentioned in Section 11, we consider scenarios with and without

instrumentation for logging the results of certain system calls.

When these system calls are not logged, we replay them using

models of their behavior. The models use symbolic variables to

allow the engine to reproduce any behavior that may be produced

by the kernel. For instance, for the read() system call, we use a

symbolic variable for the return value that determines how much

input is read. This symbolic variable is constrained to be between

−1 and the amount of input requested. During replay, a program

executing the read() call initially returns the amount of (symbolic)

input requested, and execution carries on. Because the return value

of the system call is symbolic, if the program checks it in a branch

and if the branch has been logged, the log specifies which direction

needs to be taken. If that direction fails, the symbolic execution

engine aborts the run. Eventually, the number of bytes actually

read at the user’s site is found.

76

Chapter 5: Bug Reporting

When these system calls are logged, we replay their execution

based on the logs. During replay, the calls for which there are logged

results always return exactly the recorded value. Thus, the symbolic

execution engine need not search for the actual call results.

5.4 Implementation and Methodology

Software. For program instrumentation and analysis, we use CIL

(C Intermediate Language [42]), which is a collection of tools that

allow simple analysis and modification of C code.

For static analysis we start by merging all the source code files

of the program in one large C file. This allows us to run the analysis

on the whole program, making the results more accurate. We then

use two CIL plug-ins for the dataflow and points-to analysis.

For symbolic execution, we use Oasis, our home-grown concolic

execution engine for C programs described in chapter 4. The engine

instruments the C program and links it with a runtime library for

logging constraints.

We also use CIL to instrument the branches in the program. The

instrumentation simply uses a bit per branch in a large buffer, and

flushes the buffer to disk when it is full. We use a buffer of 4KB in

order to avoid writing to disk too often. We do not use any form of

online compression, as this would impose additional CPU overhead.

Moreover, we could have used a simple branch prediction algorithm

to avoid logging all instrumented branches, but this would have

required recording the program location for each logged branch.

This approach would have required at least another 32 bits of storage

per branch, probably ruining any savings obtained by the prediction

algorithm.

Benchmarks. We first evaluate the instrumentation overhead in

isolation using two microbenchmarks. Next, we reproduce real bugs

previously reported in the coreutils programs [10]. Then, we evalu-

ate the tradeoff between instrumentation overhead and bug repro-

duction time using an open-source Web server, the uServer [45].

The uServer was designed for conducting performance experiments

related to Internet service and operating system design and im-

plementation. We use version 0.6.0, which has approximately 32K

lines of code. In our final experiment, we again evaluate the tradeoff

between instrumentation overhead and bug reproduction, but this

time with the diff utility. Diff is an input-intensive application that

pinpoints the differences between two files provided as input. It

77

Evaluation

contains about 22K lines of code. For all experiments we link the

programs with the uClibc library [55].

We study five configurations of each benchmark: four result-

ing from our four instrumentation methods plus a configuration

called none, which involves no instrumentation. For the instru-

mented benchmarks, unless mentioned otherwise, selective system

call logging is turned on.

Hardware. Our experimental setup consists of two machines with

two quad-core 2.27-GHz Xeon CPUs, 24 GBytes of memory, and a

160-GByte 7200rpm hard disk drive.

5.5 Evaluation

Microbenchmarks

We evaluate the cost of the instrumentation by using two simple

microbenchmarks. The first microbenchmark comprises a loop that

increments a counter 1 billion times. The loop condition (checking

the loop bound) consists of a single branch, executing as many times

as there are iterations.

We compare the none (no instrumentation) and all branches ver-

sions of this microbenchmark using the Linux perf profiler. The

results show that the branch logging instrumentation takes 17 in-

structions on average, including the periodic flushing of the log to

disk. In terms of running time, we see an average cost of 3 nanosec-

onds per instrumented branch (with an average of 2.1 instructions

per cycle), for a total overhead of 107%. While considerable, this

overhead is still lower than that reported in ODR [1] (about 200%

just for the branch recording). The most likely reason is that our

instrumentation only logs one bit per branch, while ODR uses a

more complicated branch prediction algorithm.

We run a second microbenchmark consisting of the example in

Listing 5.1, which computes the fibonacci sequence for one of two

numbers. We instrument this program using the four configura-

tions of our system. Not surprisingly, the configurations other than

all branches instrument only the symbolic branches corresponding

to lines 4 and 6. The results are consistent with our previous mi-

crobenchmark: an average overhead of 17 instructions per instru-

mented branch or about 3 nanoseconds. The all branches configura-

tion suffers from a total overhead of 110%, whereas the three others

do not incur any noticeable overhead because only two branches are

logged.

78

Chapter 5: Bug Reporting

Coreutils

We now evaluate our approaches using four real bugs in different

programs from the Unix coreutils set: mkdir, mknod, mkfifo, and

paste. We ran the programs with up to 10 arguments, each 100

bytes long.

Branch behavior. Recall that our approach is based on two

assumptions about branches: (1) that there are many (concrete)

branches whose outcomes do not depend on input, and (2) that if

a branch is executed once with a concrete (symbolic) branch con-

dition, it is most likely always executed with a concrete (symbolic)

condition.

To check these assumptions, we modify our symbolic execution

engine to run with concrete inputs (instead of generating concrete

inputs itself to explore different paths). In addition, at each exe-

cuted branch, we record whether it is executed with a symbolic or

a concrete branch condition.

We show the results of a sample run of mkdir in Figure 5.1;

the graphs for the other 3 programs are similar. The figure shows

per-branch-location statistics for this experiment. We use the term

“branch location” to mean the location of a branch in the source

code, and “branch execution” to mean the actual execution of a

branch location during run time. Each point on the x axis denotes

a branch location that is executed at least once. The y axis shows

how many times each branch is executed. The gray bars denote the

overall number of branch executions, whereas the black bars denote

the number of executions with a symbolic condition. The black bars

are therefore a subset of the gray bars.

As the figure illustrates, only a limited number of branch loca-

tions is responsible for all the symbolic branch executions. Further-

more, where black bars are present, they completely cover the gray

bars. This shows that a particular branch is executed either always

with concrete conditions or always with symbolic conditions. These

observations support our two assumptions.

Instrumentation overhead. Figure 5.2 shows the CPU time as-

sociated with the instrumentation for mkdir (again, the results

for the other programs are similar). Those results are obtained

by running the program in the symbolic execution engine for one

hour. The figure shows that the time is almost identical for the

dynamic, dynamic+static, and static configurations. The static and

dynamic analyses produce accurate results in those programs. The

all branches configuration is the slowest, with an overhead of 31%.

79

Evaluation

0

5

10

15

20

25

30
All branches
Symbolic branches

Figure 5.1: Number of executions of each branch in a sample run
of mkdir. The overlaid black bars represent the branches executed
with symbolic conditions.

dynamic

dynamic+static

static

all branches

0 20 40 60 80 100 120 140

cpu time (%)

Figure 5.2: CPU time of mkdir instrumented with the four con-
figurations of our system. Results are normalized to the non-
instrumented version.

Reproducing bugs. Each program suffers a crash bug that only

manifest itself when a very specific combination of arguments is

used. For instance, the bug in paste occurs with the following com-

mand line:

paste -d\\ abcdefghijklmnopqrstuvwxyz

Table 5.1 shows the time needed to reproduce the crash bugs in

the four programs. The programs being relatively small, symbolic

execution is able to cover most of the important branches in a very

short amount of time, and static analysis produces accurate results.

Thus, we can reproduce the bug in less than two seconds in all of

the four instrumented configurations.

These bugs have also been used to evaluate ESD [58]. Interest-

ingly, ESD took significantly more time to reproduce the bugs (be-

tween 10 and 15 seconds, albeit with no runtime overhead). This can

be attributed to the fact that our system essentially knows the exact

80

Chapter 5: Bug Reporting

Program Replay time
mkdir 1 sec
mknod 1 sec
mkfifo 1 sec
paste 1.5 sec

Table 5.1: Time needed to replay a real bug in four coreutils pro-
grams. The results are the same with all four configurations of our
system.

1

10

100

1000

10000

100000

1000000
All branches
Symbolic branches

branches located in the uClibc code branches located in the uServer code

Figure 5.3: Number of executions of each branch location in a sam-
ple run of the uServer. The y axis is in log scale.

path to the bug (during bug reproduction), whereas ESD needs to

search many paths.

uServer

We further evaluate our system using a much larger application (32K

lines of code), the uServer [45], an open-source Web server some-

times used for performance studies. Unlike the coreutils programs,

which are very small, this benchmark elucidates the differences be-

tween the approaches for deciding which branches to instrument,

and the tradeoff between instrumentation overhead and bug repro-

duction time.

Branch behavior. We run the uServer in our modified symbolic

execution environment with 5,000 HTTP requests to demonstrate

the nature of the branches (symbolic or concrete). In total, ap-

proximately 18 million branches are executed, out of which only 1.8

million or roughly 10% are symbolic. These 1.8 million symbolic

branches correspond to multiple executions of the same 53 branch

locations in the program.

Figure 5.3 shows per-branch-location statistics for this experi-

ment. As we can see, most of the black bars entirely cover their

corresponding gray bars. This means that these particular branch

81

Evaluation

Version

LC HC
dynamic 78 246
dynamic + static 1654 1490
static
all branches

2104
5104

of instrumented branch
locations

Table 5.2: Number of branch locations instrumented in the uServer
with the different configurations of our system.

locations are executed either always with concrete conditions, or al-

ways with symbolic conditions. However, the situation is slightly

different for the branches in uClibc, where in some cases the black

bars almost but not completely cover the gray bars. This situation

corresponds to library functions that are sometimes called with con-

crete values. In this experiment, the number of those cases was very

small.

The figure also shows that most branches are executed in the

library (81%). However, only 28% of the symbolic branches are

executed in the library.

Identifying symbolic branch locations. In total, there are 5104

branch locations in the uServer code (and 8516 in uClibc).

Table 5.2 shows the number of instrumented branches in the

uServer for each configuration of our system. We symbolically ex-

ecute the uServer using 200 bytes of symbolic memory for each

accepted connection, and for each file descriptor. We stop the sym-

bolic execution phase after one hour and two hours, obtaining a

coverage of 20% (denoted LC for lower coverage) and 33% (HC for

higher coverage), respectively. Running longer does not significantly

improve branch coverage.

Out of a total of 5104 branches, static marks 2104 as symbolic,

dynamic 246, and dynamic+static 1490, in the HC configuration. In

addition, with dynamic, 1434 branches are marked as concrete, and

the remaining branches are not visited.

For the static analysis tool, we need to merge all the source

files of both the application and the library. Unfortunately, doing

so resulted in a file too large for the points-to analysis to handle.2

Therefore we perform static analysis only on the uServer application

code. All branches in the library are treated as symbolic by the

static analysis.

2After six hours, the analysis had made little progress and we aborted it.

82

Chapter 5: Bug Reporting

dynamic (lc)

dynamic (hc)

dynamic+static (lc)

dynamic+static (hc)

static

all branches

0 50
100

150
200

250
300

350
400

450

dynamic (lc)

dynamic (hc)

dynamic+static (lc)

dynamic+static (hc)

static

all branches

0 100 200 300 400 500

cpu time (%) storage (bytes)

Figure 5.4: CPU time of the uServer instrumented with the four
configurations of our system.

dynamic (lc)

dynamic (hc)

dynamic+static (lc)

dynamic+static (hc)

static

all branches

0 50
100

150
200

250
300

350

dynamic (lc)

dynamic (hc)

dynamic+static (lc)

dynamic+static (hc)

static

all branches

0 100 200 300 400 500

cpu time (%) storage (bytes)

Figure 5.5: CPU time (a) and storage requirement (b) of the uServer
instrumented with the four configurations of our system.

With less coverage, there are more branches left unvisited, and

therefore more opportunity for the static phase to mark them sym-

bolic. This is why there are fewer instrumented branches in the dy-

namic configuration and more in the dynamic+static configuration.

Those numbers are used to highlight the effect of branch coverage

in our approach.

Instrumentation overhead. We use the httperf [36] benchmark-

ing tool to compare the performance of the configurations for the

uServer. We run httperf with a static workload saturating the CPU

core on which the uServer is running. We consider three perfor-

mance metrics: number of instrumented branches executed, CPU

time, and storage requirement of the instrumentation. All three are

roughly proportional to each other.

Figure 5.4 shows CPU time (relative to the non-instrumented

version). As we can see, the overhead of all branches is significant.

The results of static are only marginally better, since it instruments

all branches in the uClibc library.

83

Evaluation

The two configurations using dynamic analysis perform notably

better. The overhead is 17% and 20%, respectively, for the dy-

namic and dynamic+static configurations. This is not surprising

for dynamic, as it instruments only 284 branch locations. The

dynamic+static configuration instruments many more branch loca-

tions, but still far fewer than all or static.

The coverage obtained with symbolic execution affects the in-

strumentation overhead of dynamic and dynamic+static. Increased

coverage increases the overhead of dynamic, since symbolic execu-

tion instruments more branches. In contrast, increased coverage

leads to reduced instrumentation in dynamic+static, corresponding

to branches marked symbolic by the static analysis, left unvisited

by the dynamic analysis with low coverage, and marked concrete by

the dynamic analysis with high coverage.

Figure 5.5 shows the storage requirements per HTTP request

processed by the Web server. The storage overhead is reasonable;

around 50 bytes per request in the dynamic and dynamic+static

configurations. This is roughly the same number of bytes in a typical

entry in the access log of the Web server.

Both the processing and storage overheads are more significant

in the static and all branches configurations. These configurations

represent worst-case scenarios for the areas of the code that are not

covered by the symbolic execution.

When a bug occurs, the branch log has to be transferred to the

developer. Compression can be used to reduce the transfer time.

We observe a compression ratio of 10-20x using gzip. In Section

5.6, we discuss how to deal with long-running executions, which

could generate extremely large branch logs.

Reproducing bugs. To evaluate the amount of effort required to

reproduce a bug, we run the uServer with five different input scenar-

ios. To demonstrate the impact of code coverage on our approach,

we design those scenarios to hit different code areas of the HTTP

parser. More specifically, we use HTTP queries of various lengths

(between 5 to 400 bytes), with different HTTP methods (e.g., GET,

POST) and parameters (e.g., Cookies, Content-Length). We crash

the server by sending it a SEGFAULT signal after sending it the

input, making sure it crashes at the same location in the code for

all four versions. After replay, we verify that each configuration

produced input that correctly leads to the same location.

Table 5.3 shows the bug reproduction times for all four instru-

mented versions of the five scenarios. Table 5.4 shows the cor-

responding number of symbolic branch locations logged and not

84

Chapter 5: Bug Reporting

Ve
rs

io
n

LC
H

C
LC

H
C

LC
H

C
LC

H
C

LC
H

C
dy

na
m

ic
27

s
27

s
28

77
s

79
s

!
17

0s
!

28
7s

!
16

8s
dy

na
m

ic
+s

ta
tic

27
s

27
s

79
s

79
s

53
2s

17
0s

17
5s

17
5s

24
8s

16
8s

st
at

ic
al

l b
ra

nc
he

s

Ve
rs

io
n

LC
H

C
LC

H
C

dy
na

m
ic

11
2s

11
2s

!
71

2s
dy

na
m

ic
+s

ta
tic

11
2s

11
2s

99
1s

69
4s

st
at

ic
al

l b
ra

nc
he

s

Ex
p.

 1
Ex

p.
 4

87
s

36
2s

56
s

34
3s

17
5s

17
5s

16
8s

16
8s

27
s

27
s

79
s

79
s

17
0s

17
0s

Ex
p.

 1
Ex

p.
 2

Ex
p.

 3
Ex

p.
 4

Ex
p.

 5

T
ab

le
5.

3:
T

im
e

in
se

co
n

d
s

n
ee

d
ed

to
re

p
ro

d
u

ce
ea

ch
of

th
e

fi
ve

in
p

u
t

sc
en

a
ri

o
s

to
th

e
u

S
er

ve
r

w
it

h
th

e
fo

u
r

in
st

ru
m

en
te

d
co

n
fi

g
u

ra
ti

o
n

s
of

ou
r

sy
st

em
.

T
h

e
in

fi
n

it
y

sy
m

b
ol

m
ea

n
s

th
at

th
e

ex
p

er
im

en
t

d
id

n
o
t

te
rm

in
a
te

in
o
n

e
h

o
u

r.

85

Evaluation

Version

LC
H

C
LC

H
C

dynam
ic

18 / 112
18 / 112

0
0

dynam
ic+static

18 / 112
18 / 112

0
0

static
all branches
dynam

ic
25 / 129913

39 / 2215
11 / 23062

0
dynam

ic+static
36 / 2105

39 / 2215
3 / 110

0
static
all branches
dynam

ic
25 / 554617

42 / 28848
17 / 48485

0
dynam

ic+static
45 / 10971

42 / 28848
3 / 1023

0
static
all branches
dynam

ic
24 / 236608

43 / 24012
21 / 185945

6 / 268
dynam

ic+static
46 / 11089

48 / 12111
3 / 1023

1 / 1
static
all branches
dynam

ic
25 / 410723

44 / 29136
15 / 45706

0
dynam

ic+static
46 / 54539

44 / 28785
3 / 3391

0
static
all branches

Exp. 1

0 0

Exp. 5 Exp. 4 Exp. 3 Exp. 2

39 / 2215

0 0 00 0 0

42 / 28848
42 / 28848

49 / 12112
49 / 12112

44 / 28785
44 / 28785

of sym
bolic branch locations logged /

corresponding # of executions
of sym

bolic branch locations N
O

T
logged / corresponding # of executions

18 / 112
18 / 112

39 / 2215

0 0

T
a
b

le
5
.4

:
N

u
m

b
er

o
f

sy
m

b
olic

b
ran

ch
lo

catio
n

s
a
n

d
sy

m
b

o
lic

b
ra

n
ch

ex
ecu

tio
n

s
lo

g
g
ed

a
n

d
n

ot
logged

for
each

con
fi
g
u
ration

of
each

ex
p

erim
en

t
of

T
a
b

le
5.3.

86

Chapter 5: Bug Reporting

logged, as well as the number of actual symbolic branch executions.

Both tables include the configuration with low coverage (LC) and

high coverage (HC).

Unsurprisingly, the all branches and static versions, which instru-

ment all symbolic branches, perform best. Of course, these versions

do so at high runtime and storage overheads (Figures 5.4 and 5.5).

Dynamic+static in most cases performs only slightly worse than

static, despite the much lower instrumentation overhead of the for-

mer configuration. Dynamic comes last, with many LC experiments

not finishing in one hour. This is not surprising, as the number of

branches identified as symbolic, and therefore the amount of log-

ging, is very low. In fact, Tables 5.3 and 5.4 show that the number

of symbolic branch locations not logged is well correlated with the

replay time. As soon as replay encounters more than a dozen sym-

bolic branch locations that are not instrumented, the replay time

exceeds one hour. An approach that does not instrument the code

at all, would result in even longer bug reproduction times.

Dynamic+static obtains similar results regardless of coverage.

The reason is that symbolic execution may incorrectly classify some

branches as concrete, and thus slow down the search. When run-

ning longer, those branches may later be marked symbolic, there-

fore correcting the error. In our experiment, those differences have

a marginal effect on dynamic+static, which again suggests that this

does not happen frequently.

Impact of logging system calls. By default, we log the results

for some key system calls (Section 11). For instance, we log the

return value of the read() system call and the order of ready file

descriptors from select() calls.

The measurements in Figures 5.4 and 5.5 include the overhead

of logging these return values. As we only log a limited number of

values for a few system calls, logging these values introduces little

extra work compared to the logging of the branches. As a result,

when not logging system call results, the overhead is reduced by a

marginal 0.2%.

Tables 5.5 and 5.8 present the bug reproduction times of two of

our experiments without logging any system calls (we omit the three

other experiments for brevity; their results are similar). All config-

urations of our system take significantly longer to replay, as the

symbolic execution engine needs to determine the exact return val-

ues of the selected system calls. The dynamic and dynamic+static

configurations are further penalized, since the back-tracking needed

by the unlogged symbolic branches compounds the search for the re-

87

Evaluation

Version
LC HC LC HC LC HC LC HC LC HC

dynamic 27s 27s 2877s 79s ! 170s ! 287s ! 168s
dynamic+static 27s 27s 79s 79s 532s 170s 175s 175s 248s 168s
static
all branches

Version
LC HC LC HC

dynamic 112s 112s ! 712s
dynamic+static 112s 112s 991s 694s
static
all branches

Exp. 1 Exp. 4

87s 362s
56s 343s

175s
175s

168s
168s

27s
27s

79s
79s

170s
170s

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Table 5.5: Time in seconds needed to reproduce two input scenarios
with the uServer when not logging system call results. The infinity
symbol means that the experiment did not terminate in one hour.

dynamic
dynamic+static

static
all branches

0 50 100 150 200
cpu time (%)

Figure 5.6: CPU time of diff instrumented with the four configura-
tions of our system. Results are normalized to the non-instrumented
version.

turn values. Interestingly, the static configuration performs slightly

slower than all branches, whereas when logging system calls it per-

forms identically. The reason is that fewer concrete branches are

logged, therefore the engine takes slightly more time to realize a

wrong turn due to a system call.

Diff

We now consider the diff utility. Diff is more challenging than the

uServer for our dynamic analysis, as its behavior depends more

heavily on input. Moreover, diff generates very long constraint sets,

placing a heavy burden on the constraint solver. For these reasons,

dynamic analysis attains a coverage of only 20% of branches, during

1 hour of symbolic execution. In total, there are 8840 branches in

the program. dynamic identifies 440 of them as being symbolic,

static 4292, and dynamic+static 3432.

Instrumentation overheads. We run diff on two sample text

files. Figure 5.6 shows the CPU time of the four configurations

of our system, normalized against the non-instrumented execution.

Consistent with our prior results, dynamic and dynamic+static per-

form best with an overhead of approximately 35%.

88

Chapter 5: Bug Reporting

Ve
rs

io
n

LC
H

C
LC

H
C

dy
na

m
ic

40
 /

72
2

43
 /

72
5

8
/ 1

73
5

/ 1
70

dy
na

m
ic

+s
ta

tic
40

 /
72

2
43

 /
72

5
8

/ 1
73

5
/ 1

70
st

at
ic

al
l b

ra
nc

he
s

dy
na

m
ic

43
 /

24
50

17
65

03
1

(6
1)

21
 /

10
76

50
7

/1
95

0
dy

na
m

ic
+s

ta
tic

64
 /

88
73

9
64

61
2

(6
7)

3
/ 7

39
7

1
/ 1

02
1

st
at

ic
al

l b
ra

nc
he

s

of

 sy
m

bo
lic

 b
ra

nc
h

lo
ca

tio
ns

 lo
gg

ed
 /

co
rr

es
po

nd
in

g

of
 e

xe
cu

tio
ns

Exp. 4

50
 /

39
58

1
0

50
 /

37
34

6
0

of

 sy
m

bo
lic

 b
ra

nc
h

lo
ca

tio
ns

 N
O

T
lo

gg
ed

 /
co

rr
es

po
nd

in
g

of

 e
xe

cu
tio

ns
Exp. 1

49
 /

87
1

0
49

 /
46

5
0

T
ab

le
5.

8:
N

u
m

b
er

of
sy

m
b

ol
ic

b
ra

n
ch

lo
ca

ti
on

s
an

d
sy

m
b

o
li

c
b

ra
n

ch
ex

ec
u

ti
o
n

s
lo

g
g
ed

a
n

d
n

o
t

lo
g
g
ed

fo
r

tw
o

in
p

u
t

sc
en

a
ri

o
s

w
it

h
th

e
u

S
er

ve
r

w
h

en
n

ot
lo

gg
in

g
sy

st
em

ca
ll

re
su

lt
s.

89

Evaluation

Version Exp. 1 Exp. 2
dynamic ! !
dynamic + static 1s 12s
static 1s 12s
all branches 1s 12s

Table 5.6: Time in seconds needed to reproduce two input scenarios
to diff. The infinity symbol means that the experiment did not
terminate in one hour.

Version symbolic branch
locations logged /

corresponding
executions

symbolic branch
locations NOT

logged /
corresponding

executions
dynamic 3 / 2125686 32 / 2369765
dyn.+static 13 / 904 0
static 13 / 904 0
all branches 13 / 904 0
dynamic 3 / 2478280 24 / 2102506
dyn.+static 21 / 54623 0
static 21 / 54623 0
all branches 21 / 54623 0

Ex
p.

 1
Ex

p.
 2

Table 5.7: Number of symbolic branch locations and symbolic
branch executions logged and not logged for two input scenarios
to diff.

Reproducing bugs. We replay two executions of diff comparing

relatively small but different text files. Tables 5.6 and 5.7 list the

results of these experiments. Because the coverage obtained dur-

ing dynamic analysis is relatively low, the dynamic configuration

is unable to finish the experiments in 1 hour. The few tens of un-

logged symbolic branch locations quickly create a very large number

of paths to explore, making it impossible for this approach to finish

within the allotted time. In contrast, the three other configurations,

and in particular dynamic+static, do not suffer from any unlogged

symbolic branches and therefore replay quickly.

Collectively, these results again demonstrate that dynamic+static

strikes the best balance between instrumentation overhead and bug

reproduction time.

90

Chapter 5: Bug Reporting

5.6 Discussion and Future Work

Branch coverage. Our current results suggest that using a branch

trace, even partial, is effective at reducing the amount of searching

needed to reproduce a specific buggy execution path. To maintain

low instrumentation overhead, it is necessary to obtain sufficient

coverage with the initial symbolic execution phase. This problem

has received attention in the literature ([10, 26]), and significant

progress has been made in recent years. In chapter 4 we describe

our own efforts to improve the coverage of upgraded code. While it

is not always possible to achieve 100% coverage, this is a typical goal

when testing an application prior to shipping. Therefore, the testing

effort can be leveraged to identify the symbolic branches at the same

time. Moreover, manual test cases can be used in conjunction with

symbolic execution to boost code coverage, and many applications

already have test suites covering most of their codes.

Constraint solving. Symbolic execution is limited by the ability

to solve the resulting constraints. In particular, certain types of

programs generate constraints that current state of the art solvers

cannot solve. Constraint solving is an active research topic and our

approach should directly benefit from any advances in this field.

Non-determinism. Two approaches exist for dealing with non-

determinism, resulting, for instance, from system calls or random

number generators. One can either log the outcome of the non-

deterministic event or one can treat it as (symbolic) input during

replay. In this chapter, we strike a middle ground between these

approaches, logging the outcome of non-deterministic events that

are likely to cause a great deal of search during replay. The results

in Section 5.5 validate this approach, but a more comprehensive

treatment of non-deterministic events could be explored.

Multithreading. We can extend our system to support multi-

threaded applications by modifying it in two ways. First, the branch

trace needs to be split into multiple traces, one per thread. Sec-

ond, the ordering of thread execution needs to be recorded as well.

Implementing the first modification is trivial, and is unlikely to im-

pose any significant additional overhead. The second modification

is more difficult. Others [1, 58] have experimented with ideas for

recreating a suitable thread scheduling to find race conditions. Our

approach of logging a partial trace of branches is complementary to

those efforts and could considerably speed up the replay of multi-

threaded programs with races.

91

Conclusion

Long-running applications. The storage overhead and replay

time of long-running applications can be problematic. Consider, for

example, the case of a Web server running for weeks before crashing.

Our current approach reduces storage overhead as much as possible,

but with these applications this overhead may still be high. Fur-

thermore, replaying such a long trace may be infeasible, as it will

be longer than the original run. Pushing the concept of a partial

branch trace further, our approach could be extended to simplify

this problem by implementing support for checkpointing. An in-

strumented application could periodically take a checkpoint of its

state and discard the current branch log. Logging branches would

then continue from the checkpoint only. The checkpoint would in-

clude enough information on the data structures of the program

(but not its content). With this information, a symbolic execution

engine can treat their content as symbolic, and replay the branch

log starting from there. We leave the implementation and the asso-

ciated research questions of the checkpointing mechanism for future

work.

Concolic vs. symbolic. The particular form of symbolic execu-

tion we use in this chapter is called concolic execution [51]. The main

difference from pure symbolic execution (as in [10], for instance) is

that the engine repeatedly executes the program from beginning to

end with concrete inputs, instead of exploring multiple paths in par-

allel. This implementation difference has no fundamental impact on

our system, as in both cases the engine can select the paths in the

same order. On one hand, the fact that the application is rerun from

the beginning for every path imposes some additional overhead. On

the other hand, because concrete inputs are always used, it makes

the work of the solver easier. In many instances, branch conditions

are already satisfied by the random input chosen. To the best of

our knowledge, no comparative studies of the impact of the different

implementations have been published yet.

5.7 Conclusion

In this chapter, we consider the problem of instrumenting programs

to reproduce bugs effectively, while keeping user data private. In

particular, we focus on the tradeoff between the instrumentation

overhead experienced by the user and the time it takes the developer

to reproduce a bug in the program.

We explore this tradeoff by studying approaches for selecting

a partial set of branches to log during the program’s execution in

92

Chapter 5: Bug Reporting

the field. Specifically, we propose to use static analysis (dataflow

and points-to analysis) and/or dynamic analysis (time-constrained

symbolic execution) to find the branches that depend on input. Our

instrumentation methods log only those branches to limit the instru-

mentation overhead. When a user encounters a bug, the developer

uses the partial branch log to drive a symbolic execution engine in

efficiently reproducing the bug.

Our results show that the instrumentation method that com-

bines static and dynamic analyses strikes the best compromise be-

tween instrumentation overhead and bug reproduction time. For

the programs we consider, this combined method reduces the in-

strumentation overhead by up to 92% (compared to using static

analysis only), while limiting the bug reproduction time (compared

to using dynamic analysis only).

We conclude that our characterization of this tradeoff and our

combined instrumentation method represent important steps in im-

proving bug reporting and optimizing symbolic execution for bug

reproduction.

93

Chapter 6

Related Work

6.1 Characterizing Upgrades

As far as we know, only two other works characterized upgrades.

Beattie et al. [5] tried to determine when it is best to apply security

patches. They built mathematical models of the factors affecting

when to patch, and collected empirical data to validate the model.

Relative to Mirage, the paper focused solely on security patches

and did not consider the benefits of user-machine testing or staged

deployment.

The study by Gkantsidis et al. [23] focused on the Windows en-

vironment and on the networking aspects of deploying upgrades.

Most importantly, the study did not consider several important is-

sues, including upgrade installation and testing, upgrade problems,

and problem reporting. Our survey addressed all of these issues.

6.2 Upgrade Deployment

Deployment Strategy

As far as we know, no previous work has considered staged upgrade

deployment. In fact, the two previous works on large-scale upgrade

deployment focused solely on (1) deploying upgrades as quickly as

possible to all users while reducing the load on the vendor’s site [23];

and (2) creating a deployment infrastructure that can be tailored by

explicit contracts between vendors and users [52]. In contrast to (1),

Mirage recognizes the tradeoff between the speed of deployment and

the likelihood of testing problems at the user machines. In contrast

to (2), Mirage does not consider contracts, since they are rare in

practice, especially in the open-source community.

95

Upgrade Deployment

Commercial upgrade (patch) management systems and tools,

e.g., [32, 47], deploy upgrades within enterprises. They typically

concentrate on discovering machines on the enterprise’s network, as-

sessing which upgrades are needed, and applying the patches while

minimizing the number of reboots. Some providers, such as [47],

manually collect upgrades from vendors and test them locally be-

fore sending them to their customer enterprises. Relative to Mirage,

these upgrade-management systems do not help individual users and

have no automatic support for testing upgrades after they are ap-

plied to the machines in the enterprise. Nevertheless, the providers

that manually test upgrades do produce a primitive form of staging

for enterprises. However, they are unlike representatives (or beta

testers), since they have no relationship to the vendor. In fact,

their existence does not change the fact that vendors deploy their

upgrades to the entire world as a single huge cluster.

Clustering Machines

The Pastiche [17] peer-to-peer backup system builds a structured

overlay by replacing the proximity metric with a measure of simi-

larity between sets of neighbors’ files. Although Pastiche does not

explicitly cluster machines, one could envisage Pastiche being used

to perform distributed clustering based on the list of environmental

resources at each machine.

Others have considered surviving Internet catastrophes by back-

ing up data on dissimilar hosts. This problem roughly corresponds

to the problem of recovering from a globally-deployed problematic

upgrade. In Phoenix [31], Junqueira et al. observe that backups

should be done on hosts that do not share the same potential vulner-

abilities. Interestingly, the clustering of dissimilar hosts in Phoenix

has the opposite goal to our clusters, which cluster similar hosts.

Furthermore, Mirage clusters machines based on different charac-

teristics than Phoenix.

Integrating Deployment, Testing, and Reporting

At a high-level, the most similar work to Mirage is a position paper

by Cook and Orso [14], which also proposes to integrate upgrade

deployment, user-machine testing (via white-box approaches), and

problem reporting back to developers. However, they did not con-

sider staged deployment or any type of clustering. Furthermore,

they did not attempt to characterize upgrades or evaluate their pro-

posed system.

96

Chapter 6: Related Work

6.3 Testing

Static Analysis and Model Checking

Static analysis [4, 6] can automatically check a number of useful

properties in the code, but it can miss many important problems.

Moreover, it may generate many unnecessary warnings.

Model checking of implementations [38, 37, 57] can be used to

find bugs in a systematic fashion. However, symbolic execution

overcomes the need for creating special testing harnesses that are

needed for model checking.

Testing and Dynamic Analysis

Testing plays an important role in ensuring the overall quality of the

software, because it aims to detect errors in program logic, check

boundary values, and provide high code coverage. However, it is

very hard to achieve good coverage in practice, as it requires careful

choice of inputs. Oasis uses concolic execution to generate input,

and implements a new heuristic to optimize the coverage of new or

affected code when regression testing.

Dynamic analysis tools (such as Valgrind [43]) can provide valu-

able help to detect bugs during testing. Unfortunately, they detect

bugs only on the paths on which they are executed. PathExpander

[34] improves path coverage of such tools by selectively executing

non-taken paths in a sandbox.

In contrast, Oasis uses dynamic analysis to detect bugs, and

concolic execution to improve coverage of the test cases.

Symbolic and Concolic Execution

There has been a large body of work on using symbolic and concolic

execution for automated test generation [7, 8, 11, 10, 16, 15, 19, 25,

27, 26, 35, 49, 51, 9].

Most of the work in this area tries to address the two main

problems of symbolic execution: dealing with the environment [11,

10] and path explosion [7, 11, 10, 19, 25, 35]. Most recently, KLEE

[10] uses environment modeling, and aggressive constraint caching

and search heuristics to deal with these two problems, respectively.

As a result, KLEE has been successful in identifying bugs in heavily

debugged code. Similar to previous works, Oasis provides models for

system calls. To address the problem of path explosion, Oasis relies

on search heuristics, and proposes interactive symbolic execution as

a way to advance the state of the art in this area.

97

Bug Reporting

Other symbolic and concolic execution engines [10, 9] implement

path exploration heuristics that try to drive the program into parts

of the code that have not been explored yet. They typically use a

statically computed control flow graph and use it to try to follow

branches that are more likely to drive the application to yet unex-

plored parts of the code. Oasis builds on those ideas and extends

them by analyzing the source code to pinpoint the new code in up-

grades, and tracks the effect of this new code on the rest of the code

at runtime.

Existing approaches to concolic execution, e.g., DART [27], can

use random inputs to drive code execution along any given path.

However, random inputs have low probability of passing through a

series of input validation checks that typically exist in software. In

contrast, Oasis uses any valid inputs to pass through these checks

and quickly start exploring deep code paths.

Symbolic Java PathFinder [49] uses system-level concrete exe-

cution to reach a unit of code, and then uses unit-level symbolic

execution. In contrast with this work, Oasis does not require man-

ual validation of potentially erroneous inputs (that are the result of

isolated unit testing).

Finally, relative to the existing body of work on symbolic and

concolic execution, Oasis leverages the differences in the code to

more quickly explore paths leading to the new or changed code.

Doing so reduces the time needed for regression testing, for example

in the case of software upgrades.

6.4 Bug Reporting

At one end of the spectrum between instrumentation overhead and

bug reproduction effort are record-replay systems that try to capture

the interactions between the program and its environment. Different

systems capture interactions at different levels. Most systems cap-

ture them at the system call or library level. For example, ReVirt

[18] logs interactions at the virtual machine level. All record-replay

systems suffer from the overhead of logging the interactions. To

reduce this overhead, R2 [29] asks the developer to manually spec-

ify at what interfaces to capture the program’s interactions with its

environment.

At the other end of the spectrum are conventional bug reporting

systems, which provide a coredump, but no indication of how the

program arrived at the buggy state. Obviously, there is no recording

overhead, but it takes considerable manual search to find out how

98

Chapter 6: Related Work

the problem came about.

ESD (Execution Synthesis Debugger [58]) is an attempt to au-

tomate some of that search. It tries to do so without recording

any information about the program execution. Instead, it uses the

stack trace at the time of the program crash, and symbolically exe-

cutes the program to find the path to the bug location. Although it

uses static analysis and other optimizations to reduce the number of

paths it needs to explore, it remains fundamentally limited by the

exponential path explosion of symbolic execution. Our approach

instead performs logging of a set of judiciously chosen branches.

This allows us to speed up the automated search with limited run-

time overhead. As our results with the coreutils show, our methods

reproduce bugs faster, albeit at some modest cost in runtime.

BBR (Better Bug Reporting, [12]) investigates the same tradeoff,

although more from the perspective of maintaining privacy when a

bug is reported to the developer. During execution it logs the pro-

gram’s inputs. After a crash, it replays the entire execution on the

user machine based on those inputs. Replay uses an instrumented

version of the program that collects the constraints implied by the

direction of the branches taken in the program. An input set that

satisfies these constraints is then returned to the developer. Unlike

BBR, we do not log the users’ inputs, or require whole-program re-

play and the execution of a constraint solver on the user machine.

Instead, we incur limited logging overhead at the user site and some

exploration of alternative paths at the developer site.

Another approach for maintaining privacy is explored by the

Panalyst system [56]. After a runtime error, the user initially re-

ports only public information. The developer tries to exploit this

information using symbolic execution, but can query the user for

additional information. The user can choose whether or not to re-

spond to the developer queries. In the limit, Panalyst’s effectiveness

is constrained by the exponential cost of symbolic execution.

Triage [54] explores yet another way of debugging errors at user

sites. It periodically checkpoints programs, and after a failure, it

restarts the program from a checkpoint. Heavyweight instrumenta-

tion, exploration of alternatives (delta-debugging), and speculative

execution may be used during replay. Some applications were suc-

cessfully debugged using this approach, but the checkpoint may have

to be far back in time to allow meaningful exploration.

The same tradeoff between instrumentation overhead and bug

reproduction time has also been explored for debugging multithreaded

programs. To faithfully replay the execution of a thread, the shared

99

Bug Reporting

memory interactions with other threads need to be logged. The

cost of doing so is very high, and therefore the PRES [46] debugger

selectively omits logging certain interactions, but requires multiple

replay runs before it can recreate a path to a bug. Similarly, in

order to avoid logging all shared memory accesses, ODR [1] allows

some degree of inconsistency between the actual execution and the

replay, provided that the inconsistencies do not affect the output

of the program. The techniques used by PRES and ODR could

be combined with partial logging of branches as presented in this

paper.

Logging of branches has been used to report a program’s behav-

ior before a bug in Traceback [3]. The system uses this behavior to

reconstruct the control flow leading to the problem. To reduce the

instrumentation overhead, Traceback uses static analysis to mini-

mize the number of instructions required to instrument branches,

and only logs the most recent branches. Our system goes further

by combining dynamic and static analyses to reduce the number of

instrumented branches, and reproducing the entire path to the bug.

100

Chapter 7

Conclusion

In this dissertation, we study the problem of improving the qual-

ity and reliability of software upgrades, and reduce the impact of

problems.

We motivate our work using a survey of system administrators.

The results confirm that upgrades are done frequently, that prob-

lems are quite common, that these problems can cause severe dis-

ruption and that therefore upgrades are often delayed, and that

users seldom fully report the problems to the vendor.

To improve on the current situation, we argue the necessity to

revise the entire software upgrade process. To this end, we present

Mirage, a framework that integrates testing, deployment and bug

reporting in an integrated system.

Mirage’s deployment subsystem allows the vendor to deploy its

upgrades in stages over clusters of users sharing similar environ-

ments. Our evaluation demonstrates that our clustering algorithm

achieves its goal of separating machines with dissimilar environ-

ments in different clusters, while not creating an impractically large

number of clusters. A simulation study of two staged deployment

protocols demonstrates that staging significantly reduces upgrade

overhead, while still achieving low deployment latency. Further-

more, a suitable choice of protocol allows a vendor to achieve differ-

ent objectives.

Oasis, the testing subsystem of Mirage, improves on current

state-of-the-art concolic and symbolic engines by implementing an

new heuristic to prioritize the exploration of new or affected code

in the upgrade. Furthermore, we propose interactive symbolic ex-

ecution, a new approach exposing the problem of path exploration

to the tester using a graphical user interface. The tester can use

interactive symbolic execution as a learning tool to develop new

heuristics or as a complement to existing heuristics to manually

101

influence the exploration and steer it towards interesting areas of

the code. Our preliminary results indicate that our heuristic suc-

cessfully explores the new or affected code more intensively than

existing techniques and shows that interactive symbolic execution

is a promising technique to advance the state of the art in search

heuristics.

In spite of all of these efforts, some bugs are bound to remain in

the software when it is deployed, and will be discovered and reported

only later by the users. With the last component of Mirage, we

consider the problem of instrumenting programs to reproduce bugs

effectively, while keeping user data private. In particular, we focus

on the tradeoff between the instrumentation overhead experienced

by the user and the time it takes the developer to reproduce a bug

in the program.

Specifically, we propose to use static analysis (dataflow and points-

to analysis) and/or dynamic analysis (time-constrained symbolic ex-

ecution) to find the branches that depend on input. Our instrumen-

tation methods log only those branches to limit the instrumentation

overhead. When a user encounters a bug, the developer uses the

partial branch log to drive a symbolic execution engine to efficiently

reproduce the bug.

Our results show that the instrumentation method that com-

bines static and dynamic analyses strikes the best compromise be-

tween instrumentation overhead and bug reproduction time. For

the programs we consider, this combined method reduces the in-

strumentation overhead by up to 92% (compared to using static

analysis only), while limiting the bug reproduction time (compared

to using dynamic analysis only).

We conclude that our characterization of this tradeoff and our

combined instrumentation method represent important steps in im-

proving bug reporting and optimizing symbolic execution for bug

reproduction.

By combining up-front testing, staged deployment, testing on

user machines, and efficient reporting, Mirage successfully reduces

the number of problems, minimizes the number of users affected,

and shortens the time needed to fix remaining problems.

102

 EPFL > IC > LABOS > SURVEY ABOUT SOFTWARE UPGRADES

Survey about software upgrades and associated problems
In the scope of our research project, we have designed this survey about software upgrades. It is aimed at understanding the
software upgrading process as well as collecting testimonies about most common issues.

Please note that our research project is a joint effort from two different laboratories at EPFL (http://labos.epfl.ch and
http://nsl.epfl.ch in Switzerland). The project is not affiliated with or sponsored by any commercial organization. The results of our
survey will be used to evaluate a new infrastructure aimed at improving software deployment and testing. We will share the survey
results with the practitioner and research communities through scientific papers.

In order to recognize your effort in providing the testimony, we will hold a lottery to select four winners who will each receive a
$50 (50 american dollars) amazon.com gift certificate.

It should not take you more than 10 to 15 minutes to complete the survey. We thank you very much for your participation !

If you have problems with this form, please send us an email at olivier.crameri@epfl.ch

[more information...] * mandatory field

* What is your
experience in
performing system
administration ?

0-1 yr

2-5 yr

5-10 yr

> 10 yr

* What is your level
of responsibility as
a system
administrator ?

I run the system alone

I run the system and a few people help me

I along with few others are the main people in-charge

I assist other senior administrators, and manage in their

absence

Other, please explain

* How many
machines are you
responsible for ?

less than 10

10 to 20

20 to 50

more than 50

* What best describes
the types of
machines you are
administering ?

Only desktop systems

Desktops and servers

Only servers

Other, please explain:

* Which operating
systems are you
administering ?

Windows on desktops (XP, 2000,...)

Windows server

Linux

FreeBSD

Mac OS X

HP-UX

AIX

Solaris

IBM i5/OS (OS/400)

Other, please specify:

The rest of the survey is about software upgrades. By software upgrade, we mean acquiring a new version of an application, an improved software
module or component, or simply a ”patch” to fix a bug, and integrating it into the system.

* How frequently do
you install a
software upgrade ?

More than once a week

Once a week

Once every couple of weeks

Once a month

Once per quarter

Once per semester

Once a year

Not even once a year

* Do you use any
software (e.g.
package
management
system or OS-built
in upgrade system)
to install your
upgrades ?

No

Yes, please specify which one:

* Please rank what
are the most
important reasons
to apply an upgrade
insert a value from 1
(most important) to 5
(least important) for
each item

Bug fix

Security fix

New feature

User requet

Other(s)

* Do you have a
strategy to test
upgrades before
applying them ?

No

Yes, please explain:

* In general, did you
encounter problems
with software
upgrades ?

No, in general it works out of the box

No, thanks to the strategy I use to test software upgrades

Yes, but I usually manage to fix them quickly

Yes, and sometimes it is catastrophic

If none of the answer above apply to you, please explain:

* In your opinion,
what is the
percentage of
upgrades that cause
problems ?
(Please enter a
number between 1
and 100. For instance
1% => 1 upgrade
problem for every
100 problem-free
upgrades).

* Do you ever refrain
from installing an
upgrade because
you expect problems
?

No

Yes. In this case, please explain when/how you decide that

it is safe to upgrade:

The rest of this survey assumes that you've had problems with software upgrade in the past. If it is not the case, you can jump to the end of the
survey. If, however, you've had problems, we would highly appreciate if you could provide us with as many details as possible by answering the
following questions.

We would like to draw your attention to the fact that this is the most important part of the study for us. Describing accurately examples of upgrade
problems is what will allow us to reproduce and understand them in order to make progress with our prototype

Please specify and rank

Do you have one or
more examples of
software upgrade(s)
that caused
problem(s) ?
We're interested here
in consequences of
applying the upgrade
itself, i.e. problems
that happen AFTER
the upgrade has been
successfully installed.
We're not interested
here in problems
happening during the
installation (such as
package conflicts,
dependency hell and
so on and so forth...)
Please describe as
many examples as
you can think of in
the following four
boxes.

Please describe the consequence of the problem(s)

Please tell us with which software(s) you had the

problem(s). Please include version number(s)

And on what OS(s)/distribution(s) and kernel(s) were they

?

What solution(s) did you find to fix the problems ?

When you do
encounter an
upgrade problem,
how often do you
report it back to the
distributor/vendor ?

Every time

Most of the time

Rarely

Never

When you do report
back a problem to
the
distributor/vendor,
what type of
information do you
usually send ?

If one produced
software that
automatically tested
upgrades on their
local machines
with good accuracy
(i.e. good upgrades
pass the automatic
testing whereas bad
upgrades fail it),
would you install
and use it ?

Yes

No, why ?

Please rank what
you think are the
most common
causes for problems
in software
upgrades:
insert a value from 1
(most important) to 5
(least important)

The upgrade is simply buggy

Important feature/behavior was removed/altered

Legacy issue (such as deprecated api,
misuse of api,...)

Broken dependency (i.e. installing the upgrade
cause problem with a
dependent software)

Packaging issue (i.e. the upgrade itself is
"bugfree" except for the
packaging)

Other(s)

Out of 100
problematic
upgrades, could you
please estimate
how many of them
are causing
problems during
installation ?
(this is by opposition
to the number of
upgrades that cause
problem AFTER
installation, i.e. the
ones that are difficult
to install because of
conflicts, missing
dependency, version
mismatch,...)

Please explain and rank

* Please insert your
email address
We will use the email
address to contact
you if we need
additional information
and if you win the
lottery. We won't
share your email
address with any
third party.

Send

© 2008 Operating Systems Laboratory (LABOS) , 1015 Lausanne , +41 21 693 8133 , Olivier Crameri

CURRICULUM VITAE

Olivier Crameri ch. du Cheminet 16
Swiss and Belgian citizen 1162 Saint-Prex
Date of birth: 28th march 1981 Switzerland
Email: olivier.crameri@a3.epfl.ch Tel: +41 76 394 28 90

PhD. in Computer Science, EPFL

Education:

August 2005 – June 2011: EPFL, Lausanne

PhD. in Computer Science. Developed and implemented novel
techniques for improving the quality and reliability of software.

June 2009, June 2010: Rutgers University, Piscataway, New Jersey:

Visiting student, supervised by Professor Ricardo Bianchini.
Work on testing techniques for software upgrades.

April 2005 – July 2005: Rice University, Houston, Texas:

Visiting student, supervised by Professor Alan L. Cox.
Work on improving the performance of virtual memory in the
FreeBSD operating system.

October 1999 – March 2005: EPFL, Lausanne

Master of Science in Computer Science.
Diploma project on asynchronous I/O in Linux.

Professional experience:

July 2000 – today: Net Oxygen Sàrl (www.netoxygen.ch).

Co-founder, project manager and developer. Lead architect and
developer of Net Oxygen’s web hosting platform and billing
system. Currently on the board of directors.

April 2006 – September 2006: Hewlett-Packard Laboratories, Palo Alto, California:
 Research intern, working on I/O virtualization.

Selected publications:

• Striking a New Balance Between Program Instrumentation and Debugging Time.
EuroSys ‘11: Proceedings of the 6th European Conference on Computer Systems, 2011,
with R. Bianchini and W. Zwaenepoel.

• Toward Online Testing of Federated and Heterogeneous Distributed Systems.
Proceedings of The 2011 USENIX Annual Technical Conference, 2011 (to appear),
with M. Canini, V. Jovanovic, D. Venzano, B. Spasojevic and D. Kostic.

• Oasis: Concolic Execution Driven by Test Suites and Code Modifications.
Technical report, EPFL, 2009,
with R. Bachwani, T. Brecht, R. Bianchini and W. Zwaenepoel.

• Mirage, an Integrated Software Upgrade Testing and Distribution System.
Proceedings of The 21st ACM Symposium on Operating Systems Principles (SOSP),
2007, with N. Knezevic, D. Kostic, R. Bianchini and W. Zwaenepoel.

Bibliography

[1] Altekar, G., and Stoica, I. ODR: Output-deterministic

Replay for Multicore Debugging. In SOSP ’09: Proceedings

of the ACM SIGOPS 22nd Symposium on Operating Systems

Principles (New York, NY, USA, 2009), ACM, pp. 193–206.

[2] ASF Bugzilla Bug 10073 upgrade from

1.3.24 to 1.3.26 breaks include directive.

http://issues.apache.org/bugzilla/show bug.cgi?id=10073.

[3] Ayers, A., et al. TraceBack: First Fault Diagnosis by Re-

construction of Distributed Control Flow. In PLDI ’05: Pro-

ceedings of the 2005 ACM SIGPLAN Conference on Program-

ming language design and implementation (New York, NY,

USA, 2005), ACM, pp. 201–212.

[4] Ball, T., and Rajamani, S. K. The slam project: debugging

system software via static analysis. In POPL ’02: Proceedings

of the 29th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages (New York, NY, USA, 2002), ACM,

pp. 1–3.

[5] Beattie, S., Arnold, S., Cowan, C., Wagle, P.,

Wright, C., and Shostack, A. Timing the Application

of Security Patches for Optimal Uptime. In Proceedings of the

16th Systems Administration Conference (2002).

[6] Beyer, D., Henzinger, T. A., Jhala, R., and Majum-

dar, R. The software model checker blast. STTT 9, 5-6 (2007),

505–525.

[7] Boonstoppel, P., Cadar, C., and Engler, D. R. Rwset:

Attacking path explosion in constraint-based test generation.

In TACAS (2008), pp. 351–366.

[8] Brumley, D., Newsome, J., Song, D., Wang, H., and

Jha, S. Towards automatic generation of vulnerability-based

109

signatures. In SP ’06: Proceedings of the 2006 IEEE Sympo-

sium on Security and Privacy (Washington, DC, USA, 2006),

IEEE Computer Society, pp. 2–16.

[9] Burnim, J., and Sen, K. Heuristics for scalable dynamic test

generation. Tech. Rep. UCB/EECS-2008-123, EECS Depart-

ment, University of California, Berkeley, Sep 2008.

[10] Cadar, C., Dunbar, D., and Engler, D. R. KLEE: Unas-

sisted and Automatic Generation of High-Coverage Tests for

Complex Systems Programs. In Proceedings of the 8th USENIX

Conference on Operating systems design and implementation

(2008), pp. 209–224.

[11] Cadar, C., Ganesh, V., Pawlowski, P. M., Dill, D. L.,

and Engler, D. R. Exe: automatically generating inputs of

death. In CCS ’06: Proceedings of the 13th ACM conference on

Computer and communications security (New York, NY, USA,

2006), ACM, pp. 322–335.

[12] Castro, M., Costa, M., and Martin, J.-P. Better Bug Re-

porting with Better Privacy. In ASPLOS XIII: Proceedings of

the 13th International Conference on Architectural support for

Programming Languages and Operating Systems (New York,

NY, USA, 2008), ACM, pp. 319–328.

[13] Chaum, D. Untraceable Electronic Mail, Return Addresses,

and Digital Pseudonyms. Communications of the ACM 4, 2

(February 1981).

[14] Cook, J., and Orso, A. MonDe: Safe Updating through

Monitored Deployment of New Component Versions. In Pro-

ceedings of the 6th Workshop on Program Analysis for Software

Tools and Engineering (PASTE) (September 2005).

[15] Costa, M., Castro, M., Zhou, L., Zhang, L., and

Peinado, M. Bouncer: Securing Software by Blocking Bad

Input. In SOSP (2007).

[16] Costa, M., Crowcroft, J., Castro, M., Rowstron, A.,

Zhou, L., Zhang, L., and Barham, P. Vigilante: End-

to-End Containment of Internet Worms. In Proceedings of the

20th SOSP (October 2005).

[17] Cox, L. P., Murray, C. D., and Noble, B. D. Pastiche:

Making Backup Cheap and Easy. In Proceedings of the 5th

110

Bibliography

Symposium on Operating Systems Design and Implementation

(December 2002).

[18] Dunlap, G. W., et al. ReVirt: Enabling Intrusion Analysis

Through Virtual-Machine Logging and Replay. SIGOPS Oper.

Syst. Rev. 36, SI (2002), 211–224.

[19] Emmi, M., Majumdar, R., and Sen, K. Dynamic test input

generation for database applications. In ISSTA (2007), pp. 151–

162.

[20] Fixing A Troubled Firefox 2.0 Upgrade.

http://softwaregadgets.gridspace.net/2006/10/30/fixing-a-

troubled-firefox-20-upgrade/.

[21] Firefox crashes after 1.5.0.9 update.

http://www.ubuntuforums.org/showthread.php?t=331274.

[22] Ganesh, V., and Dill, D. L. A decision procedure for bit-

vectors and arrays. In Computer Aided Verification (CAV ’07)

(Berlin, Germany, July 2007), Springer-Verlag.

[23] Gkantsidis, C., Karagiannis, T., Rodriguez, P., and

Vojnovic, M. Planet Scale Software Updates. In Proceedings

of SIGCOMM (September 2006).

[24] Glerum, K., et al. Debugging in the (Very) Large: Ten

Years of Implementation and Experience. In SOSP ’09: Pro-

ceedings of the ACM SIGOPS 22nd Symposium on Operat-

ing Systems Principles (New York, NY, USA, 2009), ACM,

pp. 103–116.

[25] Godefroid, P. Compositional dynamic test generation. In

POPL (2007), pp. 47–54.

[26] Godefroid, P., Kiezun, A., and Levin, M. Y. Grammar-

based whitebox fuzzing. In PLDI (2008), pp. 206–215.

[27] Godefroid, P., Klarlund, N., and Sen, K. Dart: di-

rected automated random testing. In PLDI ’05: Proceedings

of the 2005 ACM SIGPLAN conference on Programming lan-

guage design and implementation (New York, NY, USA, 2005),

ACM, pp. 213–223.

[28] Godefroid, P., Levin, M. Y., and Molnar, D. Auto-

mated whitebox fuzz testing. In Proceedings of NDSS’2008

(Network and Distributed Systems Security) (2008).

111

[29] Guo, Z., et al. R2: an Application-level Kernel for Record

and Replay. In OSDI’08: Proceedings of the 8th USENIX

Conference on Operating Systems Design and Implementation

(Berkeley, CA, USA, 2008), USENIX Association, pp. 193–208.

[30] Heyer, L. J., Kruglyak, S., and Yooseph, S. Exploring

Expression Data: Identification and Analysis of Coexpressed

Genes. In Genome Research (1999), pp. 1106–1115.

[31] Junqueira, F., Bhagwan, R., Hevia, A., Marzullo, K.,

and Voelker, G. M. Surviving Internet Catastrophes. In

Proceedings of the USENIX 2005 Annual Technical Conference

(April 2005).

[32] Kaseya Patch Management. http://www.kaseya.com/products/

patch-management.php.

[33] Kiezun, A., Ganesh, V., Guo, P. J., Hooimeijer, P., and

Ernst, M. D. Hampi: a solver for string constraints. In Pro-

ceedings of the eighteenth international symposium on Software

testing and analysis (New York, NY, USA, 2009), ISSTA ’09,

ACM, pp. 105–116.

[34] Lu, S., Zhou, P., Liu, W., Zhou, Y., and Torrellas, J.

Pathexpander: Architectural support for increasing the path

coverage of dynamic bug detection. In MICRO 39: Proceedings

of the 39th Annual IEEE/ACM International Symposium on

Microarchitecture (Washington, DC, USA, 2006), IEEE Com-

puter Society, pp. 38–52.

[35] Majumdar, R., and Sen, K. Hybrid concolic testing. In

ICSE (2007), pp. 416–426.

[36] Mosberger, D., and Jin, T. httperf: A Tool for Measuring

Web Server Performance. In The First Workshop on Internet

Server Performance (Madison, WI, June 1998), pp. 59—67.

[37] Musuvathi, M., and Engler, D. R. Model Checking Large

Network Protocol Implementations. In NSDI (2004).

[38] Musuvathi, M., Park, D. Y. W., Chou, A., Engler,

D. R., and Dill, D. L. CMC: A Pragmatic Approach to

Model Checking Real Code. SIGOPS Oper. Syst. Rev. 36, SI

(2002), 75–88.

[39] Muthitacharoen, A., Chen, B., and Mazieres, D. A

Low-bandwidth Network File System. In Proceedings of the

18th SOSP (December 2001).

112

Bibliography

[40] Myers, G. J. Art of Software Testing. John Wiley & Sons,

Inc., New York, NY, USA, 1979.

[41] Report of PHP problem after MySQL upgrade.

http://www.linuxquestions.org/questions/

showthread.php?t=425535.

[42] Necula, G. C., et al. CIL: Intermediate Language and Tools

for Analysis and Transformation of C Programs. In Proceedings

of Conference on Compilier Construction (2002).

[43] Nethercote, N., and Seward, J. Valgrind: a framework

for heavyweight dynamic binary instrumentation. SIGPLAN

Not. 42, 6 (2007), 89–100.

[44] Openssh, a free version of the ssh connectivity tools.

http://www.openssh.com/.

[45] Pariag, D., et al. Comparing the Performance of Web Server

Architectures. In EuroSys ’07: Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer Systems

2007 (New York, NY, USA, 2007), ACM, pp. 231–243.

[46] Park, S., et al. PRES: Probabilistic Replay with Execu-

tion Sketching on Multiprocessors. In SOSP ’09: Proceedings

of the ACM SIGOPS 22nd Symposium on Operating systems

principles (New York, NY, USA, 2009), ACM, pp. 177–192.

[47] PatchLink. http://www.patchlink.com/.

[48] PHP5 Migration guide. http://ch2.php.net/manual/en/

migration5.incompatible.php.

[49] Pǎsǎreanu, C. S., Mehlitz, P. C., Bushnell, D. H.,

Gundy-Burlet, K., Lowry, M., Person, S., and Pape,

M. Combining unit-level symbolic execution and system-level

concrete execution for testing nasa software. In ISSTA (2008).

[50] Secunia ”Security Watchdog” Blog.

http://secunia.com/blog/11.

[51] Sen, K., Marinov, D., and Agha, G. CUTE: a Concolic

Unit Testing Engine for C. In ESEC/FSE-13: Proceedings

of the 10th European Software Engineering Conference (New

York, NY, USA, 2005), ACM, pp. 263–272.

[52] Sobr, L., and Tuma, P. SOFAnet: Middleware for Soft-

ware Distribution over Internet. In Proceedings of the IEEE

Symposium on Applications and the Internet (January 2005).

113

[53] Srivastava, A., and Thiagarajan, J. Effectively prioritiz-

ing tests in development environment. SIGSOFT Softw. Eng.

Notes 27, 4 (2002), 97–106.

[54] Tucek, J., et al. Automatic On-line Failure Diagnosis at

the End-user Site. In HOTDEP’06: Proceedings of the 2nd

Conference on Hot Topics in System Dependability (Berkeley,

CA, USA, 2006), USENIX Association, pp. 4–4.

[55] The uClibc Library, a C Library for Linux.

http://www.uclibc.org/.

[56] Wang, R., Wang, X., and Li, Z. Panalyst: Privacy-aware

Remote Error Analysis on Commodity software. In SS’08: Pro-

ceedings of the 17th Conference on Security Symposium (Berke-

ley, CA, USA, 2008), USENIX Association, pp. 291–306.

[57] Yang, J., Twohey, P., Engler, D., and Musuvathi, M.

Using Model Checking to Find Serious File System Errors.

ACM Trans. Comput. Syst. 24, 4 (2006), 393–423.

[58] Zamfir, C., and Candea, G. Execution Synthesis: a Tech-

nique for Automated Software Debugging. In EuroSys ’10: Pro-

ceedings of the 5th European Conference on Computer Systems

(New York, NY, USA, 2010), ACM, pp. 321–334.

114

	Title
	Abstract
	Contents
	Introduction
	Characterizing Upgrades
	Methodology
	Survey Results
	Categories of Upgrade Problems
	Discussion

	Staged Deployment and Clustering
	Introduction
	Design and Implementation
	Discussion and Current Limitations
	Evaluation
	Conclusion

	Concolic Execution for Testing Software Upgrades
	Introduction
	Overview
	Design and Implementation
	Evaluation and Discussion
	Conclusion

	Bug Reporting
	Introduction
	Program Analysis and Instrumentation
	Reproducing a Bug
	Implementation and Methodology
	Evaluation
	Discussion and Future Work
	Conclusion

	Related Work
	Characterizing Upgrades
	Upgrade Deployment
	Testing
	Bug Reporting

	Conclusion
	Survey about software upgrades
	Curriculum Vitae
	Bibliography

