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Neural mechanisms and computations underlying stress effects
on learning and memory
Gediminas Luksys1,2 and Carmen Sandi3

Stress has complex effects on memory function that can vary

depending on the type of information that is learned and in

relation to inter-individual characteristics. Recent work has also

shown that stress can switch performance between memory

systems, biasing it toward habit in detriment of spatial or goal-

directed strategies. In addition, novel synaptic mechanisms

have been implicated in the effects of stress in plasticity and

memory. Computational modeling is emerging as a useful

approach to integrate and to ascertain neural and cognitive

computations underlying different effects of stress in memory.

Having provided novel explanations for the inverted-U-shaped

relationship between stress and cognitive performance, model-

based analysis studies can improve our understanding of

diverse effects of stress in cognition and psychopathology.
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Introduction
Stress can have profound effects on memory function,

both when chronically experienced and when acutely

coupled with a cognitive challenge [1]. In this review,

we mainly focus on the effects of acute stress on learning,

memory, and underlying mechanisms. We will also

examine new modeling approaches aiming to ascertain

the neural computations that underlie stress effects in

these cognitive processes.

It is generally accepted that acute stress or elevated stress

hormones facilitate memory consolidation while impair-

ing the retrieval of information [2]. Moreover, acute stress

is generally highly disruptive for working memory pro-

cessing, while it can facilitate implicit learning [1,2,3�].
Recently, several animal and human studies showed that

stress switches performance between memory systems,

promoting a transition from ‘flexible’ spatial or goal-

directed learning to ‘rigid’ habitual stimulus–response
(S–R) cognitive strategies [4�,5��,6,7].

However, one should be cautious when summarizing the

effects of stress on a particular memory process as either

positive or negative. Stress is not a unitary process, with

its duration, intensity, or timing with regards to the

cognitive challenge being critical for its cognitive out-

come [1]. In particular, stress intensity has been long

recognized in the literature as highly relevant, with the

predominant belief that an inverted-U-shaped function

can explain the relationship between stress intensity and

memory (i.e. low and high stress levels impairing mem-

ory, whereas intermediate levels facilitating it). Strik-

ingly, despite the popularity of this hypothesis,

experimental evidence supporting the existence of an

inverted-U-shaped relationship for performance of rats in

a hippocampal learning task under the same experimental

conditions was presented only recently [8].

Stress mediators: glucocorticoids and
norepinephrine
Glucocorticoids and the noradrenergic system have been

identified as key mediators of the cognitive effects of

stress [1,2,9,10]. Adrenal glucocorticoids, steroid hor-

mones produced by the adrenal glands, can cross the

blood–brain barrier, gaining access to the brain. Through

the binding to specific receptors, glucocorticoids can

affect brain function and cognition via slow genomic

and rapid non-genomic actions [11]. Noradrenergic

neurons in the locus coeruleus project to many forebrain

regions. Animal studies showed that corticosterone and

norepinephrine (NE) act together to facilitate memory

formation through actions involving the amygdala, hippo-

campus, and prefrontal cortex (PFC) [10,12]. More

recently, glucocorticoids and the noradrenergic system

were shown to interact in the medial PFC in producing

working memory impairment [13]. In addition, the capa-

bility of these systems to influence learning processes

depending on other brain systems — such as the dorsal

striatum — was also shown [14].

Recent work has also implicated the action of glucocorti-

coids and noradrenergic activity in the switches between

memory systems described above for stress. The activation

of these stress systems was shown in rodents to elicit the

Current Opinion in Neurobiology 2011, 21:502–508 www.sciencedirect.com



switch from spatial to stimulus–response (S–R) learning

[15] and, in humans, from goal-directed to habitual control

[16]. For example, control human subjects submitted to an

outcome devaluation paradigm following instrumental

learning in which two actions led to two distinct food

outcomes, chose the action that was associated with the

devalued outcome significantly less than at training. How-

ever, subjects that received the synthetic glucocorticoid

hydrocortisone along with the a2-adrenergic receptor

antagonist yohimbine — which increases noradrenergic

activity — were completely insensitive to the change in

the value of the outcome [16]. It is important to note that

only one dose of each tested hormone-targeting drug was

included in these studies and, therefore, potential differ-

ences related to variations in the degree of activation of

these systems have been, so far, not explored.

Recent human studies provide information about the

network level mechanisms. Psychological stress was

shown to reduce working memory-related activity in

the dorsolateral PFC [17] as well as reward-related

responses in the medial PFC without affecting ventral

striatal responses [18]. Similarly, the concerted activation

of glucocorticoids and the noradrenergic system induced a

strong deactivation of prefrontal areas [19]. These find-

ings suggest that stress-induced biases toward habitual

behaviors may be mostly prompted by a primary impair-

ment of PFC-dependent cognitive control mechanisms.

Stress and synaptic plasticity
There is great interest in understanding how acute stress

affects synaptic plasticity in different brain regions with

the final goal of identifying mechanisms explaining the

divergent effects of stress in different memory systems.

In general, stress impairs long-term potentiation (LTP) in

the hippocampus and PFC, while it facilitates it in the

amygdala [20]. In the hippocampus, stress also facilitates

long-term depression (LTD) while glucocorticoid effects

show an inverted-U-shape [20], with low and high corti-

costerone levels impairing and intermediate levels facil-

itating LTP [21].

Recent evidence points to glutamatergic mechanisms as

key mediators of the cognitive actions of acute stress. In

particular, a-amino-3-hydroxy-5-methylisoxazole-4-pro-

pionic acid receptor (AMPAR) trafficking has been high-

lighted among the mechanisms whereby stress and

glucocorticoids facilitate spatial memory [22��] and

LTP [23]. Recent findings have implicated the mechan-

isms that underlie LTD induction among those that

mediate the impairing effects of stress and glucocorticoids

in the retrieval of information [24], including the acti-

vation of extrasynaptic GluN2B subunit-containing N-

methyl-D-aspartate receptors (NMDARs) and the endo-

cytosis of the GluA2 AMPAR subunit [9,24]. Regarding

other synaptic proteins, strong evidence has accumulated

for the involvement of the neural cell adhesion molecules

(NCAM) in both facilitating [25] and impairing [26]

effects of stress in memory function [27].

Computational approaches to plasticity and
learning
Computational approaches are emerging as an important

development in neuroscience. By employing biologically

plausible mathematical algorithms, computational mod-

eling is providing insight into the nature of synaptic

plasticity and learning, with a few recent attempts

addressed to model the impact of stress on these pro-

cesses. LTP and LTD have been modeled based on the
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Box 1 Temporal difference reinforcement learning and its

parameters

In TDRL [32], environment is described by states s that an agent

(animal, human, or robot) occupies (e.g. its location — see Figure 1),

and actions a it can perform to move between states and obtain

rewards (r > 0) or face punishments (r < 0). The agent’s goal is to

learn the reward value of each state V(s) and/or of each action — so-

called Q-value Q(s, a). If outcomes r depend only on the last state–

action pair, not their entire history, the optimal actions can be learned

efficiently using the TDRL algorithm. To account for future outcomes

(albeit discounted by a positive factor g < 1), the value of action a

performed under state s at time t can be written as

Qðst ; atÞ ¼ E½r t þ g � r tþ1 þ g2 � r tþ2 þ . . .�
¼ E½r t � þ g � Qðstþ1; atþ1Þ: (1)

If the discounting factor g is small, immediate rewards are favored

to future ones, whereas in case of large g values immediate and

future rewards are considered similarly important.

If actual reward rt differs from expected reward E[rt], their

difference — the reward prediction error — can be used to update

the Q-values:

DQðst ; atÞ ¼ aðrt � E½rt �Þ
¼ aðrt � Qðst ; atÞ þ g � Qðstþ1; atþ1ÞÞ;

where a is the learning rate.

Once Q-values of different actions are learned, they can be used for

choosing the best action (i.e. the one with the highest value). To allow

for exploration, actions can be chosen probabilistically, that is using

a sigmoidal relationship between their Q-values and the corre-

sponding action probabilities:

pðaÞ ¼ expðb � Qðs; aÞÞ
P

iðexpðb � Qðs; aiÞÞÞ
where the sum Si runs over all actions ai available from state s, p(a) is

the probability of choosing the action a, exp the exponential function,

and b the exploitation factor (also called inverse temperature),

indicating steepness of the sigmoid.

Learning rate a, exploitation factor b and discounting factor g can

influence agent’s learning behavior not only quantitatively but also

qualitatively (see Figure 1). It has been suggested [41] that to achieve

efficient learning a should be gradually decreased and b increased.

This allows sufficient flexibility at early stages of learning and

preservation/exploitation of the acquired knowledge later. However,

optimal parameter settings strongly depend on task structure and

requirements.
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ideas of Hebbian learning [28]: positively correlated firing

of connected neurons should lead to an increase in

synaptic weights (LTP), whereas negatively correlated

firing to a decrease in synaptic weights (LTD). In com-

putational terms, this can be expressed as follows: if x and

y are the firing rates of two connected neurons, hxi and hyi
the respective average firing rates, and parameter a con-

trols the learning rate, then the change in synaptic weight

between these 2 neurons could be the following [29]:

Dwxy ¼ aðx � xh iÞ � ðy � yh iÞ

To provide a better fit to biological data, several modi-

fications of this learning rule have been suggested. For

example, according to the Bienenstock–Cooper–Munro

(BCM) rule [30], the change in synaptic weight is pro-

portional to the presynaptic firing rate x and to a nonlinear

function f of the postsynaptic rate y and a threshold um
separating potentiation (with y > um) and depression

(with y < um):

Dwxy ¼ axfðy; umÞ

Threshold um changes according to a slowly evolving time

average of postsynaptic activity and can be influenced by

various neurophysiological factors. For instance, in the

hippocampus high levels of stress, through glucocorticoid

actions, increase intracellular Ca2+ levels [21]; in BCM

theory it has been suggested [31] that these changes

correspond to shifting the threshold um to the right, which

leads to a relative prevalence of LTD compared to LTP.

Behavior in many learning and memory tasks is guided by

appetitive and aversive outcomes. The theory of temporal
difference reinforcement learning (TDRL [32]; Box 1) was

developed based on the assumption that intelligent agents

learn reward-related consequences of actions they perform

at different situations of their environment (so-called

‘states’), and based on this knowledge they can choose

actions that lead to maximal expected reward. As reward-

related consequences of actions can be both immediate and

delayed, their relative importance is determined by the

discounting factor (Box 1). Another key aspect in TDRL is

the exploration–exploitation dilemma: should the see-

mingly best actions be chosen to gather maximal reward

or should other (seemingly worse) actions be explored to

obtain more accurate information about their reward-

related consequences? How a TDRL model behaves here

depends on the exploitation factor (Box 1).

In recent years key elements of TDRL models (such as

reward prediction errors and action values) were shown to

have neural correlates by numerous electrophysiological

and neuroimaging studies in animals and humans [33–35].
While the simplest (discrete) version of TDRL was used

in conditioning tasks [36��], it was also applied to spatial
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Effects of TDRL parameters on agent’s behavior. Imagine a maze, in whose center there is a platform with a large reward (R = 10). The environment is

represented by 16 states (4 � 4). Actions correspond to movements between these states and are normally allowed in both directions, except in the

case of walls (no crossing allowed) and around the platform (crossing allowed in only one direction — entry from the bottom and exit to the right).

Generally the agent does not like to be in central area of the maze (e.g. aversion to open spaces), therefore locations near the outer wall are considered

to have a small reward r = 1. The optimal strategy is to enter the central area from the left, visit the platform, and return along the top (a shorter route

than along the bottom). In TDRL, however, the agent can learn and perform such a strategy only under certain parameter settings: (a) If discounting is

steep, e.g. g = 0.5, the agent will stick to the wall, because waiting for three steps to get the large reward has a lower discounted value

(g3�Rt+3 = 0.53�10 = 1.25) than staying at the wall for 4 steps (rt + g�rt+1 + g2�rt+2 + g3�rt+3 = 1 + 0.5 + 0.52 + 0.53 = 1.875, see Eq. (1)) in Box 1. Under

lesser discounting, e.g. g = 0.9, going for the large reward (0.93�10 = 7.29) becomes preferable to walking along the wall (1 + 0.9 + 0.92 + 0.93 = 3.439).

(b) If exploitation b is very high already at the beginning, the agent will keep choosing the actions where it experienced (even small) rewards first, that is

if at the starting location (S) it first chose to walk along the wall, it will never try going into the center because it does not know the reward is there (and is

unlikely to discover it without sufficiently exploring the space). (c) If exploitation b remains low, the agent may learn going to the platform, but it may not

always take the optimal (shorter) route along the top, because at the platform exit location (E) the difference between reward R = 10 discounted for nine

steps (the optimal route) and for 11 steps (the suboptimal, longer route) is likely to be small. Such small differences in value can only be distinguished

under high exploitation b and discounting factor g. (d) Under explorative behavior (with low exploitation b), not only optimal performance is impossible,

but because it takes longer to reach the goal, learning can be slower as well (with the same learning rates a).
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learning by using hippocampal place cell-like continuous

representation of states [37,38]. More recently, ‘three-

factor’ rules that combine Hebbian learning with the

reward-related term were also used to model spatial

learning [39��].

Individual differences in learning under stress
Computational models are useful not only because they

provide putative computational mechanisms of learning

and memory, but also because they can account for

individual differences. Performance of such models

depends on certain parameters (e.g. exploitation and

discounting factors in TDRL; Box 1 and Figure 1) that

can be better interpreted in cognitive terms than classical

behavioral measures or their principal components [40].

Such parameters can have neural correlates [41,42�] and

differ between individuals [43,44�].

Considering the role of stress in learning and memory,

trait anxiety has been identified as a key predictive factor

for inter-individual differences in performance in learning

tasks. As compared to low anxious rats, highly anxious

ones display slower acquisition and worse retention in

spatial versions of the water maze [8,45] as well as

impaired place recognition memory in the Y-maze task

[46]. Likewise, increasing anxiety levels — by injecting

an anxiogenic drug either peripherally or directly into the

amygdala and either pre-training or just before a probe

trial — was shown to bias rats toward the use of (striatum-

mediated) S–R strategies instead of (hippocampus-

mediated) place strategies in navigational tasks that could

be solved by either strategy [47]. When the same treat-

ment was applied to animals trained in single-solution

plus-maze tasks that require the use of either cognitive or

habit learning, impaired (hippocampus-dependent) place

memory and enhanced habit learning were observed [47].

Model-based analysis of stress and cognition
As opposed to classical neurobehavioral approaches, it has

become increasingly popular to use computational

models of behavior to infer underlying cognitive

parameters and correlate them with experimental manip-

ulations and neural changes [48��]. Motivated by the

landmark discovery [33] of midbrain dopamine (DA)

neurons in monkeys being responsive to the reward

prediction error (i.e. the difference between actual and

expected rewards), model-based analyses related dis-

counting factors to the serotonin (5HT) levels [49],

exploration to the frontopolar cortex activity [50], and

learning rates to the anterior cingulate activity [51].

Polymorphisms in DARPP-32, DRD2 and COMT —

genes that regulate different aspects of DA activity —

were linked to differences in learning rates and explora-

tion [43,44].

The model-based analysis approach has several benefits:

firstly, while conventional behavioral measures (such as

escape latencies and response times) reflect a mix of

cognitive variables (acquisition rate, memory strength,

exploration vs. exploitation), computational model

parameters can be interpreted without much ambiguity;

secondly, if well-established models (e.g. TDRL) with

identical or similar parameters are used to analyze data

from different experiments, this enables comparability.

However, certain requirements should be addressed to

avoid faulty interpretation of results: firstly, experimental

setup should not be oversimplified in modeling it, as even

detailed aspects may substantially affect model’s per-

formance; secondly, any essential model parameters

should not be fixed but remain flexible — for instance,

in TDRL fixing the exploitation factor may lead to

attributing all behavioral differences to the learning rate,

even if the former can explain them better.

The role of stress in learning was only recently addressed

using computational approaches [36], where conditioning

behavior of two genetic strains of mice (‘calm’ C57BL/6

and more anxious DBA/2) was modeled using TDRL.

Individually estimated model parameters differed be-

tween genetic strains and stress conditions, and correlated
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TDRL parameters and the inverted-U-shape. According to a recent

computational model [36], the inverted-U-shaped relationship between

stress/arousal and performance can be explained by changes in TDRL

parameters: increasing exploitation b up to intermediate arousal levels

and steeper reward discounting g as a result of high stress. Stress,

anxiety and increased NE can shift individual’s position on the x-axis to

the right, whereas satiety or decreased NE can shift it to the left. In

particular, frequent behavioral switches, observed at high levels of NE

(or stress), can result from increasingly steep discounting combined with

high exploitation. As Q-values of actions are defined as expected

cumulative future reward (see Eq. (1) in Box 1), they become smaller not

only if the actual reward diminishes but also if the discounting factor g is

decreased. As learning is applied for currently exploited actions, their Q-

values become temporarily smaller compared to alternative actions.

When these less favorable actions are exploited, their Q-values

decrease as well, leading to a higher number of switches.
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with individual’s anxiety and motivation. The results

showed that for less anxious animals stress increased

exploitation, generally improving their performance,

whereas for more anxious animals it led to steeper dis-

counting, which impaired learning of delayed rewards.

They suggest that both sufficient exploitation and not-

too-steep discounting are necessary to achieve optimal

performance at the middle of the inverted-U-shape

(Figure 2). Consistent with this explanation, stress is

linearly related to performance in simple tasks (which

typically do not require learning over delays), and shows

an inverted-U-shaped relationship in more complex tasks

[20]. How exactly the state of high stress/norepinephrine

should be interpreted is still unclear. The adaptive gain

and optimal performance theory [52] proposed that labile

attention and frequent switching observed under this

state reflected exploration. However, recent model-based

analysis studies [36,53�] found that increasing norepi-

nephrine or stress levels did not lead to more exploration

but rather the opposite. Thus, the observed behavior is

possibly because of high exploitation combined with

steeper discounting, which can result in relative devalua-

tion of currently performed actions compared to their

alternatives (Figure 2).

Conclusions
The active research field of stress and cognition has made

substantial progress in recent years in characterizing a

myriad of effects across learning types and stress conditions

as well as network, cellular and molecular mechanisms

involved in stress effects. Understanding how these differ-

ent levels interact is difficult with conventional

approaches. Computational modeling is an emerging

approach to the field of stress and memory that allows

revealing the fundamental cognitive computations

affected by different degrees of stress in different individ-

uals. Recent modeling results suggest that stress shifts

cognitive operations from exploration predominant under

low stress levels to increased exploitation at intermediate

levels, and to steeper discounting of future rewards with

increasing stress (and noradrenergic) levels. It is tempting

to speculate that these operations can explain recent data

indicating that stress switches performance between mem-

ory systems, from spatial or goal-directed learning to habit-

ual stimulus–response cognitive strategies. Since using

model-based analyses can help identify neural mechan-

isms underlying specific cognitive operations, we believe

that their application to the field of stress and cognition can

improve our understanding of the diversity of effects that

stress impinges not only in learning and memory but also in

various human psychopathologies.
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