
On Probabilistic Fixpoint and Markov Chain
Query Languages

Daniel Deutch
Tel Aviv University

danielde@post.tau.ac.il

Christoph Koch
Cornell University

koch@cs.cornell.edu

Tova Milo
Tel Aviv University
milo@cs.tau.ac.il

ABSTRACT
We study highly expressive query languages such as datalog,
fixpoint, and while-languages on probabilistic databases. We
generalize these languages such that computation steps (e.g.
datalog rules) can fire probabilistically. We define two possi-
ble semantics for such query languages, namely inflationary
semantics where the results of each computation step are
added to the current database and non-inflationary queries
that induce a random walk in-between database instances.
We then study the complexity of exact and approximate
query evaluation under these semantics.

Categories and Subject Descriptors
H.2.3 [Database Management]: [Languages]

; H.2.1 [Database Management]: [Logical Design]
; G.3 [Mathematics of Computing]: [Probability and

Statistics]

General Terms
Algorithms, Languages, Theory

1. INTRODUCTION
Probabilistic databases have recently started to attract

considerable interest. A number of query languages that are
analogs of relational algebra or SQL have been studied for
probabilistic databases [6, 23, 8, 3, 4, 15, 16, 17, 12], but so
far there has been virtually no work on more expressive lan-
guages such as fixpoint and while-languages beyond Fuhr’s
original proposal to use datalog on probabilistic databases
in the context of information retrieval [11].

Highly expressive query languages with an iteration con-
struct enable interesting new applications of probabilistic
databases and query language research. Iterating languages
with probabilistic changes to the database (state) can be
used to declaratively specify (queries over) Markov Chains,
random walks and stochastic processes [10]. This opens

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0033-9/10/06 ...$10.00.

up entirely new application areas for data management re-
search.

There are many applications of Markov Chains (MCs)
and Markov Chain Monte Carlo (MCMC) [19, 14] in ar-
eas such as bioinformatics and statistical physics, (cf. e.g.
[22, 5]), and their theory plays an increasingly important
role in theoretical computer science and algorithmics. So
far, few systems based on Markov Chains have been devel-
oped that are reusable, and none at all that are application
domain-independent and that allow to program MCMC us-
ing easy to use declarative languages. Declarative datalog-
like languages for defining Markov Chains (and walks over
them) and systems that efficiently execute queries in such
languages, would allow to improve research productivity in
areas that use Markov Chains to solve computational tasks,
just like relational database management systems have greatly
improved productivity in the context of business software
and information systems. Declarative query languages for
Markov Chains would also allow to program MCMC appli-
cations on a higher level of abstraction, which may yield
interesting insights into commonalities among such applica-
tions, their componentization, and combination into more
sophisticated applications.

The main goals of this paper are to establish useful proba-
bilistic query languages based on highly expressive languages
in the database literature, and to study their expressiveness
and complexity. Specifically, we study probabilistic exten-
sions for fixpoint / while query languages, and a probabilis-
tic extension for datalog, again with inflationary and non-
inflationary semantics. We show how classical examples such
as random walks over graphs, probabilistic reachability anal-
ysis and Bayesian Inference may be expressed in our query
languages.

The core of our complexity results is summarized in Ta-
ble 1. The languages in this table are ordered by increasing
expressive power, that is, each language is expressively sub-
sumed by the languages below it in Table 1. As we show,
exact evaluation and approximation with quality guarantees
relative to the sizes of the probability values to be computed
(“relative approximation”) are infeasible, but absolute ap-
proximation (i.e. approximation up to a constant factor) is
efficiently feasible for inflationary queries. The depicted NP-
hardness results relate to the corresponding decision prob-
lems, namely “does a given value p approximate the correct
probability value up to a given ε”, where “approximate” re-
lates to either relative or absolute approximation, according
to the corresponding problem.

We show that our hardness results apply even for very

Language exact computation relative approximation absolute approximation
(linear) datalog]P -hard, NP-hard (Thm. 4.1) in PTIME
without probabilistic rules in PSPACE
inflationary fixpoint]P -hard, NP-hard in PTIME (Thm. 4.3)
with probabilistic rules in PSPACE
non-inflationary fixpoint]P -hard, NP-hard NP-hard; PTIME in input size
with probabilistic rules in (2-)EXPTIME and mixing time (Thm. 5.1,5.6)

Table 1: Overview of complexity results (data complexity).

restricted variants of the query languages, and the algo-
rithms apply to the full-fledged languages. We also discuss
noninflationary probabilistic datalog (omitted from the ta-
ble), whose expressive power is subsumed by that of non-
inflationary fixpoint. Specifically, we show that our hardness
results for non-inflationary fixpoint languages hold already
for non-inflationary probabilistic datalog.

The paper is organized as follows. In Section 2 we re-
call the definitions of probabilistic databases as well as the
notions of complexity and approximations used to measure
the quality of query evaluation algorithms. In Section 3 we
formally define our query languages, in inflationary and non-
inflationary flavors; query evaluation for inflationary and
non-inflationary queries is studied in Sections 4 and 5 re-
spectively. We conclude with an overview of related work in
Section 6.

2. PRELIMINARIES
This section provides common definitions that will be used

in the remainder of the paper. First, we recall some common
notions of computational complexity and approximation al-
gorithms. These notions will be used to analyze our algo-
rithms. Then, we give background on probabilistic databases.
Last, we recall definitions and important properties of Markov
Chains.
2.1 Complexity and Approximations
Complexity. At some parts of this paper we address the
exact computation of probabilities, which is essentially a
counting problem and its complexity analysis thus makes
use of counting complexity [24]. Specifically,]P is the set
of counting problems associated with decision problems in
NP. More formally, a counting problem is in]P if there is a
non-deterministic, polynomial-time Turing Machine whose
number of accepting computations, for each instance I of
the problem, is equal to the result count of I. A problem is
]P -hard if and only if every problem in]P can be reduced
to it in polynomial time.

We further consider probabilistic algorithms, and recall
in this context that BPP [18] (Bounded-error, Probabilistic,
Polynomial time) is the class of all decision problems solv-
able by a probabilistic Turing machine in polynomial time,
with an error probability of at most ε for all instances, for
some 0 ≤ ε < 0.5. Note that the choice of ε in this range
may be arbitrary; any polynomial-time algorithm A with er-
ror probability bounded by ε may be transformed into one
with error probability bounded by ε′, by executing A multi-
ple times and taking a “majority vote” of its answers. The
Chernoff bound [7] guarantees that the number of required
iterations is logarithmic in 1

ε
.

When analyzing the complexity of query evaluation, one
may consider data complexity and combined complexity [25].
Data complexity is the complexity of evaluating a query as a

function of the database size, while combined complexity is a
function of both the database and the query sizes. We focus
here on data complexity, as, even for restricted versions of
the query languages we study here, it has been shown that
the combined complexity is]P -hard. Thus, whenever we
refer to the complexity of query evaluation, we mean data
complexity.

Approximations. We use two notions of approximation,
common in the literature, namely absolute and relative ap-
proximations [26]. An approximation algorithm A to a count-
ing problem C takes as input an instance I of C and a pa-
rameter ε. Denote by C(I) the correct answer for I, and
by A(I) the output of A when executed over I. We say
that A is an absolute approximation if |A(I)−C(I)| ≤ ε for
every input instance I, ε. A is a relative approximation if
C(I) ∗ (1− ε) ≤ A(I) ≤ C(I) ∗ (1 + ε) for every I.

A randomized absolute approximation algorithm A re-
ceives as input an additional parameter δ, and satisfies Pr(|A(I)−
C(I)| ≤ ε) > δ for every input instance I, where Pr stands
for probability. Analogously, a randomized relative approx-
imation algorithm A satisfies Pr(C(I) ∗ (1 − ε) ≤ A(I) ≤
C(I) ∗ (1 + ε)) > δ.

The corresponding decision problems ask whether a given
value p is an absolute (relative) approximation of the correct
answer C(I), up to a given ε; when we provide in the sequel
NP-hardness (data complexity) results for these problems,
we mean NP-hardness of the corresponding decision problem
(w.r.t. the database size).

2.2 Probabilistic databases
We use the definition of [16] for probabilistic databases, as

follows. The schema used is a relational database schema;
a probabilistic database over a schema with relation names
R1, ..., Rk is a finite set of possible worlds

{(R1
1, . . . , R

1
k, p[1]), . . . , (Rn

1 , . . . , Rn
k , p[n])}

with positive rational weights p[i] s.t.
∑

i p[i] = 1.
We give here two examples for previously introduced mod-

els that allow the generation of probabilistic databases, namely
probabilistic c-tables [13] and relational algebra enriched with
a repair-key [16] construct.

Probabilistic c-tables. Probabilistic c-tables with finite vari-
able domains are defined as follows.

Definition 2.1 ([13]). A c-table is a relation in which
each tuple is associated with a condition. A condition is
a boolean combination of (in)equalities involving variables
and constants of some finite domain V . In a probabilistic
c-table (pc-table), these variables are random variables. A
probabilistic c-table is a pair of a c-table and the repre-

sentation of a joint probability distribution of the random
variables occurring in the c-table. The set of possible worlds
of a probabilistic c-table is the set of possible valuations
θ = (X1 = x1, . . . , Xk = xk) of its random variables. The
probability of a world is the probability of the valuation and
the database of the world is the set of tuples whose conditions
are true for θ.

The probabilistic c-tables defined in this way are succinct
means of representing any finite probabilistic database. One
may fix without loss of generality that the random variables
of a probabilistic c-table are independent. Thus, the joint
distribution can be given by individual distributions for each
of the random variable, assigning for each random variable
X and each possible value x of X, a probability Pr[X = x].
The joint distribution can be obtained as the product of the
distributions of the individual random variables.

Repair-key. Let ~A, P be column names from the schema

of a relation R, where ~A is a vector of columns and P is a
single column, containing only numerical values which are
all greater than zero.

The operation repair-key ~A@P (R) [16], samples one maxi-

mal repair of key ~A. That is, for each distinct value ~a of ~A
appearing in tuples of R, denote the set of tuples in which ~a
is the key value by T~a. For each such ~a, we sample exactly
one tuple ~t from T~a with the probability distribution given
by (normalized) column P 1. That is, the probability of ~t

to be chosen is
~t.P∑

~t′∈T~a

~t′.P
. The application of a repair-key

construct generates a set of possible worlds (samples) with
a single tuple for each key value; the probability of a possi-
ble world is the product of probabilities of the chosen tuples
within their groups T~a, that is, the groups are assumed in-
dependent.

Example 2.2. Consider the simple relation R depicted
in Table 2. Each tuple in this relation corresponds to a
(possibly incorrect) fact regarding a basketball player and
the team for which he currently plays. The third column
represents the level of belief in this fact, i.e., that this player
plays for this and no other team, to be considered in relation
to the levels of belief in alternatives. If this database is
constructed by accumulating the opinions of various users,
this belief value is possibly derived from the popular support
in the fact (i.e. the number of users that think that this fact
is correct). The Player column constitutes a primary key
here, but note that, still, there are multiple tuples sharing
the same value for this attribute. Thus, the key should be
repaired, meaning a single tuple (and thus, team) for each
player should be chosen.

By applying repair-keyPlayer@Belief (R), this choice is per-
formed probabilistically, with probabilities determined by
the relative belief in each option. That is, the probability of
the tuple (Bryant, LA Lakers) to be chosen is 17

17+3
, and the

probability of the tuple (Bryant, NY Knicks) to be chosen is
3

17+3
; similarly, for the tuples having “Iverson” as a player,

one of them is chosen according to their relative belief values

1We assume here that there is a functional dependency in
R : schema(R) − P → P . Alternatively, assume a seman-
tics of repair-key that first replaces any group of tuples

(~b, p1), . . . , (~b, pn) that violates this functional dependency

by a single tuple (~b,
∑

i pi).

Player Team Belief
Bryant LA Lakers 17
Bryant NY Knicks 3
Iverson Philadelphia 76ers 8
Iverson Memphis Grizzlies 7

Table 2: Basketball Players Table

(8
8+7

and 7
8+7

). Each possible world database consists of a
single fact for each key value, and its probability is the mul-
tiplication of the probability values over all tuples chosen to
appear in the Database. 2

We further exemplify the use of repair-key in Section 3.
The standard notion of relational algebra can be enriched

with the repair-key construct. Each application of the repair-
key generates a set of possible worlds, and further relational
algebra operations are applied in each possible world inde-
pendently. The result of evaluating such an enriched query
Q over a relation R is a probabilistic database, and we de-
note it by Q(R). Q(R) is thus a set of relations, each cor-
responding to a possible world and associated with a prob-
ability value. Note that the repair-key operator is the natu-
ral probabilistic generalization of the witness operator – see
e.g. [1]. Its expressive power was discussed in [16]. Any fi-
nite probabilistic database can be constructed from certain
databases (that is, databases consisting of a single possi-
ble world with probability 1) using queries of this language.
Specifically, with the repair-key construct, pc-tables as de-
fined above may be simply viewed as “macros”: the proba-
bilistic choices generating possible worlds may be simulated
by a polynomial number of repair-key construct applica-
tions. We further consider the connection between c-tables
and the repair-key construct in the sequel.

For ease of presentation, we will use the following abbre-
viations: we optionally omit the column parameter P and
write just repair-key ~A(R). In that case, a tuple is chosen
from its group T~a uniformly at random; that is,

repair-key ~A(R) := repair-key ~A@P (R× ρP ({1})).
Here× is the standard relational product, and ρ is renaming.
We also use

repair-key@P (R) := repair-key∅@P (R)

for the choice of a single tuple from R, regardless of key
values, with probability set for each tuple according to its
relative value of P with respect to the sum of P values over
all tuples of R. repair-key(R) chooses a single tuple out of
R, uniformly.

2.3 Markov Chains
We next provide, in short, some definitions for Markov

Chains and their properties. The reader is referred to [10]
for details.

Markov Chains. A Markov Chain (MC) is a finite state
machine (FSM) with transitions annotated by probabilities
such that the sum of the probability annotations of the out-
going transitions of a state is 1. The probability of each
transition in an MC does not depend on previous states of
the process. A random walk over an MC starts at some arbi-
trary state of the MC and at each point randomly chooses,

according to the transition probabilities, a transition orig-
inating at its current state and continues from its target
state.

A Markov Chain is irreducible if a random walk starting at
any state i will eventually reach any state j with probability
greater than 0. The period of a state s in a Markov Chain is
a number k such that any return to a state i must occur in
multiples of k steps. Namely, k = gcd{n : Pr(Xn = i|X0 =
i) > 0}, where Xi is the state after i steps of the walk. If
k = 1 for all states, then the MC is said to be aperiodic. A
state i is said to be positively recurrent, if, starting at i, the
probability of eventually getting back to i in a finite number
of steps is 1. An MC is positively recurrent if all of its states
are positively recurrent. An MC is ergodic if it is aperiodic
and positively recurrent.

Stationary Distributions. The transition matrix P is de-
fined, for a given MC M , by Pij being the probability of
transition from state i to state j. The stationary distribu-
tion π over an MC M is then a distribution over the state
space of M , such that π = πP . Such distribution uniquely
exists for M if and only if M is irreducible and positively
recurrent.

Markov Chain Monte Carlo. Markov Chain Monte Carlo
(MCMC) algorithms [14, 19] sample from a probability dis-
tribution π by constructing an ergodic MC M whose sta-
tionary distribution corresponds to π, performing a random
walk over M , and using the distribution of nodes observed at
a random point of the walk as an estimate for the underly-
ing stationary distribution. To sample correctly, the Markov
chain must be first mixed, meaning that the probability of
the walk being at a state i is independent of the initial state
of the walk, and is approximately πi (the stationary proba-
bility of state i). When M is ergodic, this is guaranteed to
occur if the walk is long enough.

The mixing time of an ergodic MC is thus defined as the
number of steps it takes to “forget” the initial state, namely,
for some given ε, it is the smallest t(ε) such that |Pr(St(ε) =
i) − πi| < ε for each state i, where St(ε) is the state of the
random walk after t(ε) steps. For an ergodic MC there exists
such t(ε) for every value of ε.

3. LANGUAGE DEFINITIONS
In this section, we formally define our query languages

and provide some examples of their use.

3.1 Noninflationary language
We start by considering standard relational databases,

where first-order interpretations are generalized by a sam-
pling extension based on the repair-key operation. Then we
define non-inflationary queries based on this interpretation.
We extend the discussion to probabilistic c-tables below.

Definition 3.1. A probabilistic first-order interpretation
over relational schema R1, . . . , Rk is a tuple Q = (Q1, . . . , Qk)
of queries in relational algebra extended by the repair-key
operation such that the result schema of each query Qi is
the schema of Ri. Given a relational database A, such an
interpretation defines a probabilistic database Q(A) whose
worlds are all (A1, ...,Ak, P) s.t. each Ai i = 1, ..., k is a
possible result (world) of Qi(A) and P is the multiplication
of the probability values associated with each Ai in Qi(A).

Next we introduce our probabilistic analog of (noninfla-
tionary) while-queries (cf. e.g. [1]).

Definition 3.2. A noninflationary query or forever-query
over a given database schema is a pair (Q, e), where Q is a
probabilistic first-order interpretation of the schema, called
the transition kernel, and e is a low-complexity Boolean re-
lational database query, called the query event. We will
assume that query events are of the form ~t ∈ R, check-
ing whether a given tuple ~t is in a relation of the current
database state.

Conceptually, such a query is evaluated against an input
relational database – the initial state – by the following pro-
gram:

State := the input database;
forever {

State := Q(State);
}

The query language semantics is as follows. Note that
Q(state) is in general a probabilistic database, i.e. is a set
of possible worlds; the loop body is applied in every possible
world, possibly generating new possible worlds etc. Intu-
itively, the application of the forever-loop corresponds to
random walk over the database states, starting from the in-
put database state, with probabilities of walking from state
s to state s′ dictated by the probability of s′ among the
possible worlds of Q(s). The query result is the probability
that the query event is true at an arbitrary point in time
in the infinite random walk, i.e., the probability that after
arbitrarily many steps, the current state satisfies ~t ∈ R.

More formally, a world sequence in the forever-loop is a
sequence of database states seq = [s1, ..., sk] such that s1

is the initial database state and si is a possible world of
Q(si−1), associated with its probability pi. We denote the
length of seq by len(seq). The probability of seq, denoted
Pr(seq), is

∏
i=1,...,k pi. The probability of being in a given

database state s, at an arbitrary point in time, in an infinite
random walk over database instances, is then defined as

Pr(s) = lim
k→∞

∑

{seq|len(seq)=k}
Pr(seq)· |{i|si = s, 1 ≤ i ≤ k}|

k
.

Following [10], the limit exists and is finite. Last, the query
result is the sum of probabilities Pr(s) of all database states
s satisfying ~t ∈ R.

We note that Q, along with the initial database, define a
Markov Chain M over database states. When M is ergodic,
the query result is also the probability that ~t ∈ R according
to the stationary distribution of M .

Example 3.3 (Random walk in a graph). We show
how to express a random walk as a forever-query. Consider
a scenario in which the input database consists of two input
relations: a unary relation C(I), consisting of a single tuple
that stands for the start node of the walk, and a ternary
relation E(I, J, P) reflecting graph edges that are annotated
with probabilities. That is, (i, j, p) ∈ E iff there is an edge
with probability weight p from node i to node j in the graph.
p is the probability of performing a transition to node j,
given that we are at a node i. We can then define a random
walk by the interpretation Q:

C := ρIπJ

(
repair-keyI@P (C ./ E)

)

E := E % unchanged.

Recall that ./ stands for the natural join, π for projection,
and ρ for renaming. In each iteration, if the current tuple in
C is i, then the query selects (by using repair-key) the next
node j out of those for which (i, j) ∈ E; j is then the new
tuple of C, while E remains constant in-between iterations.
If the query event is v ∈ C and E defines an ergodic Markov
chain M , we are asking for the probability of v according to
the stationary distribution of M .

To see a variant of this, let V denote the set of nodes in the
graph (or, if E is viewed as a Markov chain, the states). V is
obtained by a query over E, namely the union of projecting
E on I, and projecting it on J (we do not consider isolated
nodes). If we modify the first equation in the interpretation
Q to be:

C := repair-key@P(
ρI(πJ(repair-keyI@P (C ./ E)))× ρP ({1−α})

∪ πI(repair-keyI@P (V))× ρP ({α}))

then we compute the PageRank at node v where α is the
usual dampening factor, i.e., the probability that we aban-
don our current walk and jump uniformly to an arbitrary
node in the graph.

Forever-queries over Probabilistic Databases. Above,
query evaluation was defined for the case where the input
database is a standard relational database. In some cases
it is useful to consider probabilistic databases as input, e.g.,
given as a collection of probabilistic c-tables. As mentioned
above, we can view such a pc-table as a macro for the corre-
sponding algebraic expression that uses the repair-key con-
struct. (To observe that this is possible see e.g. [16].) In
particular, under the non-inflationary semantics, when such
macros appear in the transition kernel, the probabilistic
choices of tuples in the pc-table are made in each iteration.
We will see examples for this in Section 5.

3.2 Inflationary queries
Inflationary queries are defined as the counterpart of the

while+ queries [1]. Intuitively, with inflationary queries, as-
signment of the new database state is cumulative rather than
destructive: the query results are added to the current rela-
tions of the tuple, instead of replacing them as in the non-
inflationary case. Formally, inflationary queries are defined
as the following fragment of the noninflationary ones:

Definition 3.4. A forever-query (Q, e) is called an in-
flationary query if for any relational database A and any
possible world B of Q(A), B ⊇ A.

We can define inflationary queries through transition ker-
nels that define the new state as the union of the old state
with the result of a query on the old state.

Example 3.5 (Reachability in a Graph). We con-
sider the same input database as in Example 3.3, where
E(I, J, P) is a ternary relation standing for the edge rela-
tion and C is an unary relation, initially consisting of a sin-
gle tuple a, standing for the start node of the walk. Now,

we express the query asking for the probability that node
v is eventually reached in a random walk starting from the
given start node of the walk. These nodes will be stored
in C. We further use an additional auxiliary relation Cold,
initially empty. In the inflationary language, Q is defined by
the following probabilistic first-order interpretation:

Cold := C

C := C ∪ ρIπJ(repair-keyI@P (C − Cold) ./ E)

E := E % unchanged.

The query event is v ∈ C.
Note that the value of the Cold relation used in the sec-

ond line is not the Cold value written in the first line, but its
previous version. This is due to the semantics of query eval-
uation: at each point we fire all rules “in parallel”, namely
all righthand side expressions are evaluated against the old
database state; only then the actual update takes place. 2

There is a subtlety here that does not arise in non-probabilistic
inflationary fixpoint queries: we have to be careful about the
re-use of the same tuple multiple times, to generate new tu-
ples. We illustrate this next.

Example 3.6. Re-consider Example 3.3, and assume now
that E = {(a, b, 0.5), (a, c, 0.5)}. Now Pr[b ∈ C] = 0.5.
However, if we replace the update rule for C by

C := C ∪ ρI(πJ(repair-keyI@P (C ./ E))),

then we forever try to add, for each node in C, one node
reachable from it via a single edge. Suppose C = {a, c}.
Then we can either add b or c (which is already in C, so we
add nothing) as successor of a. We may forever choose c as
successor of a; but, the probability of this world goes to 0 as
we continue iterating. In all other worlds, eventually b ∈ R.
Thus Pr[b ∈ C] = 1. 2

The example demonstrates a general property: if we do
not restrict the re-use of tuples for the generation of new
tuples, then all tuples that appear in the result of the query
without repair-key, appear in the query result with prob-
ability 1. The example also demonstrates that there are
computation paths in which we do not reach a fixpoint in a
finite number of steps (but the probability of each such path
approaches 0).

Evaluating inflationary queries over Probabilistic
Databases. We have explained above (see bottom of Sec-
tion 3.1) that pc-tables are in fact only macros and may be
simulated via rules containing a repair-key. Consequently,
when such pc-tables (macros) appear in an inflationary query
the semantics is different than in the case of non-inflationary
queries: the probabilistic choices of tuples from the pc-tables
now take place only once, at the beginning of query evalu-
ation, rather than being repeatedly made as for the non-
inflationary semantics. This is because, with inflationary
semantics, rules fire only when there is a new valuations to
the rules right-hand side; since pc-tables are implemented as
repair-key application over ground facts, no such new valu-
ation occurs during query evaluation.

3.3 Probabilistic Datalog with probabilistic rules
Probabilistic datalog syntactically extends datalog [1] by

a repair-key construct. We use the following notation for

the repair-key construct. In a rule head, the key columns
are underlined, and the head is optionally postfixed by @P ,
where P is the Datalog variable binding to the repair-key
weighting column (if omitted, the weighting is uniform, like
for the repair-key algebra operator).

Example 3.7. Consider a relation I with schema
R(A, B, C, D, E). The rule

H(X, Y , Z)@P ← R(X, Y, Z, P, W)

corresponds to πABC(repair-keyAB@D(πABCDR)) in relational
algebra extended by repair-key. 2

Recall that each (standard) datalog rule can be compiled
to an expression in relational algebra that computes the rule
head [1]. For non-inflationary queries, given a probabilistic
datalog query, defined by a probabilistic datalog program
Q and a query event e, we may use the same translation
mechanisms (with the addition of the @ operation, trans-
lated into the repair-key construct), to translate (Q, e) into
an equivalent non-inflationary query (as defined in Def. 3.2).
Under inflationary semantics, it is easy to observe that if at
every step all possible valuations for the rule body are used
for application of repair-key, then every probabilistic dat-
alog program is equivalent to a conventional datalog pro-
gram without repair-key, as all tuples that may appear in
the output appear with probability 1 (see Example 3.6). We
thus define the inflationary semantics of probabilistic data-
log queries as follows.

Repeat forever
{

In parallel, for each rule r:

R(~X, ~Y)@P ← B(~X, ~Y , ~Z) do
{

newVals[r] := valuations of the body of r on
the old database state − oldVals[r];

oldVals[r] := oldVals[r] ∪ newVals[r];
R := R

⋃
repair key ~X@P (π ~X,~Y ,P (newVals[r]));

}
}

We recall that in datalog, the term IDB relation stands for
a derived relation, and an EDB relation is an input relation.
The above computation is applied over an initial database,
where the EDB relations contain the data, the IDB rela-
tions are empty, and for each rule r (where B stands for the
body of R), there are two auxiliary relations newVals[r] and
oldVals[r] that are initially empty. If the body of a rule is
empty, the single valuation of the body is the empty valua-
tion and the rule thus fires only once, in the first iteration.

A probabilistic Datalog query must reach a fixpoint in
each possible computation path since there are only polyno-
mially many possible tuples over the active domain of the ini-
tial state. A rule in which all head variables are underlined
is essentially non-probabilistic: it deterministically adds all
the tuples that a classical Datalog rule would add.

Also note the similarly to the above explanations for the
inflationary semantics, when a probabilistic Datalog query
is evaluated over a pc-table, the pc-table may first be simu-
lated by Datalog rules; these rules are fired only once since
the bodies of these rules correspond to ground facts and
thus have no new valuations throughout the iteration (if

non-inflationary semantics is used, then the random choices
for the pc-table are made in each iteration).

It is not hard to show the following proposition.

Proposition 3.8. For every probabilistic datalog program,
there is an equivalent inflationary query.

We next express the reachability query (Example 3.5) in
probabilistic datalog.

Example 3.9 (Reachability in a graph revisited).
The query that computes Reachability of graph nodes from
a start node v (see Example 3.5) can be expressed in prob-
abilistic datalog simply as

C(v) ←
C2(X, Y) ← C(X), E(X, Y).

C(Y) ← C2(X, Y).

Consider the evaluation of the above query over an initial
database E = {(v, w, 0.5), (v, u, 0.5)}. It first adds the tuple
v to C, as the (empty) valuation for the body of the first
rule was not used yet. Then, there exist two new valuations,
{X = v, Y = w} and {X = v, Y = u} one of which is
chosen (with probability of 0.5 for each choice). Let W be
the world (bearing a probability of 0.5) where X = v, Y =
w (respectively, X = v, Y = u) was chosen. Now X =
v, Y = u (respectively, X = v, Y = w) is no longer a new
valuation (because it was a valid valuation in the previous
iteration as well), and then the third rule must fire, leading
to the addition of the tuple u (w) to C in this world. Note
that the use of C2 is essential to enforce the application
of repair-key over each of the nodes appearing currently in
C, modeling the probabilistic choice of the next nodes. If
we would only write C(y) ← C(x), E(x, y), no probabilistic
choice of valuations of the body were made. Instead, all
valuations would be used as in classical datalog. 2

We next consider a more complicated example, namely
computation of marginal distributions for a given Bayesian
Network.

Example 3.10 (Bayesian Network). In this exam-
ple, we construct the joint distribution over a number of
Boolean random variables as defined by a Bayesian Net-
work. We use probabilistic Datalog with repair-key. For
simplicity, we assume that there is an upper bound K on
the in-degree of each node in the Bayesian network, i.e., the
number of parent variables of each random variable. The in-
put database consists of two input relations that specify the
Bayesian network, a relation with schema Sk(N0, . . . , Nk)
which specifies that the random variable named N0 has ex-
actly the parents N1, . . . , Nk and a relation with schema
Tk(N0, V0, V1, . . . , Vk, P) that specifies the tuples of the con-
ditional probability tables. That is, if the parent variables
of X are called Y1, . . . , Yk (i.e., (X, Y1, . . . , Yk) ∈ Sk) and
if tuple (X, x, y1, . . . , yk, p) is in Tk, where X is the name
of a random variable, x, y1, . . . , yk ∈ {0, 1} are the val-
ues of random variables X, Y1, . . . , Yk, and p ∈ [0, 1], then
Pr[X = x | Y1 = y1, . . . , Yk = yk] = p.

There is a single IDB predicate V (N, V) which specifies
a complete valuation of each random variable N in each
possible world.

The probabilistic datalog program consists of K + 1 rules
(for 0 ≤ k ≤ K):

V (N0, V0)@P ← Tk(N0, V0, V1, . . . , Vk, P),

Sk(N0, N1, . . . , Nk),

V (N1, V1), . . . , V (Nk, Vk).

Now, marginal probabilities such as Pr[X = x ∧ Y = y]
can be computed as the probability of event q if rule

q ← V (X, x), V (Y, y).

is added to the datalog program. Here X, x, Y, y are con-
stants, not datalog variables.

In the remainder of the paper, we will consider both infla-
tionary and non-inflationary datalog. We also study datalog
restricted in one or both of the following ways: datalog with-
out repair-key applied over probabilistic c-tables, and linear
datalog, which is datalog in which each rule body contains
at most one IDB atom.

4. COMPLEXITY OF THE INFLATIONARY
LANGUAGES

We next discuss the complexity of query evaluation with
respect to the inflationary semantics. It is easy to show
(following e.g. [20]) that exact query evaluation (i.e., asking
whether the probability of the given query event is exactly
p) is]P -hard. We thus turn to approximations, and first
consider relative approximation. Unfortunately we can show
that such approximation is infeasible as well, as the following
theorem holds.

Theorem 4.1. Unless P = NP (BPP = NP), there ex-
ists no PTIME deterministic (randomized) relative approx-
imation scheme for the query evaluation under the infla-
tionary semantics. This holds even if (1) the problem is
restricted to evaluation of Linear Datalog Programs and (2)
either repair-key is applied only on base relations, or (2’) the
queries are without repair key and applied over probabilistic
c-tables.

Proof. We prove the theorem for the case where condi-
tions (1) and (2’) above hold; the proof for the case where
(1) and (2) hold follows, as discussed below.

We use a reduction from 3-SAT. Given a 3-CNF formula
F consisting of clauses {c1, ..., cm} over a set {v1, ..., vn} of
variables, we construct a database D and a Datalog program
Q as follows.

Database. The database D consists of the following EDB
relations: C(C, L), O(C1, C2), A(L), and R(C), and its tu-
ples are initialized as follows. A(L) is a probabilistic c-table,
where tuples stand for all variables in V and their negation;
each tuple in A is associated with a predicate such that A(vi)
is associated with xi = 0, A(¬vi) is associated with xi = 1
for each variable vi ∈ V , with Pr(xi = 0) = Pr(xi = 1) =
0.5 for each i, and all xi variables are independent. The re-
lation O contains a tuple O(ci, ci+1) for each i = 1, ..., m−1,
and the relation C contains a tuple C(ci, lj) for each clause
ci and a literal lj that appears in ci.

Program. We define the following program Q:

R(c0) ←
R(c) ← R(c′), O(c′, c), C(c, l), A(l)

Done(a) ← R(cn)

We next show that existence of PTIME relative approxi-
mation algorithms (deterministic and randomized) for eval-
uating (Q, a ∈ Done) over D implies a PTIME algorithm for
deciding whether F has a satisfying assignment. We start
with the following lemma:

Lemma 4.2. Denote by p the query result of (Q, a ∈ Done)
over D. If F is satisfiable, then p ≥ 1

2n where n is the num-
ber of variables in F . Otherwise, p = 0.

Proof. Consider a probabilistic choice for the tuples of
A. Such choice must correspond to a consistent assignment,
as for each variable vi exactly one out of A(vi) and A(¬vi)
holds.

Assume now that F has no satisfying assignment. Thus,
for each probabilistic choice for the tuples of A, there exists
some ci ∈ C such that for all values of l, C(ci, l), A(l) does
not hold. Thus the rule for R(ci) will not fire, and conse-
quently R(ci+1), ..., R(cn) will not appear in the database as
well, and neither will Done(a). This holds for all probabilis-
tic choices, thus p = 0.

Conversely, assume that F has at least one satisfying as-
signment, then there exists a choice for the tuples of A corre-
sponding to this assignment, and this choice bears the prob-
ability of 1

2n . For such choice, in the i-th step of evaluating
Q, R(ci) holds; to observe this, note that at the first step
R(c0) holds, and assume that at the (i− 1)-th step R(ci−1)
holds. O(ci−1, ci) holds by the DB initialization, as well as
C(ci, l), A(l) for some literal l that satisfies ci (note that
the assignment is satisfying, thus such l must exist), thus in
at the i’th step R(ci) holds. Consequently, at the n’th step
R(cn) holds, thus Done(a) holds in the next step. This hap-
pens for each choice of tuples corresponding to a satisfying
assignment; each such satisfying assignment is chosen with
probability 1

2n , thus we obtain p ≥ 1
2n .

We next use Lemma 4.2 to prove Theorem 4.1. We note
that the proof is rather straightforward following Chernoff’s
lower bound, but we repeat it for completeness. First, as-
sume the existence of a deterministic query evaluation algo-
rithm with relative error ε, then we simply apply it and con-
clude that F is satisfiable if and only if the algorithm’s out-
put was non-zero. For the second part of the Theorem, as-
sume that we have a randomized query evaluation algorithm
A; then we run it N times independently, and decide that
F is unsatisfiable if the majority of the executions return 0.
We next show that the construction yields a BPP algorithm
for 3-SAT. We say that an invocation of A “succeeds” if it
returns 0 and the formula F is indeed not satisfiable, or if it
returns a number other than 0 and F is indeed satisfiable.
There exists a δ such that each invocation of A succeeds
with probability of at least 1 − δ, and fails with probabil-
ity of at most δ. Define Xi to be a binary random variable
that represents success or failure of the i’th invocation of A,
and let X = X1 + ... + XN . We next bound the probabil-
ity that X < N

2
. Since the invocations are independent, X

bears a binomial distribution, E(X) = N ∗ (1 − δ), and by

Chernoff’s Lower bound P (X < k ∗ E(x)) < e−E(x)∗ (1−k)2

2 .

Set k = N
2∗E(x)

to obtain P (X < N
2

) < e−E(x)∗
(1− N

2∗E(x))2

2 .

1 − N
2∗E(x)

= 1 − 1
2∗(1−δ)

, and denote this fraction by β. β

is positive as 1 − δ > 0.5. The bound now translates into

e−E(x)∗ β2
2 = e−N∗(1−δ) β2

2 . To achieve any error bound Γ,
we simply set N such that −N ∗ (1− δ) ∗ β2 < 2 ∗ lnΓ, i.e.

N >
ln 1

Γ2
(1−δ)∗β2 .

We have proven Theorem 4.1 for the case where conditions
(1) and (2’) specified in the Theorem hold. We next show
that the Theorem also holds for the case where (1) and (2)
holds: in this case, we change our construction by replacing
the c-table A by a similar table A(V, L, P), whose tuples
are A(i, vi, 0.5), A(i,¬vi, 0.5) for each i; using repair-key we
then choose a single such tuple for each i, and proceed as
above.

However, we may show that randomized absolute approx-
imation may be achieved in PTIME.

Theorem 4.3. Randomized absolute approximation is in
PTIME (data complexity) for the inflationary fixpoint lan-
guage with repair-key, even when applied on probabilistic c-
tables.

Proof Sketch. We employ a sampling algorithm that for
every given ε, δ, approximates the query result up to ε with
probability of at least δ, as follows. Each sample is done
by randomly choosing a single value for each independent
variable in the c-table according to its probability; then,
we consecutively apply the query rules, making probabilis-
tic choices for each application of the repair-key construct
that appear within these rules (i.e. we sample a possible
repair, according to its probability dictated by the current
database status and the repair-key operation), until reaching
a fixpoint. At the end of each sample, we check for satisfac-
tion and declare the probability p to be the average number
of satisfactions over all samples.

Each such sample can be done in PTIME (data complex-
ity), as the applications sequence entails the same number of
steps as evaluation of non-probabilistic Datalog (with a lin-
ear time overhead incurred by the random choices of values
for the independent variables).

To bound the number of samples required for an ε, δ-
approximation we use the Chernoff bound. Denoting by
x the random boolean variable whose value indicates query
satisfaction or dissatisfaction, the output p of our algorithm
is the average of m samples of x. Denote by p̂ the correct
probability of x (the query probability), the (additive) Cher-

noff bound gives Pr(| p− p̂ |≥ ε) ≤ 2 ∗ e−2∗ε2∗m where m is

the number of samples. So choosing m s.t.−2∗ε2∗m ≤ ln(δ)
2

,

i.e. m ≥ ln(1
δ
)

4∗ε2
samples is sufficient. The overall complexity

is thus polynomial in the database size and in ε, and loga-
rithmic in 1

δ
. 2

To complete the picture, we may exactly evaluate infla-
tionary fixpoint queries in PSPACE. (Recall that exact eval-
uation of even simple select-project-join queries over Prob-
abilistic Databases [20], and consequently of queries with
repair-key, even without recursion, is]P − hard [16].)

Proposition 4.4. Exact evaluation of inflationary fixpoint
queries with the repair-key construct (even over probabilistic
c-tables) is in PSPACE.

Proof Sketch. Consider the following algorithm for com-
puting the probability that a given tuple is in the fixpoint of
a probabilistic datalog query with the repair-key construct.
We iterate through possible worlds of the input probabilis-
tic database (specified by a probabilistic c-table; to iterate
through the possible worlds we only need to iterate through
the valuations of the independent random variables, which
is easy to do in PSPACE).

For each possible world we iteratively evaluate the query.
In each iteration, the program may choose one out of (expo-
nentially) many increments to the database state. However,
due to the independence of choice across key valuations and
rules, we can iterate through these alternatives using only
a polynomial amount of memory. Thus we can make a full
traversal through the tree of possible computations down to
all the fixpoints. This tree has exponentially many nodes,
but its depth is bounded by the number of tuples a fixpoint
can consist of at most, which is polynomial in the active do-
main of the input database. We only have to store at most
a path in this computation tree from the root to a fixpoint,
i.e., polynomially many databases.

The result probability is initially zero. While we traverse
this tree, whenever we reach a leaf (a fixpoint), we test the
query event and, if it is true on that fixpoint, add its prob-
ability weight to the result probability. 2

5. COMPLEXITY OF THE
NON-INFLATIONARY LANGUAGE

We next consider the evaluation of non-inflationary que-
ries. We have shown in the previous section that, for infla-
tionary queries, exact computation is]P -hard with respect
to data complexity and that unless P = NP , a PTIME rel-
ative approximation is also impossible. From this, it follows
that the same is true for noninflationary queries, of which
inflationary queries are a special case. As for absolute ap-
proximation, we have shown above that such approxima-
tion is feasible for the inflationary semantics; unfortunately,
we may show that this is not the case for non-inflationary
queries, as the following theorem holds.

Theorem 5.1. Unless P = NP (BPP = NP), there
is no PTIME deterministic (randomized) absolute approxi-
mation for non-inflationary queries. This holds even if (1)
the problem is restricted to evaluation of Datalog programs
and (2) either repair-key is applied only on base relations,
or (2’) the queries are without repair key and applied over
probabilistic c-tables.

Proof Sketch. Similarly to the proof of Theorem 4.1, we
use here a reduction from 3-SAT, but this time use the ex-
pressive power of non-inflationary queries to show that even
an absolute approximation is impossible. Again, we prove
the theorem for the case where conditions (1) and (2’) above
hold; the proof for the case where (1) and (2) hold follows
in exactly the same manner as explained for Theorem 4.1.
Similarly, we show the proof for the deterministic case; the
proof for the randomized case again follows that of Theorem
4.1.

Recall first that under non-inflationary semantics, tuples
from pc-tables are repeatedly sampled, in each iteration.

Given a 3-CNF formula F consisting of clauses {c1, ..., cm}
over a set {v1, ..., vn} of variables, we construct a database
and a Datalog program as follows.

Database. D consists of the following relations: C(C, L),
O(C1, C2), A(L), and R(C, X), and initialize its tuples as
follows. As in the proof of Theorem 4.1, A(L) is a prob-
abilistic c-table where tuples stand for all variables in V
and their negation; each tuple in A is associated with a
predicate such that A(vi) is associated with xi = 0, A(¬vi)
is associated with xi = 1 for each variable vi ∈ V , with
Pr(xi = 0) = Pr(xi = 1) = 0.5 for each i, and all xi vari-
ables are independent.

O(C1, C2) bears a tuple O(ci, ci+1) for each i = 1, ..., m−1;
and C(C, L) bears a tuple C(ci, lj) for each clause ci and a
literal lj that appears in ci.

Program. Consider the following program Q:

R(c0, l) ← A(l)

R(ck, l) ← R(ck−1, l), R(ck−1, l
′), O(ck−1, ck), C(ck, l′)

Done(a) ← R(cn, .)

Done(x) ← Done(x)

We employ an approximation algorithm for estimating the
probability of (Q, a ∈ Done) over D up to an absolute error
of 0.5 , and output that F is satisfiable if and only if the re-
sult is greater than 0.5. The correctness of the construction
follows from the next lemma:

Lemma 5.2. Denote by p the result of evaluating (Q, a ∈
Done) over D. It holds that p = 1 if F is satisfiable, and
p = 0 otherwise.

Proof Sketch. For each probabilistic choice of tuples for
A, the set of literals {l | R(c0, l)} corresponds to a randomly
chosen assignment α, to the variables {v1, ..., vn} (note that
for each variable x, a single literal out of x and ¬x is chosen
randomly). In what follows we relate to a set of literals α
(without contradictions, i.e., α does not include both a vari-
able and its negation) as an assignment, and say that such a
set α′ is consistent with α if the set of literals corresponding
to α′ is a subset of those corresponding to α.

We then use the following auxiliary proposition (proved
by induction on i).

Proposition 5.3. In the i-th iteration of evaluating Q
over D, {l | R(ci, l)} corresponds to an assignment α′ con-
sistent with α and satisfying c1, ..., ci, if such exists; if none
exists, R(ci, l) does not hold for any l.

It follows from Proposition 5.3 that after the n-th iter-
ation, {l | R(cn, l)} is non-empty iff there is a satisfying
assignment consistent with the initial α, for c1, ..., cn, i.e.
for F . Then, in the (n + 2)-th iteration, Done(a) holds; the
last rule of the program guarantees that from this point on,
Done(a) remains in the database forever.

As the set of possible instantiations of the repair-key corre-
sponds to all possible consistent assignments, it follows that
if a satisfying assignment α exists, it will be generated by
repair-key at some step k of the evaluation; after additional
n + 2 iterations, as explained above, a ∈ Done holds. Thus
in all iterations from k+n+2 and on, a ∈ Done holds, hence
Pr(a ∈ Done) = 1 if F is satisfiable; conversely, if there is
no satisfying assignment then Pr(a ∈ Done) = 0.

This completes the proof of Lemma 5.2. 2

Thus, the existence of a PTIME (BPP) absolute approx-
imation algorithm, with ε < 0.5, provides a PTIME algo-

rithm for 3-SAT (F is satisfiable iff the algorithm returned
p > 0.5), and implies P = NP (BPP = NP). 2

However, we may show that under some restrictions on
the transition kernel of the query, an EXPTIME exact eval-
uation of non-inflationary queries is possible.

Proposition 5.4. Let q = (Q, e) and let D be the input
database, such that the Markov Chain of database instances,
defined by Q, D, is irreducible and positively recurrent. Ex-
act evaluation of q over D is in EXPTIME.

Proof Sketch. There are polynomially many possible tu-
ples over the active domain of the input database and thus
only exponentially many states in the Markov chain defined
by Q. Thus we can compute the stochastic matrix defining
the transition relation of this Markov chain in EXPTIME by
evaluating Q on each of the states. For each state, we com-
pute a representation of the result of Q on that state as a
probabilistic c-table. This is feasible in polynomial time per
state. Then we extract the reachable states and their prob-
ability weights from this representation, yielding the matrix
of the Markov chain. Next we run Gaussian elimination
on this matrix to compute the principal eigenvector. This
is feasible in cubic time in the size of the matrix. Finally,
we sum up the weights in the eigenvector of those database
states on which the query event is true. This is the query
result. It is easy to see that this result can be computed in
exponential time overall. 2

We may further generalize our query evaluation algorithm,
and obtain

Theorem 5.5. The exact evaluation problem for non-inflationary
queries is in 2-EXPTIME.

Proof. We denote by M the Markov Chain induced by
the transition kernel and the input database, and consider
two cases. If M consists of a single strongly connected com-
ponent, then it is irreducible and positively recurrent [10],
and we may apply the same construction as in Proposi-
tion 5.4 to compute the probability of query satisfaction.
Otherwise, we can compute the DAG of its strongly con-
nected components. With probability 1, a random walk will
eventually (after a finite number of steps) get to a compo-
nent that is one of the leaves of this DAG and stay there
forever. We can thus compute probabilities of getting to
each of these leaves (by considering all paths that lead to
each such leaf). This computation may be exponential in
the size of the DAG, which in turn may be exponential in
the database size, leading to the 2-EXPTIME complexity.
Then we can perform Gaussian elimination on each of the
connected components that reside in the leaves, and com-
pute the probability of being at each individual node. This
probability is factorized by the probability of getting to the
connected component.

It is open if a lower complexity (e.g. EXPTIME) is pos-
sible in the general case.

5.1 Improving Performance
We next present two simple ideas that do not improve

the worst case complexity of non-inflationary query evalua-
tion in general but may improve its performance in real-life

cases. First, we consider the partitioning of query evalua-
tion into smaller instances that may be solved independently
using the techniques suggested above. Second, we consider
a different technique for query evaluation that is based on
sampling.

Partitioning. In many real-life cases of large programs, many
derived tuples are“independent”, in the sense that the deriva-
tion of one tuple does not change the probability of deriving
another. We thus employ a pre-processing stage, as follows:
we start with the original database and set a unique identi-
fier to each tuple, which is a singleton set. Then we evaluate
all rules in an inflationary manner (as in “regular” data-
log on non-probabilistic databases), keeping provenance for
each added tuple. That is, whenever a tuple is added to the
database due to an application over tuples with identifiers
I1, ..., Ik, the new tuple is set the identifier I1

⋃
I2....

⋃
Ik.

At the end of the process, the sets of all identifiers that ap-
pear in the database and are not subsumed by any other
identifier are the partition classes.

We now partition the database into tuple sets according to
the classes obtained above, and consider the Markov Chain
induced by each, as in Theorem 5.5 above. We indepen-
dently find the probability of each state within it, and sum
up the probabilities of being at states where the query does
not hold. Last, the overall probability p that the query does
not hold is the multiplication of such probabilities over all
classes, and the query satisfaction probability is 1− p.

Sampling. We have shown above that approximating query
results for non-inflationary queries is]P -hard in general.
However, in some cases an approximation may be obtained
by sampling the possible worlds and computing their proba-
bility as the observed percentage of query satisfaction. The
difficulty lies in obtaining independent samples. To that
end, recall from Section 2 the definition of mixing time of a
Markov Chain. Given a non-inflationary query q = (Q, e)
and a database instance D, such that Q and D induce an er-
godic Markov Chain M , denote by T (q, D) the mixing time
of M . We can then prove the following proposition.

Theorem 5.6. A randomized absolute approximation al-
gorithm for evaluation of a non-inflationary q over D, such
that Q and D induce an ergodic Markov Chain, may be done
in Polynomial Time in the size of D and in T (q, D) (and
exponential in the size of q).

Proof Sketch. The algorithm generates independent sam-
ples as follows. It applies the transition kernel Q step by
step, each time computing intermediate probabilities for query
results up until convergence. The number of steps required
for convergence is T (q, D). When convergence is achieved,
we omit all computed probabilities and start the actual sam-
pling; we re-start to obtain further samples. Once we have
independent samples in hand, the proof continues as in Propo-
sition 4.3. 2

There are several techniques studied in the literature (e.g.,
conductance and coupling [19]) for characterizing Markov
Chains with mixing time that is polynomial in the number
of states of the chain. In such cases, approximated query
evaluation may be performed in PTIME. Identifying syntac-
tic restrictions on probabilistic Datalog that are the coun-
terparts of such characterizations is an intriguing topic of
future research.

6. CONCLUSION AND RELATED WORK
We conclude with a brief overview of related work.
Probabilistic Databases, in various flavors, were studied

extensively (e.g. [20, 13, 2, 21]). The probabilities there
are given as part of the database; [16] suggests a general-
ized model where randomization may be introduced as part
of the query, via the use of the repair-key construct, and
shows that a PTIME approximation is possible for (the pos-
itive fragment of) the query language studied. In contrast
to our work, the query language studied in [16] does not al-
low recursion, and is thus less expressive. In particular, it
cannot express probabilistic processes of unbounded length
(e.g. random walks) studied here.

A (restricted) use of Datalog over probabilistic input data
was studied in [11], as a tool for Information Retrieval ap-
plications. The setting studied in [11] allows to introduce
probabilities only over the ground facts, and consequently
the choice of “possible world” is in fact performed once, to
choose the set of ground facts. Consequently, the model is
less expressive than proposed here, where new worlds may be
generated arbitrarily many times. In particular, the model
of [11] does not allow to capture random walks in-between
database instances, and their applications depicted above.
Similarly, a restrictive probabilistic version of Prolog [9] al-
lows to specify, for each rule, the probability that it belongs
to a randomly sampled program. But again, the semantics
is that a program is sampled only once.

We have studied here highly expressive query languages
with an iteration construct that allow to perform probabilis-
tic changes to the database (state). We have illustrated how
these query languages may be used to declaratively spec-
ify random walks over complex Markov Chains, and other
stochastic processes, and studied the complexity of query
evaluation for the proposed query languages. Future work
includes the design of generic optimization techniques for
query evaluation, the study of restricted versions with lower
complexity of query evaluation, and specifically syntactic
counterparts of cases that allow for efficient sampling algo-
rithms.

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] P. Agrawal, O. Benjelloun, A. Das Sarma,
C. Hayworth, S. U. Nabar, T. Sugihara, and
J. Widom. “Trio: A System for Data, Uncertainty, and
Lineage”. In VLDB, 2006.

[3] L. Antova, C. Koch, and D. Olteanu. “From Complete
to Incomplete Information and Back”. In Proc.
SIGMOD, 2007.

[4] L. Antova, C. Koch, and D. Olteanu. “Query
Language Support for Incomplete Information in the
MayBMS System”. In Proc. VLDB, 2007.

[5] V. Bansal. “Computational Methods for Analyzing
Human Genetic Variations”. PhD thesis, University of
California, San Diego, 2009.

[6] O. Benjelloun, A. D. Sarma, C. Hayworth, and
J. Widom. “An Introduction to ULDBs and the Trio
System”. IEEE Data Engineering Bulletin, 2006.

[7] D. P. Bertsekas and J. N. Tsitsiklis. Introduction to
Probability. MIT Press, 2008.

[8] N. Dalvi and D. Suciu. “Efficient query evaluation on

probabilistic databases”. VLDB Journal,
16(4):523–544, 2007.

[9] L. De Raedt, A. Kimmig, and H. Toivonen. “ProbLog:
A Probabilistic Prolog and Its Application in Link
Discovery”. In IJCAI, 2007.

[10] D. Freedman. Markov Chains. Springer-Verlag, 1983.

[11] N. Fuhr. “Probabilistic Datalog – A Logic For
Powerful Retrieval Methods”. In Proc. SIGIR, pages
282–290, 1995.

[12] M. Goetz and C. Koch. “A Compositional Framework
for Complex Queries over Uncertain Data”. In Proc.
ICDT, 2009.

[13] T. J. Green and V. Tannen. “Models for Incomplete
and Probabilistic Information”. IEEE Data Eng. Bull.,
29(1):17–24, 2006.

[14] M. Jerrum and A. Sinclair. “The Markov chain Monte
Carlo method: an approach to approximate counting
and integration”. Approximation algorithms for
NP-hard problems, 1997.

[15] C. Koch. “Approximating Predicates and Expressive
Queries on Probabilistic Databases”. In Proc. PODS,
2008.

[16] C. Koch. “On Query Algebras for Probabilistic
Databases”. SIGMOD Record, 37(4):78–85, 2008.

[17] C. Koch. “A Compositional Query Algebra for
Second-Order Logic and Uncertain Databases”. In
Proc. ICDT, 2009.

[18] C. H. Papadimitriou. Computational complexity.
Addison-Wesley, 1994.

[19] D. Randall. “Mixing (a tutorial on Markov Chains)”.
In FOCS, 2003.

[20] C. Re, N. Dalvi, and D. Suciu. “Efficient Top-k Query
Evaluation on Probabilistic Data”. In ICDE, 2007.

[21] P. Sen and A. Deshpande. “Representing and
Querying Correlated Tuples in Probabilistic
Databases”. In ICDE, 2007.

[22] D. Sorensen and D. Gianola. “Likelihood, Bayesian,
and MCMC Methods in Quantitative Genetics”.
Springer-Verlag, New York, July 2002.

[23] Stanford Trio Project. “TriQL – The Trio Query
Language”, 2006.

[24] L. Valiant. “The complexity of computing the
permanent”. Theoretical Computer Science,
8(2):189–201, 1979.

[25] M. Y. Vardi. “The Complexity of Relational Query
Languages”. In Proc. STOC, pages 137–146, 1982.

[26] V. V. Vazirani. Approximation Algorithms. Springer,
2004.

