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Abstract. We state the problem of inverse reinforcement learning in
terms of preference elicitation, resulting in a principled (Bayesian) sta-
tistical formulation. This generalises previous work on Bayesian inverse
reinforcement learning and allows us to obtain a posterior distribution
on the agent’s preferences, policy and optionally, the obtained reward
sequence, from observations. We examine the relation of the resulting
approach to other statistical methods for inverse reinforcement learning
via analysis and experimental results. We show that preferences can be
determined accurately, even if the observed agent’s policy is sub-optimal
with respect to its own preferences. In that case, significantly improved
policies with respect to the agent’s preferences are obtained, compared to
both other methods and to the performance of the demonstrated policy.

1 Introduction

Preference elicitation is a well-known problem in statistical decision theory [5].
The goal is to determine, whether a given decision maker prefers some events to
other events, and if so, by how much. The first main assumption is that there
exists a partial ordering among events, indicating relative preferences. Then
the corresponding problem is to determine which events are preferred to which
others. The second main assumption is the expected utility hypothesis. This
posits that if we can assign a numerical utility to each event, such that events
with larger utilities are preferred, then the decision maker’s preferred choice from
a set of possible gambles will be the gamble with the highest expected utility. The
corresponding problem is to determine the numerical utilities for a given decision
maker.

Preference elicitation is also of relevance to cognitive science and behavioural
psychology, where a proper elicitation procedure may allow one to reach more
robust experimental conclusions. There are also direct practical applications,
such as determining customer preferences. Finally, by analysing the apparent
preferences of an expert while performing a particular task, we may be able to
discover behaviours that match or even surpass the performance of the expert
in the very same task.

This paper uses the formal setting of preference elicitation to determine the
preferences of an agent acting within a discrete-time stochastic environment. We
assume that the agent obtains a sequence of (hidden to us) rewards from the en-
vironment and that its preferences have a functional form related to the rewards.
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We also suppose that the agent is acting nearly optimally (in a manner to be
made more rigorous later) with respect to its preferences. Armed with this infor-
mation, and observations from the agent’s interaction with the environment, we
can determine the agent’s preferences and policy in a Bayesian framework. This
allows us to generalise previous Bayesian approaches to inverse reinforcement
learning.

In order to do so, we define a structured prior on reward functions and poli-
cies. We then derive two different Markov chain procedures for preference elici-
tation. The result of the inference is used to obtain policies that are significantly
improved with respect to the true preferences of the observed agent.

Numerous other inverse reinforcement learning approaches exist [1, 12, 13].
Our main contribution we provide a clear Bayesian formulation of inverse re-
inforcement learning as preference elicitation, with a structured prior on the
agent’s utilities and policies. This generalises the approache of Ramachandran
and Amir [12] and paves the way to principled procedures for determining dis-
tributions on reward functions, policies and reward sequences. Performancewise,
we show that the policies obtained through our methodology easily surpass the
agent’s actual policy with respect to its own utility. Furthermore, we obtain poli-
cies that are significantly better than those obtained other inverse reinforcement
learning methods that we compare against.

Finally, the relation to experimental design for preference elicitation (see [2]
for example) must be pointed out. Although this is a very interesting planning
problem, in this paper we do not deal with active preference elicitation. We
focus on the sub-problem of estimating preferences given a particular observed
behaviour in a given environment and use decision theoretic formalisms to derive
efficient procedures for inverse reinforcement leraning.

This paper is organised as follows. The next section formalises the prefer-
ence elicitation setting and relates it to inverse reinforcement learning. Section 3
presents the abstract statistical model used for estimating the agent’s prefer-
ences. Section 4 describes a model and inference procedure for joint estimation
of the agent’s preferences and its policy. Section 5 discusses related work in more
detail. Section 6 presents comparative experiments, which quantitatively exam-
ine the quality of the solutions in terms of both preference elicitation and the
estimation of improved policies, concluding with a view to further extensions.

2 Formalisation of the problem

We separate the agent’s preferences (which are unknown to us) from the environ-
ment’s dynamics (which we consider known). More specifically, the environment
is a controlled Markov process ν = (S,A, T ), with state space S, action space
A, and transition kernel T = { τ(· | s, a) : s ∈ S, a ∈ A}, indexed in S ×A such
that τ(· | s, a) is a probability measure1 on S. The dynamics of the environment
are Markovian: If at time t the environment is in state st ∈ S and the agent

1 We assume the measurability of all sets with respect to some appropriate σ-algebra.
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performs action at ∈ A, then the next state st+1 is drawn with a probability
independent of previous states and actions:

Pν(st+1 ∈ S | st, at) = τ(S | st, at), S ⊂ S, (2.1)

where we use the convention st ≡ s1, . . . , st and at ≡ a1, . . . , at to represent
sequences of variables.

In our setting, we have observed the agent acting in the environment and
obtain a sequence of actions and a sequence of states:

D , (aT , sT ), aT ≡ a1, . . . , aT , sT ≡ s1, . . . , sT .

The agent has an unknown utility function, Ut, according to which it selects
actions, which we wish to discover. Here, we assume that Ut has a structure cor-
responding to that of reinforcement learning discounted reward infinite-horizon
problems and that the agent tries to maximise the expected utility.

Assumption 1 The agent’s utility at time t is defined in terms of future rewards
from time t:

Ut ,

∞
∑

k=t

γkrk, (2.2)

where γ ∈ [0, 1] is a discount factor, and the reward rt is given by the reward
function ρ : S ×A → R so that the rt , ρ(s, a).

In our framework, this is only one of the many possible assumptions regarding
the form of the utility function. This choice establishes correspondence with the
standard reinforcement learning setting. However, unlike other inverse reinforce-
ment learning approaches, ours is applicable to arbitrary functional forms of the
utility.

The controlled Markov process and the utility define a Markov decision pro-
cess [10] (MDP), denoted by µ = (S,A, T , ρ, γ). The agent uses some policy π
to select actions with distribution π(at | st), which together with the Markov
decision process µ defines a Markov chain on the sequence of states, such that:

Pµ,π(st+1 ∈ S | st) =

∫

A

τ(S | a, st) dπ(a | st), (2.3)

where we use a subscript to denote that the probability is taken with respect
to the process defined jointly by µ, π. We shall use this notational convention
throughout this paper. Similarly, the expected utility of a policy π is denoted by
Eµ,π Ut. We also introduce the family ofQ-value functions

{

Qπ
µ : µ ∈ M, π ∈ P

}

,
where M is a set of MDPs, with Qπ

µ : S ×A → R such that:

Qπ
µ(s, a) , Eµ,π (Ut | st = s, at = a) . (2.4)

Finally, we use Q∗
µ to denote the optimal Q-value function for an MDP µ, such

that:
Q∗

µ(s, a) = sup
π∈P

Qπ
µ(s, a), ∀s ∈ S, a ∈ A. (2.5)
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With a slight abuse of notation, we shall use Qρ when we only need to distinguish
between different reward functions ρ, as long as the remaining components of µ
remain fixed.

Loosely speaking, our problem is to estimate the reward function ρ and dis-
count factor γ that the agent uses, given the observations sT , aT and some prior
beliefs. As shall be seen in the sequel, this task is easier with additional assump-
tions on the structural form of the policy π. We derive two sampling algorithms.
The first estimates a joint posterior distribution on the policy and reward func-
tion, while the second also estimates a distribution on the sequence of rewards
that the agent obtains. We then show how to use those estimates in order to
obtain a policy that can perform significantly better than that of the agent’s
original policy with respect to the agent’s true preferences.

3 The statistical model

In the simplest version of the problem, we assume that γ is known and we
only estimate the reward function, given some prior over reward functions and
policies. This assumption can be easily relaxed, however via an additional prior
on the discount factor.

Let R be a space of reward functions ρ and P to be a space of policies π.
We define a (prior) probability measure ξ(· | ν) on R such that for any B ⊂ R,
ξ(B | ν) corresponds to our prior belief that the reward function is in B. Finally,
for any reward function ρ ∈ R, we define a conditional probability measure
ψ(· | ρ, ν) on the space of policies P. Let ρa, πa denote the agent’s true reward
function and policy respectively. Then our model is:

ρ ∼ ξ(· | ν), π | ρa = ρ ∼ ψ(· | ρ, ν), (3.1)

while the joint prior on reward functions and policies is denoted by:

φ(P,R | ν) ,

∫

R

ψ(P | ρ, ν) dξ(ρ | ν), P ⊂ P, R ⊂ R, (3.2)

such that φ(· | ν) is a probability measure on R×P.
For the moment we shall leave the exact functional form of the prior on the

reward functions and the conditional prior on the policy unspecified. Neverthe-
less, the structure allows us to state the following:

Lemma 1. For a prior of the form specified in (3.1), (3.2), and given a con-
trolled Markov process ν and observed state and action sequences sT , aT , where
the actions are drawn from a reactionary policy π, the posterior measure on
reward functions is:

ξ(B|sT , aT , ν) =

∫

B

∫

P
π(aT |sT ) dψ(π|ρ, ν) dξ(ρ|ν)

∫

R

∫

P
π(aT |sT ) dψ(π|ρ, ν) dξ(ρ|ν)

, (3.3)

where π(aT | sT ) =
∏T

t=1 π(at|st).
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Proof. Conditioning on the observations sT , aT via Bayes’ theorem, we obtain
the conditional measure:

ξ(B | sT , aT , ν) =

∫

B
ψ(sT , aT | ρ, ν) dξ(ρ | ν)

∫

R
ψ(sT , aT | ρ, ν) dξ(ρ | ν)

, (3.4)

where ψ(sT , aT | ρ, ν) is a marginal likelihood term:

ψ(sT , aT | ρ, ν) ,

∫

P

Pν,π(s
T , aT ) dψ(π | ρ, ν).

It is easy to see via induction that:

Pν,π(s
T , aT ) =

T
∏

t=1

π(at | st)τ(st | at−1, st−1), (3.5)

where τ(s1 | a0, s0) = τ(s1) is the initial state distribution. Thus, the reward
function posterior is proportional to:

∫

B

∫

P

T
∏

t=1

π(at|st)τ(st|at−1, st−1) dψ(π|ρ, ν) dξ(ρ|ν).

Note that the τ(st|at−1, st−1) terms can be taken out of the integral. Since they
also appear in the denominator, the state transition terms cancel out.

4 Estimation

While it is entirely possible to assume that the agent’s policy is optimal with
respect to its utility (as is done for example in [1]), our analysis can be made
more interesting by assuming otherwise. One simple idea is to restrict the policy
space to stationary soft-max policies:

πa(at | st) =
exp(ηQ∗

µ(st, at))
∑

a exp(ηQ
∗
µ(st, a))

, (4.1)

where we assumed a finite action set for simplicity. Then we can define a prior on
policies, given a reward function, by specifying a prior on the inverse temperature
η, such that given the reward function and η, the policy is uniquely determined.

However, our framework’s generality allows any functional form relating the
agent’s preferences and policies. As an example, we could define a prior dis-
tribution over the ǫ-optimality of the chosen policy, without limiting ourselves
to soft-max forms. This would of course change the details of the estimation
procedure.

For the chosen prior (4.1), inference can be performed using standard Markov
chain Monte Carlo (MCMC) methods [3]. If we can estimate the reward function
well enough, we may be able to obtain policies that surpass the performance of
the original policy πa with respect to the agent’s reward function ρa.
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Algorithm 1 Direct Metropolis-Hastings sampling from the joint distribution
φ(π, ρ | aT , sT ).

1: for k = 1, . . . do
2: ρ̃ ∼ ξ(ρ | ν).
3: η̃ ∼ Gamma(ζ, θ)
4: π̃ = Softmax (ρ̃, η̃, τ)
5: p̃ = Pν,π̃(s

T , aT ).
6: w.p. max

{

1, p̃/p(k−1)

}

do

7: π(k) = π̃, ǫ(k) = ǫ(k−1), ρ(k) = ρ̃, p(k) = p̃.
8: else

9: π(k) = π(k−1), ǫ(k) = ǫ(k−1), ρ(k) = ρ(k−1), p(k) = p(k−1).
10: done

11: end for

A Metropolis-Hastings procedure

Recall that a Metropolis-Hastings (MH) algorithm for sampling from some distri-
bution with density f(x) using a proposal distribution with conditional density
g(x̃ | x), has the form:

x(k+1) =

{

x̃, w.p. min
{

1,
f(x̃)/g(x̃|x(k))

f(x(k))/g(x(k)|x̃)

}

x(k), otherwise.

In our case, x = (ρ, π) and f(x) = φ(ρ, π | sT , aT , ν)2. We use independent
proposals g(x) = φ(ρ, π | ν). Since φ(ρ, π | sT , aT , ν) = φ(sT , aT | ρ, π, ν)φ(ρ, π)/φ(sT , aT ),
it follows that:

φ(ρ̃, π̃ | sT , aT , ν)

φ(ρ, π | sT , aT , ν)
=

Pν,π̃(s
T , aT )φ(ρ̃, π̃ | ν)

Pν,π(k)
(sT , aT )φ(ρ(k), π(k) | ν)

.

This gives rise to the sampling procedure described in Alg. 1, which uses a
gamma prior for the temperature.

A hybrid Gibbs procedure

The second alternative is a two-stage hybrid Gibbs sampler, described in Alg. 2.
The main interest of this procedure is that it conditions alternatively on a reward
sequence sample rT(k) and on a reward function sample ρ(k) at the k-th iteration
of the chain. Thus, we also obtain a posterior distribution on reward sequences.

This sampler is of particular utility when the reward function prior is conju-
gate to the reward distribution, in which case: (i) The reward sequence sample
can be easily obtained and (ii) the reward function prior can be conditioned on

2 Here we abuse notation, using φ(ρ, π | ·) to denote the density or probability function
with respect to a Lebesgue or counting measure associated with the probability
measure φ(B | ·) on subsets of R×P
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the reward sequence with a simple sufficient statistic. While, sampling from the
reward function posterior continues to require MH, the resulting hybrid Gibbs
sampler remains a valid procedure [3], which may give better results than spec-
ifying arbitrary proposals for pure MH sampling.

As previously mentioned, the Gibbs procedure also results in a distribution
over the reward sequences observed by the agent. On the one hand, this could
be valuable in applications where the reward sequence is the main quantity
of interest. On the other hand, this has the disadvantage of making a strong
assumption about the distribution from which rewards are drawn.

Algorithm 2 Two stage Gibbs sampler with an M-H step

1: for k = 1, . . . do
2: ρ̃ ∼ ξ(ρ | rT(k−1), ν).
3: η̃ ∼ Gamma(ζ, θ)
4: π̃ = Softmax (ρ̃, ǫ̃, τ)
5: p̃ = Pν,π̃(s

T , aT ).
6: w.p. max

{

1, p̃/p(k−1)

}

do

7: π(k) = π̃, ǫ(k) = ǫ(k−1), ρ(k) = ρ̃, p(k) = p̃.
8: else

9: π(k) = π(k−1), ǫ(k) = ǫ(k−1), ρ(k) = ρ(k−1), p(k) = p(k−1).
10: done

11: rT(k) | s
T , aT ∼ ρT(k)(s

T , aT )
12: end for

5 Related work

Linear programming

One interesting solution proposed by [8] is to use a linear program in order to
find a reward function that maximises the gap between the best and second best
action. Although elegant, this approach suffers from some drawbacks. (a) A good
estimate of the optimal policy must be given. This may be hard in cases where
the demonstrating agent does not visit all of the states frequently. (b) In some
pathological MDPs, there is no such gap. For example it could be that for any
action a, there exists some other action a′ with equal value in every state.

Policy walk

Our framework can be seen as a generalisation of the Bayesian approach con-
sidered in [12], which does not employ a structured prior on the rewards and
policies. In fact, they implicitly define the joint poisterior over rewards and poli-
cies as:

φ(π, ρ | sT , aT , ν) =
exp

[

α
∑

tQ
∗
µ(st, at)

]

ξ(ρ | ν)

φ(sT , aT | ν)
,
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which implies that the exponential term corresponds to ξ(sT , aT , π | ρ). This ad
hoc choice is probably the weakest point in this approach. Although, as men-
tioned in [12], such a choice could be justifiable through a maximum entropy
argument, we note that the maximum-entropy based approach reported in [14]
does not employ the value function in that way.

Rearranging, we write the denominator as:

ξ(sT , aT | ν) =

∫

R×P

ξ(sT , aT | π, ρ, ν) dξ(ρ, π | ν), (5.1)

which is still not computable, but we can employ a Metropolis-Hastings step
using ξ(ρ | ν) as a proposal distribution, and an acceptance probability of:

ξ(π, ρ | sT , aT )/ξ(ρ)

ξ(π′, ρ′ | sT , aT )/ξ(ρ′)
=

exp[α
∑

tQ
π
ρ (st, at)]

exp[α
∑

tQ
π′

ρ′ (st, at)]
.

We note that in [12], the authors employ a different sampling procedure than
a straightforward MH, called a policy grid walk. In exploratory experiments,
where we examined the performance of the authors’ original method [11], we
have determined that MH is sufficient and that the most crucial factor for this
particular method was its initialisation.

The maximum entropy approach.

A maximum entropy approach is reported in [14]. Given a feature function Φ :

S × A → R
n, and a set of trajectories

{

sTk

(k), a
Tk

(k) : k = 1, . . . , n
}

, they obtain

features ΦTk

(k) =
(

Φ(si,(k), ai,(k)) : i = 1, . . . , Tk
)

. They show that given empirical

constraints Eθ,ν Φ
Tk = ÊΦTk , where ÊΦT = 1

n

∑n
k=1 Φ

Tk

(k) is the empirical feature

expectation, one can obtain a maximum entropy distribution for actions of the
form Pθ(at | st) ∝ eθ

′Φ(st,at). If Φ is the identity, then θ can be seen as a scaled
state-action value function.

In general, maximum entropy approaches have good minimax guarantees [7].
Consequently, the estimated policy is guaranteed to be close to the agent’s.
However, at best, by bounding the error in the policy, one obtains a two-sided
high probability bound on the relative loss. Thus, one is almost certain to perform
neither much better, nor much worse that the demonstrator.

Game theoretic approach

An interesting game theoretic approach was suggested by [13] for apprenticeship
learning. This also only requires statistics of observed features, similarly to the
maximum entropy approach. The main idea is to find the solution to a game
matrix with a number of rows equal to the number of possible policies, which,
although large, can be solved efficiently by an exponential weighting algorithm.
The method is particularly notable for being (as far as we are aware of) the only
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one with a high-probability upper bound on the loss relative to the demonstrating
agent and no corresponding lower bound. Thus, this method may in principle
lead to a significant improvement over the demonstrator. Unfortunately, as far
as we are aware of, sufficient conditions for this to occur are not known at the
moment.

6 Experiments

Domains

We compare the proposed algorithms on two different domains, namely on ran-
dom MDPs and random maze tasks. The Random MDP task is a discrete-state
MDP, with four actions, such that each leads to a different, but possibly over-
lapping, quarter of the state set.3 The reward functions is drawn from a Beta-
product hyperprior with parameters αi and βi, where the index i is over all state-
action pairs. This defines a distribution over the parameters pi of the Bernoulli
distribution determining the probability of the agent of obtaining a reward when
carrying out an action a in a particular state s.

For the Random Maze tasks we constructed planar grid mazes of different
sizes, with four actions at each state, in which the agent has a probability of 0.7
to succeed with the current action and is otherwise moved to one of the adjacent
states randomly. These mazes are also randomly generated, with the rewards
function being drawn from the same prior. The maze structure is sampled by
randomly filling a grid with walls through a product-Bernoulli distribution with
parameter 1/4, and then rejecting any mazes with a number of obstacles higher
than |S|/4.

Algorithms

We compared our methodology, using the pure MH and the hybrid Gibbs sam-
pler, to three previous approaches. The linear programming based approach [8],
the game-theoretic approach [13] and finally, the Bayesian inverse reinforcement
learning method suggested in [12]. In all cases, each demonstration was a T -long
trajectory sT , aT , provided by a demonstrator employing a softmax policy with
respect to the optimal value function.

All algorithms have some parameters that must be selected. Since our method-
ology employs MCMC the sampling parameters must be chosen so that conver-
gence is ensured. We found that 104 samples from the chain were sufficient, for
both the MH and hybrdig Gibbs sampler, with 2000 steps used as burn-in, for
both tasks.

3 The transition matrix of the MDPs was chosen so that the MDP was communicating
(c.f. [10]) and so that each individual action from any state results in a transition
to approximately a quarter of all available states (with the destination states ar-
rival probabilities being uniformly selected and the non-destination states arrival
probabilities being set to zero).
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We also compared our procedure with the Bayesian inverse reinforcement
learning algorithm of Ramachandran and Amir [12]. For the latter, we used a
MH sampler seeded with the solution found by [8], as suggested by [11] and
by our own preliminary experiments. We also verified that the same number of
samples used in our case was sufficient for this method.

The linear-programming based inverse reinforcement learning algorithm by Ng
and Russell [8] requires the actual agent policy as input. For the random-MDP
domain, we used the maximum likelihood estimate from our observations. For
the maze domain, we used a Laplace-smoothed estimate (i.e. a product-Dirichlet
prior with parameters equal to 1) instead, since this was more stable.

Finally, we examined the MWAL algorithm of Syed and Schapire [13]. This
requires the cumulative discounted feature expectation as input, for appropri-
ately defined features. Since we dealt with discrete environments, we used the
state occupancy as a feature. Although the feature expectations can be calcu-
lated empirically, we obtained better performance in practice with the following
procedure: We first computed the transition probabilities of the Markov chain
induced by the maximum likelihood (or Laplace-smoothed) policy given the ob-
served state-action sequences of the agent and the MDP transitions. Then we
calculate the expectation of these features given this chain. We set all accuracy
parameters of this algortihm to 10−3, which was sufficient for a robust behaviour.

Performance measure

In order to measure performance, we plot the L1 loss of the value function of
each policy relative to the optimal policy with respect to the agent’s utility:

ℓ(π) ,
∑

s∈S

V ∗
µ (s)− V π

µ (s), (6.1)

where V ∗
µ (s) , maxaQ

∗
µ(s, a) and V

π
µ (s) , Eπ Q

π
µ(s, a).

In all cases, we average over 100 experiments on an equal number of randomly
generated environments µ1, µ2, . . .. For the i-th experiment, we generate a T -
step-long demonstration Di = (sT , aT ) via an agent employing a softmax policy.
The same demonstration is used across all methods to reduce variance.

Results

We consider the loss of five different policies, averaged over 100 runs. The first,
soft, is the policy of the demonstrating agent itself. The second, MH, is the
Metropolis-Hastings procedure defined in Alg. 1, while G-MH is the hybrid
Gibbs procedure from Alg. 2. Finally,Ng & Russel,Ramachandran & Amir,
and Syed & Schapire are our implementations of the methods described in the
papers by the respective authors, summarised in Sec. 5.

We first examined the the loss of greedy policies,4 derived from the esti-
mated reward function, as the demonstrating agent becomes greedier. Figure 1

4 Experiments with non-greedy policies (not shown) produced generally worse results.
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shows results for the two different domains. It is easy to see that the MH sam-
pler significantly outperforms the demonstrator, even when the latter is nearly
greedy. While the hybrid Gibbs sampler’s performance lies between that of the
demonstrator and the MH sampler, it also estimates a distribution over reward
sequences as a side-effect. Thus, it could be of further value where estimation of
reward sequences is important. We observed that the performance of the base-
line methods is generally inferior, though nevertheless the Syed & Schapire

algorithm tracks the demonstrator’s performance closely.

This suboptimal performance of the baseline methods in the Random MDP
setting cannot be attributed to poor estimation of the demonstrated policy, as
can clearly be seen in Figure 2(a), which shows the loss of the greedy policy
derived from each method as the amount of data increases. While the proposed
samplers improve significantly as observations accumulate, this effect is smaller
in the baseline methods we compared against. As a final test, we plot the relative
loss in the Random MDP as the number of states increases in Figure 2(b). We
can see that the relative performance of methods is invariant to the size of the
state space for this problem.

Overall, we observed that our suggested model consistently outperforms the
agent in all settings, when the MH sampler is used, while the Gibbs sampler
only manages to match the behaviour approximately. Presumably, this is due to
the joint estimation of the reward sequence. Finally, the other methods under
consideration on average to do not improve upon the initial policy and can be, in
a large number of cases, significantly worse. For the linear programming inverse
RL method, perhaps this can be attributed to implicit assumptions about the
MDP and the optimality of the given policy. For the policy walk inverse RL
method, our belief is that its suboptimal performance is due to the very restric-
tive and somewhat ad hoc prior it uses. Finally, the performance of the game
theoretic approach is slightly disappointing. Although it is is much more robust
than the other two baseline approaches, it never outperforms the demonstra-
tor, even thought technically this is possible. One possible explanation is that
since this approach is worst-case by construction, it results in overly conservative
policies.

7 Discussion

We introduced a unified framework of preference elicitation and inverse rein-
forcement learning, presented a statistical model for inference and derived two
different sampling procedures for estimation. Our framework is flexible enough
to allow plugging in alternative priors on the form of the policy and of the agent’s
preferences, although that would require adjusting the sampling procedures. In
experiments, we showed that for a particular choice of policy prior, closely cor-
responding to previous approaches, our samplers can outperform not only other
well-known inverse reinforcement learning algorithms, but the demonstrating
agent as well.
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The simplest extension, which we have already alluded to, is the estimation of
the discount factor, for which we have obtained promising results in preliminary
experiments. A slightly harder generalisation occurs when the environment is
not known to us. This is not due to difficulties in inference, since in many cases
a posterior distribution over M is not hard to maintain (see for example [4, 9]).
However, computing the optimal policy given a belief over MDPs is harder [4],
even if we limit ourselves to stationary policies [6]. We would also like to consider
more types of preference and policy priors. Firstly, the use of spatial priors for the
reward function, which would be necessary for large or continuous environments.
Secondly, the use of alternative priors on the demonstrator’s policy.

The generality of the framework allows us to formulate different preference
elicitation problems than those directly tied to reinforcement learning. For ex-
ample, it is possible to estimate utilities that are not additive functions of some
latent rewards. This does not appear to be easily achievable through the exten-
sion of other inverse reinforcement learning algorithms. It would be interesting
to investigate this in future work.

Finally, although in this paper we have not considered the problem of ex-
perimental design for preference elicitation (i.e. active preference elicitation), we
believe is a very interesting direction. First of all, it has many applications, such
as the automated optimal design of behavioural experiments to give but one
example. Nevertheless, a more effective preference elicitation procedure such as
the one presented in this paper is absolutely essential for the complex planning
task that experimental design is. Consequently, we hope that researchers in that
area will find our methods useful.
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Fig. 1. Total loss ℓ with respect to the optimal policy, for the given sub-optimal demon-
strator policy, as well as for the estimated greedy policies, as a function of the inverse
temperature η of the softmax policy of the demonstrator for (a) the Random MDP
and (b) the Random Maze tasks, averaged over 100 runs.
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Fig. 2. Total loss ℓ with respect to the optimal policy, for the given sub-optimal demon-
strator policy, as well as for the estimated greedy policies, in the Random MDP task.
Figure 2(a) shows how performance improves as a function of the length T . of the
demonstrated sequence. Figure 2(b) shows the effect of the number of states |S| of the
underlying MDP. All quantities are averaged over 100 runs.
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