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Abstract Foraging is a common benchmark problem in collective robotics in which
a robot (the forager) explores a given environment while collecting items for fur-
ther deposition at specific locations. A typical real-world application of foraging is
garbage collection where robots collect garbage for further disposal in pre-defined
locations. This work proposes a method to cooperatively perform the task of find-
ing such locations: instead of using local or global localization strategies relying on
pre-installed infrastructure, the proposed approach takes advantage of the knowledge
gathered by a population about the localization of the targets. In our approach, robots
communicate in an intrinsic way the estimation about how near they are from a target;
these estimations are used by neighbour robots for estimating their proximity, and for
guiding the navigation of the whole population when looking for these specific areas.
We performed several tests in a simulator, and we validated our approach on a popula-
tion of real robots. For the validation tests we used a mobile robot called marXbot. In
both cases (i.e., simulation and implementation on real robots), we found that the pro-
posed approach efficiently guides the robots towards the pre-specified targets while
allowing the modulation of their speed.

1 Introduction

There is a large amount of real world tasks where a group of robots performs better
or more efficiently than a single robot [2]. The approach of using multiple robotic
agents to perform a task in a cooperative manner is called collective robotics. Collec-
tive robotics has been used for a diversity of tasks like object manipulation, obstacle
overpassing, and stair climbing. In all cases, collective robotics targets the execution
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of tasks that, when performed by a single robot, are impossible or inefficient. Re-
searchers argue that by organizing simple robots into cooperating teams, useful tasks
may be accomplished otherwise impossible using a single robot [15].

Collective robotics has gained the interest of a large number of researchers in the
last decades thanks to the wide range of possibilities of applications that it offers.
However, controlling such systems demands the use of coordination strategies taking
advantage of the fact of having more than one individual, i.e., the presence of neigh-
bours which can cooperate to ease the execution of the task. The goal is thus to find
a strategy that allows a set of robots to, somehow, interact among them in order to
find the solution in a more efficient manner than the same set of robots performing
the task simultaneously but independently. Including such interaction implies addi-
tional costs in terms of robot set-up and computation, like addition of communicating
capabilities or attachment mechanisms. In spite of this additional cost, the collective
solution must still be more efficient than the individual one.

A common benchmark problem in collective robotics is foraging. The term for-
aging in robotics is used to designate a group of behaviours that mimic the behaviour
of foraging in animals. Thus, a forager robot has to navigate in its environment while
collecting items and depositing them at specific locations [4, 27]. In order to perform
this type of task, robots need to be able to explore their environment in an efficient
way, and at any moment, find target locations which are common to the whole popu-
lation, such as storage places where the collected objects have to be stacked, battery
charging stations, or specific sites if a fixed path has been established. Foraging has
been largely studied due to its importance1 in collective robotics, and it has been di-
vided into several states namely: searching, grabbing, homing and depositing; and
the problem of coordination between robots can exist at every state. In the work we
describe here, we are interested in the problem of coordination for the first and last
tasks, i.e., searching and homing.

Different approaches have been used in designing control strategies for groups of
searching robots. There is a classical approach where a central planning unit coordi-
nates the actions of the population of robots. This unit sends commands according
to the state of each unit in order to make them cooperate. The distribution of labours
can be hierarchical, and each individual must be capable of replacing the planner unit
if it fails due to malfunction [4]. This approach, while being the more intuitive and
understandable, is often not scalable and difficult to implement due to the commu-
nication requirements of a central coordination, which in addition makes the system
less robust.

An alternative to this approach consists on endowing the system with self-organization
properties, allowing individual units to cooperate without a central planner. Self-
organization is frequently achieved by taking inspiration from biology [12], and in
particular from the behaviour of social species. Social species of insects, for in-
stance, are very successful in performing cooperative tasks related to the survival

1Foraging is important since it is a metaphor for a broad class of problems integrating exploration,
navigation and object identification, manipulation and transport, and robot-robot cooperation. Moreover,
many actual or potential real-world applications for robotics are instances of foraging robots, for instance
cleaning, harvesting, search and rescue, land-mine clearance or planetary exploration. [27]
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of the species2. Their success might come from the fact that social interactions can
compensate for individual limitations, both in terms of physical and cognitive ca-
pabilities. Indeed, herds and packs allow animals to attack larger prey and increase
their chances for survival and mating [14], while organizations and teams facilitate
information sharing and problem solving.

Some examples of coordination strategies found in biology are stigmergy in ants [10]
and trophallaxis in bees [9]. Stigmergy refers to a specific type of social communi-
cation through the modification of the environment, where the result of work of an
individual modifies the behaviour of the rest of the population in a unintentional
manner [13]. It is a form of self-organization. The construction of nests in termites
and other insects are examples of stigmergy in nature. Moreover, trophallaxis is the
exchange of fluid food by direct mouth-mouth contacts between members of the pop-
ulation. These exchanges can transfer information about the quality of food source,
temperature and water demand. These mechanisms have served as inspiration to de-
velop controllers for collective robotics, and there is a large number of different im-
plementations of these concepts, each one requiring different levels of complexity of
the robots, and different types of communication between the units. Schmickl and
Crailsheim [23] used trophallaxis as inspiration for creating a decentralized strategy
of communication in a swarm of small robots. By using this approach, they manage
to create two gradients into the population, and to make the robots employ these gra-
dients in order to navigate towards pre-defined areas. Sugawara et. al. [25] employed
stigmergy as inspiration to make a population of robots to cooperate in the task of
collecting virtual food in a controlled environment. They solved the main problem
of stigmergy of modifying the environment with chemical traces by using images
projected on the floor where the robots can detect them. Campo et. al. [11] employ
virtual pheromones to guide the process of path selection in a population of foragers.
The pheromones in this case are local messages which are passed between members
of a chain of robots.

This paper describes a novel approach for the localization of targets (e.g., search-
ing and homing behaviours) in a population of foragers. The control of the population
of robots is performed in a distributed way. In order to test our approach we designed
an experimentation scenario where robots have two possible states which are “work”
and “search”. In the “work” state robots perform a certain foraging task and are dis-
tributed on the arena. In the case of the work presented in this paper, we have a
dummy foraging task consisting on navigating on the arena avoiding obstacles. The
main interest is in the “search” state, where a robot will try to arrive to a specific
target region on the arena. This target region can be a battery charging station, an
area for garbage disposal, or the output of a maze. Whatever the robot may search,
our hypothesis is that a searching robot can exploit the collective knowledge, given
that there may be other robots that can estimate how far they are from the target re-
gion, and will somehow help the searching robot to achieve its goal. The proposed
target localization avoids the use of global positioning systems, that might be difficult
to deploy in unknown or hostile environments, and avoids also the use of odometry,

2It has been estimated that one-third of the animal biomass of the Amazon rain forest consists of ants
and termites [24].
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which is sensitive to cumulated errors after large running periods. However, robots
need basic communication capabilities3 in order to disseminate the information they
have to the rest of the population. We decided to use light in the visible spectrum as
communication channel in order to render the experiments more visual. In this man-
ner, we simplify the process of assessing the behaviour of the robots in a qualitative
way, and provide interesting and easily interpretable demonstrations. Our approach
for the implementation uses the colour LEDs and omni-directional cameras of the
robots as communication link. Thus, each robot encodes in its colour the information
of how likely it is to find a target in its proximities, and each robot can “see” what
neighbouring robots are showing by using its own camera. This paper complements
the initial tests shown on [22] about this approach of communication and coordina-
tion, and shows its validation by means of an implementation on real robots. The
simulations were performed with the simulator Enki [19], and the tests on the real
arena were performed by using 20 marXbot robots [6, 7].

The paper is structured as follows. Section 2 introduces the use of topological
navigation and the use of landmarks, and describes the use of state communication
in coordinating a population of robots. Section 3 describes the simulation framework
that was used in order to do the first tests of the target localization strategy, and the
robots and sensors implemented. Several results of the simulations are also shown
in this section. Section 4 describes the real robot that was used for validating the
social-based approach, the results of the tests we performed over the population, and
a comparison with the simulation. Section 5 gives some conclusions.

2 Searching and Homing in a Forager Robot

As it has been already mentioned, localizing a target (e.g., searching, homing) is one
of the essential tasks of a forager robot. When foraging, robots have to be able to
find target locations which are common to the whole population in order to collect
some resources, or to deposit them in a pre-established position. Finding a target
zone is thus a crucial behaviour for a robot being part of a swarm of foragers. Several
approaches have been used with this purpose, e.g., omniscient planners, sensing ab-
solute position/orientation, following global beacons, using landmarks, pheromones,
beacon chains or contact chains, etc. [26]. Global strategies like the use of centralized
planners or GPS-like systems are expensive and difficult to implement or unreliable
when the number of robots increases or when robots are placed in changing or hostile
environments. Conversely, local strategies like the use of local beacons or landmarks,
or bio-inspired methods like pheromones, are more easily scalable and allow the im-
plementation of self-organized systems which can adapt to unknown environments.

3For the purpose of disseminating information in the population, a communication schema which is
local and implicit would be enough.
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2.1 Landmarks and Beacons

The use of landmarks in robot navigation is a widely used approach which has been
called topological navigation [4]. Robots using this strategy do not use precise mea-
surements of position but have to infer their own location from the perception of
known marks in the environment such as doors or intersections in the case of indoor
navigation. Topological navigation is common for us since most of the information
we use to locate ourselves and target directions are relative to objects in our land-
scape. Nevertheless, using landmarks is not exclusive to superior animals. Some re-
searchers have taken inspiration from small social animals like insects which employ
similar strategies to find their way back to home after exploration journeys. Some
species of desert ants, for instance, use visual landmarks in order to return to impor-
tant places in their environment [18] when other methods like the use of pheromones
is not possible. Moreover, other individuals which make part of the population can
also be landmarks. Bees, for instance, can use the physical contact with other in-
dividuals of the hive in order to regulate the behaviour of foragers [9]. This form
of communication, where individuals employ other members of the population as
landmarks or beacons for locating a target has also been a source of inspiration for
navigation in robotics [21, 26].

2.2 Social Approach of Target Localization

One of the most important aspects in controlling the coordination of a group of agents
is the communication between those agents. Different considerations can be done
about the type of communication within the members of the population. The commu-
nication can be global if the whole set of agents can receive messages, or local if only
neighbour agents can communicate. Moreover, the communication can be explicit or
implicit whether the sender is aware of the receiver or not, or even targeted if the
sender is able to select the receiver. As it has already mentioned, local communica-
tion schemas are more scalable to large populations, and implicit communication is
easier to implement. Indeed, it is not by coincidence that the communication schemas
in social species of insects have these properties.

A type of communication in collective robotics having these properties is state
communication [3]. In state communication robots communicate through their be-
haviour in explicit or implicit manner. Hence, robots have to be able to interpret the
behaviour of other robots by using their sensory capabilities. This type of commu-
nication has been successfully used for coordinating tasks in collective robotics [16,
17, 21] and it has proven to be robust and scalable.

State communication can be used to transfer information about the location of a
specific place and hence, a basis of a social approach of target localization in a pop-
ulation of foragers. In this paper, we present a novel approach for finding a common
target location based on the knowledge gathered by a population of robots. It sup-
poses the existence of a set of robots performing a foraging task. A group of robots
is thus distributed in the environment while searching for some kind of resource,
and at any moment, any individual has to find a specific place which is common for
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the whole population e.g., a charging station, or a depot where gathered object have
to be stacked. Robots are not provided with their positions when looking for the tar-
gets, instead, each individual has to use imprecise nearness estimations of neighbours
which are transferred through state communication. The physical means that are used
for establishing the communication link is not relevant for testing the validity of our
approach. What is important is that the communication must be local and implicit.

For the sake of easily visualising what is happening in the population, we decided
to use visible light as physical layer for establishing the communication. In order to
share the knowledge with its neighbours, every robot can display a colour, and that
colour reflects an internal state of the robot which is directly related to the certitude
of being near the target. Each robot has limited vision which allows it to detect other
robots as well as obstacles. Thus, if a robot needs to go to a specific place, it has
to follow robots showing the colour that was assigned to this place. These coloured
robots act as moving beacons to guide other members of the population to the spe-
cific goals. Once arrived to the target, the robot must update its colour in order to
cooperate with the rest of the population serving as beacon for other robots while lin-
early decreasing its colour. Moreover, robots were programmed to copy a proportion
of the colour of other robots, and as a consequence, an emerging colour gradient is
formed in the population. This behaviour improves the dissemination of information
through the robots, facilitating the task of looking for a target. Any robot in the pop-
ulation behaves as a mobile beacon, and cooperates with the execution of the task by
guiding other robots to the target, even if the exact position of the target is unknown.
The details of the implementation of the social strategy are shown in section 3.2 and
section 4.3.

Note that this approach does not exactly mimic stigmergy given that the robots do
not produce any trace in the environment (as it happens with the pheromones of ants);
and it does not exactly mimic trophallaxis given that the robots do not lose any of the
information they have when they communicate (as in the case of bees for instance).

2.3 The Proposed Foraging Task

We performed several experiments in order to validate our social-based approach of
target localization. In our foraging task, robots will only perform the searching and
homing parts of foraging, and the components of grabbing and depositing are not
present. In our approach robots may be in one of two possible states: working or
searching. In the working state, robots freely (i.e., randomly) navigate on the arena
while avoiding obstacles (i.e. walls and other robots). In the searching state, robots
must look for one of the targets that are distributed in the arena. Robots that happens
to find the targets must change their colour in order to share this information with
other members of the population. Furthermore, every robot in the population must
copy the R and B colour components of the robots within its field of view having the
highest values for these components. Robots in the searching state should follow the
direction of the colour gradient that was created by the population of robots in order
to head in the direction of the target.
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In order to validate our approach, we placed two targets in opposite corners of the
arena, and set the state of some of the robots in the population to searching. These
robots repeatedly go from one target to the other, while at the same time we measured
the time each robot spent in its trajectory.

3 Simulations

This section shows some of the experiments we carried out in simulation. Some of
these experiments where already introduced on [22], and others are completely new
experiments that were designed in order to further test our approach.

3.1 Simulation Setup

We used a simulator called Enki [19] to perform the first tests of the proposed strategy.
Enki is an open source 2D robot simulator written in C++ which provides collision
and limited physics support for robots evolving on a flat surface.

3.1.1 The Simulated Arena

The flat space where robots evolve is a square arena limited by dark gray4 walls of
15 cm height. There are two simulated RFID tags located at opposite corners of the
arena. Each tag is programmed to be detected at a maximal distance of 21.5 cm.
These areas are shown by the two light grey circles located at the top-left corner
for tag number 1, and bottom-right corner for tag number 2. This setup is shown in
figure 1.

Fig. 1 Arena where the simulated experiments
evolved. The numbered cylinders are the mo-
bile robots and the two grey circles represent the
zones from where RFID tags can be detected. Tag
1 is placed in the top-left corner, and tag 2 is
placed in the bottom-right corner.

4R=30%, G=30%, B=30%
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3.1.2 The Simulated Robots

The robots implemented on Enki were programmed to simulate a real robot called
marXbot [6, 7]. This robot has two wheels5 for locomotion, [RGB] LED for dis-
playing colours, omni-directional camera, infra-red bumpers, rotating distance sensor
scanner, and a RFID tag detector. The simulated omni-directional camera is a vector
of 180 pixels that detects the colours of the objects around the robot (i.e., one pixel
of the linear image covers 2 degrees of field of view). A picture of the actual robot is
shown in figure 9(a).

3.2 Implementation of the Social Approach in Simulation

The simulated robots were programmed to avoid obstacles (i.e., walls and other
robots), to detect two specific zones (i.e., the targets), and to communicate their state
in order to collaborate with the population in the task of foraging.

3.2.1 Detection of Targets and State Communication

Two simulated RFID tags where placed in two opposite corners of the arena, in a
way that robots can detect them by using their RFID detectors when approaching to a
certain distance (i.e., 21.5 cm). These RFID tags represent the targets the robots have
to detect when navigating. Additionally, when a robot finds a target (i.e., it detects
the RFID tag), it can communicate this information to the rest of the population by
showing one of two colours. Hence, for the simulations we present here, when a
robot detects the target number 1 it sets the green component of its colour to 100%,
and in the other case, when a robot detects the target number 2 the robot sets the red
component of its colour to 100%. Showing a colour (which must be known by the
whole population) when a robot finds a target allows other robots in the proximities
of the target to know its location. Once the robot leaves the target zone it linearly
decreases all the components of its colour.

Additionally, robots can further share their knowledge by copying the colour of
neighbouring robots. The idea with this behaviour is that the colour of the robots
indicate how certain a robot is of the information it has. Hence, robots can follow the
gradient of colour in order to get to a target. This gradient was created by simulating
a limit on the maximal range of vision of the omni-directional camera. After some
tests, this maximal range was set to ∼50 cm as shown in figure 2.

3.2.2 Navigation

Navigation was performed in a pure reactive manner as in Braitenberg vehicles [8],
and the integration of sensor information was based on a strategy called motor schema-
based navigation [1]. Hence, 24 infra-red sensors were used as bumpers, and the 180

5The actual robot has a combination of tracks and wheels called treels
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Fig. 2 Attenuation of the colours detected by the simulated omni-directional camera with respect to the
distance to the object.

pixels of the omni-directional linear camera were employed in order to detect mid-
range and distant obstacles and colours. The steer direction S was thus calculated by
adding 4 components:

– Random (r): A vector pointing to a random direction.
– Bumpers (b): The vector pointing in the direction where there are no obstacles

detected by the bumpers.
– Free Area (f): The vector pointing in the direction where there are no obstacles

detected by the camera.
– Attraction to Landmark (t): The vector pointing in the direction where there are

objects having the colour associated to the target.
– Repulsion (nt): The vector pointing in the direction where there are no objects

having a colour associated to a different target

Sx = rx +bx + fx + tx +ntx (1)
Sy = ry +by + fy + ty +nty (2)

Component r was added to allow the robot to get out from corners, or other places
where sensory information is symmetric, and to guarantee that every run of the ex-
periment is different.

Each one of the aforementioned components was calculated as the dot product
of the vector having the response of the sensor group, and the vector of positions of
each individual sensor. Let us take the bumpers as an example. We build two vectors
here, a vector bumper with the signals of the 24 infra-red sensors, and a vector A
compiling the angle α of each sensor. The vector b summarizing the activation of the
24 bumpers, and pointing in the direction where there is an obstacle6 is calculated as
follows:

bx = bumper · cosA (3)
by = bumper · sinA (4)

Furthermore, in the case of the omni-directional camera some masks were applied
to the image in order to eliminate the influence of walls when calculating the t and nt
components.

6If there are several obstacles this method returns the direction where there are more detections.
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3.3 Tests on Simulation

This section shows the results of some simulated tests with two different configura-
tions of the arena.

3.3.1 Comparison with Random Search

The results in this subsection were obtained by using the setup described in sec-
tion 3.1, with an square arena of 300 cm of side, and by placing two targets in oppo-
site corners of the arena at positions (40, 260) cm and (260, 40) cm. In order to test
our simulation setup, we measured the time a robot spends in going from one target
to the other by 1. using a random walking strategy, and 2. using our social-based
approach. The random walking strategy was implemented by setting to zero the com-
ponents t and nt of the steering vector. Figure 3 summarizes the measures we made
for 1000 single trips in each case.
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Fig. 3 Histograms of the data collected on the two experiments. a) Random search. b) Social-based target
localization.

As it can be seen in figure 3, the time needed for finding a target is dramatically
reduced when robots employ the social-based approach.

In order to characterize our approach, we performed a set of tests modifying the
attraction between robots and we measured the time they spent in finding the targets.
For doing so, we multiplied the component t of the steering vector in equation 1 and 2
by a parameter of attraction k. The resulting steer vector is shown in equations 5
and 6. By changing the attraction between robots we also modify the dynamics of the
population, making the navigation less or more fluid. We also explored the efficiency
of our approach under the presence of different amounts of robots performing the task
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of searching within the population. The results of these tests are depicted in figure 4.
The population size was always kept constant.

Sx = rx +bx + fx + k· tx +ntx (5)
Sy = ry +by + fy + k· ty +nty (6)
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Fig. 4 Average time spent by a robot with respect
to the value of attraction in the case of using the
information gathered by the population about the
location of the targets. Each point in the image
summarizes a set of 1000 single trips performed
by the robots.

As it can be seen in figure 4, the parameter k can be used to control the speed of
the robots and thus to control the time the robots spend in finding a target. From the
same figure, it can also be observed that the average time for finding a target is lower
when few robots are searching targets.

3.3.2 Comparison with a GPS-like Controller with Similar Complexity

The results in this section were obtained by using the slightly modified arena shown
in figure 5(a). This arena has a rectangular form of 300 cm x 400 cm side length, and
two targets located at positions (60, 40) cm and (340, 40) cm.

The goal of these experiments is to compare our social approach against another
method driving the robots to the targets with a similar complexity. Maps and global
coordination strategies are thus not allowed.

Given that the in the social approach each robot relies on the direction to move,
we decided to compare that against a GPS-like approach where each robot knows
the location of the targets and moves in that direction. Therefore, we replaced the
components t and nt of the steering vector by a single vector t always pointing in
the direction of the desired target. The resulting steering formulae are shown in equa-
tions 7 and 8.

Sx = rx +bx + fx +ax (7)
Sy = ry +by + fy +ay (8)
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(a) A slightly different
arena where simulated
experiments considering
an obstacle evolved.
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(b) Average time of the
social strategy without
obstacle.

4 5 6 7 8 9

0
10

20
30

40

Attraction (k)

Av
er

ag
e 

tim
e 

[s
]

5 Robots
10 Robots
15 Robots
20 Robots

(c) Average time of the
GPS-like strategy with-
out obstacle.

Fig. 5 a) Tag 1 is placed in the bottom-left corner, and tag 2 is placed in the bottom-right corner. b)and
c) Average time a searching robot spends in going from one target to the other without the presence of
obstacles in the environment. Different values of k and different amounts of robots searching for targets at
the same time were tested.

Figure 5 shows the average time a robot spends in going from one target to the
other for both strategies, different values of k, and different amounts of robots search-
ing at the same time. After comparing figure 5(b) and figure 5(c) it can be seen that
average time in the case of the GPS-like strategy is lower that in the case of the social
strategy. This result can be seen as obvious given that there are no obstacles in the
trajectory of the robots, and thus knowing the position of the target gives a major
advantage to the GPS-like approach.

We added an obstacle between the two targets to make this comparison more
interesting. In the presence of an obstacle robots have to first avoid the obstacle in
order to get to the target. With this experiment we want to observe how the robots
behave with these two simple strategies when obstacles of different lengths are placed
in the arena. Figure 6 shows the obstacles of length 50 cm, 100 cm and 150 cm that
were put in the arena to perform the tests.

Figure 7 shows the average time for robots using the social approach when going
from one target to the other with different values of k, different amounts of robots
searching at the same time, and different lengths of obstacles. As it can be seen from
that figure, the average time increases with the length of the obstacle between the
targets. This result is coherent since robots have to transit longer paths when longer
obstacles are put between the targets.

Figure 8 shows the average time for robots using the GPS-like approach when go-
ing from one target to the other with different values of k, different amounts of robots
searching at the same time, and different lengths of obstacles. As in the previous
case, the average navigation time is positively affected by the length of the obstacle
between the target. However, the GPS-like approach seems to be more influenced by
the presence of big obstacles than the social approach.
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(a) Obstacle of 50 cm. (b) Obstacle of 100 cm. (c) Obstacle of 150 cm. (d) Obstacle of 200 cm.

Fig. 6 Three different lengths of obstacles in the modified arena.
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(a) Obstacle of 50 cm.
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(b) Obstacle of 100 cm.
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(c) Obstacle of 150 cm.
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(d) Obstacle of 200 cm.

Fig. 7 Average time for robots using the social approach for target localization. We tested different values
of k, different amounts of robots performing the searching task at the same time, and different lengths of
obstacle between the targets.
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(b) Obstacle of 100 cm.
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(c) Obstacle of 150 cm.
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Fig. 8 Average time for robots using the GPS-like approach for target localization. We tested different
values of k, different amounts of robots performing the searching task at the same time, and different
lengths of obstacle between the targets.



14 Héctor F. Satizábal M. et al.

We pushed even further the comparison between both approaches by putting an
very large obstacle which covers almost the whole arena letting just a little corridor
for the robots to pass through. Figures 7(d) and 8(d) show the results of this last
comparison. As it can be seen in the figure, the social approach manages to drive the
robots to the targets even when operating in an environment which has more the form
of a labyrinth than an open space. Instead, with the GPS-like approach, robots spent
much more time to get to the targets in this environment.

4 Validation on the marXbot Robot

A set of the above described experiments was implemented on a real robotic platform
in order to validate our approach handling real physical constraints. For doing so,
we used a collective robotic set-up with 20 robots communicating their state through
visual signals: emitted by RGB leds and perceived by omni-directional cameras. This
section describes the robotic platform and the experimental set-up.

4.1 The marXbot Robot

The marXbot [6, 7] is a small mobile robot7 designed at the EPFL in the framework
of the FP6 European project PERPLEXUS. This robot offers a reliable hardware
platform to perform experiments in collective robotics. It has a modular hardware and
software architecture with a real operative system which allows high flexibility and
robustness. The ground mobility is achieved by a combination of tracks and wheels
that gives good mobility in even and uneven terrains. About 60 sensors ensure a
perception of the environment sufficient to perform a large variety of tasks and a
collaboration among several individuals. Moreover, the marXbot robot is modular to
allow different configurations depending on the task to be achieved.

The robot structure is based on a modular concept at all levels: mechanical, elec-
tronics and software. Mechanical modularity is achieved by stacking modules on top
of another following a well-defined mechanical specification. Figure 9(b) shows the
modules composing one of the basic configurations of the marXbot. From figure 9(b)
one can distinguish a common element: two central electrical connectors and four
fixations holes around them ensuring the mechanical and electrical interface between
all the modules. The modularity of the electronics is achieved by:

– Sharing, on the extension connectors:
– The raw battery power supply.
– Some control signals such as the power enable and the reset signal.
– Two communication buses: CAN and I2C.

– Selecting different functionalities for the several modules in such a way that they
result as independent as possible.

– Providing each module with its own local processing power.
– Supporting on each module the ASEBA architecture described in [20].

717 cm diameter, 17 cm height, ∼1000 g weight
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(a) Actual image of the marXbot. (b) Exploded CAD view of the
marXbot.

Fig. 9 The marXbot in a configuration including five modules.

Figure 9(a) shows a picture of the actual robot in one of its possible configurations
with five modules.

The base module contains the power supply of the whole robot. The marXbot is
powered by a 3.7 V, 10 Ah Lithium-Polymer battery which is hot-swappable. The
hot-swapping capability is provided by a super-capacitor which maintains the power
supply of the robot for ∼10 s during battery exchange. The casing in the base mod-
ule embeds two individual battery cells, the slipping contacts for hot-swapping, and
the protection electronics. This electronics provides charging and over-current pro-
tection, but also monitoring, allowing the robots to know the current battery capacity
and the number of recharge cycle it went through.

Moreover, the base module contains two tracks and two wheels that give mobility
to the robot. This combination of tracks and wheels is called treels. Treels are pow-
ered by two 2 W motor, each one associated to a rubber track and a wheel. These
motors are driven by dedicated electronic boards situated on each side of the battery
(one for each motor). With this configuration, the marXbot can reach a maximum
speed of ∼30 cm/s.

The base of the robot also provides some sensing capabilities. There are infra-red
sensors distributed around the robot on the main printed circuit which act as virtual
bumpers and ground detectors. Those sensors have a range of some centimetres, 24
are directed outside the robot and 8 are directed to the ground. In addition, 4 contact
ground sensors are placed under the lowest part of the robot and mounted on the two
vertical printed circuits.
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The base of the marXbot also embeds a RFID reader and writer with an antenna
situated on the bottom of the robot, close to the ground. This reader can read all types
of RFID chips in the HF 13.56 MHz range. By using this reader, RFID chips can be
placed on the ground to identify specific zones.

Finally, to better perceive the orientation of the robot body in all-terrain condi-
tions, the marXbot base includes 3 axis accelerometers and gyroscopes.

The top module includes two cameras, a LED beacon, an imx.31 processor and
some peripherals, such as a WiFi board and a flash card reader. The two cameras are
mounted in different configurations: a front camera and an omni-directional camera
on top of the board. This last specific feature makes that this module can only be
placed on the top of the robot. The imx.31 processor runs LINUX and access standard
peripherals such as WiFi, USB or flash storage.

4.2 Experimentation Setup

Our implementation makes use of a population of 20 marXbots on an arena. We
employed the RGB led and the omni-directional camera to implement the state com-
munication (see section 2) between robots.

4.2.1 The Arena

The arena we employed for our experiments includes:

– A working area of 6.4 m x 4 m, 2.8 m high. Only a portion of this working area
has been used for the experiments, as illustrated in Figure 10.

– White walls made of highly reflective tissue for optimal diffusion of light.
– An homogeneous lightning system with a spectrum with low infra-red compo-

nents.
– One black/white 5 Mpixels camera placed on the ceiling to track the position of

the robots.
– Tracking software based on the fidtrack library [5]. In order to track a robot,

a fiducial was placed over the omni-directional camera on top of the robot.

Figure 10 shows 20 marXbot robots on the arena during our experiments. We
distributed the robots in a square of 2 m of side length, and we placed some RFID
chips in opposite corners of the arena. These RFID tags represent the targets that the
robots have to search.

4.3 Implementation of the Social Approach on the marXbot

We tried to keep both implementations of our approach (i.e., in the marXbot as well
as in the case of simulation) as accurate as possible. However, the implementation in
the actual robot does not match perfectly the simulation. The idea was not to simulate
every detail of the robot but to exhibit the same high-level behaviour in both cases.
For this reason, some constants we employed in our algorithms are not the same.
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Fig. 10 Example of arena configuration with twenty marXbot robots.

4.3.1 Detection of Targets

The marXbot robot has a RFID reader which we employed to detect the target areas.
Once the robot is located over one of the RFID chips, it changes the colour of its LED
beacon in order to inform the other members of the population about the location
of the target. If a robot detects the target number 1, it sets the blue8 component of
its colour to 100%, instead, if a robot detects the target number 2, it sets the red
component of its colour to 100%.

4.3.2 Omni-directional Camera

Colour calibration had to be done before processing the images from the camera since
we decided to propagate the information through the population by using the RGB
components of the LED beacon. In our experimental set-up, robots share informa-
tion by encoding it in the value of the R and B components of the colour of their LED
beacon. Robots receiving this information have to decode the colour by extracting the
right R and B components that were sent. After some preliminary tests we found that
the R′G′B′ components detected by the camera do not keep the same proportions than
the components sent by the LED. Instead, if a sender robot sets the red component of
its LED beacon to 100%, the receiver robots detect a blob with the three components
RGB (i.e., components G and B are present even if the sender does not send them).
In order to get the original values sent by the sender, receiving robots have to make a
transformation of the three received components consisting in projecting the received

8In the case of the real robot we employed the blue component instead of the green component we
used in simulation. The reason for this choice is related to the camera of the marXbot which detects better
the red and blue components.
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Fig. 11 Each one of the three components of colour detected by the omni-directional camera, before and
after transformation.

components into the actual R′G′B′ axes of the camera. Figure 11(before transforma-
tion) shows the intensity of the components detected by the camera when a sender
robot emits each one of the RGB components individually.

After some algebraic manipulations, we managed to find the R′G′B′ axes of the
camera in which each one of the detected components have to be projected in order
to detect the original RGB components that were sent. Equations 9, 10 and 11 show
how each one of these components were obtained.

R = 1.09r−0.26g−0.02b (9)
G = −0.24r+1.19g−0.16b (10)
B = −0.06r−0.33g+1.06b (11)

This calibration process was done once, before starting the experiments. Figure 11
shows the resulting components after the transformation.

Moreover, the images obtained from the omni-directional camera have to be anal-
ysed in order to extract the location and the colours of neighbouring robots. The goal
of processing these images is to obtain the direction where there are other robots
showing the red and blue components, and to detect the most predominant colours
in the proximities in order to copy them. Figure 12 shows an example of an image
obtained with the omni-directional camera. In order to ease the task of detecting the
LED beacons of other robots, we reduced the integration time of the camera in way
that only the robots showing colours (i.e., LED beacon turned on) could be visible.
The algorithm for image processing performs two steps:
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Fig. 12 Example of an image captured with the omni-
directional camera. LED beacons are blue for all robots.

1. Blob detection. The first step after capturing the image from the omni-directional
camera is to detect the neighbouring robots. In order to do so, we performed a
blob detection on the image and we compute the position of blobs of light which
represent the LED beacons of robots.

2. Transformation of the R′G′B′ components. Once the location of neighbouring
robots is detected, we transform their colour as it was aforementioned in order to
find the RGB components that were sent. Then, we keep the maximum value of
the detected components in order to emit this colour by using the LED beacon9.

Note that the use of the RGB code may limit the number of targets to search to a
maximum of 3, since the signal used for coding the estimation of the distance to each
target must be orthogonal respective to the signals used for other targets. However,
the use of colours for state transmission can be considered as a proof of concept of
a larger approach. If we consider the use of RF signals with N different frequencies,
each frequency can be used for coding the estimation for each target, providing the
possibility of guiding robots towards N different targets, accepting that the chosen
RF frequencies will be orthogonal and that there will not be harmonics interference
between them.

4.3.3 Navigation

As in the case of simulation, navigation was implemented in a very simple reactive
manner. We computed the direction to move by using the same approach showed in
equations 1 and 2 in section 3.2.2. Component b10 of the steering vector was com-
puted by using the lectures from virtual bumpers, and component t11 of the steering
vector was calculated by using information from the omni-directional camera. In or-
der to go to the target while avoiding obstacles the final steering vector is computed
by adding vectors b and t, as shown in equations 12 and 13.

9No attenuation of the components was done as it was done in the case of simulation. In the exper-
iments with the actual marXbot this attenuation is intrinsically done by the camera and the algorithm of
blob detection.

10The vector pointing in the direction where there are no obstacles.
11The vector pointing in the direction where there is more likely to find a target.
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Sx = rx +bx + tx (12)
Sy = ry +by + ty (13)

4.4 Tests on a Population of MarXbots

We implemented the social-based approach in a population of 20 marXbots evolving
on the arena described in section 4.2.1. Figure 13 shows the resulting single-trip times
after 30 minutes of collecting data.
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Fig. 13 Histograms of the data collected from the two experiments made with the population of marXbots.
a) Random search. b) Social-based target localization.

A direct quantitative comparison of the results obtained in simulation (figure 3)
and in the real robot (figure 13) may make few sense since real physical constraints
are always very difficult to model in an accurate manner. However, we can use both
figures in order to establish interesting qualitative equivalences between simulated
and real experiments. In both cases we can observe a Poisson-like distribution for
both random and social based approach. In the real robot implementation the distri-
bution may become less evident because of the few amount of runs which are due to
the practical difficulty of performing lots of real measures, but the representation of
the results of the different runs (at the bottom of the distribution) helps to guess the
response trend. Another interesting parallel is the performance comparison between
the social and random approaches; the socially driven robot can find the target around
100 faster than the random search in both cases: simulation and real implementation.
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4.5 Tracking a robot

Moreover, we put a fiducial over one of the robots that was using the social-based
approach in order to track its position during the experiment. The robot was tracked
by using the camera on the ceiling of the arena as described in section 4.2.1. Tracking
the position of robots allowed us to have a better idea of the trajectories they made
in order to get to the targets. Figure 14 shows a 2D histogram of the position of the
tracked robot. In this picture, the color of each one of the boxes in the grid indicates
the amount of times the robot was in that position. As it can be seen in the histogram,
the searching robot has a strong tendency to go trough the diagonal of the arena, or
in other words, to follow the gradient that was made by the other members of the
population.

0

5

10

15

2500 3000 3500

1500

2000

2500

Robot trace

x

y

Fig. 14 2D histogram of the position
of a searching marXbot. Colours indi-
cate the amount of times the robot was
found in [x, y] position.

5 Conclusions

Robots performing a cooperative task in an unknown environment eventually need to
find common target areas. Since these key zones are common for every robot, we pro-
posed to guide the navigation of each robot by using the knowledge about the location
of the targets that is disseminated in the whole population. The proposed coordination
scheme is distributed and uses state communication in an intrinsic way, i.e., robots
transmit information about their internal state, but they are not aware of whether other
robots receive this information or not. This approach simplifies the communication
and makes the system more robust. Moreover, the proposed strategy for target local-
ization avoids the use of global positioning systems, that might be difficult to deploy
in unknown or hostile environments, and avoids also the use of odometry, which is
sensitive to cumulated errors after large running periods. Additionally, the fact of
being a distributed scheme makes it very robust and scalable.
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We used a robotic simulator to test our approach, and we verified the correct be-
haviour of the robots by measuring the time a robot spent in sequentially travelling
between two targets. For comparing12 purposes we also provide measures where,
instead of using our social-based approach, the robots freely navigate in a random
way. Moreover, some tests concerning robustness and scalability were performed.
A parameter k was added in order to modulate the attraction between robots when
approaching a target. When we changed k the average time a robot spends in find-
ing a target changed and therefore, the trajectories performed by the robots become
more or less smooth. The amount of robots looking for targets was also changed
during simulations. We found that there is a weak relationship between robot perfor-
mance and the amount of robots performing the task; and that this relationship is even
weaker when parameter k is higher. We also performed some comparisons against an-
other approach for guiding the robots having a similar degree of complexity. Global
coordination and maps of the arena were thus avoided. Therefore, we implemented
a GPS-like approach were each robot knows the location of the target and uses this
information to guide its navigation. We compared both strategies i.e., social and GPS-
like, in an slightly modified arena with an obstacle between the targets. Our results
showed that the social approach is more robust to the presence of longer obstacles in
the environment.

We surmise that the advantages of the social approach rely on the fact that there
are no fixed maps of the environment giving the position of the targets. Instead, this
knowledge is distributed in the population, and is thus dynamically updated as the
robots navigate through the environment. The whole population benefit from the local
contributions of each member of it, which globally produces a gradient that is useful
to guide any robot to a target. However, this intrinsic map of the environment is only
present if there is a population of robots collaborating. A single robot (the worst case)
is bound to navigate randomly through the environment without any indication of the
location of the targets given by neighbouring robots.

Last but not least, we validated our social-based approach in a population of real
robots. In our experiments we employed a mobile robot designed at EPFL called the
marXbot. These robots have remarkable capabilities such as locomotion using tracks
and wheels; a large set of sensors including an omni-directional camera and infra-
red bumpers; and a RGB LED beacon that was used to disseminate the gradient of
knowledge through the population. Even if both implementations (i.e., simulation and
actual marXbot) of the strategy were not exactly the same, we corroborated that in
both cases the behaviour exhibited by the population of robots remained the same,
the performance curves kept the same trend, and that they are equivalent in terms of
the time travelled by the robots when looking for a target.
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Proceedings of the IEEE/RSJ/GI International Conference on, vol 2, pp 925–932
vol.2

18. Lambrinos D, Roggendorf T, Pfeifer R (2001) Insect strategies of visual homing
in mobile robots. In: Biorobotics - Methods and Applications. AAAI Press, pp
37–66

19. Magnenat S, Waibel M, Beyeler A (2009) Enki – an open source fast 2d robot
simulator. http://home.gna.org/enki/

20. Magnenat S, Rtornaz P, Bonani M, Longchamp V, Mondada F (2010)
ASEBA: A Modular Architecture for Event-Based Control of Complex
Robots. IEEE/ASME Transactions on Mechatronics PP(99):1–9, DOI
10.1109/TMECH.2010.2042722, URL http://www.ieee-asme-mechatronics.org/

21. Nouyan S, Gross R, Dorigo M, Bonani M, Mondada F (2005) Group transport
along a robot chain in a self-organised robot colony. In: In: Proc. of the 9 th Int.
Conf. on Intelligent Autonomous Systems, IOS, IOS Press, pp 433–442
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