000165818 001__ 165818
000165818 005__ 20190316235111.0
000165818 0247_ $$2doi$$a10.1002/aenm.201100046
000165818 022__ $$a1614-6832
000165818 02470 $$2ISI$$a000291728400016
000165818 037__ $$aARTICLE
000165818 245__ $$aThe Effect of Hole Transport Material Pore Filling on Photovoltaic Performance in Solid-State Dye-Sensitized Solar Cells
000165818 269__ $$a2011
000165818 260__ $$c2011
000165818 336__ $$aJournal Articles
000165818 520__ $$aA detailed investigation of the effect of hole transport material (HTM) pore filling on the photovoltaic performance of solid-state dye-sensitized solar cells (ss-DSCs) and the specific mechanisms involved is reported. It is demonstrated that the efficiency and photovoltaic characteristics of ss-DSCs improve with the pore filling fraction (PFF) of the HTM, 2,2’,7,7’-tetrakis-( N, N-di-p-methoxyphenylamine)9,9’-spirobifluorene(spiro-OMeTAD). The mechanisms through which the improvement of photovoltaic characteristics takes place were studied with transient absorption spectroscopy and transient photovoltage/photocurrent measurements. It is shown that as the spiro- OMeTAD PFF is increased from 26% to 65%, there is a higher hole injection efficiency from dye cations to spiro-OMeTAD because more dye molecules are covered with spiro-OMeTAD, an order-of-magnitude slower recombination rate because holes can diffuse further away from the dye/HTM interface, and a 50% higher ambipolar diffusion coefficient due to an improved percolation network. Device simulations predict that if 100% PFF could be achieved for thicker devices, the efficiency of ss-DSCs using a conventional ruthenium dye would increase by 25% beyond its current value.
000165818 6531_ $$aPhotoinduced Absorption-Spectroscopy
000165818 6531_ $$aEnergy Relay Dyes
000165818 6531_ $$aCharge-Transfer
000165818 6531_ $$aEfficiency Measurements
000165818 6531_ $$aRecombination Kinetics
000165818 6531_ $$aRuthenium Sensitizers
000165818 6531_ $$aDiffusion Length
000165818 6531_ $$aSpiro-Meotad
000165818 6531_ $$aTio2
000165818 6531_ $$aElectron
000165818 700__ $$aMelas-Kyriazi, John
000165818 700__ $$aDing, I.-Kang
000165818 700__ $$0242521$$aMarchioro, Arianna$$g166646
000165818 700__ $$0242519$$aPunzi, Angela$$g193170
000165818 700__ $$aHardin, Brian E.
000165818 700__ $$aBurkhard, George F.
000165818 700__ $$0244216$$aTétreault, Nicolas$$g187324
000165818 700__ $$0240191$$aGrätzel, Michael$$g105292
000165818 700__ $$0240325$$aMoser, Jacques-E.$$g105914
000165818 700__ $$aMcgehee, Michael D.
000165818 773__ $$j1$$q407-414$$tAdvanced Energy Materials
000165818 8564_ $$s616136$$uhttps://infoscience.epfl.ch/record/165818/files/AEM0101.pdf$$yPostprint$$zn/a
000165818 909C0 $$0252060$$pLPI$$xU10101
000165818 909C0 $$0252307$$pGR-MO$$xU11269
000165818 909CO $$ooai:infoscience.tind.io:165818$$pSB$$particle$$qGLOBAL_SET
000165818 917Z8 $$x105914
000165818 937__ $$aEPFL-ARTICLE-165818
000165818 973__ $$aOTHER$$rREVIEWED$$sPUBLISHED
000165818 980__ $$aARTICLE