
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. P. Ienne, président du jury
Prof. T. Henzinger, directeur de thèse

Prof. M. Kwiatkowska, rapporteur
Prof. H. Köppl, rapporteur

Dr V. Wolf, rapporteur

Propagation Models for Biochemical Reaction Networks

THÈSE NO 5088 (2011)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 4 NOVEMBRE 2011

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE MODÈLES ET THÉORIE DE CALCULS

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2011

PAR

Maria-Emanuela-Canini MATEESCU

ii

iii

To Irina Athanasiu, who deeply cared about her students...

iv

Abstract

In this thesis we investigate different ways of approximating the solution of the
chemical master equation (CME). The CME is a system of differential equations
that models the stochastic transient behaviour of biochemical reaction networks.
It does so by describing the time evolution of probability distribution over the
states of a Markov chain that represents a biological network, and thus its
stochasticity is only implicit. The transient solution of a CME is the vector
of probabilities over the states of the corresponding Markov chain at a certain
time point t, and it has traditionally been obtained by applying methods that
are general to continuous-time Markov chains: uniformization, Krylov subspace
methods, and general ordinary differential equation (ODE) solvers such as the
fourth order Runge-Kutta method.

Even though biochemical reaction networks are the main application of our
work, some of our results are presented in the more general framework of prop-
agation models (PM), a computational formalism that we introduce in the first
part of this thesis. Each propagation model N has two associated propaga-
tion processes, one in discrete-time and a second one in continuous-time. These
propagation processes propagate a generic mass through a discrete state space.
For example, in order to model a CME, N propagates probability mass. In the
discrete-time case the propagation is done step-wise, while in the continuous-
time case it is done in a continuous flow defined by a differential equation.
Again, in the case of the chemical master equation, this differential equation is
the equivalent of the chemical master equation itself where probability mass is
propagated through a discrete state space. Discrete-time propagation processes
can encode methods such as the uniformization method and the fourth order
Runge-Kutta integration method that we have mentioned above, and thus by
optimizing propagation algorithms we optimize both of these methods simulta-
neously.

v

vi

In the second part of our thesis, we define stochastic hybrid models that ap-
proximate the stochastic behaviour of biochemical reaction networks by treating
some variables of the system deterministically. This deterministic approxima-
tion is done for species with large populations, for which stochasticity does not
play an important role. We propose three such hybrid models, which we in-
troduce from the coarsest to the most refined one: (i) the first one replaces
some variables of the system with their overall expectations, (ii) the second one
replaces some variables of the system with their expectations conditioned on
the values of the stochastic variables, (iii) and finally, the third one, splits each
variable into a stochastic part (for low valuations) and a deterministic part (for
high valuations), while tracking the conditional expectation of the determinis-
tic part. For each of these algorithms we give the corresponding propagation
models that propagate not only probabilities but also the respective continuous
approximations for the deterministic variables.

Keywords: Markov chains; chemical master equation; biochemical reaction
networks; numerical solutions; hybrid methods; probabilistic verification;

Résumé

Ces travaux de thèse sont consacrés à l’étude des différentes façons d’estimation
de la solution de l’équation maîtresse chimique (EMC). L’équation maîtresse
chimique est un système d’équations différentielles stochastiques qui décrit le
comportement transitoire des réseaux de réactions biochimiques. Certaines des
techniques que nous proposons ne sont pas strictement liés à des réseaux de
réaction biochimique et à leur EMC, mais cette équation reste le principal ob-
jectif tout au long de notre travail. L’EMC décrit l’évolution avec le temps des
distributions de probabilité dans une chaîne de Markov qui représente un réseau
biologique, et donc sa stochasticité n’est qu’implicite. Sa solution transitoire a
traditionnellement été obtenue en appliquant des méthodes qui sont générales
à des chaînes de Markov: la méthode de l’uniformisation, des méthodes de
sous-espace Krylov, ou des méthodes générales aux équations différentielles or-
dinaires, comme par exemple, la méthode Runge-Kutta d’ordre 4.

Cette thèse est divisée en deux parties. Dans la première partie, nous définis-
sons le formalisme de calcul des modèles de propagation (MP) et nous donnons
des algorithmes qui estiment leur solution. A chaque modèle de propagation N
nous associons deux processus de propagation, l’un en temps discret et l’autre
en temps continu. Ces processus propagent de la masse à travers un espace
discret d’états de N . Cette masse de propagation peut être de tout type et si,
par exemple, le modèle de propagation représente une ECM, alors N propage
des probabilités. Dans le cas du temps discret, la propagation est faite par
étapes, tandis que dans le cas du temps continu, elle est faite dans un flux
continu défini par une équation différentielle. Encore une fois, dans le cas de
l’EMC, cette équation différentielle serait l’équivalent de l’équation maîtresse
chimique elle-même où la masse de probabilité est propagée à travers un es-
pace d’états discret. MP-s peuvent coder des méthodes telles que la méthode
de l’uniformisation et la méthode de l’intégration de Runge-Kutta mentionnée

vii

viii

ci-dessus, et donc par l’optimisation des algorithmes MP nous optimisons ces
deux méthodes simultanément.

Dans la deuxième partie, nous définissons des modèles stochastiques hybrides
qui estiment le comportement stochastique de réseaux de réactions biochimiques
par le traitement déterministe de certaines variables du système. Cette approx-
imation déterministe est faite pour les espèces avec de grandes populations pour
lesquelles la stochasticité ne joue pas un rôle important. Nous proposons trois de
ces modèles hybrides présentés de la plus grossière à la plus raffinée: (i) la pre-
mière remplace certaines variables du système avec leurs espérances globales;
(ii) la seconde remplace certaines variables du système avec leurs espérances
conditionnées par la valeur des variables stochastiques; (iii) la troisième divise
chaque variable dans une partie stochastique (pour les valeurs basses) et une
partie déterministe (pour les valeurs hautes), tout en suivant l’espérance con-
ditionnelle de la partie déterministe. Pour chacun de ces algorithmes, nous
donnons les modèles de propagation correspondant qui ne propagent pas seule-
ment des probabilités, mais aussi les approximations continues respectives des
variables discrètes.

Mots-clés: chaînes de Markov; équation maîtresse chimique; réseaux de réac-
tion biochimique; solutions numériques; méthodes hybrides; vérification proba-
biliste;

Acknowledgments

First of all, I am thankful to the members of my jury, for taking the time to
carefully read this thesis and for their insightful and useful feedback.

I have joined the EPFL doctoral program without even knowing that the
field of model checking existed. However, Tom’s class on Computer Aided Ver-
ification fascinated me right from the beginning: a mixture of my two favourite
subjects (mathematics and computer science) offered with the clarity and sharp-
ness of Tom’s presentation style. After attending this class, I simply could not
say no to joining the Models and Theory of Computation (MTC) laboratory as
a PhD student. Thanks to Jasmin and Nir, I have then more specifically started
to work on problems with applications in biology, and especially since Verena
joined our group my research focused on numerical solutions of the Chemical
Master Equation. Verena has strongly influenced the outcome of my thesis, for
which I’m very grateful. I have learned many things from her, and what I value
most is that she taught me how to approach hard problems by taking small
steps in solving them. Fred is another person that had an important influence
on my research, and he has done so out of a pure interest in sciences, which
turned him from a friend to a co-author. I have learned from him how to look at
the heart of a problem, and he also taught me a whole lot about programming.

Tom is the best advisor I could have chosen for my PhD. He taught me how
to feel if a formalism is right or not, how to make everything fit in a big picture,
how to be clear, and many other things. He has wisely chosen very special
people to be part of our group. Most of the time at EPFL I have spent with
my office-mate, Grégory. Someone once told me: “If you have a problem, see
Grégory.” That was as accurate as it can get, thank you Grégory for your for
the good times in the office, for your kindness, wisdom and support. As I have
said, all colleagues I had in MTC are great people, and I consider myself very
lucky to have gained the valuable friendship of Laura, Laurent, Dietmar, Dejan,
Barbara, Tatjana and Vasu. I am also very grateful to Fabien and Sylvie who

ix

x

made all “logistics” run so smoothly that for years I almost forgot that such
problems can ever exist.

EPFL proved to have a very diverse and open community where I made
friends from all over the world. Karin literally saved me one day when she
showed me a group of about ten people and told me: now you can call all of
them your friends. I appreciated her trying to be so nice, but I never thought
she was actually telling the truth. One by one I got to know all of them,
and then many others, and each one had something to share: Nino - bad but
lovely sense of humour, Harm - making it seem so easy, Zafer - still owes me
a violin concert, Klaske - maybe the hardest one to win over, German - the
great apple break conspiracies, Veronica - best motivator ever, Denisa - making
magic happen, Ghid - devotion and perfect replacement for myself, Luigi -
being young, Oli - being very young, Lorenzo - bicycle mania, Nigel Farquhar-
Bennett - unstoppable curiosity, Wojciech & co - the movie makers, Jasper -
most committed father, Ingmar - chocolate, sports, knowledge and friendship
mania, Ashutosh - seeking for trouble but in a good way, Maya - never giving
up, Tobi - being a gentleman, Jim - road opener, Bram - keeping the flag up,
Albrecht - laughing, Andrea - probability theory and aiming high, Ashkan - hugs
and hard metal, Ben - balloons, Bertrand - tart perfection and a bit of math,
Pam - loving nature, Gregg - priorities expert, Davor - love-hate relationship,
Hamed - there when you need him, Voja - simply friendly, Dan - encouraging,
Lukas - natural, Nicolas - taking me very high up the mountains, Adriaan - best
teaser, Willem-Jan - piano playing, Lina - giving it all, Tanja - great pies and
great smile, Claudia - bicycle dancing, Alex Susu - the right words at the right
time, Viktor - great teacher, Pieter - thinking abstract and, Razvan - saved me
when I just got to Lausanne. I know this is a very long list, and it is so because
I’m one lucky person, and each of these people made my PhD studies brighter
and brighter still. Among them I must make a special remark about Denisa,
Dan and Ghid, whose advices and support while I was preparing my thesis as
well as my private thesis exam were what anyone would have dreamed for. And
among them I must add a special thank you to Denisa for being like a sister to
me, and without whom I might never have called Lausanne to be home.

I have to mention that I have gained a lot from the doctoral school or mas-
ter courses at EPFL, it is here for example that I have refreshed my notions
of probability theory. I took on two internships while being a PhD student,
both of which have broaden my horizons in valuable ways, and also allowed me
to meet very motivated people at ETHZ in Uwe Sauer’s group and in Google
Zurich. I am thankful for both of these opportunities. My PhD studies were

xi

funded through an SNSF grant which allowed me to attend numerous confer-
ences, summer schools and workshops, from which I have learned a lot, especially
in the field of systems biology. Among these meetings I must mention the q-bio
summer school 2010, where I have made true friends and where the big picture
of the quantitative biology field started to take shape in my mind.

EPFL has a vast collection of associations among which I have mostly been
involved with A/RO, GSA, ACIDE and Polyathlon. All of these associations
have offered a lot to me, in terms of people that I have met and events that I
attended and even management skills that I have acquired. Also I am thankful
for the valuable experience that I have gained while being a first-aid volunteer
on campus.

Without knowing so many fine Romanians in EPFL I would have felt alien-
ated on foreign land. But together with Diana, Mihai, Iuli, Nicu, Cristi, Andrea,
Veronica, Alex, Roxana, Bogdan, and Oana to name just a few, we made our own
little Romania here in EPFL. Diana was especially important in this mission as
it was mostly the two of us that put together A/RO, the Romanian association.
Nicu and Iuli also deserve a special note, because they have listened to a lot of
my mumbling about life and other things. Thank you!

I must also mention the Lyon family who welcomed me to Switzerland as if
I was their daughter, even though I was a stranger to them, as well as Denise
Poenaru who had encouraged me to embrace piano playing.

I am also grateful for their continuous support to my friends back in Roma-
nia, especially: Vivi, Irina, Dan, Irina, and Mihaela. And speaking of people
that I left in Romania, I should mention Freescale, the company where I was
working before joining a PhD program. The time that I spent there and the
people that I got to meet in that period will always stay very dear in my heart.
And it is Freescale that made me interested in hardware, which made me inter-
ested in computer aided verification, which lead me to this thesis. Also, during
my studies at “Politehnica” University of Bucharest was when I first grew as
an engineer and even as a scientist. I often think about Irina Athanasiu, who
passed away in 2006. She was my master diploma supervisor, and I thank her
for being a role-model to me, for making me think, for making me dream and
dare.

And finally, there is my warm and loving family who always trusted in me,
and was always there to celebrate a success, or to heal a wound. I am the lucki-
est person for such grandparents who always trusted in me, uncles together with
their families who always looked after me, a father who made me see mathe-

xii

matics everywhere, a brother whose encouragements while writing parts of this
thesis were priceless, Coca and Maria who always made Christmas Christmas,
a mother who is not with us any more, but whose memory is ever present and
who taught me how to count, without which we must agree this thesis would
not have been possible. And then, there is the cherry on my cake, Jérôme, the
man who won my heart immediately and who would better keep it for a long
time. Look, Jérôme, your (little) girl has finished writing!

Previous Publications

The research presented in Section 4.2 appeared as T. A. Henzinger, and M.
Mateescu, V. Wolf, CAV ’09. “Sliding Window Abstraction for Infinite Markov
Chains”, in the Proceedings of the 21st International Conference on Computer
Aided Verification (CAV 2009), Lecture Notes in Computer Science 5643, 2009;
and as “Solving the chemical master equation using sliding windows”, together
with R. Goel, in the BMC Systems Biology journal, 4:42, 2010.

The research presented in Section 5.1 appeared as F. Didier, T.A. Henzinger
and M. Mateescu, and V. Wolf, “Approximation of Event Probabilities in Noisy
Cellular Processes”, in the Proceedings of the 7th International Conference on
Computational Methods in Systems Biology (CMSB 2009), Lecture Notes in
Computer Science 5688, Springer, 2009; and in the Theoretical Computer Sci-
ence journal, 412, 2011.

The research presented in Chapter 3 appeared as F. Didier, T.A. Henzinger,
M. Mateescu, and V. Wolf, “Fast Adaptive Uniformization of the Chemical Mas-
ter Equation”, in the Proceedings of the first International Workshop on High
Performance Computational Systems Biology (HiBi 2009), IEEE Computer So-
ciety, 2009; and in Systems Biology, IET journal, 4:6, 2010. These publications
do not use the propagation models formalism.

The research presented in Chapter 8 appeared as T.A. Henzinger, L. Mi-
keev, M. Mateescu, and V. Wolf, “Hybrid Numerical Solution of the Chemical
Master Equation”, in the Proceedings of the 8th International Conference on
Computational Methods in Systems Biology, (CMSB 2010), ACM, 2010.

The research presented in Chapter 11 appeared as F. Didier, T.A. Henzinger,
M. Mateescu, and V. Wolf, “SABRE: A Stochastic Analysis Tool for Biochemical
Reaction Networks”, in the Proceedings of the 7th International Conference on
Quantitative Evaluation of SysTems (QEST 2010), IEEE Computer Society,
2010.

xiii

xiv

The research presented in Chapter 9 appeared as T.A. Henzinger, and M.
Mateescu, “Tail Approximation for the Chemical Master Equation”, in the Pro-
ceedings of the 8th International Workshop on Computational Systems Biology
(WCSB 2011).

And finally the propagation models formalism was introduced in T.A. Hen-
zinger, and M. Mateescu, “Propagation Models for Computing Biochemical Re-
action Networks”, int the Proceedings of the 9th International Conference on
Computational Methods in Systems Biology (CMSB 2011) - to appear.

Contents

Abstract v

Résumé vii

Acknowledgments ix

Previous Publications xiii

Contents xv

1 Introduction 1

1.1 Motivation . 1

1.2 Numerical Transient Solutions . 3

1.3 Propagation Models . 4

1.4 Hybrid Propagation Models . 6

2 Preliminaries 9

2.1 Biochemical Reaction Networks 9

2.2 Transition Class Models . 10

2.2.1 Chemical Master Equation 11

2.3 Propagation Models (PM) . 13

2.3.1 Discrete-time Propagation Process (DTPP) 14

2.3.2 Continuous-time Propagation Process (CTPP) 15

2.3.3 Linear Propagation Models 16

2.3.4 Relation with Transition Class Models 18

xv

xvi CONTENTS

I Propagation Algorithms 21

Introduction 23

3 Discrete Time Propagation 25

3.1 Introduction . 25

3.2 Straight-forward Solution . 25

3.3 On-the-fly State Space . 27

3.4 Problem Relaxation . 29

3.4.1 Threshold Abstraction . 29

3.4.2 Error Tolerance . 31

4 Continuous Time Propagation 33

4.1 Introduction . 33

4.2 Sliding Window . 34

4.2.1 Sliding Window Abstraction 36

4.2.2 Window Construction . 37

4.2.3 Algorithm . 39

4.2.4 Time intervals . 41

4.2.5 Error analysis . 43

4.2.6 Case Studies . 45

4.2.7 Conclusions . 55

4.3 Uniformization . 55

4.3.1 Standard Uniformization (SU) 56

4.3.2 Adaptive Uniformization (AU) 59

4.3.3 Fast Adaptive Uniformization (FAU) 66

4.3.4 Case Studies . 67

4.4 Runge-Kutta Method . 70

4.4.1 Algorithm . 72

5 Related Work 75

5.1 Stochastic Simulation . 76

5.1.1 Statistical Estimation of Probabilities 79

5.1.2 Experimental Results . 82

CONTENTS xvii

5.1.3 Conclusion . 86

5.2 Finite Space Projection . 87

5.3 Krylov Subspace Method . 90

5.3.1 Global Krylov Subspace Method 90

5.3.2 Local Krylov Subspace Method 92

II Hybrid Propagation Models for Biochemical Reac-
tion Networks 93

Introduction 95

6 Preliminaries 97

6.1 Aggregation . 97

6.1.1 Aggregated state space. 97

6.1.2 Aggregated PM . 97

6.2 Reaction Rate Equation . 100

6.2.1 Derivation of the Deterministic Limit 101

6.2.2 Propagation Model . 104

7 Naive Hybrid Numerical Solution 107

7.1 Naive Species Aggregation . 107

7.2 Mathematical Model . 108

7.3 Propagation Model . 110

7.4 Numerical Approximation Algorithm 111

7.5 Experimental Results . 113

8 Hybrid Numerical Solution 117

8.1 Conditional Species Aggregation 118

8.2 Mathematical Model . 118

8.3 Propagation Model . 127

8.4 Experimental Results . 131

9 Future Work: Tail Approximation 137

9.1 Tail Aggregated Solution . 137

xviii CONTENTS

9.2 Algorithmic Scheme . 138

9.3 Tail Approximation . 140

9.3.1 Multiple dimensions . 141

9.3.2 Case Studies . 141

10 Related Work 145

11 SABRE 147

11.1 Introduction . 147

11.2 Guarded Commands . 148

11.3 Tool Interface . 150

11.4 Software Architecture . 152

11.4.1 Components . 152

11.4.2 Data Structure . 152

11.5 Case Studies . 155

11.5.1 Genetic exclusive switch 155

11.5.2 Enzymatic reaction . 156

11.5.3 Moran’s population model 157

11.6 Comparison with other tools . 157

12 Conclusions 159

References 161

Curriculum Vitae 167

Chapter 1

Introduction

1.1 Motivation

Biochemical reaction networks are widely used within systems biology to de-
scribe biological processes. They consist of a list of chemical reactions with
associated rates, e.g. V + W

10−→ C, where the rate 10 characterizes the affin-
ity that molecules V and W have for each other. Such networks are used in
mainly three kinds of analysis: deterministic average behaviour, stochastic sim-
ulation and, the main subject of this thesis, numerical analysis of the probability
distributions over possible states1 of the system.

The average behaviour analysis is constructing a system of ordinary differ-
ential equations called the reaction rate equation (RRE) that approximates the
time evolution of the concentrations of certain molecules in a biological com-
partment. This macroscopic model is based on the theory of chemical kinetics
and assumes that the concentrations of chemical species in a well-stirred system
change deterministically and continuously in time. It provides an appropriate
description of a chemically reacting system as long as the number of molecules
of the chemical species are large.

However, molecular noise, which arises from the randomness of the discrete
events in the cell, significantly influences fundamental biological processes such
as gene expression [27, 108], decisions of the cell fate [5, 76], and circadian
oscillations [7, 43]. This is especially the case, when the chemical populations
of some species are low (e.g., in living cells we have a single DNA molecule, tens
or a few hundreds of RNA or protein molecules). In this case, the underlying

1As shown later, a state of a biochemical reaction network is described by the copy numbers
for each molecule species.

1

2 CHAPTER 1. INTRODUCTION

assumptions of the RRE approach are violated and a more detailed model is
necessary [32, 79, 87, 93, 107].

During the last decade, stochastic models with discrete state space have
seen a growing interest because they provide appropriate descriptions of sys-
tems that are subject to molecular noise, therefore addressing the limitations
of the deterministic models. The theory of stochastic chemical kinetics pro-
vides an appropriate description by means of a discrete-state Markov process,
that is, a continuous-time Markov chain (CTMC) that represents the chemical
populations as random variables [38, 39]. In the thermodynamic limit (when
the number of molecules and the volume of the system approach infinity) the
Markov model and the macroscopic RRE description are equal [70], and as
already mentioned, the RRE approach can only be used to approximate the
Markov chain if all populations are large.

The evolution of the Markov chain is given by a system of linear ordinary
differential equations, known as the chemical master equation(CME). A single
equation in the CME describes the time derivative of the probability of a certain
state at all times t ≥ 0. Thus, the solution of the CME is the probability
distribution over all states of the Markov chain at a particular time t, that
is, the transient state probabilities at time t. The solution of the CME can
then be used to derive measures of interest such as the distribution of switching
delays [78], the distribution of the time of DNA replication initiation at different
origins [86], or the distribution of gene expression products [110]. Moreover,
many parameter estimation methods require the computation of the posterior
distribution because means and variances do not provide enough information to
calibrate parameters [55].

The more detailed description of chemical reactions using the CME comes
at a price of significantly increased computational complexity because the un-
derlying state space is usually very large or even infinite. Therefore, stochastic
simulation is in widespread use, because it allows to generate random trajecto-
ries of the model while requiring only little memory. Estimates of the measures
of interest can be derived once the number of trajectories is large enough to
achieve the desired statistical accuracy. However, the main drawback of simu-
lative solution techniques is that a large number of trajectories is necessary to
obtain reliable results. For instance, in order to halve the confidence interval of
an estimate, four times more trajectories have to be generated. Consequently,
often stochastic simulation is only feasible with a very low level of confidence in
the accuracy of the results.

1.2. NUMERICAL TRANSIENT SOLUTIONS 3

1.2 Numerical Transient Solutions

The focus of this thesis is on numerical algorithms for the transient solution of
the CME of biochemical reaction networks.

Example 1.1. Consider a biochemical reaction network with two species, V
and W , whose stochastic behaviour is given by a CTMC X(t) = (V (t),W (t)),
where V (t) is a random variable that gives the number of molecules of type V
that are present in the system at time t, and the same for W (t). The CTMC
X(t) is completely described by a graph whose edges are labelled by real valued
rates. Let s′ be a successor of the state s in this graph, and let the rate of
jumping from s to s′ be 10. Then, we have that

Pr(X(t+ dt) = s′ |X(t) = s) = 10 · dt,

for an infinitesimal value dt. Given an initial state (X(0) = y), and a time point
t ≥ 0, the transient analysis problem for Markov chains asks that we compute
the values:

Pr(X(t) = s |X(0) = y) ,∀s = (v, w).

Intuitively, computing this transient solution is the equivalent of propagating,
in small steps dt, the probability to be in state s times the probability to jump
from state s to a successor of s′, for all pairs of states and their successors. For
example, at time t, state s propagates to s′ the value val

Pr(X(t) = s |X(0) = y) · 10 · dt =: val, (1.1)

and so do, in parallel, all the other states of the Markov chain.

Traditionally, the CME has been solved using one of three classes of nu-
merical methods that are general to the transient solution of any CTMC: uni-
formization methods, general ODE solvers such as Runge-Kutta fourth order,
or Krylov subspace methods; and this thesis deals with optimizing the former
two of these methods for the case of the chemical master equation.

For a CTMC {X(t), t ≥ 0} The uniformization method [105] is defining a
uniformized discrete-time Markov chain (DTMC) {Xu(k), k = 0, 1, . . .} and a
Poisson process

{
XP (t), t > 0

}
such that X(t) is stochastically identical to

Xu(XP (t)). The Poisson process XP (t) can be interpreted as a clock that
stochastically decides how many steps are taken by the uniformized discrete-

4 CHAPTER 1. INTRODUCTION

time Markov chain Xu(t) in a time interval of length t, such that its stochastic
behaviour matches the stochastic behaviour of X(t). From a computational
point of view, uniformization reduces the problem of integrating a continuous-
time differential equation (the CME) to that of solving a discrete-time Markov
chain through a series of matrix-vector products. A variant of uniformization,
called adaptive uniformization, is based on the same principles, with the dif-
ference that the clock for the steps of the adaptively uniformized discrete-time
Markov chain is given by a birth process, which is a more general jump process
than the Poisson process.

The fourth order Runge-Kutta method is a classic integration method. It is
used to integrate the CME by taking small time steps, thus, applying a direct
discretization of the continuous-time. In each integration step, probability is
pushed through the system according to the derivative of the probability mass
function, as given by the CME.

1.3 Propagation Models

In the first part of this thesis we introduce the computational formalism of prop-
agation models. A propagation model is a graph, whose nodes are called states,
and whose edges have associated edge functions that describe how much mass
is to be propagated from one state of the graph to another one. A propaga-
tion model accepts two semantics, one that defines a discrete-time propagation
processes (DTPP), and a second one that defines a continuous-time propaga-
tion processes (CTPP). These processes spread mass through the propagation
model’s graph according to the valuations of the edge functions. The valuation
of a propagation process at a certain time point is a mass vector over the states
of the model (the nodes of the graph).

Example 1.2. (cont.) For the simple CTMC X(t) from Example 1.1, we define
a propagation model which has the same state space as the Markov chain, and
its edge function between states s and s′ is equal to the propagated value val
from Equation 1.1.

After defining this formalism, we deal with the problem of evaluating a
discrete or a continuous-time propagation processes at a certain time point, by
designing different propagation algorithms. The basic discrete-time propagation
algorithm is straightforward, as it simply involves a value iteration procedure,
and the main challenge is in optimizing it for a good accuracy/performance

1.3. PROPAGATION MODELS 5

ratio. For this we rely on an on-the-fly construction of the graph and on a
threshold abstraction that ignores states that hold insignificant mass.

For the continuous-time case, we first introduce the sliding window method,
which is conceived strictly for propagation models that describe the CME of
biochemical reaction networks. This is why we choose to present this method in
the framework of transition class models, a formalism that is very well suited to
describe biochemical reaction networks. This method computes an approximate
solution of the CME by performing a sequence of local analysis steps. In each
step, only a manageable subset of states is considered, representing a “window”
into the state space. In subsequent steps, the window follows the direction in
which the probability mass moves, until the time period of interest has elapsed.
We construct the window based on a deterministic approximation of the future
behaviour of the system by estimating upper and lower bounds on the popula-
tions of the chemical species. The local solutions can be computed using any
numerical method for general Markov chains, such as those that we have al-
ready mentioned. In order to show the effectiveness of this approach, we apply
it to several examples previously described in the literature. The experimen-
tal results show that the proposed method speeds up the analysis considerably,
compared to a global analysis, while still providing high accuracy.

We continue with algorithms that evaluate general continuous-time prop-
agation processes by using either the Runge-Kutta integration method or the
uniformization method. Runge-Kutta method is a classic ODE solver, and thus
it can be directly applied to our problem, because CTPPs are described by
an ordinary differential equation. Uniformization, however, is specific to the
transient analysis of continuous-time Markov chains and thus needs to be gen-
eralized in order to pass from CTMCs to CTPPs. The generalizations that
we propose, both for standard and adaptive uniformization, are exact only for
propagation models that have a certain linearity property that we discuss later,
and approximative for other propagation models. However, it is important to
note already that propagation models that correspond to a CME have this lin-
earity property and thus our computational formalism is not introducing any
additional approximations.

Solving the CTPP problem by using uniformization or Runge-Kutta meth-
ods can be seen as expressing these two methods in the framework of prop-
agation models. As we have already presented concisely, both uniformization
and Runge-Kutta integration involve propagating probability mass through the
Markov chain graph: uniformization by computing the product of a matrix with
a probability distribution vector, and Runge-Kutta by pushing probability, in

6 CHAPTER 1. INTRODUCTION

each integration step, from one state towards its neighbours as described by
the CME. In particular, Runge-Kutta fourth order integration is pushing prob-
ability towards neighbours that are up to four edges away in the Markov chain
graph. Therefore, expressing these algorithms in the framework of propagation
models comes naturally.

Even though the propagation algorithms that we propose are not restricted
to Markov chains, the main application of our work remains the chemical mas-
ter equation. The advantage of formulating these two algorithms for Markov
chains in the framework of propagation models is that optimizations proposed
for propagation models can then be applied to both of these algorithms simul-
taneously. We have chosen to present case studies for fast adaptive uniformiza-
tion, a method that results from the combination of discrete-time propagation
processes with adaptive uniformization. These results show that threshold ab-
straction brings considerable benefits to the original adaptive uniformization
algorithm at a small price in precision loss.

To summarize, sliding window is a method that reduces the state space of
the CME directly in the continuous-time framework, and then it recurs to any
numerical solver for the transient solution of Markov chains. On the other hand,
the general propagation algorithms that we present first use uniformization or
Runge-Kutta integration to reduce the continuous-time problem to a discrete-
time problem and then they recur to the threshold abstraction for DTPP in
order to reduce the space of the discrete-time process.

1.4 Hybrid Propagation Models

While in the first part of the thesis we mainly deal with algorithms for general
propagation models, in the second part of the thesis we present algorithms that
are optimized for biochemical reaction networks. We start from the observa-
tion that molecular noise, and stochastic effects, appear especially when some
molecular species are present with significant probability in a low copy number,
while for species that are present in a large copy number their expectation is
providing enough information about the system. Based on this observation, the
optimizations that we propose in the second part of this thesis take advantage
of the fact that the average behaviour of species with large populations can
be approximated by the reaction rate equation. Therefore, we construct hybrid
stochastic models that mix the CME and the RRE, thus treating some variables
of the system stochastically and some deterministically. When a propagation

1.4. HYBRID PROPAGATION MODELS 7

process is used to describe a pure CME, it only propagates probabilities through
the graph of the model. Here, for stochastic hybrid models, the propagation pro-
cesses that we construct propagate both probabilities and expectations of the
deterministic variables.

There are several ways one can combine these two equations, the CME and
the RRE, and here we present three variants of this approach. Recall Exam-
ple 1.1 that describes a system with two species V and W . For each of the
three hybrid approaches, we define an aggregated problem that instead of ask-
ing for the computation of the probabilities Pr(V (t) = v,W (t) = w), for all
values v and w asks for the computation of aggregated probabilities, such as the
probability for V (t) to be v (independent of the value of W (t)). In addition,
an aggregated problem also asks for the computation of expectations such as:
E[W (t) |V (t) = v].

This first method is the naive hybrid stochastic method. Continuing our toy
example, consider that V is a species with low populations, whileW is a species
with high populations. The naive aggregated solution consists of the probabili-
ties Pr(V (t) = v) for all values v, as well as the expectations E[W (t)]. In order
to approximate this naive aggregated solution, we construct two ODEs, one de-
rived from the CME, which approximates the time derivative of Pr(V (t) = v),
and one derived from the RRE, which approximates the time derivative of
E[W (t)]. These ODEs are interlinked because the value of the expectation
of W (t) might be used by the reduced CME and the probabilities of V (t) = v

might be used by the RRE equation, and thus the two equations update each
other mutually.

The second method is the hybrid stochastic method. Here, we approximate
a conditional aggregated solution, which requires the computation of the values
Pr(V (t) = v) and of the conditional expectations E[W (t) |V (t) = v], for all val-
ues v. Again, we construct differential equations that approximate the evolution
of the probabilities for low copy species and of the conditional expectations of
large populations, and as in the naive case, these differential equations depend
on each other.

Finally, the tail approximation method proposes the approximation of the
tail aggregated solution. The tail aggregated solution does not depend on a
separation of the species in low and high populations, as in the other two meth-
ods, but it splits the population domain of each species into a low and a high

8 CHAPTER 1. INTRODUCTION

part with respect to a boundary b. For our small example, the tail aggregated
solution comprises of the following probabilities and conditional expectations:

Pr(V (t) = v,W (t) = w) , ∀v, w < b,

Pr(V (t) = v,W (t) ≥ b) , E[W (t)|W (t) ≥ b, V (t) = v] ∀v < b,

Pr(V (t) ≥ b,W (t) = w) ,E[V (t)|V (t) ≥ b,W (t) = w] ∀w < b,

Pr(V (t) ≥ b,W (t) ≥ b) , E[(V (t),W (t))|V (t) ≥ b,W (t) ≥ w].

Connecting the differential equations that describe the time behaviour of
these probabilities and of conditional expectations is technically difficult be-
cause the reduced CME needs more information about the states with large
molecule numbers than the RRE is providing, e.g. it needs the probabilities of
the states at the border b. We are addressing this issue by approximating the
probabilities of the border states that are governed by the reaction rate equation
with probabilities from a geometric distribution to which we apply a correction
scheme.

For the first two methods we provide experiments done on biological case
studies and the results support our theoretical conclusion that these approxima-
tions perform well in the case of biological reaction networks. For tail approxi-
mation, we only present results that demonstrate the accuracy of our heuristic
for approximating border probabilities.

Chapter 2

Preliminaries

2.1 Biochemical Reaction Networks

We consider a fixed reaction volume with n different chemical species that is
spatially homogeneous and in thermal equilibrium. Then, the state space of the
system is Nn0 . We assume that molecules collide randomly and that collisions
may lead to chemical reactions. Formally, assume that the network consists of
m different chemical reactions. Let j ∈ {1, . . . ,m}, and let the j-th reaction be
given by the stoichiometric equation

k1T1 + . . .+ knTn −→ `1T1 + . . .+ `nTn

where for i ∈ {1, . . . , n} the symbol Ti refers to the i-th chemical species and the
stoichiometric coefficients ki, `i are non-negative integers that specify how many
molecules of type i are consumed and how many are produced by the reaction,
respectively. If ki > 0 then the i-th species is called a reactant of the j-th reac-
tion. In stoichiometric equations, terms with coefficient 0 are usually omitted
and terms of the form 1Ti are abbreviated by Ti. The symbol ∅ abbreviates the
case 0 = k1 = . . . = kn or 0 = `1 = . . . = `n.

Example 2.1 (Gene expression). We consider a simple biochemical reaction
network for transcription of a gene into messenger RNA (mRNA), and subse-
quent translation of the latter into proteins [108]. This reaction network involves
three chemical species, namely, gene, mRNA, and protein. As only a single copy
of the gene exists, a state of the system is uniquely determined by the number of
mRNA and protein molecules. Therefore the state space of the model is N2

0 and a
state is a pair (xR, xP). We assume that initially there are no mRNA molecules

9

10 CHAPTER 2. PRELIMINARIES

and no proteins in the system, i.e., y = (0, 0). The following four types of
reactions occur in the system, namely ∅ → mRNA, mRNA → mRNA + P ,
mRNA→ ∅, and P → ∅.

2.2 Transition Class Models

This section introduces a high-level modeling formalism, called Transition Class
Models (TCMs). TCMs provide a functional description of structured Markov
chains with countably infinite state spaces, and have been used in queuing the-
ory [106] and recently for stochastic models of coupled chemical reactions [99].

Consider a dynamical system with a finite number of discrete state variables
such as the number of instances of some chemical species in a reaction volume.
Assume that these variables change at discrete points in time. A transition
class provides a rule for these changes and a function for the calculation of the
state-dependent transition rate at which a state change occurs.

Definition 2.0.1. A transition class model (TCM) is a pair 〈S,y, {C1, . . . , Cm}〉,
where S is a countable set of states, y ∈ S is an initial state and {C1, . . . , Cm}
is a finite set of transition classes. Each transition class C is a triple (G, u, α)
with a guard set G ⊆ S, an update function u : G → S, and a rate function
α : G→ R>0.

The guard set G contains all states s for which a transition of class C is
possible, and u(s) is the target state of the transition. Each C-transition also
has an associated rate α(s) that depends on the current state s.

For a biochemical reaction network, we define the j-th transition class Cj =
(Gj , uj , αj) such that

Gj = {s = (s1, . . . , sn) ∈ Nn0 | si ≥ ki, i ∈ {0, 1, . . . n}} , (2.1)

uj(s) = s + (`1 − k1, . . . , `n − kn) = s + dj , (2.2)

αj(s) = cj ·
n∏
i=1

(
si
ki

)
. (2.3)

We call dj = (`1 − k1, . . . , `n − kn) the change vector of the j-th reaction of
the biochemical reaction network. The rate function αj takes into account that
the probability of a reaction of type j is proportional to the possible number
of combinations of reactant molecules, i.e., if ki molecules of type i are needed
and the current number of molecules of type Ti is si then

(
si
ki

)
is the number

of possible ways to choose ki out of si. The rate constant cj > 0 depends on

2.2. TRANSITION CLASS MODELS 11

the temperature, the volume, and the micro-physical properties of the reactant
species [39].

Example 2.2 (Gene expression continued.). Let j ∈ {1, . . . , 4} and let cj > 0
be a constant. Transition class Cj = (Gj , uj , αj) describes the j-th reaction type.

– We describe gene transcription by transition class C1, which increases the
number of mRNA molecules by 1. Thus, u1(sR, sP) = (sR + 1, sP). This
transition class is possible in all states, i.e., G1 = S. Transcription happens
at the constant rate α1(sR, sP) = c1, as only one reactant molecule (the gene)
is available.

– We represent the translation of mRNA into protein by C2. A C2-transition is
only possible if there is at least one mRNA molecule in the system. We set
G2 = {(sR, sP) ∈ S | sR > 0} and u2(sR, sP) = (sR, sP +1). Note that in this
case mRNA is a reactant that is not consumed. The translation rate depends
linearly on the number of mRNA molecules. Therefore, α2(sR, sP) = c2 · sR.

– Degradation is modeled by C3 and C4. Hence, G3 = G2, G4 = {(sR, sP) ∈ S | sP > 0},
u3(sR, sP) = (sR−1, sP), and u4(sR, sP) = (sR, sP−1). We set α3(sR, sP) =
c3 · sR and α4(sR, sP) = c4 · sP .

2.2.1 Chemical Master Equation

A transition class modelM = 〈S,y, {C1, . . . , Cm}〉 represents a time-homogeneous,
discrete-state Markov process (CTMC, for short) (X(t))t≥0 with state space S.1

The i-th entry of the random vector X(t) = (X1(t), . . . , Xn(t)) represents
the value of the i-th state variable. Let Cj = (Gj , uj , αj), 1 ≤ j ≤ m, and
assume that at time t ≥ 0 the process is in state s ∈ Gj .

The probability of a transition of type Cj to occur in the next infinitesimal
time interval [t, t+ dt), dt > 0 is given by

Pr(X(t+ dt) = uj(s) |X(t) = s) = αj(s) · dt+ o(dt),

where o(h) represents a function with limh↓0
o(h)
h = 0 and o(0) = 0.

For s ∈ S we define the probability that X(t) is in state s at time t by
p

(t)
s = Pr(X(t) = s |X(0) = y) . Note that it follows that p(0)

y = 1. Now recall
that uj is injective. To simplify our presentation, we define the set Hj as the

1When understandable from the context, we loosely refer to the stochastic process
(X(t))t≥0 simply as X(t). Similarly, in the case of discrete time we may loosely refer to
processes (X(k))k∈N0

as X(k).

12 CHAPTER 2. PRELIMINARIES

set of all states s for which u−1
j (s) is defined, that is, the set of states that can

be reached by a transition of type Cj . The chemical master equation (CME)
describes the behaviour of X(t) by the differential equation [65]

dp
(t)
s

dt
=

∑
j:s∈Hj

αj(u−1
j (s)) · p(t)(u−1

j (s)) (2.4)

−
∑
j:s∈Gj

αj(s) · p(t)
s . (2.5)

Note that there exist pathological cases in which X(t) is not uniquely defined
by M [58]. These cases are, however, not relevant for the application area that
we consider here. We therefore assume that M is such that it uniquely defines
a Markov process X(t).

In our subsequent presentation, a matrix description of the CME is more
advantageous. It is obtained by defining the infinitesimal generator matrix
Q = (Q(s, s′))s,s′∈S of X(t) by

Q(s, s′) =

αj(s) if uj(s) = s′,

−
∑m
j=1 αj(s) if s = s′,

0 otherwise,

where we assume a fixed enumeration of the state space. The row sums of
the (possibly infinite) matrix Q are zero, and λs = −Q(s, s), the exit rate of
state s, is the reciprocal value of the average residence time in s.

Let T (0) be equal to the identity matrix I, and for t > 0 we define T (t) as
the matrix with entries T (t)(s, s′) = Pr

(
X(h + t) = s′ |X(h) = s

)
. Note that

T (t) is a stochastic matrix that does not depend on the time instant h ≥ 0, its
element T (t)(s, s′) gives the probability for the Markov chain to be in state s′

at time t + h knowing that the Markov chain was in state s at time h, for all
h ≥ 0. Then the Kolmogorov backward and forward equations relate T (t) and Q
by

dT (t)

dt
= QT (t),

dT (t)

dt
= T (t)Q. (2.6)

Let p(t) be the row vector with entries p(t)
s for s ∈ S. We refer to the entries

as transient state probabilities. The CME (see Equation (2.4)) is obtained from
Equation (2.6) by multiplying both sides with p(0). A general solution of the

2.3. PROPAGATION MODELS (PM) 13

CME is given by p(t) = p(0)eQt and if Q is finite, from the definition of the
matrix exponential

p(t) = p(0)eQt = p(0)
∞∑
k=0

(Qt)k

k! . (2.7)

An analytic solution for the vector p(t) can however only be derived for
special cases, such as in the case of a birth-death structure. If the underlying
graph of the CTMC is acyclic, a closed-form expression for p(t)

s can be calculated
using the recursive scheme of the ACE algorithm [77]. In general, finding the
state probabilities as a symbolic function of t is not possible. If Q is finite and
the number of nonzero entries is of manageable size, an approximate numerical
solution can be computed. Adding up a sufficiently large number of terms of
the infinite sum in Equation (2.7) is numerically unstable, as Q contains strictly
positive and negative entries, leading to severe round-off errors [81]. Numerically
stable methods are based on uniformization [46, 64] or approximations in the
Krylov subspace [89]. Also numerical integration methods such as Runge-Kutta
methods have been successfully used to compute p(t). Several surveys and
comparisons exist in literature [45, 101, 105]. For realistic systems, however,
upper bounds on the state variables of the system are often not known and even
if upper bounds are known, the size of the (truncated) state space is still too
large for an efficient solution using standard approaches.

Most numerical solutions exploit the fact that the set {T (τ) | τ ≥ 0}, with
T (τ) = eQτ , is a transition semi-group and satisfies the Chapman-Kolmogorov
equations [16] T (τ1+τ2) = T (τ1) · T (τ2) for all τ1, τ2 ≥ 0. Let t0, . . . , tr ∈ R≥0 be
such that t0 < · · · < tr. Then,

p(tr) = p(t1) ·T (t2−t1) · · · · ·T (tr−tr−1)

. . .
...

= p(tr−1) ·T (tr−tr−1).

(2.8)

This means that, for t0 = 0 and tr = t, we obtain p(t) by iteratively applying
Equation (2.6) for t1 − t0, t2 − t1, . . . , tr − tr−1.

2.3 Propagation Models (PM)

We introduce propagation models, a general computational model for the mod-
elling of processes that propagate a generic mass through a discrete state space.

14 CHAPTER 2. PRELIMINARIES

We give both discrete and continuous time semantics to these models. In the
discrete case, mass is propagated in steps, while in the continuous case states
exchange mass between each other in a continuous flow.

Definition 2.0.2. A propagation model is a tuple 〈S,M, ζ, π〉, where:

– the discrete set S is the state space of the model,

– the ordered vector spaceM is the mass space of the model,

– ζ ∈ [S →M] is the initialization vector, which assigns an initial mass value
to each state,

– π : S ×S ×M→M is the edge function, which assigns a mass value to each
pair of states, given the mass of the first state. For the propagation value
from state s to state s′, for a given mass value µ of s we use the notation
πs→s′(µ).

Example 2.3 (Predator-prey). The propagation model N1 that represents the
stochastic behaviour of a predator-prey model is defined over a state space S =
N2

0, where a state s of the system equals (sR, sY), and a mass space of probabil-
ities: M = [0, 1]. Furthermore, N1 =

〈
N2

0, [0, 1], ζ, π
〉
where:

– ζy = 1, for the initial state y = (120, 30), and ζs = 0, otherwise.

– π(sR,sY)→(sR,sY +1)(p) = p · c1 · sY ,

– π(sR,sY)→(sR+1,sY −1)(p) = p · c2 · sR · sY ,

– π(sR,sY)→(sR−1,sY)(p) = p · c3 · sR,

As we will show later, there is an algorithmic construction of this PM N1

starting from its TCM, such that if p(t) is the solution of that TCM, p(t) = g(t),
where g(t) is the propagation process of N1 that we define in the next section.

A propagation model is mass-conservative if it does not propagate mass on
any self loop:

πs→s(µ) = 0,∀s ∈ S, µ ∈M.

2.3.1 Discrete-time Propagation Process (DTPP)

For a given PM N = 〈S,M, ζ, π〉 we define the discrete-time propagation process
of N to be the function f : N0 → [S → M] defined on discrete time N0 and

2.3. PROPAGATION MODELS (PM) 15

R, Y

R, Y-1

R+1, Y

R-1, Y+1

Figure 2.1: The states that propagate towards state (R,Y).

with values mass-vectors S → M. The values f (k)
s′ are the elements of the

mass-vector f (k) and:

f
(k)
s′ =

ζs′ , if k = 0,

f
(k−1)
s′ +

∑
s∈S

πs→s′(f (k−1)
s)

−
∑

s′′∈S
πs′→s′′(f (k−1)

s′),

+πs′→s′(f (k−1)
s′), if k > 0.

Example 2.4. For the predator-prey system, Figure 2.1 shows how the prede-
cessors of the state (R, Y), are propagating probability.

2.3.2 Continuous-time Propagation Process (CTPP)

For a given PM N = 〈S,M, ζ, π〉 we define the continuous-time propagation
process of N to be the function g : R≥0 → [S → M] that follows the following
equations:

dg
(t)
s′

dt
=
∑
s∈S

πs→s′(g(t)
s)

−
∑
s′′∈S

πs′→s′′(g(t)
s′)

+ πs′→s′(g(t)
s′), (2.9)

with initial condition:

g(0) = ζ

For an infinitesimal value dt, and for t > 0, the following holds:

16 CHAPTER 2. PRELIMINARIES

g
(t+dt)
s′ = g

(t)
s′ +

∑
s∈S

πs→s′
(
g(t)
s

)
· dt

−
∑
s′′∈S

πs′→s′′
(
g

(t)
s′

)
· dt

+ πs′→s′
(
g

(t)
s′

)
· dt.

We observe that for conservative propagation models, that do not propagate
mass on any self loops, the sum of all mass values in the system is always
constant, both under discrete and the continuous-time semantics. E.g., in the
discrete case we have the

∑
s∈S f

(k)
s = ct, for all k ≥ 0, and similarly for the

continuous case. We need to allow self-loop propagation for the cases where the
sum of mass values is not constant over time, as is the case, for example, when
we need to propagate expectancies of variables, as will be exemplified in the
second part of the thesis.

2.3.3 Linear Propagation Models

Linear propagation models are a special class of propagation models for which
there exists a function π′ : S × S → R, such that for all s, s′ ∈ S and µ ∈M:

πs→s′(µ) = µ · π′s→s′ .

Example 2.5. The model given in Example 2.3 is indeed a linear propagation
model, with:

– π′(sR,sY)→(sR,sY +1) = c1 · sY ,

– π′(sR,sY)→(sR+1,sY −1) = c2 · sR · sY ,

– π′(sR,sY)→(sR−1,sY) = c3 · sR.

For linear propagation models the equations for discrete and continuous-time
propagation processes, f (k) and g(t), can be written in a simple matrix form.

Let N = 〈S,M, ζ, π〉 be a linear propagation model, and let P be the matrix
with entries:

P (s, s′) =

π′s→s′ , if s 6= s′,

1 + π′s→s −
∑

s′′∈S,s′′ 6=s π
′
s→s′′ , if s = s′.

2.3. PROPAGATION MODELS (PM) 17

Lemma 2.1. For discrete-time semantics we have that:

f (k+1) = f (k) · P

.

Proof. We compute the value of the vector f (k) · P for each s′ ∈ S:

(f (k) · P)s′ =
∑
s∈S

f (k)
s · P (s, s′)

=
∑

s∈S,s 6=s′
f (k)
s · π′s→s′ + f

(k)
s′ ·

(
1 + π′s′→s′ −

∑
s∈S,s6=s′

π′s′→s
)

= f
(k)
s′ +

∑
s∈S

f (k)
s · π′s→s′ + f

(k)
s′ · π

′
s′→s′ −

∑
s∈S

f
(k)
s′ · π

′
s′→s

= f
(k)
s′ +

∑
s∈S

πs→s′(f (k)
s) + πs′→s′(f (k)

s′)−
∑
s∈S

πs′→s(f (k)
s′)

= f
(k+1)
s′ .

From f (k+1) = f (k) · P it follows that f (k) = f (0) · P k, and in Chapter 3
we present ways of computing this matrix-vector multiplication for very large
systems. Also, from Lemma 2.1 it follows that the matrix P completely encodes
the function π of N .

Next, for the continuous-time case, we define the matrix Q as follows:

Q(s, s′) =

π′s→s′ , if s 6= s′,

πs→s −
∑

s′′∈S,s′′ 6=s′ π
′
s′′→s, if s = s′.

Note, we have P = I +Q.

Lemma 2.2. For continuous-time semantics, g is the solution of the differential
equation:

dg(t)

dt
= g(t) ·Q, with initial condition: g(0) = ζ. (2.10)

We call this equation the propagation master equation (PME), in analogy
with the chemical master equation presented in Section 2.2.

18 CHAPTER 2. PRELIMINARIES

Proof. We compute the value of the vector g(t) ·Q for each s′ ∈ S:

(g(t) ·Q)s′ =
∑
s∈S

g(t)
s ·Q(s, s′)

= g
(t)
s′ · π

′
s′→s +

∑
s∈S,s6=s′

g(t)
s · π′s→s′ −

∑
s∈S,s′′ 6=s′

g
(t)
s′ · π

′
s′→s

= g
(t)
s′ · π

′
s′→s +

∑
s∈S

g(t)
s · π′s→s′ −

∑
s∈S

g
(t)
s′ · π

′
s′→s

= πs′→s′(g(t)
s′) +

∑
s∈S

πs→s′(g(t)
s)−

∑
s∈S

πs′→s(g(t)
s′)

= dg
(t)
s′

dt
.

The Equation 2.9 has the solution:

g(t) = g(0) · eQ·t = g(0) ·
∞∑
k=0

(Qt)k

k! . (2.11)

As in the discrete-time case, from Lemma 2.2 it follows that the matrix Q
completely encodes the function π of N . Therefore, given either matrix Q or P,
and the initial mass vector ζ we can construct the associated PM.

In Chapter 4, we present several algorithms for computing approximative
solutions of Equation (2.11). Throughout this entire work we will use the same
notations:

M a transition class model

X(t) a continuous-time Markov chain (CTMC)

X(k) a discrete-time Markov chain (DTMC)

p(t) a transient solution of X(t)

p(k) the solution of X(k)

N a propagation model

g(t) the continuous-time propagation process (CTPP) of N

f (k) the discrete-time propagation process (CTPP) of N

2.3.4 Relation with Transition Class Models

Propagation models are a generalization of TCMs. They make the propagation
mass explicit, and thus can express more general behaviours. Transition class

2.3. PROPAGATION MODELS (PM) 19

models have the advantage of giving a very structural description of Markov
chains, but, as we will see later, encounter limitation when we want to define
stochastic processes over an aggregated space, because aggregation is breaking
the transition classes.

We will now show how the probabilities p(t)
s , defined for a TCM M can be

expressed through the continuous-time propagation process g of a propagation
model N .

For a given TCM M , we derive a PM N , such that:

p(t)
s = g(t)

s ,∀t ≥ 0, s ∈ S.

Definition 2.2.1 (PM of a TCM). Given a TCM M = 〈S,y, {C1, . . . , Cm}〉,
we construct the PM N = 〈S,M, ζ, π〉 as follows:

– the mass spaceM = [0, 1],

– the initial mass vector ζ is:

ζs =

1, if s = y,

0, otherwise,

– the edge function π is:

πs→s′(µ) =

µ · αj(s), if ∃j.uj(s) = s′,

0, otherwise.

Recall that from the injectivity property of the update functions, there exists
at most one j such that uj(s) = s′, and thus the PM above is well defined.

Lemma 2.3. If N is the derived PM of M then g, the continuous-time propa-
gation process of N , equals the probability vector associated to M :

p(t)
s = g(t)

s ,∀t ≥ 0,∀s ∈ S.

Proof. The two vectors: p(t) and g(t) obey the same differential equation, and
have the same initial condition.

Note that the propagation model that we have just constructed is both linear
and conservative.

20 CHAPTER 2. PRELIMINARIES

Part I

Propagation Algorithms

21

Introduction

In this part we present various algorithms that solve both discrete-time and
continuous-time propagation problems. Computing exact solutions for the con-
tinuous time case is almost never possible, so each of the algorithms that we
present has its own way of approximating the exact solution. For discrete-time
problems, computing an exact solution is possible but can be computationally
expensive, so even in the discrete-time case an approximation is usually desired.
This is especially true if the discrete-time algorithm is called by a method that
approximates a continuous-time solution. As we have said, an exact solution of
the continuous-time problem is not possible, and therefore, computing an exact
solution of the discrete-time problem is not needed in this case.

We start by presenting algorithms for the discrete-time case, where we make
use of on-the-fly construction of the state space and of threshold abstraction in
order to make our algorithms efficient.

Then, we introduce methods for the continuous-time case. Sliding window
is presented for the specific case of transition class models, while uniformization
and Runge-Kutta integration methods are presented for general propagation
models. While the Runge-Kutta method can be applied in a straight-forward
way to evaluate propagation processes, uniformization and adaptive uniformiza-
tion are generalized from Markov chains to propagation processes.

23

24

Chapter 3

Discrete Time Propagation

3.1 Introduction

In this chapter we show how to evaluate the discrete-time propagation pro-
cess f (k) of a given propagation model N . We first present a straight-forward
version of the algorithm, and then we show two techniques that mitigate the
performance problems of numerical solution algorithms for propagation models
that have a very large or infinite state space. The first technique that we present
is the on-the-fly construction of the state space, which adds new states to the
solution as they are discovered (their mass becomes strictly positive). And
the second technique involves a problem relaxation by which an approximative
solution, within a given error tolerance, is required.

3.2 Straight-forward Solution

We first formulate the exact DTPP problem and give a straight-forward
solution that only works for finite spaces.

Problem 3.1 (DTPP problem). Given:

– a propagation model N ,

– an integer k ≥ 0,

compute the discrete-time mass vector f (k).

25

26 CHAPTER 3. DISCRETE TIME PROPAGATION

Field Type Description

x.s array of integers state s ∈ S

x.µ real mass f (k)
s

x.acc real variable in which all propagated
mass is added

Table 3.1: Structure of node x of state s.

Algorithm 3.1 main_v1
Input: finite propagation model N = 〈S,M, ζ, π〉, time horizon k;
Output: mass vector f (k) will be stored in S.µ at the end of the algorithm;
Variables: space structure S.
1: // construct a structure with nodes for each state in S.
2: for all s ∈ S do
3: x.s← s; // initialize the state field
4: x.µ← ζs; // initialize the mass field
5: x.acc← 0; // initialize the accumulate field
6: S← S ∪ {x} ;
7: for k′ ← 1 . . . k do
8: propagate(S, N);
9: collect(S);
10: return S.µ.

In this first version of the algorithm S is a static data structure for the state
space S, where we associate with each node x ∈ S three fields, as listed in
Table 3.1. The field s represents the state s ∈ S that is associated to the node,
the field µ holds the value f (k)

s , while the field acc is used to accumulate the
incoming propagation mass for the next value of the field µ. In the following,
we refer to the fields associated to x as x.s, x.µ and x.acc. Note that the fields
x.µ and x.acc of each node x ∈ S are initialized with zero.

Algorithm 3.1 gives the pseudocode of the main loop of the algorithm. In
lines 1-6, we construct the structure S with nodes for the entire state space S
of the propagation model N . The structure will therefore include nodes even
for states that are not needed for the solution at time k, because some states
are not reachable in k steps from the initial state of the model. This limits the
use of this first algorithm to propagation models with a finite state space. The
mass value of each node is initialized on line 4 according to the initialization
function ζ of N .

The computation of the solution at time step k is done iteratively by com-
puting each solution at times 1 . . . k, in the loop at lines 7-9, and at the end
of each iteration k′, the value f (k′)

s is stored in the field x.µ of the node x

3.3. ON-THE-FLY STATE SPACE 27

Algorithm 3.2 propagate
Input: space structure S, propagation model N = 〈S,M, ζ, π〉.
1: for all x ∈ S do
2: for all s′ such that πx.s→s′(x.µ) > 0 do
3: x′ = find(s′,S);
4: x′.acc← x′.acc+ πx.s→s′(x.µ);
5: x.acc← x.acc− πx.s→s′(x.µ);

Algorithm 3.3 collect
Input: space structure S.
1: for all x ∈ S do
2: x.µ← x.µ+ x.acc;
3: x.acc← 0;

that corresponds to the state s (e.g. x.s = s). Each computation step has
two phases, the propagate phase and the collect phase that push and pull the
propagated mass through the state space. The propagate method (presented in
Algorithm 3.2) iterates over all nodes x ∈ S. For all successor states s′ of x.s
(i.e. πx.s→s′(f (k′)

s) > 0), we move mass from x to the node corresponding to
s′. During the computation of f (k′+1), the field s′.µ represents the mass value
at step k′: f (k′)

s′ , and it cannot be altered before being used at its own turn by
the loop at line 1 of the propagate method. This is why we need to use the
field acc to accumulate the mass that is being propagated by the predecessors
of s′. The final result f (k′+1) is calculated in method collect where all incoming
probability mass of a state s is added up (see line 2 of Algorithm 3.3).

This first version of the algorithm is exact, but very expensive, as it needs
to construct a structure for the entire state space S. For the same reason, this
method is limited to finite propagation models. In the next two sections we
show how to construct the state space on-the-fly and then how to approximate
the solution f (k) by means of abstraction.

3.3 On-the-�y State Space

A first improvement that we can bring to our algorithm is to construct the state
space on-the-fly rather than a-priori. In this new version of the algorithm, the
propagate and the collect methods are moving mass through the system in the
same time as they discover new states.

In this new version, S is a dynamic data structure for the state space S,
where states are added as they are discovered by the propagation method. Al-
gorithm 3.4 gives the pseudocode for the main loop of the on-the-fly algorithm.

28 CHAPTER 3. DISCRETE TIME PROPAGATION

Algorithm 3.4 main_v2
Input: propagation model N = 〈S,M, ζ, π〉, time horizon k,
Output: mass-vector f (k),
Variables: space structure S.
1: // initialize S with the support of ζ.
2: for all s ∈ S with ζs > 0 do
3: x.s← s; // initialize the state field
4: x.µ← ζs; // initialize the mass field
5: x.acc← 0; // initialize the accumulate field
6: S← S ∪ {x} ;
7: for k′ ← 1 . . . k do
8: propagate_and_add(S, N);
9: collect(S);
10: return S.µ.

Algorithm 3.5 propagate_and_add
Input: space structure S, propagation model N = 〈S,M, ζ, π〉.
1: for all x ∈ S do
2: for all s′ such that πx.s→s′(x.µ) > 0 do
3: x′ ← find(s′,S);
4: if x′ = null then
5: // x′ is not yet in the space.
6: x′ ← init_node(s′);
7: S← S ∪ {x′} ;
8: x′.acc← x′.acc+ πx.s→s′(x.µ);
9: x.acc← x.acc− πx.s→s′(x.µ);

The differences from the first version (Algorithm 3.1) are that the state space
is initialized with the support of the function ζ and the call to the function
propagate is replaced with a call to the function propagate_and_add. The
propagate_and_add method (see Algorithm 3.5) is checking if state s′ is al-
ready part of the current space structure, and if this is not the case a new node
x′ is created and then added to S (lines 4-7).

We define Sk′ to be the set of states of S that are reachable in k′ steps:

Sk′ =

{s
′ | ζs′ > 0} , if k′ = 0,{
s′ | s ∈ Sk′−1, πs→s′(f (k′−1)

s) > 0
}

if k′ > 0.

According to this definition, at the k′ iteration, the function propagate_and_add
is adding nodes for all states in Sk′+1 \ Sk′ to the current space structure.

For now, the structure S is dynamic in the sense that states are dynam-
ically added to it. It is only in the next version of the algorithm, presented
in Section 3.4, that states that are no longer needed by the algorithm are also
dynamically removed from the state space.

3.4. PROBLEM RELAXATION 29

In this section we have shown how to integrate the construction of the state
space in the propagation algorithm by constructing the state space on-the-fly.
This technique simplifies our algorithm, and it can also be applied to propaga-
tion models with an infinite state space, because even for such model the set of
states reachable in k steps, Sk, is finite. This method offers an improvement in
performance as the construction of the entire state space can be computationally
expensive. In the next section, in order to obtain an even greater performance,
we propose a problem relaxation as a way to compromise between the accuracy
of the algorithm and the speed of its execution.

3.4 Problem Relaxation

For very large systems, the problem of computing the mass-vector, f (k) exactly
is intractable. In this section we propose a relaxation of this problem, relaxation
by which we will be able to obtain major improvements in performance.

The relaxed DTPP problem asks for the computation of an under-approximation
f - such that all elements of the mass-vector f - are greater then a threshold δ.
The relaxed problem also asks for the error ε to be computed.

Problem 3.2 (Relaxed DTPP problem). – a propagation model N , with mass
spaceM,

– an integer k ≥ 0, and

– a cutting threshold δ ∈M,

find a vector f -(k) and a minimal value ε such that:

– f -(k)
s ≤ f (k)

s , for all s ∈ S, and

– f -(k)
s ≥ δ or f -(k)

s = 0,

–
∑
s∈S

f -(k)
s = 1− ε.

3.4.1 Threshold Abstraction

The threshold abstraction is replacing the vectors f (0),f (1), . . . with the ap-
proximations f -(0),f -(1), . . . while keeping the number of non-zero entries small.
Assume that δ is a small positive threshold. We first define f -(0) as the vec-
tor that is derived from the initial mass vector ζ by setting all entries that are

30 CHAPTER 3. DISCRETE TIME PROPAGATION

Algorithm 3.6 main_v3
Input: propagation model N = 〈S,M, ζ, π〉, time horizon k, threshold δ ∈M
Output: approximation mass-vector f -(k), error ε
Variables: space structure S.
1: // initialize S with the support of ζ.
2: for all s ∈ S with ζs > δ do
3: x.s← s; // initialize the state field
4: x.µ← ζs; // initialize the mass field
5: x.acc← 0; // initialize the accumulate field
6: S← S ∪ {x} ;
7: for k′ ← 1 . . . k do
8: propagate_and_add(S, N);
9: collect_and_remove(S, δ);
10: ε← 1− sum(S.µ);
11: return S.µ, ε.

Algorithm 3.7 collect_and_remove
Input: space structure S, threshold δ.
1: for all x ∈ S do
2: x.µ← x.µ+ x.acc;
3: x.acc← 0;
4: if x.µ ≤ δ then
5: S← S \ {x} ;

smaller or equal to δ to zero. We compute the entries of the vector f -(k+1) from
f -(k) using1

f -(k+1)
s = f -(k)

s +
∑
s′:

f-(k)
s′ >δ

πs′→s(f -(k)
s′)

−
∑
s′
πs→s′(f -(k)

s)

+ πs→s(f -(k)
s). (3.1)

Note that if δ = 0 the above approximation is exact. For our experimental re-
sults we vary δ between 10−11 and 10−15. For DTPPs derived from a chemical
master equation, this approximation is especially accurate and we obtain con-
siderable computational savings. The reason is that in each step the probability
mass concentrates on a relatively small number of “significant” states while the
probability of the remaining states decreases the further away a state is from
regions where lots of probability mass is located. In particular, if the state space
is infinite, then this decrease typically has an exponential order of magnitude.

1In the sequel, we add the --symbol whenever we make use of the threshold abstraction,
i.e. whenever we neglect entries in a vector that are below a certain threshold.

3.4. PROBLEM RELAXATION 31

In Algorithm 3.6 we show the main loop of the modified algorithm. The
main differences with respect to the previous version is that in the initialization
phase we disregard states that have an initial mass lower than δ (line 2) and that
we change the call to the collect method with a call to the collect_and_remove
method which besides collecting the propagated values also removes nodes with
a mass lower than δ (lines 4-5 of Algorithm 3.7).

3.4.2 Error Tolerance

We make a last improvement to our algorithm, by which the cutting threshold
δ is adjusted dynamically such that a given error tolerance tol is achieved.

Problem 3.3 (Error Tolerance DTPP Problem). Given:

– a propagation model N , with mass space M, where M is an ordered vector
space,

– an integer k ≥ 0, and

– error tolerance tol ∈M,

find a vector f -(k) such that:

– f -(k)
s ≤ f (k)

s , for all s ∈ S, and

–
∑
s∈S

f -(k)
s ≥ 1− tol.

In order to solve this problem, we propose to compute after each iteration
of the main loop the error that has been already accumulated, and in case the
error is too large, to decrease the cutting threshold and to recompute until the
error is within the desired error tolerance.

The main loop of the algorithm is presented in Algorithm 3.8, where the
loop at lines 10-19 has the role of checking if the current error is within the
tolerated error. More exactly, at the k′-th iteration, the error should not be
larger than tol · k

′

k , or else a recomputation is needed. Note that this approach
requires for a backup Sbkp of the space structure to be made before the call of
the propagate/collect methods, in case a recomputation will be needed (lines 9
and 15).

Some solutions of the continuous time problem for which we give experi-
mental results in the next chapter, rely on algorithms for the discrete-time case.
We have found that, in the case of biological systems, Algorithm 3.6 reports

32 CHAPTER 3. DISCRETE TIME PROPAGATION

Algorithm 3.8 main_v4
Input: propagation model N = 〈S,M, ζ, π〉, time horizon k, tolerance tol,
Output: approximation mass-vector f -(k),
Variables: space structure S.
1: // initialize S with the support of ζ.
2: for all s ∈ S with ζs > δ do
3: x.s← s; // initialize the state field
4: x.µ← ζs; // initialize the mass field
5: x.acc← 0; // initialize the accumulate field
6: S← S ∪ {x} ;
7: δ ← 1×10−10;
8: for k′ ← 1 . . . k do
9: Sbkp ← S;
10: repeat
11: propagate_and_add(S, N);
12: collect_and_remove(S, δ);
13: if (1− sum(S.µ)) > tol · k

′

k
then

14: ok = false;
15: S← Sbkp;
16: δ ← δ/10;
17: else
18: ok = true;
19: until ok = true;
20: return S.µ.

small errors for cutting thresholds in the order of 1×10−14 and as it does not
have the overhead of making a backup of the current solution, we prefer it to
Algorithm 3.8 that we have just presented. Therefore, from now one, all calls
to discrete-time solutions refer to Algorithm 3.6.

Chapter 4

Continuous Time Propagation

4.1 Introduction

In this chapter we give different strategies to approximate the CTPP problem.

Problem 4.1 (CTPP problem). Given:

– a propagation model N ,

– a real number t ≥ 0,

compute continuous-time mass vector g(t).

We discuss two methods of solving the CTPP problem: reducing the state
space of the system and reducing the problem to a DTPP problem. These two
methods are orthogonal. Reducing the state space of the system can be seen in
parallel to the threshold abstraction proposed in Chapter 3.

First, we introduce the sliding window method, which computes an approx-
imate solution of the CME by performing a sequence of local analysis steps.
In each step, only a manageable subset of states is considered, representing a
“window” into the state space. In subsequent steps, the window follows the
direction in which the probability mass moves, until the time period of interest
has elapsed. We construct the window based on a deterministic approximation
of the future behavior of the system by estimating upper and lower bounds on
the populations of the chemical species.

Second, we deal with reducing general CTPP to DTPP, by using classical
numerical solution algorithms, namely the uniformization method, the Runge-
Kutta integration method.

33

34 CHAPTER 4. CONTINUOUS TIME PROPAGATION

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

C

A

W1 S1

S2

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

C

A

W2
S2

S3

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

C

A

W3
S3

S4

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

C

A

W4
S4

S5

Figure 4.1: Sliding window method. In each iteration step, the window Wr

captures the set Sr of states where the significant part of the probability mass
is located initially (light gray), the set Sr+1 of states that are reached after a
time step (dark gray), and the states that are visited in between.

4.2 Sliding Window

We present the sliding window method for transition class models that represent
biochemical reaction networks. As an alternative to a global analysis of the
state space, we propose the sliding window method, which comprises a sequence
of analyses local to the significant parts of the state space. In each step of the
sequence, we dynamically choose a time interval and calculate an approximate
numerical solution for a manageable subset of the reachable states.

In order to identify those states that are relevant during a certain time
period, for each variable of the system, we estimate an upper and a lower bound
on its value. This yields the boundaries of a “window” in which most of the
probability mass remains during the time interval of interest. As illustrated
in Figure 4.1, the window “slides” through the state space when the system is
analysed in a stepwise fashion. In each step, the initial conditions are given
by a vector of probabilities (whose support is illustrated in light gray), and
a matrix is constructed to describe the part of the Markov process where the
window (illustrated by the dashed rectangular) is currently located. Then the

4.2. SLIDING WINDOW 35

0

10

20

30

40

0

50

100

150

200

0

1

2

3

4

x 10
−3

#mRNA#Protein

0.5

1

1.5

2

2.5

3

x 10
−3

Figure 4.2: Probability distribution of the gene expression network at t = 1000.

corresponding ODE is solved using a standard numerical algorithm, and the
next vector (illustrated in dark gray) is obtained.

Our approach is based on the observation that a Markov chain describing a
certain real-world system often has the following property. After starting with
probability 1 in the initial state y, the probability mass does not distribute uni-
formly in S, such as, for instance, in the case of a random walk. Instead, at each
point in time, most of the probability mass distributes among a finite, relatively
small number of states. This set of states changes as time progresses, but it
never exceeds a certain size. Often, the states with “significant” probability are
located at the same part of the state space, as illustrated in Figure 4.2.

Formally, for ε > 0 and for an interval [t, t+ h), we define the size m(ε, t, h)
of the set of significant states as the smallest number for which there exists
W ⊆ S, |W | = m(ε, t, h) such that

P (X(t′) ∈W, t′ ∈ [t, t+ h)) ≥ 1− ε. (4.1)

The value m(ε, t, h) indicates how strongly the probability mass spreads out
on S during [t, t + h). Consider, for instance, a random walk on the non-
negative integer lattice in the plane that starts in (0, 0) [85]. Between each
pair of neighbour states there is a transition with rate 1. For h > 0, the
value m(ε, t, h) approaches infinity as t → ∞. As opposed to the random walk
example, in many systems m(ε, t, h) is a manageable number of states, even if
ε is small and t is large (or tends to infinity). Consider, for instance, the gene
expression example (see Example 2.1) and assume that h = 500, ε = 10−6. For
each interval [t, t + h) ⊂ [0,∞), m(ε, t, h) does not exceed 20000 states. The

36 CHAPTER 4. CONTINUOUS TIME PROPAGATION

sliding window algorithm works well if m(ε, tr−1, hr) is a manageable number of
states for all r. Note that, in particular, cellular systems usually follow a small
number of trends, that is, the quantitative outcomes of a biological experiments
can usually be classified within a small number of different categories. Thus,
this assumption is acceptable for TCMs of biological systems.

4.2.1 Sliding Window Abstraction

LetM = 〈S,y, {C1, . . . , Cm}〉 be a TCM and let p(t) be the probability distribu-
tion vector of the associated CTMC. We propose an abstraction technique for
the computation of p(t) that proceeds in an iterative fashion. We divide the time
interval [0, t) into r′ intervals as in Equation (2.8) and approximate the vectors
p(t1), . . . ,p(tr′) by p̂(t1), . . . , p̂(tr′). In order to obtain these approximations, we
consider a sequence of r′ abstractions of the Markov chain under study. Let
r ∈ {1, . . . , r′}. In the r-th step, we construct, on-the-fly, a finite Markov chain
for the system behaviour during the interval [tr−1, tr) from the transition class
description. The state space of the r-th abstract model is the set Wr of states
where most of the probability mass is located during [tr−1, tr). We refer to this
set as a window. The remaining states are collapsed into a single absorbing
state sf , i.e., a state that cannot be left.

For r ∈ {1, . . . , r′}, let Wr be such that

P (X(h) ∈Wr, h ∈ [tr−1, tr)) ≥ 1− εr (4.2)

where εr > 0 is the approximation error of the r-th step. Note that Equa-
tion (4.2) implies thatWr∩Wr+1 6= ∅, because the intersection of two successive
windows must contain those states that have a high probability at time tr. It
is far too costly to construct the smallest set with this property. Instead, we
propose a cheap construction of a set Wr with a hyper-rectangular shape. We
will outline the construction in Section 4.2.2. The abstract Markov chain of the
r-th step has the finite state space Wr ∪ {sf}, where sf represents all states
s ∈ S \Wr. The transitions of the abstract model are given by the transition
classes of the original model except that all transitions of states at the boundary
lead to sf . Formally, for each class C = (G, u, α) of the infinite-state Markov
chain (X(t))t≥0, we define C′ = (G′, u′, α′) such that G′ = G ∩Wr,

u′(s) =

u(s) if u(s) ∈Wr,

sf otherwise,
.

4.2. SLIDING WINDOW 37

and α′(s) = α(s) for all s ∈ G′. Thus, we consider an (extended) subgraph of
the one underlying X(t), with vertexes set Wr, and all edges leading from Wr

to S \Wr redirected to the extension sf . Note that no transitions are possible
from sf . We will see that sf can be used to calculate the approximation error
as it captures the probability mass that leaves Wr.

4.2.2 Window Construction

Let us now focus on the construction of the set Wr used in the sliding window
abstraction (see Equation (4.2)). Recall that this requires the prediction of the
size and location of the probability mass during [tr−1, tr) of length hr = tr−tr−1.
For arbitrary transition class models, a cheap prediction of the future behaviour
of the process is not possible as the transition classes may describe any kind
of “unsystematic” behaviour. However, many systems have certain linearity
properties that allow for an efficient approximation of the future behaviour of
the process. Consider a transition class Cj = (Gj , uj , αj), and assume that the
successor uj(s) of a state s ∈ Gj is computed as uj(s) = s + dj , where dj ∈ Zn

is a constant change vector. In many applications, a discrete state variable
represents the number of instances of a certain system component type, which
is incremented or decremented by a small amount. For instance, in the case
of biochemical reaction networks, dj ∈ {−2,−1, . . . , 2}n, because a reaction
changes the population vectors of the chemical species by an amount of at most
two. Any reaction that requires the collision of more than two molecules is
usually modelled as a sequence of several reactions. For the rate function αj ,
we assume that the relative difference |αj(s)− αj(u(s))|/αj(s) is small for all
s ∈ Gj . This is the case if, for instance, αj is linear or at most quadratic in
the state variables. According to stochastic chemical kinetics, this assumption
is adequate for biochemical reaction networks, because the rate of a reaction is
proportional to the number of distinct combinations of reactants. Finally, we
assume that the sets Gj can be represented as intersections of half planes of S.
Again, this assumption holds for biochemical reaction networks, as Gj refers to
the availability of reactant molecules.

The conditions stated above ensure that we can derive geometric bound-
aries for the window Wr. More precisely, we can construct an n-dimensional
hyper-rectangular Wr such that the left hand of Equation (4.2) is close to
one. Intuitively, the boundaries of Wr describe upper and lower bounds on
the state variables s1, . . . , sn. Consider, for instance, Figure 4.2 and recall
that the initial state of the process is y = (0, 0). For the rectangle W =

38 CHAPTER 4. CONTINUOUS TIME PROPAGATION

{(sR, sP) ∈ S | 0 ≤ sR ≤ 30, 0 ≤ sP ≤ 120}, we have P (X(t) ∈W, t ∈ [0, 1000)) ≈
0.99.

For the construction of Wr, we use a technique that considers only the
“worst case” behaviour of the Markov chain during [tr−1, tr) and is therefore
cheap compared to the solution of the abstract model. The random variable
αj(X(t)) represents the rate of transition type Cj at time t. We can assume
that during a small time interval of length ∆, αj(X(t + h)) is constant, with
0 ≤ h ≤ ∆. If s is the current state then the number of Cj-transition within
the next ∆ time units is Poisson distributed with parameter αj(s) ·∆ [105].
We can approximate this number by the expectation αj(s) · ∆ of the Poisson
distribution. As we are interested in an upper and lower bound, we additionally
consider the standard deviation

√
αj(s) ·∆ of the Poisson distribution. Thus,

in the worst case, the number of transitions of type Cj is

– at least κ−j (s,∆) = max(0, αj(s) ·∆−
√
αj(s) ·∆),

– at most κ+
j (s,∆) = αj(s) ·∆ +

√
αj(s) ·∆

Note that if, for instance, αj(s) ·∆ = 1, then we have a confidence of 91.97%
that the real number of transitions lies in the interval[

αj(s) ·∆−
√
αj(s) ·∆, αj(s) ·∆ +

√
αj(s) ·∆

]
.

Let κj ∈
{
κ+
j , κ

−
j

}
and s(0) = s. For l = 0, 1, . . ., the iteration

s(l+1) = s(l) +
m∑
j=1

dj · κj(s(l),∆) (4.3)

yields worst-case approximations of X(t+∆),X(t+2∆), . . . under the condition
that X(t) = s. Note that s(l) ∈ Rn≥0. For functions αj that grow extremely fast
in the state variables, the iteration may yield bad approximations since it is
based on the assumption that the rates are constant during a small interval. In
the context of biochemical reaction networks, the linearity properties mentioned
above are fulfilled and Equation (4.3) yields adequate approximations. The
bounds b+i (s) and b−i (s) for dimension i ∈ {1, . . . , n} are given by the minimal
and maximal values during the iteration. More precisely, b+i (s) = dmaxl s(l)

i e
and b−i (s) = bminl s(l)

i c, where s(l) = (s(l)
1 , . . . , s

(l)
n).

In order to construct Wr, we do not consider all combinations
{
κ+

1 , κ
−
1
}
×

. . . × {κ+
m, κ

−
m} in Equation (4.3). We choose only those combinations that do

not treat preferentially transition types leading to opposite directions in the
state space. Consider, for instance, Example 2.1 with s = (5, 50) and ∆ = 10.

4.2. SLIDING WINDOW 39

If we assume that more reactions of type C1 and C2 happen (than on average)
and fewer of C3 and C4, we get κ+

1 (s,∆) = c1 · 10 +
√
c1 · 10 = 1.2, κ+

2 (s,∆) =
c2 · 10 · 5 +

√
c2 · 10 · 5 = 0.83, κ−3 (s,∆) = max(0, c3 · 10 · 5 −

√
c3 · 10 · 5) = 0,

κ−4 (s,∆) = max(0, c4 · 10 · 50−
√
c4 · 10 · 50) = 0. This means that the number

of protein and mRNA molecules increases and s(1) = (6.2, 50.83). We do not
consider the combinations that contain both κ+

1 and κ+
3 . As C1 equates C3

and vice versa, these combinations do not result in extreme values of the state
variables. For each dimension, we can identify two combinations that yield
minimal and maximal values by examining the vector field of the transition
classes. We refer to a chosen combination as a branch and fix for each transition
class Cj a choice κj = κ+

j or κj = κ−j for all l.

For the construction ofWr, we first need to define the significant set of states
at time tr−1. A very precise method would require sorting of the vector p̂(tr−1)

s ,
which we find far too expensive. Therefore, we opt for a simpler solution where
we define the set Sr =

{
s ∈ S | p̂(tr−1)

s > δ
}

of states significant at time tr−1.
Here, δ > 0 is a small constant that is several orders of magnitude smaller than
the desired precision. For our experimental results, we used δ = 10−10 and
decreased this value during the iteration if

∑
s 6∈Sr p̂

(tr−1)
s exceeded our desired

precision. For each branch, we carry out the iteration in Equation (4.3) for
dhr/∆e steps with 10 different initial states randomly chosen from Sr. This
yields a cheap approximation of the behaviour of the process during the interval
[0, hr). For dimension i, let b+i and b−i denote the bounds that we obtain by
merging the bounds of each branch and each randomly chosen state. We set

Wr = Sr ∪
{
s = (s1, . . . , sn) ∈ S | b−i ≤ si ≤ b

+
i , 1 ≤ i ≤ n

}
.

We choose the time steps ∆ in the order of the expected residence time of the
current state such that the assumption of αj(X(t)) being constant is reasonable.

The boundaries of the window become rough if hr is large. Therefore, for
the experimental results in Section 4.2.6, we choose hr dynamically. During
the iterative computation of the bounds b+i and b−i , we compute the size of the
current window Wr. We stop the iteration if |Wr| exceeds twice the size of
Sr but not before Wr has reached a minimal size of 5000 states. By doing so,
we induce a sliding of the window, which is forced to move from its previous
location. It is, of course, always possible to choose a smaller value for hr if the
distribution at a specific time instant t < tr−1 + hr is of interest.

4.2.3 Algorithm

40 CHAPTER 4. CONTINUOUS TIME PROPAGATION

Algorithm 4.1 sliding_window
Input: TCM 〈S,y, {C1, . . . , Cm}〉, t1, . . . , tr′ with 0 < t1 < . . . < tr′ ;
Output: approximations p̂(t1), . . . , p̂(tr′) and error ε.
1: W0 ← {y}; p(y)← 1, ε← 0;
2: for r ∈ {1, . . . , r′} do
3: hr ← tr − tr−1;
4: Wr ← compute_window (p, hr, C1, . . . , Cm);
5: Construct generator Qr of the abstract model based on C1, . . . , Cm and Wr;

6: qs ←

ps if s ∈Wr−1 ∩Wr,∑

s∈Wr−1\Wr
ps if s = sf ,

0 otherwise;
7: p← q · exp(Qrhr); // call to any numerical solution.
8: p̂

(tr)
s ← ps for s ∈Wr and p̂(tr)

s = 0 otherwise;
9: ε← ε+ p(sf);

Algorithm 4.2 compute_window
Input: probability distribution p, step hr, transition classes C1 . . . Cm,
Output: window Wr =

{
b−, b+

}
.

1: // define Sr for construction of Wr

2: Sr ← {x |p(x) > δ};
3: numStates← min(10, size(Sr));
4: A← rand(Sr, numStates); // choose numStates random states from Sr
5: b+ ← −∞; b− ← +∞; // initial boundaries
6: for all s′ in A do
7: // run continuous determ. approximation
8: // on s′ and updated boundaries
9: (b+, b−)← average_approximation(s′, h, b+, b−);

Algorithm 4.1 describes an iterative method to approximate p(t1), . . . ,p(tr′)

by vectors p̂(t1), . . ., p̂(tr′). We start with probability 1 in the initial state y
(line 1). In line 4, we compute the windowWr such that most of the probability
mass remains within Wr during the next hr time units, as explained in 4.2.2
and shown in Algorithm 4.2. In line 5, we construct the generator matrix of
the abstract model (the finite Markov chain with state space Wr ∪{sf}) as seen
in 4.2.1). We define the initial distribution of the abstract model in line 6 and
calculate its solution in line 7. The approximation p̂(tr) of p(tr) is then defined
in line 8. Finally, in line 9, we add the approximation error to ε. A detailed
error analysis is given below. Note that after the r-th loop ε = 1 −

∑
s∈Wr

ps,
that is, in each loop, the probability of being in sf may increase. Thus,

∑
s∈S

p̂(t1)
s ≥ . . . ≥

∑
s∈S

p̂
(tr′)
s . (4.4)

The general idea of this abstraction approach is apparent from Figure 4.2,
but the main difficulty is to find the states that can be neglected in step r (line

4.2. SLIDING WINDOW 41

Algorithm 4.3 average_approximation
Input: initial state s′, length h of the time interval, old boundaries b+, b−;
Output: new boundaries b+, b−.
1: for all branch ρ ∈ {1, . . . , 2n} do
2: x〈ρ〉 ← s′; // s′ is the initial state of each branch
3: time← 0;
4: ∆← step_size; // set the length of time steps
5: while time < h do
6: for each branch ρ ∈ {1, . . . , 2n} do
7: // compare current state variables with boundaries
8: for i = 1 to n do
9: if x〈ρ〉i > b+i then
10: b+i ← x

〈ρ〉
i ; // adjust upper bound

11: if x〈ρ〉i < b−i then
12: b−i ← x

〈ρ〉
i ; // adjust lower bound

13: for j ← 1 to m do
14: // choose more/fewer transitions of type Rj
15: // depending on branch ρ
16: κj ← choose_sign(ρ, j) · αj(x〈ρ〉);

17: x〈ρ〉 ← x〈ρ〉 +
m∑
j=1

d(j) · κj ; // update state (cf. Equation (4.3))

18: time← time+ ∆;

4). In Algorithm 4.2 we give the pseudocode for the window construction as
explained in 4.2.2. We compute the boundaries of the window by approximating
the worst case of ten randomly chosen states of the significant region (A ⊆ Sr).
Algorithm 4.3 shows how we obtain the worst case approximation of a window
that covers that states visited in [0, h], knowing that at time 0 we are in state
s′. This is done by splitting that time length h in smaller length ∆, and then
integrating the average behaviour plus/minus its deviation (see 4.2.2).

4.2.4 Time intervals

For the experimental results in Section 4.2.6 we compare two different time
stepping mechanisms for Algorithm 4.1. We either choose equidistant time steps
hr = h, for all r, or we determine hr during the construction of the window Wr.
The latter method yields faster running times. Depending on the dynamics of
the system, long time steps may cause three problems: (1) the window is large
and the size of the matrix Qr may exceed the working memory capacity, (2) the
dynamics of the system may differ considerably during a long time step and Qr
has bad mathematical properties, (3) the window may contain states that are
only significant during a much shorter time interval. If, on the other hand, the
time steps are too small then many iterations of the main loop have to be carried
out until the algorithm terminates. The windows overlap nearly completely,

42 CHAPTER 4. CONTINUOUS TIME PROPAGATION

Algorithm 4.4 average_approximation2
Input: initial state s′, old boundaries b+, b−, significant states Sr
Output: new boundaries b+, b−, length hr of the time interval,
1: for all branch ρ ∈ {1, . . . , 2n} do
2: x〈ρ〉 ← s′; // s′ is the initial state of each branch
3: hr ← 0;
4: ∆← step_size; // set the length of time steps
5: Wr ← Sr;
6: while |Wr| < 5000 or |Wr| < 2 ∗ |Sr| do
7: for each branch ρ ∈ {1, . . . , 2n} do
8: . . .
9: hr ← hr + ∆;
10: Wr ←Wr ∪ states(b−, b+); // extend window with new boundaries.

Algorithm 4.5 sliding_window2
Input: TCM 〈S,y, {C1, . . . , Cm}〉, tr′ ,
Output: Approximations p̂(t1), . . . , p̂(tr′) and error ε.
1: . . .
2: t← 0;
3: while t < tr′ do
4: Sr ← significant(Wr);
5: (Wr, hr)← compute_window2(p, Sr, C1, . . . , Cm);
6: . . .
7: t← t+ hr;

and even though each step may require little time, the whole procedure can be
computationally expensive. One possibility is to fix the size of the windows and
choose the time steps accordingly. But this does not necessarily result in short
running times of the algorithm either. The reason is that the time complexity of
the solution methods does not depend only on the size of the matrix representing
the window but also on its mathematical properties.

The problems mentioned above can be circumvented by calculating h1, . . . , hr′

during the construction of the window Wr. We do this by replacing the method
average_approximation with its new version average_approximation2 (see
Algorithm 4.4). The new version takes as input the set Sr of significant states
at time tr−1 and gives as an output the length hr of the next time interval. We
run the while loop in Algorithm 4.4 until (1) the window has at least a certain
size and (2) the number of states in the window exceeds twice the number of
the states that are significant at time tr−1. The first condition ensures that the
window exceeds a certain minimum size of, say, 5000 states. The second con-
dition ensures that the new window is just big enough to move the probability
mass to a region outside of Sr. More precisely, it ensures that the sets S1, S2, . . .

are not overlapping and that subsequent sets are located next to each other (as
illustrated in Figure 4.1). Note that this ensures that the resulting window does

4.2. SLIDING WINDOW 43

not contain many states that are only significant during a much shorter time in-
terval. We also replace functions sliding_window and compute_window with
sliding_window2 and compute_window2 (Algorithm 4.5). By using this new
version of the window approximation algorithm sliding_window2 only needs
as input the final time horizon tr′ (and not the intermediate points t1, t2 . . . tr′).
In order to track the current time, we add to the main loop a variable repre-
senting the time elapsed so far, and the for loop in line 2 is replaced by a while
loop that stops when the time elapsed so far exceeds t. Finally, the method
compute_window2 is the same as compute_window where we change the pa-
rameter h from an input parameter to an output parameter and we change the
call average_approximation with average_approximation2.

In Section 4.2.6, we present experimental results of the sliding window
method where we choose the time steps in the way described above.

Numerical Solution Methods. For the solution step in line 7 of Algo-
rithm 4.1, we apply a numerical method to compute the matrix exponential.
If Qr is small then the matrix exponential can be computed efficiently using,
for instance, Padé approximation [6, 80]. If the size of Qr is large but Qr is
sparse then iterative methods perform better, such as uniformization [46, 64],
approximations in the Krylov subspace [89], or numerical integration [48, 49].

For the experimental results that we present here, we concentrate on the uni-
formization method (see Chapter 4.3) and on the Krylov subspace method(see
Section 5.3).

4.2.5 Error analysis

Recall that if Q is the generator matrix of the original Markov chain, exp(Qhr)
is the transition probability matrix for time step hr. Let Qr be the generator
matrix of the abstract Markov chain constructed in the r-th step (see Algo-
rithm 4.1, line 5). For s, s′ ∈Wr, we use the approximation

(exp(Qhr))s,s′ = P (X(tr) = s′ |X(tr−1) = s)

≈ P (X(tr) = s′ ∧X(h) ∈Wr, h ∈ (tr−1, tr) |X(tr−1) = s)

= (exp(Qrhr))s,s′ . (4.5)

in line 5 of Algorithm 4.1. Thus, we ignore the probability to reach s′ from s
after hr time units by leaving Wr at least once.

For the error analysis, we assume that the vector q(r) of size |Wr| + 1 is
such that q(r)

s = p
(tr−1)
s if s ∈ Wr. This is true for r = 1 and for r > 1 we

44 CHAPTER 4. CONTINUOUS TIME PROPAGATION

replace p(tr−1)
s by p̂(tr−1)

s in Algorithm 4.1. In line 7 and 8, we define p̂(tr)
s′ =(

q(r) · exp(Qrhr)
)
s′

for s′ ∈Wr. Thus,

p̂
(tr)
s′ =

(
q(r) · exp(Qrhr)

)
s′

=
∑

s∈Wr

p(tr−1)
s (exp(Qrhr))s,s′

≈
∑

s∈Wr

p(tr−1)
s (exp(Qhr))s,s′

=
∑

s∈Wr

P (X(tr−1) = s) · P (X(tr) = s′ |X(tr−1) = s)

≈
∑
s∈S

P (X(tr−1) = s) · P (X(tr) = s′ |X(tr−1) = s)

= P (X(tr) = s′) = p
(tr)
s′ . (4.6)

The first approximation is due to Equation (4.5). The second approximation
comes from the fact that we ignore the probability of not being in Wr at time
tr−1. In both cases we use an underapproximation. By setting p̂(tr)

s′ = 0 if s′ 6∈
Wr, we obtain p̂(tr)

s′ ≤ p
(tr)
s′ for all s′ ∈ S. Overall, we use three approximations,

where probability is “lost” namely,

(a) the probability that is lost due to the approximation given by Equation (4.5),

(b) the probability of not starting in Wr at time tr−1 (second approximation in
Equation (4.6)),

(c) the probability of leaving Wr during [tr−1, tr) (which arises due to the ap-
proximation p(tr)

s′ ≈ 0 if s′ 6∈Wr).

It is easy to see that, if the probability of being in Wr during [tr−1, tr) is at
least 1 − εr (see Equation (4.2)), then all three errors are at most εr. Thus,
||p(tr) − p̂(tr)||1 ≤ εr. Note that the entry ε = p(sf) that is computed in line 9
of Algorithm 4.1 contains all three approximation errors (a), (b), (c). After the
termination of the for loop, ε contains the total approximation error, which is
at most ε1 + . . .+ εr.

If the approximation error ε in Algorithm 4.1 exceeds the desired error
threshold, the window construction can be repeated using a larger window Wr.
This may happen if the confidence of the estimated interval [κ−j (s,∆), κ+

j (s,∆)]
for the number of transitions of type j is not large enough. In this case, the
approximation p̂(tr) can be used to determine where to expand Wr. Several
heuristics for the window expansion are possible. The smooth distribution of

4.2. SLIDING WINDOW 45

the probability mass, however, suggests to expand only those boundaries of Wr

where states with a high probability are located.

4.2.6 Case Studies

We coded Algorithm 4.5 in C++ and ran experiments on a 3.16 GHz Intel
dual-core Linux PC. We discuss experimental results that we obtained for the
Example 2.1, as well as a simple enzyme example, Goutsias’ model [44] and a
bistable toggle switch [37]. Goutsias’ model describes the transcription regula-
tion of a repressor protein in bacteriophage λ and involves six different species
and ten reactions. The bistable toggle switch is a prototype of a genetic switch
with two competing repressor proteins and four reactions. All results are listed
in Table 4.1.

As explained in detail below, we also implemented the method proposed by
Burrage et al. [12] in order to compare it to our algorithm in terms of run-
ning time and accuracy. Moreover, for finite examples we compare our method
to a global analysis, i.e. where in each step the entire state space is consid-
ered. We do not compare our method to Gillespie simulation or approximation
methods based on the Fokker-Planck equation. The former method provides
only estimates of the probability distribution and becomes infeasible if small
probabilities are estimated [22]. The latter type of methods do not take into
account the discreteness of the molecule numbers and are known to provide bad
approximations in the case of small populations as considered here [34].

Parameters. We fixed the error tolerance for the numerical solutions to
εn = 10−8 of Algorithm 4.5 for all experiments. We chose the input δ in a
dynamical fashion to ensure that in the r-th step we do not lose more probability
than 10−5 · hr/(tr′ − t0) by restricting to significant states, that is, we decrease
δ until after line 4 of Algorithm 4.1 the set Sr contains at most 10−5 · hr

tr−t0 less
probability than the former set Sr−1. In Table 4.1, we list the average value
that we used for δ.

In the sequel, we give details about the parameters used for the results that
we obtained for Example 4.1 and Example 2.1. For the remaining two examples,
we list the corresponding chemical reactions and the parameters that we chose
for the results in Table 4.1.

Example 4.1 (Enzyme example). We describe an enzyme-catalyzed sub-
strate conversion by the three reactions R1 : E+S → ES, R2 : ES → E+S, R3 :
ES → E + P. This network involves four chemical species, namely, enzyme
(E), substrate (S), complex (ES), and product (P) molecules. The change vec-

46 CHAPTER 4. CONTINUOUS TIME PROPAGATION

tors are v(1) = (−1,−1, 1, 0), v(2) = (1, 1,−1, 0), and v(3) = (1, 0,−1, 1). For
(x1, x2, x3, x4) ∈ N4

0, the propensity functions are

α1(x1, x2, x3, x4) = c1 · x1 · x2, α2(x1, x2, x3, x4) =
c2 · x3, α3(x1, x2, x3, x4) = c3 · x3.

As above, the set of states reachable from the initial state y = (y1, y2, y3, y4) is
finite because of the conservation laws y1 = x1 +x3 and y2 = x2 +x3 +x4, where
we assume that y3 = y4 = 0.

We tried different parameter sets, referred to as pset a)-c), for Example 4.1
(see Table 4.1). For parameter combination a) we have c1 = c2 = 1, c3 = 0.1
and start with 1000 enzymes and 100 substrates. In this case the number of
reachable states is 5151. For parameter set b) and c) we have c1 = c2 = c3 = 1
and and start with 100 enzymes and 1000 substrates and 500 enzymes and
500 substrates, which yields 96051 and 125751 reachable states, respectively.
Each time we choose the time horizon according to the time until most of the
probability mass is concentrated in the state in which all substrate molecules
are transformed into products. For the time steps hr in Algorithm 4.1, we apply
the condition described in Section 4.2.4.

We consider four branches for the iteration in Equation (4.3) in order to
determine upper and lower bounds on the state variables. (1) To obtain an
estimate for the maximal number of complex molecules (and a minimum for
the enzyme population), we enforce more reactions of type R1 than on average
(κ1 = κ+

1), and fewer of types R2 and R3 (κ3 = κ−3 and κ2 = κ−2). (2) By
considering fewer reactions of type R1 (κ1 = κ−1), and more of types R2 and
R3 (κ3 = κ+

3 and κ2 = κ+
2) the complex population becomes minimal (and

the enzyme population maximal). (3) An estimate for the minimal number of
type P molecules (and the maximal number of type S molecules) is obtained
by enforcing more reactions of type R2 (κ2 = κ+

2), and fewer of types R1 and
R3 (κ1 = κ−1 and κ3 = κ−3). (4) Finally, more reactions of types R1 and R3

(κ1 = κ+
1 and κ3 = κ+

3), and fewer of type R2 (κ2 = κ−2) gives a maximal
increase of the number of product molecules (and minimizes the number of
substrate molecules).

For the enzyme example, if the initial conditions are fixed a state is uniquely
determined by at least two entries, say, the population of complex and product
molecules. However, a rectangular window shape yields poor results if the ex-
pected number of complex molecules is high. The reason is that in this case the
probability mass is located on a diagonal (cf. Figure 4.1). If the set of signifi-

4.2. SLIDING WINDOW 47

pa
ra
m
et
er
s

re
su
lt
s

na
m
e
of

ex
am

pl
e

tim
e

ho
riz

on
δ

sli
di
ng

_
w
in
do

w
+

un
ifo

rm
.

sli
di
ng

_
w
in
do

w
+

K
ry
lo
v

w
in
do

w
co
ns
tr
uc

tio
n

er
ro
r

tim
es

in
se
c

pe
rc
.

av
er
ag
e

w
in
d.

siz
e

1
En

zy
m
e
(p
se
t
a)

70
10
−

8
1.

4
×

10
−

5
6

5
1%

97
7

2
En

zy
m
e
(p
se
t
b)

12
10
−

10
3.

3
×

10
−

5
13

4
98

14
%

47
77

3
En

zy
m
e
(p
se
t
c)

5
10
−

10
3.

5
×

10
−

7
8

6
37

%
50

38
4

G
en

e
(p
se
t
a)

10
4

10
−

10
1.

6
×

10
−

5
10

3
10

2
36

%
32

24
8

5
G
en

e
(p
se
t
b)

10
4

10
−

10
1.

8
×

10
−

5
13

7
12

3
32

%
38

28
2

6
G
ou

ts
ia
s’

m
od

el
30

0
10
−

11
7.

6
×

10
−

5
15

94
3

84
12

15
%

53
88

15
7

To
gg
le

sw
itc

h
10

4
10
−

15
2.

7
×

10
−

5
31

10
1%

63
00

1

Ta
bl
e
4.
1:

Pa
ra
m
et
er
s
an

d
re
su
lts

of
th
e
sli
di
ng

w
in
do

w
m
et
ho

d

48 CHAPTER 4. CONTINUOUS TIME PROPAGATION

cant states is captured by a rectangular window it may contain many states that
are not significant. This problem can be circumvented by considering bounds
for all state variables during the window construction as well as the conserva-
tion laws. More precisely, the parallelogram in Figure 4.1 are constructed by
computing for each value x4 ∈ [b−4 , b

+
4] of P upper and lower bounds on ES

by min
{
b+3 , y1 − b−1 , y2 − x4 − b−2

}
and max

{
b−3 , y1 − b+1 , y2 − x4 − b+2

}
, where

y = (y1, y2, 0, 0) is the initial population vector and b+ = (b+1 , b
+
2 , b

+
3 , b

+
4) and

b− = (b−1 , b
−
2 , b
−
3 , b
−
4) are the upper and lower bounds on the populations of E,

S, ES, and P .

Note that the parallelogram in Figure 4.1 was induced by the conservation
laws of the system. In general, conservation laws should be taken into account
since otherwise the window may be inconsistent with the conservation laws, i.e.
it may contain states that are not reachable.

Gene expression example. In Table 4.1 we present results for Exam-
ple 2.1. The difference between parameter set a) and parameter set b), referred
to as pset a) and pset b), is that for a) we start with the empty system and for
b) we start with 100 mRNA molecules and 1000 proteins. For both variants,
we choose rate constants c1 = 0.5, c2 = 0.0058, c3 = 0.0029, c4 = 0.0001. The
time steps that we use are determined by the condition in Section 4.2.4. Note
that we cannot solve this example using a global method because the number
of reachable states is infinite. The column error contains the total error ε and
times in sec refers to the running time in seconds. In column perc. we list the
percentage of the total running time that was spent for the window construc-
tion. The column average wind. size refers to the average number of states in
the window.

For the gene expression example, we use four branches: We maximize the
number of mRNA molecules by choosing κ+

1 and κ−3 and minimize it with κ−1
and κ+

3 . Reactions R2 and R4 are irrelevant for this species. We maximize the
protein population by choosing κ+

1 , κ
+
2 , κ

−
3 , and κ

−
4 and minimize it with κ−1 ,

κ−2 , κ
+
3 , and κ

+
4 .

Example 4.2 (Goutsias’ model). In [44], Goutsias defines a model for the
transcription regulation of a repressor protein in bacteriophage λ. This protein
is responsible for maintaining lysogeny of the λ virus in E. coli. The model
involves 6 different species and the following 10 reactions. We list the reactions
and rate constants in Table 4.2 (see [12, 44]).

We used the same kinetic constants as Goutsias [44] and Sidje et al. [12],
as well as the same initial state. Below, we list the branches for upper bounds

4.2. SLIDING WINDOW 49

Figure 4.3: Dependencies between the reactions of Goutsias’ model.

RNA c1→ RNA +M c1 = 0.043 production of protein
M

c2→ ∅ c2 = 7e−4 degradation of protein
DNA.D c3→RNA+DNA.D c3 = 0.072 production of mRNA
RNA c4→ ∅ c4 = 4e−3 degradation of mRNA
DNA +D

c5→ DNA.D c5 = 0.02 1st dimer binding
DNA.D c6→ DNA +D c6 = 0.48 1st dimer unbinding
DNA.D +D

c7→ DNA.2D c7 = 2e−4 2nd dimer binding
DNA.2D c8→ DNA.D +D c8 = 9e−12 2nd dimer unbinding
M +M

c9→ D c9 = 0.083 dimerization
D

c10→ M +M c10 = 0.5 dissociation of dimer

Table 4.2: List of reactions of the phage λ model.

on the state variables. Lower bounds are obtained if the opposite combination
is considered, respectively. We refer to Figure 4.3 for an illustration of the
dependencies between the reactions that simplifies the choice of the branches.
We maximize the RNA population by choosing the combination κ−1 , κ

−
2 , κ

+
3 , κ

−
4 ,

κ+
5 , κ

−
6 , κ

−
7 , κ

+
8 , κ

+
9 , κ

−
10. We maximize the monomer population by choosing

the combination κ+
1 , κ

−
2 , κ

+
3 , κ

−
4 , κ

+
5 , κ

−
6 , κ

−
7 , κ

+
8 , κ

−
9 , κ

+
10. We maximize the

number of dimer molecules by choosing the combination κ+
1 , κ

−
2 , κ

+
3 , κ

−
4 , κ

+
5 ,

κ−6 , κ
−
7 , κ

+
8 , κ

+
9 , κ

−
10. Note that although dimers are consumed by reaction 5,

choosing κ+
5 maximizes the number of dimers in the system. This is because

reaction 5 is necessary to produce monomers and therefore also dimers.

We never run out of memory with the sliding window method, but the
running times can be huge for a long time horizon. The reason is that the
windows are large since the system contains many monomers and dimers at
later time instances. For the results in Table 4.1 we considered the system till

50 CHAPTER 4. CONTINUOUS TIME PROPAGATION

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

[10E-10 - 10E-9]

[10E-9 - 10E-8]

[10E-8 - 10E-7]

[10E-7 - 10E-6]

[10E-6 - 10E-5]

[10E-5 - 10E-4]

[10E-4 - 10E-3]

[10E-3 - 10E-2]

[10E-2 - 1]

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

[10E-10 - 10E-9]

[10E-9 - 10E-8]

[10E-8 - 10E-7]

[10E-7 - 10E-6]

[10E-6 - 10E-5]

[10E-5 - 10E-4]

[10E-4 - 10E-3]

[10E-3 - 10E-2]

[10E-2 - 1]

Figure 4.4: The probability distribution of monomers (left) and dimers (right)
during the time interval [0, 300).

time t = 300, whereas for Sidje et al. [12], the longest time horizon is t = 100.
In Figure 4.4 we plot the distribution of the species M and D.

Bistable toggle switch. The toggle switch involves two chemical species
A and B and four reactions. Let x = (x1, x2) ∈ N2

0. The reactions are ∅ → A,
A → ∅, ∅ → B, B → ∅ and their propensity functions α1, . . . , α4 are given by
α1(x) = c1/(c2 +xβ2), α2(x) = c3 ·x1, α3(x) = c4/(c5 +xγ1), α4(x) = c6 ·x2. Note
that in this example the propensity functions are not of the form described in
Equation (2.1). For our experimental results, we chose the same parameters as
Sjöberg et al. [104], that is, c1 = c4 = 3·103, c2 = c5 = 1.1·104, c3 = c6 = 0.001,
and β = γ = 2. The initial distribution is a Gaussian distribution N (µ, σ2) with
µ = (133, 133)T and σ = (

√
133,
√

133). We consider the obvious four branches
each of which is intended to minimize/maximize one of the two components.
The branch minimizing A for example will have less of the first reaction and
more of the second.

Accuracy. The column labelled by error in Table 4.1 shows the total error
ε of the sliding window method plus the uniformization error (which is bounded
by εn = 10−8). The error using the Krylov subspace method instead yields
the same accuracy because for both, uniformization and the Krylov subspace
method, the error bound is specified a priori. For all examples, the total error
does not exceed 1 × 10−4, which means that not more than 0.01 percent of
the probability mass is lost during the whole procedure. It would, of course, be
possible to add an accuracy check in the while loop of Algorithm 4.1, expand the
current window if necessary, and recalculate. But as the method consistently
returns a small error, this has been omitted.

4.2. SLIDING WINDOW 51

We also considered relative errors, that is,

p
(tr′)
s − p̂(tr′)

s

p(tr′)s
,

for states s ∈ Wr′ with p(tr′)(s) > 10−5. We approximate the value p(tr′)
s by

solving Equation (4.8) via global uniformization, where we use truncation error
εn = 10−8. Since this is only possible if the state space is finite, we compared
relative errors only for the enzyme example. Our calculations show that the
relative errors are always smaller than 10−4.

In order to support our considerations in Section 4.2.2, we carried out ex-
periments in which we exclusively chose the average in line 17 of Algorithm 4.3.
More precisely, for the construction of the window we do not consider the de-
viations in the numbers of reactions but only the average number. In this case,
we called the method average_approximation with input 2 · h to make sure
that on average the probability mass moves to the center of the window and not
too close to the borders. For this configuration, the total error is several orders
of magnitude higher, e.g., for parameter set a) of the enzyme example the total
error is 0.0224.

Finally, we test the size of the windows constructed in lines 7–10 of Algo-
rithm 4.3. We change Algorithm 4.3 by decreasing the size of the window by 5%
between lines 10 and 11. In this case, the total error ε increases. For instance,
ε = 0.35 for parameter set a) of the enzyme example. These results substantiate
that the size and the position of the sliding window is such that the approxima-
tion error is small whereas significantly smaller windows result in significantly
higher approximation errors.

Running time. For the time complexity analysis, we concentrate on three
main issues.

– Sliding window method vs. global analysis: We compare the sliding window
method with a global solution in one step, and with another window method,
where the size of the window is doubled if necessary.

– Solution method (uniformization vs. Krylov subspace method): We vary
the solution method by exchanging uniformization with the Krylov subspace
method (methods that will be presented later on in this thesis).

– Time intervals (equidistant vs. condition from Section 4.2.4): We use dif-
ferent methods to determine the length hr of the next time step in line 3 of
Algorithm 4.1.

52 CHAPTER 4. CONTINUOUS TIME PROPAGATION

Sliding window method vs. global analysis. We used the enzyme
example to compare the sliding window solution with a global solution (global
uniformization and global Krylov subspace method), since it has a finite state
space. Note that all other examples cannot solved using a global method since
their state space is infinite. We list the time needed for the computation of
p(tr′) (cf. Equation (2.6)) with the global method in Table 4.3. Observe that the
total error of the global uniformization method is smaller (compare the columns
labeled by error) since the only error source is the truncation of the infinite
sum that we will see in Equation (4.8). In the column with heading #states
we list the number of states that are reachable. During the global solution we
consider all reachable states at all time whereas in the sliding window method
the average number of states considered during a time step is much smaller. This
is the main reason why the sliding window method is much faster. Moreover, in
the case of uniformization, the rate for global uniformization is the maximum
of all exit rates, whereas for local uniformization, we take the maximum over
all states in the current window. Note that the global maximum can be large
compared to the local maxima. This explains the bad performance of the global
uniformization method. When the Krylov subspace method is used for a global
solution, the running times of the global solutions are also higher than the times
of the local Krylov subspace method (sliding window method combined with the
Krylov subspace method). Again, the reason is that a smaller number of states
is considered during the sliding window iteration. Moreover, the matrices Qr
have numerical properties that facilitate the use of bigger, and thus, fewer time
steps. The total number of iteration steps used to solve Equation (2.8) with the
Krylov subspace method and the sliding window method is indeed small when
compared to the global Krylov subspace method (on average around 20 times
fewer steps).

We now focus on a comparison between our sliding window method and an-
other local method, called doubling window method. For the latter, we compute
the probability vectors in a similar way as Sidje et al. [12]. We start with an
initial window and apply the Krylov algorithm. We do not iterate over the
time intervals [tr−1, tr) but use the step sizes of the Krylov subspace method
(cf. Section 5.3). After each time step, we remove those parts of the window
that will not be used for the remaining calculations. We expand the size of
the window if the error exceeds a certain threshold. Since the performance of
the method depends heavily on the initial window and the directions in which
a window is expanded, we start initially with the same window as the sliding
window method and expand always in the directions that are most advanta-

4.2. SLIDING WINDOW 53

gl
ob

al
so
lu
tio

n
sli
di
ng

_
w
in
do

w

er
ro
r

un
ifo

rm
.
K
ry
lo
v
#
st
at
es

er
ro
r

un
ifo

rm
.K

ry
lo
v

av
er
ag
e

w
in
d.

siz
e

En
zy
m
e
(p
se
t
a)

5.
0
×

10
−

9
44
.1

m
in

4.
2
m
in

51
51

1.
4
×

10
−

5
6
se
c

5
se
c

97
7

En
zy
m
e
(p
se
t
b)

1.
5
×

10
−

7
6.
4
h

2.
7
h

96
05
1

3.
3
×

10
−

5
2.

2
m
in

98
se
c

47
77

En
zy
m
e
(p
se
t
c)

−
>

12
h

5.
6
h

12
57
51

3.
5
×

10
−

7
8
se
c

6
se
c

50
38

Ta
bl
e
4.
3:

Sl
id
in
g
w
in
do

w
m
et
ho

d
vs
.
gl
ob

al
an

al
ys
is

fo
r
th
e
fin

ite
en

zy
m
e
ex
am

pl
e.

54 CHAPTER 4. CONTINUOUS TIME PROPAGATION

geous for the computation. For this we used information about the direction in
which the probability mass is moving that we obtained from experiments with
the sliding window method. The expansion of a window is realized by doubling
the length of all of its edges.

We applied the doubling window method to the enzyme example and the
gene expression. For all parameter sets that we tried, the sliding window method
outperforms the doubling window method w.r.t. running time (with an average
speed-up factor of 5). The total number of iterations of the Krylov subspace
approximation is up to 13 times smaller in the case of the sliding window method
compared to the doubling window method (with an average of 6.5). Note that
for arbitrary systems the doubling window method cannot be applied without
additional knowledge about the system, i.e., it is in general not clear, in which
direction the window has to be expanded.

Our results indicate that the sliding window method achieves a significant
speed-up compared to global analysis, but also compared to the doubling win-
dow method. Moreover, while global analysis is limited to finite-state systems
and the doubling window methods requires additional knowledge about the sys-
tem, our method can be applied to any system where the significant part of
the probability mass is located at a tractable subset of states. If the dimension
of the system is high, then the significant part of the probability mass may be
located at intractably many states and in this case the memory requirements of
our algorithm may exceed the available capacity.

Solution method. During the sliding window iteration different solution
methods can be applied in line 13 of Algorithm 4.1. We concentrate on the
uniformization method and on the Krylov subspace method. The running times
in Table 4.1 (compare the columns labeled by sliding_window + uniformization
with the columns labeled by sliding_window + Krylov) show that the Krylov
subspace method performs better (average speed-up factor of around 1.5). The
reason is that the Krylov subspace method is more robust to stiffness than
uniformization. For non-stiff systems, uniformization is known to outperform
the Krylov subspace method [94, 105]. However, since biochemical network
models are typically stiff, the Krylov subspace method seems to be particularly
well suited in this area.

Time intervals. In order to confirm our considerations in Section 4.2.4,
we also applied the sliding window method using equidistant time steps. For
all examples, using equidistant time steps results in longer computation times
compared to using the condition that we presented in Section 4.2.4 (with an

4.3. UNIFORMIZATION 55

average speed-up factor of 3.5). A dynamic choice of the time steps has also
the advantage that we can control the size of the windows and avoid that the
memory requirements of the algorithm exceed the available capacity.

4.2.7 Conclusions

In this section we have shown a method of reducing the state space of a transition
class model in order to obtain an approximative, yet accurate solution of the
chemical master equation. In the next two sections, we present methods that
reduce the continuous-time propagation problem to a discrete-time propagation
problem. The space reduction is then applied for the discrete-time problem that
we obtain as shown in Chapter 3. Unlike the sliding window method, the next
algorithms that we present are general to any propagation models.

However, the heuristic that we use for predicting the window is tedious,
requires a lot of care and due to its box shape leads to an over-approximation of
the significant region of the state space. Next we will present how the threshold
abstraction can be used on the uniformization method in order to construct a
“window” that accurately capture the significant region.

4.3 Uniformization

The uniformization method was introduce in the setting of Markov chains by
Jensen [64] and it is also referred to as Jensen’s method, randomization, or
discrete-time conversion. In the performance analysis of computer systems,
this method is popular and often preferred over other methods, such as Krylov
subspace methods and numerical integration methods [94, 105]. Recently, uni-
formization has also been used for the solution of the CME [53, 100, 111].

The method is used to relate the solution of a continuous-time Markov chain
to that of one or more discrete-time Markov chains, thus reducing a continuous-
time problem to discrete-time. Here, we generalize from Markov chains to prop-
agation models, thus reducing continuous-time propagation problems to the
discrete-time case, which was already addressed in Chapter 3. This general-
ization is exact for linear propagation models, such as those that represent a
chemical master equation(see 2.3.3), and approximative for non-linear ones.

56 CHAPTER 4. CONTINUOUS TIME PROPAGATION

4.3.1 Standard Uniformization (SU)

Let N = 〈S,M, ζ, π〉 be a PM for which we want to evaluate the continuous-
time propagation process g at time t. The basic idea of uniformization is to
define a second propagation model Nu and a Poisson process

(
XP (t)

)
t≥0 with

rate Λ · t and with probability propagation process P(Λ·t) such that:

g(t) =
∞∑
k=0
P(Λ·t)(k) ·w(k),

where w = fu is the propagation process of Nu. In other words, the discrete-
time propagation process of Nu (u comes from “uniformization”) is related with
the continuous-time propagation process of N .

First, we present the standard uniformization method for linear propagation
models, and then we show the approximation that can be applied for non-linear
models.

SU for linear propagation models. Recall that for linear propaga-
tion models there exists a matrix Q that encodes the edge function π (see
Lemma 2.2). Let λs =

∑
s′ 6=sQ(s, s′) be the exit rate of state s ∈ S, and

let I be the identity matrix. An uniformization rate is a value Λ such that
Λ ≥ maxs∈S λs. Given an uniformization rate Λ we construct the transition
matrix

P = I + 1
Λ ·Q,

and we let Nu be the propagation model 〈S,M, ζ, πu〉, where πu is the edge
function that corresponds to the matrix P . Note that a diagonal entry in P

defines the self-loop propagation 1 − λs/Λ of a state s, which is nonzero if
and only if Λ > λs. For k ≥ 1, the matrix P k contains the k-step transition
propagations and, as w(0) = ζ is the initial mass distribution of Nu, the vector
w(k) = w(0) · P k contains the discrete-time mass after k steps in Nu.

We now show that the solution of the continuous-time process g at time t is
equivalent with that of the discrete-time process fu = w, where the number of
discrete steps of fu has a Poisson distribution with parameter Λ · t, i.e.,

Pr(k steps until time t) = Pr
(
XP (t) = k

)
= P(Λ·t)(k) = e−Λt · (Λt)k

k! . (4.7)

4.3. UNIFORMIZATION 57

The solution for g, in Equation (2.10), can be developed as [21, 45, 105]

g(t) = g(0) ·
∞∑
k=0

(Qt)k

k!

= g(0) ·
∞∑
k=0

e−Λt · (Λt)k

k! · P k

=
∞∑
k=0

e−Λt · (Λt)k

k! ·w(k)

=
∞∑
k=0
P(Λ·t)(k) ·w(k) (4.8)

Equation (4.8) has nice properties compared to Equation (2.10). There are no
negative summands involved from the way Λ was chosen. Moreover, w(k) can
be computed inductively by

w(0) = g(0), w(j) = w(j−1) · P, j ∈ {1, 2, . . .} . (4.9)

As shown in the previous chapter, if P is sparse,w(k) can be calculated efficiently
even if the size of the state space is large.

Lower and upper summation bounds L and U for the number of steps k can
be obtained such that for each state s the truncation error [35]

g(t)
s −

U∑
k=L

e−Λt · (Λt)k

k! w(k)
s =

∑
0≤k<L,
U<k<∞

e−Λt · (Λt)k

k! w(k)
s

≤
∑

0≤k<L,
U<k<∞

e−Λt · (Λt)k

k!

= 1−
U∑
k=L

e−Λt · (Λt)k

k! < ε (4.10)

can be a priori bounded by a predefined error tolerance ε > 0. Thus, g(t) can
be approximated with arbitrary accuracy by

g(t) ≈
U∑
k=L

e−Λt · (Λt)k

k! ·w(k) (4.11)

as long as the required number of summands is not extremely large.

SU for non-linear propagation models. So far we have seen how to
solve the CTPP problem for linear propagation models. Here, we will give an

58 CHAPTER 4. CONTINUOUS TIME PROPAGATION

uniformization method for propagation models for which the following linear
approximation is acceptable:

∞∑
k=0

ck · πs→s′(Λk) ≈ πs→s′(
∞∑
k=0

ck · Λk). (4.12)

Note that this approximation is exact for propagation models that represent
the chemical master equation (where πs→s+dj (p) = p·αj(s)), but that accepting
this approximation does not imply that a matrix notation is possible as in the
case of linear propagation models.

Theorem 4.1. For a PM N = 〈S,M, ζ, π〉 and a time horizon t, let Λ be a
uniformization rate such that

Λ ≥ πs→s′(µ), for all s, s′ ∈ S, µ = g(h)
s , h ≤ t.

Let Na be a second PM with Na = (S,M, ζ, πa), where πu = 1
Λπ, then, if:

∞∑
k=0

ck · πs→s′(Λk) = πs→s′(
∞∑
k=0

ck · Λk), (4.13)

if w = fa we have that:

g
(t)
s′ =

∞∑
k=0
P(Λ·t)(k) · w(k)

s′ . (4.14)

Proof. We will show that
∑∞
k=0 P(Λ·t)(k) · w(k)

s′ verifies the differential equa-
tion(2.9). To do so, we compute its derivative:

d
∑∞
k=0 P(Λ·t)(k) · w(k)

s′

dt
=
∞∑
k=0

dP(Λ·t)(k)
dt

· w(k)
s′

=
∞∑
k=0

Λ · (P(Λ·t)(k − 1)− P(Λ·t)(k)) · w(k)
s′

=
∞∑
k=0

Λ · P(Λ·t)(k) · (w(k+1)
s′ − w(k)

s′)

=
∞∑
k=0

Λ · P(Λ·t)(k) ·
(∑

s∈S
πas→s′(w(k)

s)−
∑
s∈S

πas′→s(w
(k)
s′) + πas′→s′(w

(k)
s′)
)

=
∑
s∈S

πs→s′(g(t)
s)−

∑
s∈S

πs′→s(g(t)
s′) + πs′→s′(g(t)

s′)

=dg
(t)
s′

dt
.

4.3. UNIFORMIZATION 59

As before, truncation points L and R, for the iteration step k can be obtained
here during the computation of the solution g(t).

Time complexity and stiffness. As Λ · t grows, the Poisson distribution
flattens and the left truncation point L in Equation (4.11) grows linearly in Λ ·t,
while the number of significant Poisson probability terms is O(

√
Λ · t) [35]. If the

vectors w(L),w(L+1), . . . ,w(U) are computed using U matrix-vector multiplica-
tions (cf. Equation (4.9)), then the complexity of the uniformization procedure
is O(ν · Λ · t) where ν is the number of nonzero elements in P .

All analysis methods (simulation-based or not) encounter serious difficulties
if the underlying model is stiff. In a stiff model the components of the underlying
system act on time scales that differ by several orders of magnitude and this
arises in various application domains, especially in systems biology. For a stiff
model, the uniformization rate Λ ≥ maxs∈S λs will correspond to the fastest
time scale. By contrast, a significant change of the slow components can be
observed only during a period of time that corresponds to the slowest time
scale. The uniformization method is then extremely time consuming because of
a very large stiffness index t ·maxs∈S λs [26].

By using methods from Chapter 3 or from Section 4.2, uniformization can
be applied in a local fashion such that stiffness has a less negative effect on the
performance of the method. So, either sliding window or threshold abstraction
enable uniformization to perform well even for stiff systems and when standard
uniformization is used in combination with the threshold abstraction and the
on-the-fly state space construction, we call the resulting algorithm fast standard
uniformization (FSU). In addition, we can overcome the drawback of stiffness
by using adaptive uniformization, which is presented next.

4.3.2 Adaptive Uniformization (AU)

Adaptive uniformization overcomes the drawback related to stiffness mentioned
above by replacing the Poisson process (XP (t))t≥0 with a birth process [33]
(XB(t))t≥0. Intuitively, the clock XB runs at a slower speed than XP and has
fewer jumps within the time interval [0, t). Therefore AU requires fewer terms
in the truncated sum in Equation (4.11), the downside being that the birth
process is more expensive to solve than the Poisson process.

60 CHAPTER 4. CONTINUOUS TIME PROPAGATION

AU for linear propagation models. Consider a linear propagation model
N = 〈S,M, ζ, π〉, and let Q be the generator matrix that encodes the edge
function π. For Sk a subset of S, we define:

generator matrix Qk(s, s′) = Q(s, s′) s ∈ Sk, s′ ∈ S

Qk(s, s′) = 0 otherwise

adaptive uniformization rate Λk = max
s∈Sk

λs

stochastic transition mastrix Pk = I + 1
Λk
·Qk.

For k = 0, 1, . . . we inductively define a sequence S0,S1, . . . of subsets of S
from a sequence of row vectors w(0),w(1), Let S0 = {s | ζs > 0} and let
w(0) = g(0). For k = 0, 1, . . ., we define:

w(k+1) = w(k) · Pk (4.15)

and

Sk+1 =
{

s ∈ S |w(k+1)
s > 0

}
. (4.16)

We define the birth process
(
XB(t)

)
t≥0 by the time-independent transition

probabilities

Pr
(
XB(t+ dt) = k + 1 |XB(t) = k

)
= Λk · dt,

where [t, t + dt) is an infinitesimal time interval.

1

5

10

200.5

10

2

100
CTMC X

0 1 2 · · ·
102 102 102

Poisson Process XP

1
102

5
102

96
102

10
102

20
102

82
102

0.5
102

10
102

91.5
102

2
102

100
102 DTMC Xu

1
6

5
6

DTMC Xa, k = 0

1
30

5
30

24
30

10
30

20
30

0.5
30

10
30

19.5
30 DTMC Xa, k = 1

· · ·

0 1 2 · · ·
6 30

Birth process XB

AU SU

Figure 4.5: Standard and adaptive uni-
formization of a simple CTMC.

Example 4.3 (AU and SU com-
parison). The construction of Xu(l)
and of the Poisson process XP (t) is
illustrated in Figure 4.5 by means
of a very simple CTMC. We use a
graphical description of CTMCs and
DTMCs where the nodes of the graph
correspond to the states of the process
and the edges are labelled by the en-
tries of the associated generator ma-
trix in the case of CTMCs and by
transition probabilities in the case of

4.3. UNIFORMIZATION 61

DTMCs. For SU, the original process
X(t) (upper left box) is split into the
DTMC Xu(k) (lower part of the up-
per right box) and the Poisson process
with rate Λ = 102 (upper part of the
upper right box). The box at the bot-
tom shows the first two steps of adap-
tive uniformization of the same CTMC X(t).

Let Na be the propagation model with step-dependent one-step transition
probability matrices P0, P1, . . . and initial distribution ζ. Formally we have that
Na = 〈S,N0 × [0, 1], ζa, πa〉, where

ζas = 〈0, ζs〉 , s ∈ S

πas→s′(〈k,Λ〉) = 〈1,Λ · Pk(s, s′)〉 , k ∈ N0,Λ ∈ [0, 1], s, s′ ∈ S.

We note that the mass space allows for the propagation of probabilities and
of the step count k, which is incremented in each step by 1. The vector w(0)

is the initial distribution of Na and fa(k) contains the mass distribution of Na

after k steps, which is the same as w(k) as defined in Equation (4.15). Van
Moorsel showed that

g(t) =
∞∑
k=0

w(k) · Pr
(
XB(t) = k

)
, (4.17)

provided that N is describing a chemical master equation and that XB does
not explode1 [109]. As we will show below, as a consequence of our proof for
non-linear models, for non-linear propagation models, this equation also holds
when N is a general linear propagation model.

We let Λ(k) denote a series with elements Λk, and we define the function

BΛ(k)·t(k) = Pr
(
XB(t) = k

)
.

1The process XB is said to explode iff the sum of the average residence times in the visited
states converges, i.e.,

∑
k≥0

1
Λk

< ∞

62 CHAPTER 4. CONTINUOUS TIME PROPAGATION

Similar to Equation (4.11), we can derive truncation points for the sum above
from the probability distribution of XB(t), that is, for ε > 0, we choose trunca-
tion points L and R such that

R∑
k=L
BΛ(k)·t(k) ≥ 1− ε.

Since the sets Sk are constructed during the iteration, the values Λ0,Λ1, . . .

are not known a-priori, and nor are the truncation points L and R. We can,
however, set L = 0 and add up summands w(k) · BΛ(k)·t(k) until the entries of
the current approximation of g(t) sum up to at least 1− ε.

If sups∈S λs = Λ <∞, we can compare Equation (4.17) and Equation (4.8).
We observe that Λk ≤ Λ for all k. Hence, for any infinitesimal time interval
[h, h+ dt),

Pr
(
XB(h+ dt) = k + 1 |XB(h) = k

)
= Λk · dt

≤ Pr
(
XP (h+ dt) = k + 1 |XP (h) = k

)
= Λ · dt.

This means that during the interval [0, t), the Poisson process XP (t) has at
least as many jumps as XB(t). This implies that the truncation of the sum in
Equation (4.17) w.r.t. a given accuracy ε may yield a smaller right truncation
point compared to the truncation in Equation (4.11). Hence, fewer matrix-
vector multiplications have to be carried out. If the computational complexity
of the algorithm is dominated by the computation of the vectors w(k), AU
outperforms SU. For a large time horizon t, however, the right truncation point
for AU often approaches that of SU, i.e., after a certain number ` of steps,
Λk = Λ for all k ≥ `. Then AU becomes less efficient than SU.

Further drawbacks of adaptive uniformization are the fact that the com-
putation of the values Pr

(
XB(t) = k

)
is more costly than the computation of

the values Pr
(
XP (t) = k

)
. The reason is that closed form expressions for the

solution of a birth process do not give rise, in general, to numerically stable
algorithms. Moreover, as mentioned above, the truncation points cannot be
calculated a-priori since the construction of XB is part of the iterative compu-
tation of the vectors w(1),w(2),

Solution of the birth process. For the computation of the probabil-
ities BΛ(k)·t(k) = Pr

(
XB(t) = k

)
, we construct a propagation model NB =〈

N0, [0, 1], ζB , πB
〉
, with initial mass vector ζB(0) = 1, and with edge function

πB determined by a generator matrix QB . The generator matrix is a simple

4.3. UNIFORMIZATION 63

infinite matrix QB with entries are QB(k, k) = −Λk, QB(k, k + 1) = Λk, for
k ∈ {0, 1 . . .}, and zero elsewhere. We use standard uniformization to solve
the continuous-time problem defined by NB , and obtain a subordinated prop-
agation model NB,u with transition probability matrix PB = I + 1

ΛQ
B , where

Λ ≥ supk≥0 Λk. For ease of presentation, let b denote the discrete-time propa-
gation process fB,d of propagation model NB,u. Thus,

BΛ(k)·t(k) =
∞∑
l=0

b
(l)
k · PΛ·t(l),

≈
R′∑
l=L′

b
(l)
k · PΛ·t(l). (4.18)

The matrix PB inherits the simple structure of QB . The entry PB(k, k + 1)
equals Λk

Λ =: ak, and the diagonal entry PB(k, k) = 1− ak. Then

b
(l)
k = ak−1 · b(l−1)

k−1 + (1− ak) · b(l−1)
k , (4.19)

that is, after l steps, the birth process is in state k if after l − 1 steps it is
in the state k − 1 and takes a transition to state k, or after l − 1 steps it is
in state k and takes the self-loop. In order to compute b(l)k , we only need the
transition rates Λ0, . . . ,Λk but not Λk+1,Λk+2, It is important to point out
that for the birth process we can afford the large number of iterations that are
necessary during SU. The reason is that the simple structure of NB,u permits
a fast computation of the values b(l)k . Moreover, similar to our strategy for the
solution of w, we set entries in b(l) to zero if they drop below the threshold
δ. This introduces an additional approximation error for b(l)k , but results in a
significant speed-up.

If we combine Equation (4.18) and the solution of the DTPP w, we obtain
an approximation ĝ(t) for g(t), that is,

g(t) ≈
R∑
k=0

w(k) · Pr
(
XB(t) = k

)
≈

R∑
k=0

w(k) ·
R′∑
l=L′

b
(l)
k · PΛ·t(l) =: ĝ(t). (4.20)

The outer sum is only truncated on the right and the truncation point R is
found during the AU-iteration. For the inner sum, we can compute L′ and R′

a-priori as mentioned above for SU. Due to the simple structure of XB , however,

64 CHAPTER 4. CONTINUOUS TIME PROPAGATION

it is possible to derive closer truncation points. Instead of deriving L′ and R′

only from the inequality
R′∑
l=L′
PΛ·t(l) > 1− ε,

we choose dynamical truncation points L′k andR′k depending on the probabilities
b
(l)
k . More precisely, we choose [L′k, R′k] to be the smallest interval that includes
all integers l for which b(l)k > δ.

Both truncations in Equation (4.20) lead to an underapproximation of the
true value. The same holds for the error introduced by neglecting states in
Na and NB,u whose entries in w(k) and b(l) drop below a certain threshold,
respectively. Thus, the approximation ĝ(t) is an underapproximation of g(t)

and the total error is given by 1 −
∑

s∈S ĝ
(t)
s . In our experimental results, we

report the total error using different values for δ. In the case that an a-priori
specified error bound has to be met it is possible to repeat steps of the iteration
if the total error exceeds the specified bound.

AU for non-linear propagation models. So far we have seen how to
solve the CTPP problem through adaptive uniformization for linear propaga-
tion models. As in the case of standard uniformization, we will now give an
adaptive uniformization method for propagation models for which the approxi-
mation (4.12) is acceptable.

Theorem 4.2. For a propagation model N = 〈S,M, ζ, π〉, let Na be a second
PM, with Na = 〈S,N0 ×M, ζa, πa〉, where ζa = 〈0, ζ〉 and

πas→s′(〈k,Λ〉) =
〈

1, 1
Λk

πs→s′(Λ)
〉
,

where Λk = maxs:w(k)
s >0λs.

Recall that fa is the discrete time propagation process of Na. Then, if Equa-
tion 4.12 is exact we have that:

g
(t)
s′ =

∞∑
k=0
B(Λ(k)·t)(k) · fa(k)

2,s′ ,

where fa(k)
2 is the second component of the propagation process f .

4.3. UNIFORMIZATION 65

Proof. Let Λ = supk Λk, and recall that Λ(k) denotes a series with elements the
values Λk. By using standard uniformization, we have that:

B(Λ(k)·t)(k) =
∞∑
k′=0
P(Λ·t)(k′)b

(k′)
k ,

where the vectors b(k′) are the solutions of a discrete-time propagation problem,
and have as elements the values b(k

′)
k . Furthermore:

dB(Λ(k)·t)(k)
dt

= Λ
∞∑
k′=0

(PΛ·t(k′ − 1)− PΛ·t(k′)) · b(k
′)

k

= Λ
∞∑
k′=0
PΛ·t(k′)(b(k

′+1)
k − b(k

′)
k)

= Λ
∞∑
k′=0
PΛ·t(k′)

(
−b(k

′)
k · Λk

Λ + b
(k′)
k−1

Λk−1

Λ

)

=
∞∑
k′=0
PΛ·t(k′)

(
bk
′
(k − 1)Λk−1 − b(k

′)
k · Λk

)

66 CHAPTER 4. CONTINUOUS TIME PROPAGATION

We will show that
∑∞
k=0 B(Λ(k)·t)(k) · fa(k)

2,s′ verifies equation(2.9). To do so,
we compute its derivative:

d
∑∞
k=0 B(Λ(k)·t)(k) · fa(k)

2,s′

dt

=
∞∑
k=0

dB(Λ(k)·t)(k)
dt

· fa(k)
2,s′

=
∞∑
k=0

∞∑
k′=0
P(k′)

Λ·t · (b
k′(k − 1)Λk−1 − b(k

′)
k · Λk) · fa(k)

2,s′

=
∞∑
k=0

Λk ·
∞∑
k′=0
P(k′)

Λ·t · b
(k′)
k · (fd(k+1)

2,s′ − fa(k)
2,s′)

=
∞∑
k=0

Λk · BΛk,t(k) · (fd(k+1)
2,s′ − fa(k)

2,s′)

=
∞∑
k=0

Λk · BΛk,t(k) ·
(∑

s∈S
πas→s′(f

a(k)
2,s)−

∑
s′′∈S

πas′→s′′(f
a(k)
2,s′) + πas′→s′(f

a(k)
2,s′)

)

=
∑
s∈S

Λk · πP,s→s′(
∞∑
k=0
BΛk,t(k) · fa(k)

2,s)

−
∑
s′′∈S

Λk · πP,s′→s′′(
∞∑
k=0
BΛk,t(k) · fa(k)

2,s′)

+Λk · πP,s′→s′(
∞∑
k=0
BΛk,t(k) · fa(k)

2,s′)

=
∑
s∈S

πs→s′(g(t)
s)−

∑
s′′∈S

πs′→s′′(g(t)
s′) + πs′→s′(g(t)

s′)

=dg
(t)
s′

dt
.

4.3.3 Fast Adaptive Uniformization (FAU)

By combining adaptive uniformization with the on-the-fly space construction
and with the threshold abstraction that we introduced in Chapter 3, we derive
a variant of adaptive uniformization that we call fast adaptive uniformization
which computes the under-approximations p̂(t1), p̂(t1),

This brings several important advantages that we list below.

– Smaller Right Truncation Point: The sets S0,S1, . . . may contain fewer states
because the definition of Sk depends onw(k). Thus, Λ0,Λ1, . . . are replaced by
the possibly smaller Λ̂0, Λ̂1, . . . since they are the maximal exit rates over fewer

4.3. UNIFORMIZATION 67

fast AU fast SU

thres. δ ex. time states error iterat. ex. time states error
e−11 62s 1.3e4 9e−6 455240 1718s 7.3e3 4e−2
e−12 62s 1.4e4 1e−6 455250 2129s 9.1e3 4e−3
e−13 63s 1.4e4 2e−7 455259 2460s 1e4 4e−4
e−14 64s 1.7e4 1e−7 455267 2759s 1.2e4 3e−5
e−15 67s 1.7×104 1e−7 455274 3001s 1.4e4 4e−6

0 1161s 4.8e4 1e−7 457242 TO 3h - -

Table 4.4: Results for the crystallization example.

fast AU fast SU

thres. δ ex. time states error iterat. ex. time states error
e−11 512s 2e5 7e−3 2e4 1450s 1e5 3e−2
e−12 930s 3e5 1e−3 2.3e4 2675s 2e5 4e−3
e−13 1502s 4e5 1e−4 2.6e4 4229s 3e5 6e−4
e−14 2286s 5e5 2e−5 2.9e4 6122s 4e5 7e−5
e−15 3326s 7e5 3e−6 3.2×104 8434s 6e5 1e−5

0 TO 3h - - - TO 3h - -

Table 4.5: Results for the phage λ example.

states. In this case, the birth process XB has smaller transition probabilities
than the birth process used in the original AU algorithm. In the case of smaller
transition probabilities, less probability mass moves rightwards within [0, t)
and thus the right truncation point is smaller.

– Smaller Vectors: Each vector-matrix multiplication w(k) · Pk requires less
computational effort since w(k) contains fewer nonzero entries.

– Non-explosive Birth Process: For infinite propagation models, the threshold
abstraction also ensures that the limit of the sequence S0,S1, . . . will remain
finite since only finitely many states can have a probability greater δ. There-
fore, the sequence Λ0,Λ1, . . . will be bounded even if sups∈S λs = ∞. Thus,
XB does not explode.

4.3.4 Case Studies

We implemented both methods fast AU (FAU) and fast SU (FSU) in C++ and
run experiments on a 3.16 GHz Intel Linux PC with 6 GB of RAM. We consider

68 CHAPTER 4. CONTINUOUS TIME PROPAGATION

three examples, of which our most complex example has 12 different chemical
species and 19 reactions. We approximate the full probability distribution at a
single point in time. Note that FAU and FSU can also be used in an iterative
fashion to compute the mass distribution of a PM at several time instances.
For instance, it is possible to iteratively calculate the mass distribution after
equidistant time intervals by using the distribution of the previous step as ini-
tial distribution of the current step. All of our examples come from biological
systems and require the transient solution of a Markov chain, which is given by
the chemical master equation.

Example 4.4 (Simple Crystallization). We consider a simple crystallization
example that involves the chemical species A,B,C, and D. The two possible
reaction types are given by 2A → B and A + C → D. Hence S ⊆ N4 and
for a state (x1, x2, x3, x4) ∈ S the propensity functions are α1(x1, x2, x3, x4) =
c1
(
x1
2
)

= c1x1(x1−1)/2 and α2(x1, x2, x3, x4) = c2x1x3, where c1, c2 are positive
constants.

The first example is the simple crystallization in Example 4.4. The underly-
ing CTMC is finite due to the conservation of mass in the model. We chose rate
constants c1 = c2 = 10−7 and initial state y = (106, 0, 10, 0) [50]. We present
our experimental results for the approximation of the probability distribution
at time t = 100 in Table 4.4. The columns 2-5 of the table contain the results
of FAU and the columns 6-8 those of FSU. Each row corresponds to a different
choice of the threshold δ (listed in the first column), that is, we use different
values for the threshold abstraction of the DTMC Xu or Xa. For both methods
we list the execution time (ex. time), the average size of the set Sk (states),
and the total error (error) 1−

∑
s∈S p̂

(t)
s . For FAU, we also list the total num-

ber of iterations (iterat.), i.e. the number of steps for which we compute the
solution of the DTMC. In contrast, the number of iterations required by SU is
5011731 (for all choices of δ).

The last row shows results for the case that δ = 0, that is, no threshold
abstraction was used for the DTMC. In this case the number of states with a
positive entry in the vector ŵ(k) becomes intractably large. The entry “TO”
refers to the case where the execution time exceeded the time out interval of 3
hours.

For the crystallization example, FAU performs significantly better than FSU.
The reason is that the adaptive rates Λ̂0, Λ̂1, . . . decrease as the number of
molecules of type A becomes smaller. As opposed to that FSU uses a birth

4.3. UNIFORMIZATION 69

L+R
c1−→ B0 c1 =6.7e−3 receptor-ligand binding

Bj+1
cj−→ Bj+2 cj=0.25 forward modifications

for j ∈ {2, . . . , 7}
Bj−5

cj−→ L+R cj=0.5 backward modifications
for j ∈ {8, . . . , 14}

B6 +X
c15−−→ C c15 =1.2e−3 binding of inactive mess.

C
c16−−→ B6+X c16 =1e−2 unbinding of inactive mess.

C
c17−−→ B6+X ′ c17 =100 release of activated mess.

C
c18−−→ L+R+X c18 =0.5 unbinding of inactive mess.

and ligands
X ′

c19−−→ X c19 =2e−3 inactivation of messengers

Table 4.6: Reactions of the signaling example.

fast AU fast SU

thres. δ ex. time states error iterat. ex. time states error
e−11 45s 1e5 4e−4 970 49s 8e4 7e−4
e−12 134s 2e5 1e−4 1105 149s 2e5 1e−4
e−13 325s 5e5 2e−5 1202 370s 4e5 4e−5
e−14 697s 1e6 5e−6 1276 796s 8e5 8e−6
e−15 1402s 1e6 1e−6 1350 1557s 1e6 1e−6

0 o.o.m. - - - o.o.m. - -

Table 4.7: Results of the signaling example.

process that jumps at constant rate Λ̂ = maxk≤R′ Λ̂k which results in very
short time steps even when the dynamics of the system slows down.

Goutsias’ Model As a second example we reconsider Example 4.2, a model
for the transcription regulation of a repressor protein in bacteriophage λ [44].
This protein is responsible for maintaining lysogeny of the λ virus in E. coli [5].
The model involves 6 different species and 10 reactions. Thus, a state is a
vector x ∈ N6

0, where the i-th entry refers to the number of molecules of type
M , D, RNA, DNA, DNA.D and DNA.2D, respectively. Note that infinitely
many states are reachable in the corresponding CTMC. The initial state of the
system is given by y = (2, 6, 0, 2, 0, 0) and the time horizon is t = 300. We
present our experimental results in Table 4.5. Note that for the crystallization
example the total error is similar for all choices of δ whereas for the phage
λ example the total error decreases for smaller δ. By comparing the column

70 CHAPTER 4. CONTINUOUS TIME PROPAGATION

iterat. with the number of iterations performed by SU, 1.5× 105, we conclude
that AU requires significantly less DTMC steps than SU. In the case of δ = 0,
the system times out after three hours as the space size is too big to handle.

Similar to the crystallization example, the fast AU method performs signifi-
cantly better than the fast SU method. Again, the reason is that the dynamics
of the system changes. This example has also been solved approximately by
Sidje et al. [12].

Immune-Receptor Signaling We consider a model of intracellular signal-
ing through immune receptors that are involved in antigen recognition [42]. The
model consists of 12 different chemical species and 19 reactions. After binding
to a receptor, a ligand undergoes six modifications and can generate a signal
by activating a messenger. In [42] this model is analyzed using Monte-Carlo
simulation. We list the reactions in Table 4.6.

Following [42], the rate constants are chosen as shown in column 2 of Ta-
ble 4.6 and the initial state is x = (x1, . . . , x12) with x1 = 30 ligands, x2 = 900
receptors and x10 = 10000 messengers. We compute the probability distribution
of the underlying CTMC at time t = 4. In Table 4.7, we list our experimental
results. As opposed to the previous examples, FSU performs almost as good
as FAU for the immune-receptor signaling example. The reason is that in this
system the dynamics do not change significantly, i.e. the values Λ̂0, Λ̂1, . . . are
not considerably different from the global uniformization rate used for fast SU.
Thus, the number of iterations needed by FSU, 2056, is of the same order of
magnitude as the number of iterations need by fast AU (see column iterat.). If
δ = 0 the memory requirements become enormous and after few iterations the
system is out of memory (we indicate this by “o.o.m.” in Table 4.7).

4.4 Runge-Kutta Method

In this section we apply an ODE solver to reduce a continuous-time propagation
problem to the discrete-time case. More specifically, the algorithm that we
propose here is based on the numerical integration of Equation (2.9) using an
explicit fourth-order Runge-Kutta method (RK4).

4.4. RUNGE-KUTTA METHOD 71

Let N be a propagation model defined by the tuple 〈S,M, ζ, π〉 whose
continuous-time propagation process g follows the differential equation:

dg
(t)
s′

dt
=
∑
s∈S

πs→s′(g(t)
s)−

∑
s′′∈S

πs′→s′′(g(t)
s′) + πs′→s′(g(t)

s′),

with initial condition: g(0) = ζ.

The standard explicit fourth-order Runge-Kutta method applied this equation
yields the iteration step [105]

g(t+h) = g(t) + h · (k1 + 2 · k2 + 2 · k3 + k4)/6, (4.21)

where h > 0 is the time step of the method and the vectors k1,k2,k3,k4 are
given by

k1(s′) = πs′→s′(g(t)(s′))

+
∑
s∈S

(
πs→s′(g(t)

s)

− πs′→s(g(t)(s′))
)

kl+1(s′) = πs′→s′(g(t)(s′) + h · kl(s′)/2))

+
∑
s∈S

(
πs→s′(g(t)

s + h · kl(s)/2))

− πs′→s(g(t)(s′) + h · kl(s′)/2))
)
, for l ∈ {1, 2} ,

k4(s′) = πs′→s′(g(t)(s′) + h · k3(s′))

+
∑
s∈S

(
πs→s′(g(t)

s + h · k3(s))

− πs′→s(g(t)(s′) + h · k3(s′))
)
. (4.22)

We construct a second propagation model NR =
〈
S,MR, ζR, πR

〉
such that:

g(n·h) ≈ fR(5·n) · 1m,

where 1m is a column vector with entry 1 at position 2 and 0 everywhere else.

The mass space of NR isMR = N0 ×M×M4. The first field corresponds
to the step number, the second to the N -mass of the state (which represents
the mass of the PM N), and the last 4 to the fields kl.

The initialization function of NR is:

ζRs = (0, ζs,0).

72 CHAPTER 4. CONTINUOUS TIME PROPAGATION

We define the edge function of NR by its components: πR = (πk, πµ, πkl).

πns→s(〈n, µ,k〉) = 1,

πk1
s→s′(〈5 · n, µ,k〉) = πs→s′(µ),

πk2
s→s′(〈5 · n+ 1, µ,k〉) = πs→s′(µ+ h

2 · k1),

πk3
s→s′(〈5 · n+ 2, µ,k〉) = πs→s′(µ+ h

2 · k2),

πk4
s→s′(〈5 · n+ 3, µ,k〉) = πs→s′(µ+ h · k3),

πµs→s(〈5 · n+ 4, µ,k〉) = h

6 · (k1 + 2 · k2 + 2 · k3 + k4),

πkrs→s(〈5 · n+ 4, µ,k〉) = −kr,

πRs→s′(µ) = 0, if not already defined above.

4.4.1 Algorithm

In order to solve a continuous-time propagation problem, we apply the ideas
presented in Chapter 3 to the propagation model Ns. The main idea is to
integrate only those differential equations of the PME (see Equation (2.9)) that
correspond to states with “significant mass”. This reduces the computational
effort significantly since in each iteration step only a comparatively small subset
of states is considered. We dynamically decide which states to drop/add based
on a fixed mass threshold δ > 0. In the case of propagation models that are
derived from biochemical reaction netoworks, due to the regular structure of the
corresponding Markov model the approximation error of the algorithm remains
small since probability mass is usually concentrated at certain parts of the state
space. The farther away a state is from a “significant set” the smaller is its
probability. Thus, the total error of the approximation remains small. Unless
otherwise specified, in our experiments we fix δ to 10−14, which has been shown
to lead to accurate approximations [23]. Since in each iteration step some mass is
“lost” we obtain a substochastic probability vector and the approximation error
is the sum of all probability mass lost (provided that the numerical integration
could be performed without any errors).

In order to avoid the explicit construction of S we work with a dynamic set
S of significant states that changes in each step, we use for a state s a data
structure x with the following components:

4.4. RUNGE-KUTTA METHOD 73

Algorithm 4.6 A single iteration step of the fast RK4 algorithm, which ap-
proximates the solution of the PME.
1: for l = 1, 2, 3, 4 do // traverse S four times
2: switch l // decide which fields from state data structure are needed for kl
3: case l = 1: coeff := 1; field := µ;
4: case l ∈ {2, 3}: coeff := h/2; field := kl−1;
5: case l = 4: coeff := h; field := kl−1;
6: for all s ∈ S do
7: x.kl ← x.k0; // small speed up
8: for πx.s→s′(x.µ) > 0 do
9: x′ = find(s′,S);
10: if x′ = null then
11: S := S ∪ {x′};
12: x.kl := x.kl − coeff · πx.s→s′(x.field);
13: x′.kl := x′.kl + coeff · πx.s→s′(x.field);
14: x.kl := x.kl + coeff · πx.s→x.s(x.field); // for non-conservative PM
15: for all s ∈ S do
16: x.µ := x.µ+h · (x.k1+2 · x.k2+2 · x.k3+ x.k4)/6;
17: x.k1 := 0;x.k2 := 0;x.k3 := 0;x.k4 := 0;
18: if x.µ < δ then
19: S := S \ {x} ;

– a field x.µ for the current N -mass of s,
– fields x.k1, . . . , x.k4 for the four terms in the equation of state s in the system
of Equation (4.22),

– a pointer to the discovered successors s′ of x.s.

We start at time t = 0 and initialize the set S as the set of all states that have
initially a mass greater than δ ∈ M, l.e. S starts with nodes for the set of
states

{
s | g(0)

s > δ
}
. We perform a step of the iteration in Equation (4.21) by

traversing the set S five times. In the first four rounds we compute k1, . . . ,k4

and in the final round we accumulate the summands. While processing node x in
round l, l < 5, we propagate mass to each successor of x.s (πx.s→x′.s(x.µ) > 0),
by subtracting a term from x.kl (see Equation (4.22)) and adding to the same
field kl of x′. A single iteration step is illustrated in pseudocode in Table 4.6. In
line 18, we ensure that S does not contain states with a mass value less than δ. In
lines 2-14 we compute the values k1,s, . . . , k4,s for all x ∈ S (see Equation (4.22)).
The fifth round starts in line 15 and in line 16 the approximation of the mass
g

(t+h)
s is calculated. Note that the fields x.k1, . . . , x.k4 are reset to with zero.

74 CHAPTER 4. CONTINUOUS TIME PROPAGATION

Chapter 5

Related Work

Here, we thoroughly relate our work with the alternative for numerical solutions:
stochastic simulation, with the alternative for threshold abstraction or sliding
window abstraction: finite state projection, and finally with the alternative for
uniformization and Runge-Kutta method: Krylov sub-space methods. But first
we give an overview of all methods that related to sliding windows and to fast
adaptive uniformization.

Various abstraction techniques for Markov chains with finite state spaces
have been developed during the last years [19, 20, 66, 71]. Infinite-state Markov
chains with discrete time have been considered in the context of probabilis-
tic lossy-channel systems [1–3, 91] and probabilistic pushdown systems [29–
31, 68]. In the infinite-state continuous-time setting, model-checking algorithms
for quasi-birth-death processes and Jackson queuing networks have been stud-
ied by Remke [95], where the underlying Markov chains are highly structured
and represent special cases of CTMCs defined by transition classes. The closest
work to the sliding window method is the model-checking algorithm for infinite-
state CTMCs by Zhang et al. [112]. Depending on the desired precision, their
algorithm simply explores the reachable states up to a finite path depth. In con-
trast, our approach takes into account the direction into which the probability
mass moves, and constructs a sequence of abstract models “on-the-fly,” during
the verification process. Similar approaches have also been used in the context
of biochemical reaction networks. Similar to [112], Munsky et al. [83] explore
models up to a specified finite path depth, whereas Burrage et al. [12] consider
a finite projection that is doubled if necessary. The latter method, however,
requires a priori knowledge about the direction and spread of the probability
mass.

75

76 CHAPTER 5. RELATED WORK

The Fokker-Planck equation is an approximation of the CME, for which a
solution can be obtained efficiently [103, 104]. This approximation, however,
does not take into account the discrete nature of the system, but changes the
underlying model by assuming a continuous state space. Other approaches
to approximate the probability distributions defined by the CME are based
on sparse grid methods [51], spectral methods [28], or the separation of time
scales [13, 88]. The latter approach uses a quasi-steady state assumption for a
subset of chemical species and calculates the solution of an abstract model of the
system. In contrast, we present an algorithm that computes a direct solution of
the CME. Our method is also related to tau-leaping techniques [14, 40], because
they require estimates of the upper and lower bounds on the population sizes
of the chemical species, just as our method. The time leap must be sufficiently
small such that the changes in the population vector do not significantly affect
the dynamics of the system. Our method differs from the calculation of the leap
in predicting the future dynamics for a dynamically chosen time period. More
precisely, we determine the length of the next time step while approximating
the future behavior of the process.

Recently, uniformization has been used in the context of biochemical reaction
networks. Hellander [53] combines SU with Monte Carlo simulation. Sidje et
al. also consider SU and, similar to our approach, they neglect states in the
DTMC that have insignificant probability [100]. Zhang et al. apply the external
uniformization method to biochemical reaction networks [111]. As opposed to
the approaches mentioned above fast adaptive uniformization modifies both,
the solution approach for the DTMC as well as the solution approach for the
associated birth process.

5.1 Stochastic Simulation

Two different families of computational approaches have been proposed and
used to estimate event probabilities and approximate probability distributions.
The first kind of approach is based on numerical simulation, i.e., the generation
of many sample trajectories (or simulation runs) of the system, and the second
kind is the subject of this thesis, numerical analysis. The former approach is
known as Gillespie simulation [38], in which pseudo-random numbers are used
to simulate molecular noise. Measures of interest are obtained via statistical
output analysis. The main advantage of simulation is that it is easy to imple-
ment and the generation of trajectories is not limited by the size of the state
space. Moreover, the precision level of the method can be easily adjusted by

5.1. STOCHASTIC SIMULATION 77

performing more or fewer simulation runs. For the computation of the probabil-
ity of certain events, however, simulative approaches become computationally
expensive, because a large number of runs have to be carried out to bound
the statistical error appropriately. For estimating event probabilities, a higher
precision level is necessary than for estimating cumulative measures such as ex-
pectations, and simulation becomes expensive because doubling the precision
requires four times more simulation runs.

In contrast, approaches based on a numerical reachability analysis approx-
imate probability distributions of the CTMC. As opposed to a statistical esti-
mation of probabilities, which yields an indirect solution, the master equation is
numerically solved by integrating the system’s behavior over time. Standard nu-
merical techniques are impractical for many systems because of the well-known
problem of state space explosion. Recently, however, more sophisticated numer-
ical approximation methods have been proposed, which solve the system in an
iterative fashion and consider only subsets of the state space during any given
time interval, such as our own work presented here, and finite state projec-
tion methods[12, 83]. They are significantly more efficient than global analysis
because they use localization optimizations (such as “sliding windows”) and
dynamic adaptation (“on-the-fly” generation of windows). These methods ef-
ficiently compute the probability distribution of large CTMC at several time
instances up to a small approximation error. They can also be used for infinite-
state systems.

In this section, we evaluate and compare the performance of the two different
approaches for the computation of probabilities of certain events, i.e., the sta-
tistical estimation using simulation and the approximation using fast adaptive
uniformization (see Section 4.3.3).

The first example that we consider is the transcription regulation of a re-
pressor protein in bacteriophage λ, where we approximate the probability dis-
tribution at several time instances. In the second example, which is a gene
expression network [108], we compute the distribution of the time until the
number of produced proteins exceeds a certain threshold. In both examples
the number of states reachable from the initial state is infinite. The number of
chemical species is 6 and 2, and the number of chemical reactions is 10 and 4,
respectively. We compare the running time of our numerical reachability analy-
sis to that of the simulative approach for both examples, for different precision
levels. Our results show that numerical approximation based on reachability
analysis is superior to statistical estimation based on repeated simulation, es-
pecially if we increase the desired precision level. For instance, the numerical

78 CHAPTER 5. RELATED WORK

approximation of the first example needs 39 minutes for a total approximation
error of 2× 10−5, which distributes among all states. Simulation requires more
than six hours if the statistical error of a single event is to be bounded by 10−5

and more than sixty hours for 10−6.

Unbounded Range. For realistic systems, the state space of the Markov
chain is extremely large, because its size grows exponentially in the number
of involved chemical species. Moreover, if upper bounds on the state variables
cannot derived from certain conservation laws, their range is assumed to be
infinite although in practice the number of molecules is bounded. Then from
the infinite structure, we can compute bounds that are kept with a very high
probability. Even though every state in the infinite state space has a non-zero
probability, certain attracting regions force most of the probability mass to
remain within a finite range.

Example 5.1. In Example 2.1, the degradation rates α3(s) and α4(s) grow lin-
early in the state variables. Thus, the higher the number of mRNA or protein
molecules the more likely is their degradation. Depending on the rate constants
c1, . . . , c4, the system becomes “stable” in different regions. As time approaches
infinity, the main part of the probability mass will be close to a region where pro-
duction and degradation of molecules cancel each other out. Below, we discuss in
general under which conditions the system approaches such a stable distribution.

Holding Times and Jump Probabilities. A Markov chain (X(t))t≥0

defined in the way above is a stable and conservative jump process [9]. Thus,
there exists a sequence of jump times (τ(k))k∈N0

and a sequence
(
X̂(k)

)
k∈N0

of visited states such that

τ(0) = 0 < τ(1) < τ(2) < . . . and X(t) = X̂(k) if τ(k) ≤ t < τ(k + 1).

The distribution of the k-th holding time τ(k + 1) − τ(k) under the condition
X̂(k) = s is negative exponentially distributed with parameter λs =

∑
j:s∈Gj αj(s),

also called exit rate of state s.

If the sum of all holding times is finite with positive probability, the Markov
chain is said to explode and the limiting distribution does not exist. Explosive
Markov chains are not of interest for the application area of this work since in
this case the system “gets lost at infinity”. It is possible to check if the Markov
chain does not explode by using Reuter’s Criterion [9]. For the remainder of
our presentation we assume that the rate functions αj are such that the Markov
chain does not explode.

5.1. STOCHASTIC SIMULATION 79

Assume that the k-th state of the Markov chain is s, that is, X̂(k) = s. If
at least one transition class is enabled in s, the successor state is uj(s) for some
j with s ∈ Gj . The probability of successor uj(s) is given by

Pr
(
X̂(k + 1) = uj(s) | X̂(k) = s

)
= αj(s)

λs
.

The holding times and the jump probabilities play an important role for the
simulation of the Markov chain, which is used to estimate the probability of a
certain events.

5.1.1 Statistical Estimation of Probabilities

In this section we shortly review the basic steps that have to be carried out to es-
timate the probability of a certain measurable event using stochastic simulation.
Throughout this section, we will denote this event by A and its probability by γ.
For the analysis of biological systems, the events of interest may be the marginal
distributions or even the joint distributions of certain chemical species. For in-
stance, A may have the form Xi(t) = k, that is, the number of type i molecules
is k.

Estimates are obtained in two steps. In the first step, a certain number of
simulation runs of the Markov chain have to be generated, and in the second
step, the results of the simulation runs are analyzed.

Trajectory Generation. A realization of the Markov chain, also called
trajectory or run, is the random sequence of states visited by the process. If
trajectories are produced by a computer, pseudo-random numbers are used to
artificially generate randomness [73]. The basic steps of producing a single
trajectory that starts in the initial state y at time 0 are as follows:

1. Initialize time t = 0 and state s = y.

2. Generate the holding time h, i.e., a sample of a random variable being expo-
nentially distributed with parameter −λs.

3. Generate the successor state, i.e., a sample j of a discrete random variable
Z that has probability distribution P (Z = j) = αj(s)/λs.

4. Set t = t+ h, s = uj(s) and go to Step 2 if t < T .

In Step 2, we generate the holding time of the current state s. Pseudo-random
number generators usually draw from a uniform distribution. Thus, for a given
random sample r1 that is uniformly distributed on (0, 1), we calculate an ex-
ponentially distributed sample by using the inverse transform method. More

80 CHAPTER 5. RELATED WORK

precisely, we compute the inverse − ln r1
λs

of the cumulative distribution function
of the exponential distribution. In Step 3, the same idea is used to decide, which
reaction occurs next. The inverse of the cumulative distribution function of Z
is given by j = min

{
j” :

∑j”
j′=1 αj′(s) > r2 · λs

}
, where r2 is again a random

sample that is uniformly distributed on (0, 1). In the final step, the current
time and the current state are updated. The simulation is terminated if the
time horizon T of interest is reached and continued otherwise.

Output Analysis. The problem of estimating the probability γ of the event
A can be reformulated as estimating the expectation of the random variable χA
with

χA(ω) =

1 if ω ∈ A,

0 if ω 6∈ A,

where ω is a trajectory. The expectation E[χA] equals γ, since E[χA] =
1 · Pr(χA = 1) + 0 · Pr(χA = 0) = γ. Therefore, we can resort to the stan-
dard estimation procedure for expectations. Assume that N is the number of
runs that have been carried out and Y1, . . . , YN are independent and identically
distributed as χA. Thus, from the ρ-th run we get a realization of Yρ by checking
if A has occurred or not. It is important to point out that we have to guarantee
the independence of the Yρ’s. This implies that we generate N independent
trajectories of the Markov chain, each time with a different initial seed1 for the
pseudo-random number generator. The sample mean Ȳ = 1

N

∑N
ρ=1 Yρ is then

an unbiased and consistent estimator [73] for E[χA]. The former means that
E[Ȳ] = E[χA] and the latter refers to the fact that as N increases the estimator
Ȳ becomes closer to γ. Note that Ȳ is equal to the relative frequency of the
event A. Let σ2 = V AR[χA] be the variance of χA. We evaluate the quality of
the estimator Ȳ by applying the central limit theorem, which states that Ȳ will
approximately have a Normal distribution with mean E[χA] = γ and variance
σ2/N . Hence, for large N the random variable

Z = Ȳ − γ√
σ2/N

has a standard Normal distribution, that is, the mean is zero and the variance
is one. Knowing the distribution of Z enables us reason about the difference

1The seed of a pseudo-random number generator is an initial value, on which the sequence
of generated numbers depend [73].

5.1. STOCHASTIC SIMULATION 81

|Ȳ − γ|. Let β ∈ [0, 1] be the confidence level and z ∈ R+ such that β =
Pr(|Z| ≤ z). Then

β = Pr(|Z| ≤ z) = Pr
(
|Ȳ − γ|√
σ2/N

≤ z

)
= Pr

(
|Ȳ − γ| ≤ z

√
σ2/N

)
.

We estimate σ2 with the sample covariance S2 = 1
N−1

∑N
ρ=1(Yρ − Ȳ)2, which

is an unbiased estimator for σ2. Then, for large N and a large number of
realizations of the confidence interval[

Ȳ − z
√
S2/N, Ȳ + z

√
S2/N

]
, (5.1)

β is the fraction of intervals that cover γ. It therefore measures the quality of
the estimator Ȳ .

For a practical application, two further remarks are important. Firstly, we
usually choose β ∈ {0.95, 0.99} and the corresponding value of z can be found
in the table of the standard Normal distribution. Let Φ be the cumulative
distribution function of the standard Normal distribution. Then, using that the
Normal distribution is symmetric,

Φ(z) = Pr(Z ≤ z) = 1− 1−β
2 = 1+β

2 ⇐⇒ z = Φ−1
(

1+β
2

)
.

Secondly, both, Ȳ and S2 can be computed efficiently if during the trajectory
generation the realizations of the two sums

∑N
ρ=1 Yρ and

∑N
ρ=1 Y

2
ρ are calcu-

lated, since it can be easily shown that

S2 =
∑N

ρ=1
Y 2
ρ

N−1 −
(∑N

ρ=1
Yρ
)2

(N−1)N .

Thus, if r ∈ {0, . . . , N} is the number of times event A occurred during the N
simulation runs, Ȳ = r/N and S2 = r(N−r)

N(N−1) .

If the interval in Equation (5.1) is large relative to Ȳ the quality of the
estimator is poor and more simulation runs have to be carried out. For our
experimental results in Section 5.1.2, we fixed the relative width of the interval
to be 0.2 (which means that we have a relative error of at most 0.1) and chose
confidence level β = 0.95. Thus, z ≈ 1.96 and we can determine the number of
necessary runs by bounding the relative width

2 ·
z ·
√
S2/N

γ
≤ 0.2 =⇒ z2

0.01
S2

γ2 ≤ N =⇒ 384 · S
2

γ2 ≤ N

Assume now that we want to estimate the probability of events that occur at
least with probability γ. Using the fact that σ2 = VAR[χA] = γ(1 − γ) and

82 CHAPTER 5. RELATED WORK

2
4

6
8

10
12

14
16

18

5

10

15

20
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

P

Monomers
Dimers

P

Figure 5.1: Probability distribution of monomers
and dimers in the phage λ model.

replacing S2 by σ2 yields N ≥ 384 · 1−γ
γ [92]. Thus, estimating probabilities

having at least the order of magnitude of 10−5, for instance, with a relative error
of 0.1 and a confidence of 95% requires at least N = 38, 000, 000 simulation runs.

5.1.2 Experimental Results

For our experimental results, we consider two examples from biology. One if a
model for the transcription regulation of a repressor protein in bacteriophage
λ [44]. This protein is responsible for maintaining lysogeny of the λ virus in
E. coli [5]. We compute the full probability distribution for different precision
levels. Our second example uses the gene expression model of Example 2.1.
We calculate the distribution of the time until the number of produced proteins
exceeds 500. The running times for simulations grow linearly with the number
of simulations, and so for long number of simulations infer the running times by
simple multiplication.

There is no one-to-one correspondence between the statistical accuracy of
the estimates that we derive via simulation and the precision of the numerical
method. However, by assuming that the smallest event probability that has to
be estimated is γ all results of the simulation have a “precision” of at least γ.
Intuitively, we simulate often enough to reason about events that occur with
a probability of at least γ. We therefore refer to γ as the single event error
(cf. Table 5.1 and 5.2). Note that the simulation results are still subject to
the statistical errors since the true values may not be covered by the confidence
interval (compare Section 5.1.1).

5.1. STOCHASTIC SIMULATION 83

nu
m
er
ic
al

ap
pr
ox
im

at
io
n

G
ill
es
pi
e
sim

ul
at
io
n

ru
nn

in
g
tim

e
to
ta
la

pp
ro
x.

er
ro
r

|S
l|

δ
ru
nn

in
g
tim

e
sin

gl
e
ev
en
t
er
ro
r

#
ru
ns

55
m
in

5
se
c

3
×

10
−

6
23
97
92

10
−

15
>

60
00

h
10
−

8
>

3
×

10
10

39
m
in

16
se
c

2
×

10
−

5
18
72
04

10
−

14
>

50
0
h

10
−

7
>

3
×

10
9

25
m
in

2
se
c

2
×

10
−

4
14
09
69

10
−

13
67

h
22

m
in

10
−

6
>

3
×

10
8

15
m
in

41
se
c

1
×

10
−

3
10
10
78

10
−

12
6
h
44

m
in

10
−

5
>

3
×

10
7

6
m
in

33
se
c

7
×

10
−

3
67
54
0

10
−

11
40

m
in

10
−

4
>

3
×

10
6

3
m
in

12
se
c

4
×

10
−

2
40
37
3

10
−

10
4
m
in

10
−

3
>

3
×

10
5

Ta
bl
e
5.
1:

C
om

pa
ris

on
of

th
e
ru
nn

in
g
tim

es
fo
r
th
e
ph

ag
e
λ
m
od

el
.

84 CHAPTER 5. RELATED WORK

The approximation error ε of the numerical method is the sum of the ap-
proximation error of all states in the Markov chain. Note that the probabilities
of states not in Sl are underapproximated with zero and their true probabilities
increase depending on how close they are to an attracting region. The error of
a single state probability p(t)

s is much smaller than ε but precise values for the
single error are hard to obtain. A rough estimation of the single errors can be
obtained by dividing the total error by the average size |Sl| of the significant
sets (cf. Table 5.1 and 5.2), even though ε may not be uniformly distributed on
the significant set. On the other hand, ε also includes the error of insignificant
states and, thus, distributes among much more states than only those in Sl.

Goutsias’s model The Phage λ model involves 6 different species and 10
reactions, as shown in Example 4.2. The initial state of the system is given by
y = (2, 6, 0, 2, 0, 0) and the time horizon is t = 300. We approximate the proba-
bility distributions of the underlying CTMC at 100 equidistant time instances.
Figure 5.1 shows a plot of the distribution of dimers and monomers at time in-
stant t = 300. In Table 5.1, we list the running times of our numerical method
as well as the running time of the simulation. The column with header |Sl| lists
the average number of states in the sets S0, S1, . . . and δ is the threshold in
Equation (3.1).

Gene Expression. For the transition classes of the gene expression example
we refer to Example 2.1. For the rate constants, we choose c1 = 0.05, c2 =
0.0058, c3 = 0.0029, and c4 = 10−4, where c3 and c4 correspond to a half-life
of 4 minutes for mRNA and 2 hours for the protein [108]. We compute the
probability that at least 500 proteins are in the system at 100 equidistant time
instances. Figure 5.2 shows the cumulative probability distribution of the time
until the number of proteins reaches 500 for the first time (note that eventually
the threshold of 500 is reached with probability one). In Table 5.2, we list the
results for the gene expression example, where, as above, |Sl| denotes the average
number of states in the sets S0, S1, . . . and δ is the threshold in Equation (3.1).

Discussion. Even if we consider the total approximation error ε as a rough
bound for the single error of each state probability, thus favoring simulation,
the speed-up factor of the numerical approximation is large, especially if the
precision increases. The necessary precision level up to which probability distri-
butions are approximated may depend on the system under study. It is, however,
important to note that the occurrence of rare biochemical events can have im-
portant effects. For instance, the spontaneous, epigenetic switching rate from

5.1. STOCHASTIC SIMULATION 85

nu
m
er
ic
al

ap
pr
ox
im

at
io
n

G
ill
es
pi
e
sim

ul
at
io
n

ru
nn

in
g
tim

e
to
ta
la

pp
ro
x.

er
ro
r
|S
l|

δ
ru
nn

in
g
tim

e
sin

gl
e
ev
en
t
er
ro
r

#
ru
ns

4.
2
se
c

5
×

10
−

6
98
16

10
−

12
>

50
0
h

10
−

7
>

3
×

10
9

3.
6
se
c

5
×

10
−

5
87
19

10
−

11
>

50
h

10
−

6
>

3
×

10
8

3.
0
se
c

5
×

10
−

4
75
16

10
−

10
5
h
3
m
in

10
−

5
>

3
×

10
7

2.
4
se
c

4
×

10
−

3
62
65

10
−

9
30

m
in

18
se
c

10
−

4
>

3
×

10
6

1.
9
se
c

4
×

10
−

2
49
39

10
−

8
3
m
in

se
c

10
−

3
>

3
×

10
5

Ta
bl
e
5.
2:

C
om

pa
ris

on
of

th
e
ru
nn

in
g
tim

es
fo
r
th
e
ge
ne

ex
pr
es
sio

n
ex
am

pl
e.

86 CHAPTER 5. RELATED WORK

 0

 0.2

 0.4

 0.6

 0.8

 1

 4000 5000 6000 7000 8000 9000 10000

P

t

Figure 5.2: Cumulative probability distribution of the time until the number of
proteins reaches 500 for the first time in the gene expression example.

the lysogenic state to the lytic state in phage λ-infected E. coli is experimentally
estimated to be in the order of 10−7 per cell per generation [74].

5.1.3 Conclusion

We have demonstrated that, for the computation of event probabilities, a nu-
merical reachability analysis provides an efficient alternative to simulation-based
methods.

Even though simulation is widely used, the advantages of numerical methods
increase as more sophisticated techniques become available. They reduce the
computational effort, especially if accurate results are desired. Moreover, for
the calibration of parameters many instances of the model have to be solved
and in this case short running times for a single solution are necessary.

Until now we have analyzed examples of intrinsically stochastic systems that
have been published in the literature. As future work, we are planning to ap-
ply our numerical reachability algorithm in collaboration with experimentalists
working on new stochastic models. Moreover, we are planning to combine our
numerical method with parameter estimation techniques.

Standard numerical reachability analysis methods are inefficient for large
state spaces (in the case of high dimension and/or many molecules) and inap-
plicable for unbounded state spaces, and thus one resorts to simulation. We
have demonstrated that certain optimization techniques from computer science
- localization, on the fly abstraction - put many examples within the reach of
numerical reachability analysis. Indeed, when high accuracy is required these
methods outperform simulation-based techniques.

5.2. FINITE SPACE PROJECTION 87

Support at time t

x2

x1

St,0

Projection at time t

x2

x1

St,0

St,k

Truncation at t + h

x2

x1

St+h,0

St,k

Projection at t + h

x2

x1

St+h,0

St+h,k

Support at time t

x2

x1

Ŝ

Changes of Ŝ during iteration

x2

x1

Ŝ

Changes of Ŝ during iteration

x2

x1

Ŝ

Support at time t + h

x2

x1

Ŝ

1

Figure 5.3: Projection construction and truncation in the original FSP approach.

Ŝ and projection
at time t

x2

x1

Ŝ

Movement of Ŝ

x2

x1

Ŝ

Movement of Ŝ

x2

x1

Ŝ

Ŝ at time t + h

x2

x1

Ŝ

1

Figure 5.4: Projection (dashed line) in the improved FSP vs. significant set Sk
in FAU.

5.2 Finite Space Projection

The finite state projection (FSP) algorithm is an alternative approach for the
solution of the chemical master equation on a reduced state space. The basic
idea in the original version of the algorithm is to bound the number of reactions
that occur in an interval [t, t+h] by k, where k is chosen w.r.t. a given precision ε
(see [82, Chapter 5.3]). The idea is illustrated in Figure 5.3 for a two-dimensional
phase space. Assume that at time t only states in the set St,0 have positive
probability, i.e. St,0 is the support of the distribution. The master equation is
solved for all states in the set St,k, which is the set of all states reachable from
St,0 within at most k transitions. After the computation the probabilities of
all states in St,k are known and it is possible to truncate St,k yielding the set
St+h,0. This truncation is done in such a way that the remaining probability
mass is greater than a given threshold. In order to proceed further in time,
the same procedure can be repeated until the final time instant is reached. As
opposed to that, the FAU approach is based on a dynamic set Sk that may
change in each of the R iteration steps that are performed to solve the master

88 CHAPTER 5. RELATED WORK

equation for the interval [t, t + h]. Obviously, k and R are of the same order
of magnitude for a given upper bound on the probability mass that is lost,
but the total number of times probability mass is moved from one state to
another may be significantly smaller for the FAU approach. The reason for this
is that FAU considers fewer states in total and many states are only considered
during some of the R iteration steps. In particular, if the probability mass is
moving in a certain direction (as it is typically the case during the transient
phase), then certain states are “left behind”. The original FSP approach, on
the other hand, constructs a projection independent of the direction in which
the probability mass is moving. For small examples or those that are almost in
steady-state, the benefit of the FAU method may be neglected, but in all other
cases the FAU method requires less computational work and is therefore faster.
The accuracy of the two methods is similar because during the FAU method
only states with very low probability are neglected. The FSP method, however,
has the advantage that a-priori specified error bounds hold whereas the error
of the FAU method depends on the chosen threshold δ and is determined after
the computation. For our experimental results, we controlled the total error by
choosing values for δ that range from 10−15 to 10−11. For chemical reaction
networks, this leads to sufficiently accurate results except one is interested in
rare events that occur with a probability smaller than δ. It is important to note
that if the Markov process is simulated using, for instance, Gillespie’s algorithm,
on average O(1/δ) simulation runs are necessary to observe such events [22].

Recently, improvements to the FSP method have been suggested where
smaller projections are constructed by heuristically determining the direction
in which the probability mass is moving [82, 84]. The idea is to use a rectan-
gular projection and to introduce “sink states” on all boundaries. If the sink
state on a certain boundary of the projection receives a significant amount of
probability mass, the projection for the next time step is extended in the corre-
sponding direction. The projection is not extended in those directions where the
sink states have small probability. This improvement leads to smaller memory
requirements for the FSP method. On the other hand, for this variant of the
algorithm the error cannot be specified apriori since the probability mass that
gets lost can only be determined after the computation is done. Of course, it
is possible to repeat the computation with a larger projection until an apriori
specified error bound is met. Still the memory requirements are larger than for
FAU because the projection is fixed during each time step whereas in the FAU
method the set of considered states is updated in an on-the-fly fashion. We il-
lustrate the difference between the improved FSP method and the FAU method

5.2. FINITE SPACE PROJECTION 89

in Figure 5.4 for a two-dimensional system. Here, the dashed line represents
the projection in the FSP approach for the interval [t, t + h] and the solid line
represents the set Sk of significant states in the FAU approach. During [t, t+h],
the (possibly non-convex) set Sk changes in each of the R iterations. We use
dotted lines for Sk in the previous iteration step and solid lines for the current
step.

We have implemented both, the original FSP approach and its improved
variant. For our examples, the memory requirements of the original approach
become intractable after few time steps. For the improved FSP approach the
crystallization and the signalling case studies could not finish the computation
due to time and, respectively, space constraints. In the case of crystallization,
the system times out after 10 hours. The reason is that in each time step the
projection is extended by a fixed amount, and it is unable to follow the dynamics
of the system. More precisely, the dynamics are very fast at the beginning (large
projections are needed to ensure that enough probability mass remains within
the projection during a time step of length h) and become slow after many
dimerizations. Thus, at later time steps small projections are sufficient. We
tried different choices for the time step h and found that h = 0.1 performs best.
For this choice after 10 hours, 15% of the time horizon was reached. For the
signalling example, the FSP algorithm runs out of memory even though the
projection was optimized as a rectangular window with the bounds

[0, 30]× [870, 900]× [0, 30]× [0, 17]× [0, 11]× [0, 4]× [0, 2]× [0, 1]× [0, 1]×
[9996, 10000]× [0, 1]× [0, 4].

This rectangular box in 12 dimensions contains about 4 million states. FAU
does not use a rectangular window but if we compute the maximal and minimal
molecule numbers in the set Sk for each dimension we get

[0, 15]× [870, 885]× [5, 30]× [0, 21]× [0, 11]× [0, 6]× [0, 4]× [0, 2]× [0, 1]×
[9983, 10000]× [0, 1]× [0, 17].

The number of states in Sk, however, is only 58311. The reason is that many
states within these bounds are dropped because their probability is smaller
than δ. Finally, we could run FSP for the phage λ model. For an error of
7e−3, the running time of FSP is 69 minutes, while for an error of 3e−6, the
algorithm takes 7.5 hours (compare with the first and last lines of Table 4.5).
It is important to note that the number of states in the projection that have a
probability smaller than, say, 10−15 is significant and it is difficult to develop
heuristics that optimize the shape of the projection in such a way that systems

90 CHAPTER 5. RELATED WORK

with higher dimensions can be solved efficiently with the FSP approach. The
main advantage of FAU is that it does not use minimal and maximal bounds on
the molecule numbers but decides for each individual state whether it should
be considered or not.

5.3 Krylov Subspace Method

Krylov subspace methods are widely used for large eigenvalue problems, for
solving linear equation systems, and also for approximating the product of a
matrix exponential and a vector [36, 97]. We are interested in the latter ap-
proximation and show how it can be used to solve the CME, either in a global
fashion or in combination with the sliding window method. Recently, Krylov
subspace methods have been applied to the CME by Sidje et al. [12].

5.3.1 Global Krylov Subspace Method

Recall that a global solution of the CME is given by p(t) = p(0)eQt. In the
sequel, we describe the approximation of etAv, where A is a N × N square
matrix and v is a column vector of length N . We obtain an approximation of
p(t) by choosing A = (Q)T and v = (p(0))T .

Let us first assume that t = 1. The main idea is to generate a basis of the
m-th Krylov subspace

Km = Span
{
v, Av, . . . , Am−1v

}
,

and to seek an approximate solution for eAv from this subspace. Let qmin be
the nonzero monic polynomial of lowest degree such that qmin(A)v = 0. We
choose m ∈ N such that the degree of qmin is greater or equal to m. In this case,
the vectors v, Av, . . . , Am−1v are linearly independent, and for every element
x ∈ Km there exists a polynomial q of degree at most m − 1 with x = q(A)v.
Note that in practice we choose m = 30 or m = 20, because the degree of qmin

is usually greater than 30. However, if not, the problem can be solved exactly in
the d-th Krylov subspace, where d is the degree of qmin. Working directly with
the basis

{
v, Av, . . . , Am−1v

}
is numerically unstable. Therefore, we construct

an orthonormal basis {v1,v2, . . . ,vm} for Km by applying Arnoldi’s algorithm
to v, Av, . . . , Am−1v. Let Hm be the m×m upper Hessenberg matrix computed

5.3. KRYLOV SUBSPACE METHOD 91

by the Arnoldi algorithm and let hm+1,m be the last normalization value. By
Mm we denote the N ×m matrix with column vectors v1,v2, . . . ,vm. Then

(a) AMm = MmHm + hm+1,mvm+1e
T
m,

(b) MT
mAMm = Hm,

(5.2)

where ek is a column vector of appropriate size whose k-th component is one
and all other components are zero. Intuitively, Equation (5.2)(b) states that
Hm is the matrix projection of A onto Km w.r.t. the basis defined byMm. An
approximation of eAv in Km expressed usingMm is eAv ≈ Mmy, where y is
a vector of size m. We choose

y = ||v||2 e
Hme1, (5.3)

which yields the approximation error [36]

∣∣∣∣eAv − ||v||2Mme
Hme1

∣∣∣∣
2 ≤ 2 ||v||2

ρmeρ

m! , (5.4)

where ρ = ||A||2 is the spectral norm of A. The approximation in Equation (5.3)
still involves the computation of the matrix exponential of Hm, but as Hm

is of small dimension and has a particular structure (upper Hessenberg), this
requires a smaller computational effort. For the matrix exponential of small
matrices, methods such as Schur decomposition and Padé approximants may
be applied [81].

Assume now that the time instant t is arbitrary, i.e., we want to approximate
etAv for some t > 0. In order to control the approximation error, we calculate
etAv stepwise by exploiting that e(h1+h2)Av = eh1A · eh2Av for h1, h2 ≥ 0. For
a step size h, we approximate ehAv by ||v||2Mme

hHme1 because the Krylov
subspaces associated with A and hA are identical andMT

m(hA)Mm = hHm. It
follows from Equation (5.4) that we have a small error bound if ||Ah||2 is small.

To summarize, the Krylov subspace method approximates eAtv by an itera-
tion stepping forward in time with dynamically chosen step sizes h1, h2, In
each iteration step, we compute a vector

ui = ||ui−1||2M
(i)
m ehiH

(i)
m e1,

where initially u0 = v. The matricesM(i)
m and H(i)

m result from the i-th execu-
tion of Arnoldi’s algorithm for the construction of an orthonormal basis of the

92 CHAPTER 5. RELATED WORK

subspace Span
{
ui−1, Aui−1, . . . , A

m−1ui−1
}
. When the elapsed time equals t,

we obtain an approximation of eAtv.

For the step size of the Krylov subspace method, a popular heuristic is
to choose hi+1 depending on an estimate of the error εi of the previous step.
Let tol > 0 be an a priori specified tolerance. A common scheme consists
of three steps [89]. (1) Define hi = 0.9(tol

εi−1
)1/mhi−1, (2) compute ui and

the error estimation εi. (3) If εi > 1.2 tol reject ui, replace εi−1 with εi,
and go to step (1). For the experimental results in Section 5.1.2, we used the
Expokit software [102] where the small exponential, ehHm , is computed via the
irreducible Padé approximation [6].

5.3.2 Local Krylov Subspace Method

Assume now that we use the Krylov subspace method in line 10 of the sliding
window algorithm (Algorithm 4.1), to approximate p̂(tr−1) · eQr·hr (cf. Equa-
tion (2.8)). By letting v = (p̂(tr−1))T , A = QTr , and t = hr we can apply the
same procedure as in the global case. Note that this yields a nested iteration
because the time steps hr are usually much bigger than the time steps of the
Krylov subspace method. For the Krylov subspace method, using the matrix
Qr instead of Q offers important advantages. The Arnoldi process is faster as
Qr usually contains fewer nonzero entries than Q. As well, the sliding window
method is likely to provide matrices with a smaller spectral norm ||Qr||2. This
allows for bigger time steps during the Krylov approximation, as can be seen in
our experimental results in 4.2.6.

Part II

Hybrid Propagation Models
for Biochemical Reaction

Networks

93

Introduction

In Section 2.3, we have seen how to construct a propagation model for the
chemical master equation of a biochemical reaction network. This computa-
tional model is propagating probabilities through the state space of a Markov
chain. However, the framework of propagation models is not restricted to this
kind of differential equations and in this part we will construct propagation
processes for stochastic hybrid models where both probabilities and variable
expectations are propagated through the state space.

If the system under consideration contains large populations, then the nu-
merical algorithms introduced in the first part of this thesis perform poorly. The
reason is that the random variables that represent large populations have a large
variance, even though their relative variance (i.e., relative to their expectation)
is often small. Thus, a large number of states have a significant probability,
which renders the numerical approximation of the distribution computationally
expensive or infeasible. Motivated by this observation, in this part of the thesis,
instead of approximating the solution of a CME, we approximate an aggregated
solution of the CME. We propose three such approximation methods, for each
of which we give different definitions of the aggregated solution. However, all of
these definitions have in common the fact that they contain two components:
one that represents a probability distribution over an aggregated state space,
and one that represents variable expectations of abstract states of an aggregated
state space.

Each of the three approaches is based on the construction of a stochastic
hybrid model in which certain discrete random variables of the original prop-
agation model are approximated by continuous deterministic variables. We
compute the solution of the stochastic hybrid models using the RK4 numerical
algorithm that discretizes time and in each step performs a mutual update of
the transient probability distribution of the discrete stochastic variables and the
values of the continuous deterministic variables.

95

96

For the first two algorithm we present experiments done on biological case
studies, while for the last one, we only give a sketch of the algorithm and we
present an intermediate result which we believe to be essential in the design of
the complete algorithm.

Chapter 6

Preliminaries

6.1 Aggregation

6.1.1 Aggregated state space.

Recall that for a transition class model M , the stochastic vector p(t) is the
transient solution of the associated continuous-time Markov chain (X(t))t≥0 at
time t, and that this vector has entries p(t)

s , that correspond to the probability
of being in state s at time t. However, sometimes it is not the probabilities p(t)

s

that are of interest, but the probabilities to be in a certain subset of states.

For a subset A ⊆ S, we define p(t)
A =

∑
s∈A p

(t)
s . Furthermore, given the

Markov chain X(t), and a partition1 Ŝ of the state space S we define the
stochastic process

(
X̂(t)

)
t≥0

over the state space Ŝ as follows: X̂(t) = A if

and only if X(t) = s and s ∈ A. We note that p(t)
A = Pr

(
X̂(t) = A

)
=: p̂(t)

A .

We refer to the states A ∈ Ŝ of the process X̂(t) as abstract states, as opposed
to the states s ∈ S of the process X(t) that are concrete states.

6.1.2 Aggregated PM

For theoretical purposes only, we construct a propagation model N̂ whose
continuous-time propagation process is the exact equivalent of the transient
probability vectors p̂(t), of the aggregated stochastic process X̂(t).

1A partition Ŝ of S is such that S =
⋃
A∈Ŝ

A and A ∩ A′ = ∅ for all A, A′ ∈ Ŝ, and A 6= A′.

From now on, Ŝ will always denote a partition of the state space S.

97

98 CHAPTER 6. PRELIMINARIES

M

X(t) X̂(t)

p
(t)
s p̂

(t)
Aaggregation

Figure 6.1: Aggregation scheme starting with the TCM M . An TCM equivalent
to X̂(t) can not be constructed.

For the TCM M = 〈S,y, {C1, . . . Cm}〉 and a partition Ŝ of S, we construct a
PM N̂ , with state space Ŝ and mass spaceM, the set of sub-stochastic vectors
over the state space S. The continuous-time propagation process ĝ(t) of N̂
behaves such as:

p̂
(t)
A =

∑
s∈A

ĝ
(t)
A,s,∀t ≥ 0, A ∈ Ŝ.

Note that, the valuation of the propagation process ĝ(t) on state A ∈ Ŝ is
an element of the mass spaceM, that is, a sub-stochastic vectors over S. And
thus, the notation ĝ(t)

A,s refers to the value in state s ∈ S of the sub-stochastic
vector ĝ(t)

A .

Definition 6.0.1 (Aggregated PM). The aggregated propagation model N̂ of
a TCM M = 〈S,y, {C1, . . . Cm}〉, with respect to the partition Ŝ is defined as
the tuple

〈
Ŝ,M, ζ, π

〉
:

– M⊆ [S → [0, 1]], and for all µ ∈M we have that
∑
s∈S

µ(s) ≤ 1,

– the initial mass vector ζ is:

ζA =

ey, if y ∈ A,

0, otherwise,

where es is the unity vector, for which: es(s′) = 1 only for s′ = s, and is 0
otherwise.

– the edge function π, for edge A→ A′ and sub-stochastic vector µ is:

πA→A′(µ) =
∑

s∈A,uj(s)∈A′
µ(s) · αj(s) · euj(s).

We now prove the relation between the propagation model N̂ and the ag-
gregated stochastic process X̂(t).

6.1. AGGREGATION 99

Lemma 6.1. If N̂ is the derived PM of M with respect to partition Ŝ, then:

p̂
(t)
A =

∑
s∈A

ĝ
(t)
A,s,∀t ≥ 0, A ∈ Ŝ.

Proof. In order to prove this, we will show that

dp
(t)
s

dt
=
dĝ

(t)
A,s

dt
,∀t ≥ 0, s ∈ A,A ∈ Ŝ,

from which our lemma follows directly.

Note that ĝ(t)
A is a sub-stochastic distribution over the states in A, and that

ĝ
(t)
A,s is the probability to be in state s at time t.

First we have that:

∑
A∈Ŝ

πA→A′ ĝ
(t)
A,s′ =

=
∑
A∈Ŝ

 ∑
s∈A

uj(s)∈A′

p(t)
s · αj(s) · euj(s)

s′

=

=
∑

s∈S,uj(s)=s′
p(t)
s · αj(s).

And so:

dĝ
(t)
A,s′

dt
=
∑
A∈Ŝ

πA→A′ ĝ
(t)
A,s′ −

∑
A∈Ŝ

πA′→Aĝ
(t)
A′,s′ + πA′→A′ ĝ

(t)
A′,s′

= dp
(t)
s′

dt
.

The propagation model N̂ has the same amount of information about the
original PM M as N . So, so far, no information has been lost during this
aggregation scheme. In the next Section we present the theory of reaction rate
equations, which aggregates the entire system into a single state.

Later on, we introduce different propagation models Ñ that choose different
compromises between the amount of information to keep about the state of the
propagation process, the accuracy of their approximation, and the speed of their

100 CHAPTER 6. PRELIMINARIES

M N (prob.)

N̂ (prob. distrib.) Ñ (prob. + expect.)

X(t)

X̂(t)

p
(t)
s g

(t)
s

p̂
(t)
A ĝ

(t)
A g̃

(t)
A

aggregation

exact

exact

aggregation

approximation

Figure 6.2: Relation between different propagation models (N , N̂ , Ñ) and the
original TCM M . N is the propagation model that corresponds to M , N̂
corresponds to the aggregated stochastic process X̂(t), and Ñ refers to one of
the three approximations that we propose in this second part of the thesis. Each
PM has, under parenthesis, the type of mass that it propagates.

algorithm. The purpose of constructing the model N̂ is to theoretically see what
kind of object, over state space Ŝ is approximated by our heuristic.

6.2 Reaction Rate Equation

A straightforward consequence of the CME is that the time derivative of the
populations’ expectations are given by

d

dt
E[X(t)] =

m∑
j=1

dj · E [αj (X(t))] . (6.1)

If all reactions of the system involve at most one reactant, Equation (6.1) can
be simplified to

d

dt
E[X(t)] =

m∑
j=1

dj · αj (E[X(t)]) .

because the propensity functions αj are linear in s. But in the case of bimolec-
ular reactions, we have either αj(s) = cj · si · s` for some i, ` with i 6= ` or
αj(s) = cj · si · (si − 1)/2 if the j-th reaction involves two reactants of type i.
But this means that

E [αj (X(t))] = cj · E [Xi(t) ·X`(t)]

or
E [αj (X(t))] = 1

2 · cj · E
[
(Xi(t))2]− E [(Xi(t))] ,

6.2. REACTION RATE EQUATION 101

respectively. In both cases new differential equations are necessary to describe
the unknown values of E [Xi(t) ·X`(t)] and E

[
(Xi(t))2]. This problem repeats

and leads to an infinite system of ODEs.

However, we can exploit Equation (6.1) to derive a deterministic limit of the
stochastic model. Here, we shortly recall the basic steps of the derivation and
for a detailed discussion, we refer to Kurtz [70].

6.2.1 Derivation of the Deterministic Limit

As rigorously derived by Gillespie [39], each reaction type has an associated
propensity function, denoted by α1, . . . , αm, which is such that αj(s) · dt is the
probability that, given X(t) = s, one instance of the j-th reaction occurs within
[t, t + dt). Recall that, for j ∈ {1, . . . ,m} we have that dj ∈ Zn is the change
vector of the j-th reaction type, that is, uj(s) = s + dj . Let dj = d−j + d+

j

where d−j contains only non-positive entries, which specify how many molecules
of each species are consumed (reactants) if an instance of the reaction occurs.
The value αj(s) is proportional to the number of distinct reactant combinations
in state s. More precisely, if s = (s1, . . . , sn) is a state for which s + d−j is
nonnegative then

αj(s) =

cj if d−j = (0, . . . , 0),

cj · si if d−j = −ei,

cj · si · s` if d−j = −ei − e`,

cj ·
(
si
2
)

= cj · si·(si−1)
2 if d−j = −2 · ei,

(6.2)

where i 6= `, cj > 0 is a constant, and ei is the vector with the i-th entry 1
and all other entries 0. We set αj(s) = 0 whenever the vector s + d−j contains
negative entries, that is, when not enough reactant molecules are available. The
constant cj refers to the rate at which a randomly selected pair of reactants
collides and undergoes the j-th chemical reaction. Thus, if N is the volume (in
liters) times Avogadro’s number, then cj

– scales inversely with N in the case of two reactants,
– is independent of N in the case of a single reactant,
– is proportional to N in the case of no reactants.

Since reactions of higher order (requiring more than two reactants) are usually
the result of several successive lower order reactions, we do not consider the case
of more than two reactants.

102 CHAPTER 6. PRELIMINARIES

We first define a set of functions βj such that ifN is large then the propensity
functions can be approximated as αj(s) ≈ N · βj(z), where z = (z1, . . . , zn) =
s · N−1 corresponds to the vector of concentrations of chemical species and
belongs to Rn. Recall the dependencies of cj on the scaling factorN as described
above. For constants kj > 0 that are independent of N ,

– cj = kj · N in the case of no reactants,
– cj = kj in the case of a single reactant,
– cj = kj/N in the case of two reactants.

From this, it follows that except for the case of bimolecular reactions, we can
construct the functions βj such that αj(s) = N · βj(z).

βj(z) = αj(s)
N

=

cj
N = kj if d−j = (0, . . . , 0),

cj · siN = kj · zi if d−j = −ei,

cj · si · s`N = kj · zi · z` if d−j = −ei − e`,

where i 6= `. In the case of bimolecular reactions (d−j = −2 · ei), we use the
approximation

N · βj(z) = kj · N · z2
i = kj · si · zi = (1

2cjN) · si · zi

= 1
2cj · s

2
i ≈

1
2cj · si(si − 1) = αj(s), (6.3)

which is accurate if si is large, In order to derive the deterministic limit for the
vector X(t) = (X1(t), . . . , Xn(t)) that describes the chemical populations, we
first write X(t) as

X(t) = X(0) +
m∑
j=1

dj · Cj(t),

where X(0) is the initial population vector and Cj(t) denotes the number of oc-
currences of the j-th reaction until time t. The process Cj(t) is a counting pro-
cess with intensity αj(X(t)) and it can be regarded as a Poisson process whose
time-dependent intensity changes according to the stochastic process X(t). Now,
recall that a Poisson process Ỹ (t) with time-dependent intensity λ(t) can be
transformed into a Poisson process Y (u) with constant intensity one, using the
simple time transform u =

∫ t
0 λ(h)dh, that is, Y (u) = Y (

∫ t
0 λ(h)dh) = Ỹ (t).

Similarly, we can describe Cj(t) as a Poisson process with intensity one, i.e.,

Cj(t) = Yj

(∫ t

0
αj(X(h))dh

)
,

6.2. REACTION RATE EQUATION 103

where Yj are independent Poisson processes with intensity one. Hence, for
i ∈ {1, . . . , n}

Xi(t) = Xi(0) +
m∑
j=1

dji · Yj
(∫ t

0
αj(X(h))dh

)
, (6.4)

where dj = (dj1, . . . , djn). The next step is to define Z(t) = X(t) · N−1, that
is, Z(t) = (Z1(t), . . . , Zn(t)) contains the concentrations of the chemical species
in moles per liter at time t. Thus,

Zi(t) = Zi(0) +
m∑
j=1

dji · N−1 · Yj
(∫ t

0
αj(X(h))dh

)
, (6.5)

and using the fact that αj(s) ≈ N · βj(z) yields

Zi(t) ≈ Zi(0) +
m∑
j=1

dji · N−1 · Yj
(
N ·

∫ t

0
βj(Z(h))dh

)
. (6.6)

By the law of large numbers, the unit Poisson process Yj will approach N · u at
time N · u for large N · u. Thus, Yj(N · u) ≈ N · u and hence,

Zi(t) ≈ Zi(0) +
m∑
j=1

dji ·
∫ t

0
βj(Z(h))dh. (6.7)

The right-hand side of the above integral equation is the solution z(t) of the
system of ODEs

dz(t)
dt

=
m∑
j=1

dj · βj(z(t)). (6.8)

As shown by Kurtz [70], in the large volume limit, where the volume and the
number of molecules approach infinity (while the concentrations remain con-
stant), Z(t) → z(t) in probability for finite times t. Note that the chemical
concentrations z(t) evolve continuously and deterministically in time.

This continuous deterministic approximation is reasonable if all species have
a small relative variance and if they are only weakly correlated. The reason is
that only in this case the assumption that Zi(t) is deterministic is appropriate.
Note that for most models this is the case if the population of species i is large
since this implies that E[Xi(t)] is large whereas the occurrence of chemical
reactions results only in a marginal relative change of the value of Xi(t).

104 CHAPTER 6. PRELIMINARIES

The scaled solution of the differential equation (6.8)

dx(t)
dt

=
m∑
j=1

dj · αj(x(t)). (6.9)

with initial condition x(0) = E[X(0)] converges in probability to the scaled
process X(t) for finite times t [70]. We call this equation the reaction rate equa-
tion (RRE). This result holds in the large volume limit, i.e., where the volume
and the number of molecules approach infinity (while the concentrations remain
constant). Note that the values x(t) evolve continuously and deterministically
in time.

Example 6.1. The ODEs of the exclusive switch (see Example 8.1) are given
by

dz1(t)
dt

= k1 · z3(t)− k3 · z1(t)− k5 · z1(t) · z3(t)

+ k7 · z4(t) + k9 · z4(t)
dz2(t)
dt

= k2 · z3(t)− k4 · z2(t)− k6 · z2(t) · z3(t)

+ k8 · z5(t) + k10 · z5(t)
dz3(t)
dt

= −k5 · z1(t) · z3(t)− k6 · z2(t) · z3(t)

+ k7 · z4(t) + k8 · z5(t)
dz4(t)
dt

= k5 · z1(t) · z3(t)− k7 · z4(t)

dz5(t)
dt

= k6 · z2(t) · z3(t)− k8 · z5(t)

where z1(t), z2(t), z3(t), z4(t), z5(t) denote the respective chemical concentrations.
Moreover, for the stochastic constants cj, as defined above, we have cj = N−1 ·kj
for j ∈ {5, 6} and cj = kj for j 6∈ {5, 6}.

6.2.2 Propagation Model

For a given TCM M = 〈S,y, {C1, . . . Cm}〉, we construct the propagation model
N = 〈{a} ,M, ζ, π〉, where:

– the state space has a single state: a,

– the mass spaceM = Rn≥0,

– the initial mass vector ζa = y takes the value of the initial state of M ,

6.2. REACTION RATE EQUATION 105

– the edge function πa→a(µ) =
∑m
j=1 dj · αj(µ).

From the definition of the continuous-time propagation process of N , and from
Equation (6.9) it follows directly that

g(t)
a = x(t).

We note that this PM is not conservative, as it propagates mass on a self
loop.

106 CHAPTER 6. PRELIMINARIES

Chapter 7

Naive Hybrid Numerical Solution

Assume that we have a system where certain species have a large population.
We propose to approximate those populations with continuous deterministic
variables and to keep the remaining population variables discrete stochastic.
This is motivated by the fact that it is usually infeasible or at least computa-
tionally very costly to solve a purely stochastic model with high populations
since in the respective dimensions the number of significant states is large. In
this chapter we therefore switch to a hybrid model where the stochastic part
does not contain large populations and the deterministic part monitors the av-
erage behaviour of large populations. This way we obtain a fast approximation
of the solution. However, the approximation proves not to be accurate for all
systems, problem with which we will deal in the next chapter where we propose
a more refined hybrid stochastic model.

7.1 Naive Species Aggregation

For a TCM M , let D = [1 . . . n] be the species index set, and let
{
D̂, D̄

}
be a split of D into species with a small population and species with a large
population, respectively. We also define n̂ to be the size of D̂, and n̄ to be the
size of D̄, such that n = n̂+ n̄. For now, we consider this partition to be static
and in Section 7.4 we address the problem of dynamically switching species from
one category to another one.

Definition 7.0.1. (D̄-Partition) For a split
{
D̂, D̄

}
of the species, we define

the D̄-partition Ŝ to be the space S where the D̄ components are projected away:

Ŝ =
{

s ∈ Nn0,> | (si ∈ N0, ∀i ∈ D̂) and (si = >, ∀i ∈ D̄)
}
,

107

108 CHAPTER 7. NAIVE HYBRID NUMERICAL SOLUTION

with N0,> the set of natural numbers extended with 0 and with the symbol >.
Through an abuse of notation, we let each element of Ŝ to represent a subset of
S, that is, for all A ∈ Ŝ we have that:

A =
{

s ∈ S |Ai = si, ∀i ∈ D̂
}
.

We refer to the elements of D̄ as aggregated components or species and to the
elements of Ŝ as aggregated states. It follows that Ŝ defines a partition of S and
the space Ŝ is called an aggregated space.

We note by ŝ and s̄ the projections of s on one set of species or another, and
we use the same notations for the rate functions α, the update functions u and
the change vectors d of a TCM.

Definition 7.0.2 (Naive D̄-aggregated solution). Let p(t) be the transient so-
lution at time t of a TCM M . The naive D̄-aggregated solution of M at time
t, with respect to the aggregated species in D̄, is a tuple

〈
p̂(t), µ̄(t)〉, such that

– p̂(t) ∈
[
Ŝ → [0, 1]

]
is a vector of aggregated probabilities with entries:

p̂
(t)
A =

∑
s∈A

p(t)
s , A ∈ Ŝ,

– µ̄(t) ∈ Rn̄ is the expectation of the aggregated components D̄:

µ̄(t) =
∑
s∈S

p(t)
s · s̄,

where s̄ is the D̄ projection of the state s.

7.2 Mathematical Model

An exact computation of the D̄-aggregated solution, as defined above, can only
be done indirectly by first computing the transient solution of the TCM M at
time t, and then aggregating it.

Here we propose a mathematical model that approximates the naive D̄-
aggregated solution with the solution of a stochastic process

(
X̃(t)

)
t≥0 defined

hereafter. For this model we then construct an equivalent propagation model Ñ ,
from which we can compute a solution directly from the much smaller aggregated
state space, trading accuracy for performance.

7.2. MATHEMATICAL MODEL 109

The process X̃(t) has n components that we split with respect to the species
partition

{
D̂, D̄

}
. To ease the notation, let V (t) = X̃D̂(t), and let W(t) =

X̃D̄(t), in other words, V (t) are the random variables that represent small
populations, while the random variables in W(t) represent large populations.

We define W(t) deterministically, as the solution of the following ODE

dW(t)
dt

=
m∑
j=1

d̄j · E[αj(V (t),W(t))]. (7.1)

Note that this equation is a direct consequence of Equation (6.1) if we assume
that the populations W(t) evolve deterministically and continuously. We ini-
tialize the values W(0) with the respective expected populations at time zero.

We handle the discrete stochastic variables as follows. The probability dis-
tribution p̂(t)

v = Pr(V (t) = v) of the random vector V (t) is given by the CME:

dp̂
(t)
v

dt
=

m∑
j=1

(
αj(v− d̂j ,W(t)) · p̂(t)(v− d̂j)

− αj(v,W(t)) · p̂(t)
v

)
(7.2)

which operates on a reduced state space Ŝ of dimension n̂. The propensity
functions αj are defined as before but the original argument is now split into
the two parts, namely the n̂-dimensional state v and the n̄-dimensional real-
valued vector W(t) of the populations that are approximated by the continuous
deterministic functions as defined in Equation (7.1). Note that Equation (7.1)
depends on Equation (7.2) because the expectation E[αj(V (t),W(t))] is com-
puted as

E[αj(V (t),W(t))] =
∑
v
p̂(t)
v · αj(v,W(t)).

Example 7.1 (Crystallization). In Example 4.4 we treat species A determin-
istically. Since in this case the number of reactions of type A + A → B until
time t is deterministic, we treat the population of B as a deterministic variable
as well. Thus, X̃(t) = (W1(t),W2(t), V3(t), V4(t)). We update W1(t) and W2(t)
according to the ODEs

d

dt
W1(t) =− k1 ·W1(t) ·W1(t)− k2 ·W1(t) · E[V3(t)]

d

dt
W2(t) =k1 ·W1(t) ·W1(t).

110 CHAPTER 7. NAIVE HYBRID NUMERICAL SOLUTION

The probability distribution of the remaining populations V3(t) and V4(t) is given
by

dp̂
(t)
v

dt
= α2(v− d̂2,W(t)) · p̂(t)(v− d̂2)− α2(v,W(t)) · p̂(t)

v

= c2 · (v3 + 1) · w1(t) · p̂(t)((v3 + 1, v4 − 1))− c2 · v3 · w1(t) · p̂(t)((v3, v4)),

where v = (v3, v4) is a state in the stochastic process (V (t))t≥0 with V (t) =
(V3(t), V4(t)).

Equation (7.1) and (7.2) suggest a numerical integration procedure for the
approximation of W(t) as well as the distribution of V (t) as described in the
sequel. But first let’s define a propagation model for the transient analysis of
X̃(t).

7.3 Propagation Model

We construct a propagation model for the transient solution of the stochastic
process that we have just defined in Section 7.2.

The definition of a propagation model is such that the rate of a reaction
depends on the state from which the reaction triggers and on the mass that
state holds at the current time. Here, we want to make the rate dependent
on the overall expectation of the population of the aggregated species. We are
therefore obliged to copy this information in the mass of each state. Note,
however, that the real implementation is not doing this, but it is keeping the
duplicated information in a single variable.

We define the propagation model Ñ =
〈
Ŝ,M, ζ, π, τ

〉
as follows:

– the mass spaceM = [0, 1]×Rn̄≥0, allows the propagation of probabilities and
the replication of the information about the expectation of the aggregated
species D̄,

– the initial vector ζ with elements

ζA =

〈1, ŷ〉 if y ∈ A,

〈0,0〉 if y 6∈ A,

– the edge function π is defined by its components (πp, πµ), where:

7.4. NUMERICAL APPROXIMATION ALGORITHM 111

Algorithm 7.1 The main loop of the algorithm.
Input: TCM M = 〈S,y, {C1, . . . Cm}〉, time horizon T , threshold δ, boundary b;
Output: p̂(t) and W (t);
Variables: t = 0; D̂ = {1, . . . , n} ;D̄ = {} ;S = {y} ;
1: while t < T do
2: check_stoch_vars; // stoch. determ.
3: check_det_vars; // determ. stoch.
4: ∆← minx∈S

1
λ(x) ; // time step

5: update_det_vars; // see Equation (7.1)
6: update_stoch_vars; // see Equation (7.2)
7: t← t+ ∆;

the probability edge function πp is

πp
A→A+d̂j

(〈p, µ〉)=p · αj(A,µ),∀A ∈ Ŝ, j = 1 . . .m,

and the expectation edge function πµ is

πµA→A(〈p, µ〉) =
m∑
j=1

d̄j · αj(A,µ),∀A ∈ Ŝ.

The continuous-time propagation process g̃(t) of the propagation model Ñ
that we have just defined is approximating the naive D̄-aggregated solution of
the TCM M because, from the definition of Ñ , the valuation of g̃(t) equals
〈Pr(V (t) = ·),W (t)〉, where Pr(V (t) = ·) is a probability vector with entries
Pr(V (t) = v). We can use one of the propagation algorithms that we have
already presented to solve g̃(t), and in the next section we address the case
where we use the forth order Runge-Kutta method (RK4) for this problem.

7.4 Numerical Approximation Algorithm

Given a Markov chain (X(t))t≥0 that describes a chemical reaction network,
we approximate the naive aggregated solution at time T as outlined in Algo-
rithm 7.1. The data structure S contains a node x for each state v of V (t) of
the computed solution. The value x.v refers the value of the state, and x.p to
the probability hold by the state. The variable vector w, with entries w1 . . . wn,
holds the expectation of W(t) at the current time.

We start with t = 0 and define the set D̂ = D, that is, we treat all species as
discrete stochastic. The set of indices of deterministic variables is thus empty,
D̄ = {}. In line 2 of Algorithm 7.1, we call the function check_stoch_vars

112 CHAPTER 7. NAIVE HYBRID NUMERICAL SOLUTION

Algorithm 7.2 check_stoch_vars
Input: species split D̂, D̄, space structure S
Output: species split D̂, D̄, space structure S
Variables: D̄′ ← {} ;
1: for all i ∈ D̂ do
2: Ei ←

∑
x.v∈S x.vi · x.p; // Compute the expectation of Vi(t)

3: if Ei ≥ bi then
4: D̄′ ← D̄′ ∪ {i} ;
5: wi ← Ei;
6: if D̄′ 6= {} then
7: D̄ ← D̄ ∪ D̄′; D̂ ← D̂ \ D̄′;
8: // compute marginal distribution
9: S′ ← {} ; // Construct a new structure S
10: for all x ∈ S do
11: x′ ← find(S′,x.v |D̂);
12: if x′ = null then
13: // Create new aggregated state.
14: x′.v← x.v |D̂;
15: x′.p← 0;
16: S′ ← S′ ∪ {x′} ;
17: x′.p← x′.p+ x.p;
18: S← S′;

to determine whether stochastic variables are transformed into deterministic
variables. The function check_det_vars (line 3) is called in each iteration in
order to check whether deterministic variables are transformed into stochastic
variables.

Switching from Stochastic to Deterministic and Vice Versa. Algo-
rithm 7.2 gives the description of the function check_stoch_vars. If E[Vi(t)] is
larger than the threshold bi we remove index i from D̂ and add it to the set D̄
(line 7). We then set the variable wi = E[Vi(t)] (line 5), thus replacing Vi(t) by
the deterministic variable Wi(t) that evolves according to Equation (7.1).

Also, when switching some species to deterministic mode we need to compute
the marginal distribution of the remaining random variables in order to reduce
the dimension of the state space from D̂ to D̂\D̄′ (lines 10-18). When dimensions
D̄′ are switched from a stochastic to a deterministic representation, all states
that are equal on the D̂ \ D̄′ dimensions are aggregated into a single state that
accumulates the sum of their probabilities. Assume that x′ is such a new node
that aggregates several states, then we set

x′.p =
∑
x∈S:

x.v | D̂\D̄′=x′.v

p(t)
v .

7.5. EXPERIMENTAL RESULTS 113

Algorithm 7.3 check_det_vars
Input: species split D̂, D̄, space structure S
Output: species split D̂, D̄, space structure S
Variables: D̂′ ← {} ;
1: for all i ∈ D̄ do
2: // check population bound
3: if wi < bi then
4: D̂′ ← D̂′ ∪ {i} ;
5: if D̂′ 6= {} then
6: D̂ ← D̂ ∪ D̂′; D̄ ← D̄ \ D̂′;
7: // add dimensions to the stochastic model
8: for all nodes x ∈ S do
9: for all i ∈ D̄′ do
10: add i-th entry wi to x.v

Note that check_stoch_vars is implemented efficiently by using an appropriate
hash function.

In a similar way, we switch back to a discrete stochastic treatment of species
i using the function check_det_vars (see Algorithm 7.3). Switching from de-
terministic to stochastic requires to add a dimension to the discrete stochastic
part of the model. Thus, we add an entry x.vi = wi to all states in the cur-
rent set of significant states (compare line 8-10 in Algorithm 7.3). After this
operation, we have the equivalent of Pr(Vi(t) = wi) = 1.

Mutual Update of Stochastic and Deterministic Variables. We use
Equations (7.1) and (7.2) to approximate the future behaviour of the system.
Algorithm 7.1 illustrates the case where the continuous-time propagation model
is solved using a fourth order Runge-Kutta method (see Section 4.4) with an
integration step of ∆, where we first update the deterministic variables and
then the stochastic variables. The step ∆ is chosen such that during [t, t + ∆)
the distribution of the discrete stochastic variables do not change significantly.
In our implementation we obtained the best results if ∆ equals the shortest
average residence time of a state v in S (see line 4 in Algorithm 7.1). Note
that the average residence time in state v is computed as 1/λ(x), where λ(x) =∑m
j=1 αj(x.v).

7.5 Experimental Results

We implemented the algorithm described in Section 7.4 in C++ and run exper-
iments on an Intel 3GHz Linux workstation with 3GB of RAM. In this section
we present three examples one which we applied our algorithm. All three were

114 CHAPTER 7. NAIVE HYBRID NUMERICAL SOLUTION

0 20 40 60 80 100
0

1

2

3

4
x 10

4

time
s
ta

te
 s

p
a

c
e

 s
iz

e

stochastic
hybrid

Figure 7.1: Size of the state space of the purely stochastic model and the hybrid
model.

chosen such that a full stochastic solution is possible in order to compare it to
the solution of the stochastic hybrid model.

The first example is the crystallization presented in Example 4.4. The second
example is a model for the transcription regulation of a repressor protein in
bacteriophage λ [44]. This protein is responsible for maintaining lysogeny of the
λ virus in E. coli. It has 6 different chemical species and 10 reactions. We vary
the parameters of this example in order to increase/decrease the populations
of certain chemical species. In the third example the two involved populations
show sustainable periodic oscillations. We use it to test the switching mechanism
of our algorithm.

Crystallization. For the simple crystallization in Example 4.4 we used the
parameters from [50]. Since the initial population of A is w1(0) = 106 and that of
C is X̂3(0) = 10 we treated A deterministic and C stochastic. Thus, the number
of reactions of type A+A→ B is deterministic continuous, which implies that
the population w2(t) of B is deterministic continuous as well. Similarly, the
population X̂4(t) of molecules of type D is represented by a stochastic discrete
variable because of A+ C → D.

We solved all three of models of the crystallization. The purely stochastic
model, the purely deterministic model, and the hybrid model. The running
times for a time horizon of T = 100 are 6 min 18 sec (purely stochastic), 6
sec (hybrid) and 3 sec (deterministic). We compared the solution of the hybrid
model to that of the stochastic model by considering the first ten moments of
the distribution of X̂3(t) and X̂4(t). We found that the relative errors of the
first six moments of the random variable X̂3(t) are all of the order 10−5, where
we averaged over time. Higher moments were of the order of 10−4. We also
compared the value of w1(t) to the expectation of A in the purely stochastic
model and got a relative error of 2 · 10−4. Figure 7.1 shows the size of the sets
S over time in the stochastic model and in the hybrid model. In the former

7.5. EXPERIMENTAL RESULTS 115

pset running times |S|

ODE hybrid stoch hybrid stoch

1 <1sec 17min 65min 1 · 104 8 · 106

2 <1sec 13min 163min 9 · 103 2 · 106

Table 7.1: Running times of the phage λ model.

model, the size goes up to 4 ·104 whereas in the hybrid model, there are at most
11 states.

Goutsias Model. For Example 4.2 we used two parameter sets (pset 1 and
pset 2 in Table 7.1) that both differ from the original parameters that we used in
previous work [56] in that one increases the number of RNA molecules and one
increases the number of M molecules. The first one uses constants c1 = 0.043,
c2 = 7 · 10−4, c3 = 71.5, c4 = 3.9 · 10−6, c5 = 0.02, c6 = 0.48, c7 = 2 · 10−4,
c8 = 0.9 · 10−11, c9 = 0.08, c10 = 0.5. The second one uses constants c1 = 4.3,
c2 = 7 · 10−5, c3 = 0.07, c4 = 3.9 · 10−4, c5 = 0.2, c6 = 0.048, c7 = 2 · 10−5,
c8 = 0.9 · 10−12, c9 = 8 · 10−4, c10 = 5. We always start initially in state
(10, 10, 10, 2, 0, 0) and choose the time horizon as the latest time point where we
are able to do a purely stochastic solution. For pset 1, we run out of memory
at time T = 6 and for pset 2 we time out at time T = 22, because computing
time T = 23 would take more than 3 hours.

Table 7.1 shows running times for purely stochastic model (stoch), the purely
deterministic model (ODE), and the hybrid model (hybrid). Note that the
hybrid solution as well as the deterministic solution are feasible for much longer
time horizons. In the columns with label |S| we list the maximal size of the
set S during the hybrid and the stochastic solution. The memory requirements
are proportional to this number. We compared the distributions obtained from
the hybrid solution with the distributions of the purely stochastic model. At
the final time instant, we get for the first four moments relative errors of 0.02,
0.10, 0.20, 0.29 (pset 1) and 0.02, 0.04, 0.05, 0.07 (pset 2) where we averaged
over all species that were kept stochastic in the hybrid model. We switched to
a deterministic treatment at a population threshold of 50. Higher population
thresholds yield more accurate solutions but require more computation time.
The increase of the size of the set of significant states makes the purely stochastic
solution infeasible for longer time horizons. As opposed to that the memory
requirements of the hybrid solution are tractable.

116 CHAPTER 7. NAIVE HYBRID NUMERICAL SOLUTION

Predator Prey. We apply our algorithm to the predator prey model de-
scribed in [38]. It involves two species A and B and the reactions are A→ 2A,
A + B → 2B, and B → ∅. The model shows sustainable periodic oscillations
until eventually the population of B reaches zero. We choose rate constants
c1 = 1, c2 = 0.01, c3 = 1 and start with the initial values 200 for A and 100 for
B. It is important to note that for this example both the purely stochastic solu-
tion as well as the ODE solution are difficult, because eventually the population
of B is zero and then the population of A increases exponentially. In this case,
the time step of Monte Carlo simulation methods becomes smaller and smaller,
which makes the generation of trajectories very time consuming. Similarly, the
fast RK4 algorithm that we use for a purely stochastic solution becomes slow
and uses large amounts of memory. The ODE solution, on the other hand, can
accurately approximate the fast growth of A but it fails to detect the extinction
of B. The hybrid model that we propose is able to handle both the exponential
growth of A if B is small and the probability of extinction of B. The reason is
that if A becomes large, then we represent it as a continuous deterministic vari-
able. We used a population threshold of 150. The full stochastic solution times
out after 200 min, which is the moment at which it has solved a time horizon
of 9. The running time of the hybrid solution is 14 min and the running time
of the purely stochastic solution is 56 min. The relative error of the first two
moments at the final time are 0.04, 0.35. Note that the full stochastic solution
has large memory requirements for later time instances whereas the memory
requirements of the hybrid solution remain tractable.

Chapter 8

Hybrid Numerical Solution

In this chapter we refine the stochastic hybrid approach presented in Chapter 7
to more accurately estimate the solution of systems containing both small and
large populations. More precisely, we maintain the discrete stochastic represen-
tation for small populations, and we associate with each state of the aggregated
stochastic process a continuous deterministic variable that represents the ex-
pectation of the large populations conditioned on the value of the aggregated
state.

We compute the solution of a CME with a reduced dimension as well as
the solution of a system of (non-linear) ordinary differential equations. The for-
mer describes the distribution of the discrete stochastic variables and the latter
the values of the continuous deterministic variables, and the two descriptions
depend on each other. Assume, for instance, that a system has two chemical
species. The two population sizes at time t are represented by the random vari-
ables W (t) and V (t), where W (t) is large and V (t) is small. Then, we consider
for V (t) all events V (t) = v that have significant probability, i.e., Pr(V (t) = y)
is greater than a certain threshold. For W (t) we consider the conditional ex-
pectations E[W (t) |V (t) = v] and assume that they change continuously and
deterministically in time. We iterate over small time steps dt > 0 and, given
the distribution for V (t) and the values E[W (t) |V (t) = v], we compute the
distribution of V (t+ dt) and the values E[W (t+ dt) |V (t+ dt) = v]. Again, we
restrict our computation to those values of v that have significant probability.

117

118 CHAPTER 8. HYBRID NUMERICAL SOLUTION

8.1 Conditional Species Aggregation

As in Chapter 7, we split the set of species indexes D into small populations
D̂ and large populations D̄. Recall that Ŝ denotes the space aggregated with
respect to species D̄, and that for all s ∈ S the aggregated state ŝ belongs to Ŝ
and is a subset of S.

Definition 8.0.3 (Conditional D̄-aggregated solution). Let p(t) be the transient
solution at time t of a propagation model M . The conditional D̄-aggregated
solution of M , at time t, with respect to the aggregated species D̄, is a tuple〈
p̂(t), µ̄(t)〉, where:
p̂(t) is a vector of probabilities over the aggregated state space: p̂(t) ∈

[
Ŝ → [0, 1]

]
,

with elements:

p̂
(t)
A =

∑
s∈A

p(t)
s ,

and µ̄(t) is a vector of conditional expectations over the aggregated state space:
µ̂(t) ∈

[
Ŝ → Rn

]
with elements:

µ̄
(t)
A =

∑
s∈A

p(t)
s · s̄,

where s̄ is the D̄ projection of s.

We observe that µ̄(t) is now a vector of conditional expectations over Ŝ, and
not a global expectation as in the naive definition given in Section 7.1.

8.2 Mathematical Model

As in the case of the naive hybrid stochastic solution, a direct method for
computing the conditional D̄-aggregated solution does not exist and one must
rely on approximation in order to take advantage of the smaller size of the
aggregated state space Ŝ.

Here we propose a mathematical model that approximates the conditional D̄-
aggregated solution with the solution of a stochastic process (x̃(t)(t))t≥0 defined
as follows.

The stochastic process x̃(t) is a set of n random variables that we split with
respect to the species split

{
D̂, D̄

}
. Let V (t) = x̃D̂(t), and let W(t) = x̃D̄(t),

8.2. MATHEMATICAL MODEL 119

in other words, V (t) are the random variables that represent small populations,
while W(t) are the random variables that represent large populations.

We assume that the evolution of W(t) is given by the stochastic differential
equation

dW(t)
dt

=
m∑
j=1

d̄j · αj(V (t),W(t)). (8.1)

Thus, if V (t) would be constant from time t on, with V (t) = vthen the change
of W(t) would be constant over time as in the reaction rate equation (6.9), and
for an infinitesimal time length dt we have:

W(t+ dt) = W(t) +
m∑
j=1

d̄j · αj(v,W(t)) · dt. (8.2)

The evolution of V (t) remains as defined for the Markov chain, i.e.,

Pr
(
V (t+ dt) = v + d̂j |V (t) = v,W(t) = w

)
= αj(v,w) · dt,

for an infinitesimal time length dt.

The density function h(t)(v,w) of the Markov process
{(V (t),W(t)), t ≥ 0} can be derived in the same way as done by Horton et
al. [63]. Here, for simplicity we consider only the case n̄ = 1 which means that
w = w is a scalar. The generalization to higher dimensions is straightforward.
If w > 0 then the following partial differential equation holds for h.

∂h(t)(v, w)
∂t

+
∂
(
h(t)(v, w) ·

∑m
j=1 d̄j · αj(v, w)

)
∂w

=
∑
j

αj(v− d̂j , w) · h(t)(v− d̂j , w)−
∑
j

αj(v, w) · h(t)(v, w).

If w = 0 then we have probability mass ρ(t)(v, w) in state (v, w) where

∂ρ(t)(v, w)
∂t

+ h(t)(v, w) ·
m∑
j=1

d̄j · αj(v, w)

=
∑
j

αj(v− d̂j , w) · ρ(t)(v− d̂j , w)−
∑
j

αj(v, w) · ρ(t)(v, w).

As explained in-depth by Horton et al., the above equations express that prob-
ability mass must be conserved, i.e. the change of probability mass in a “cell”

120 CHAPTER 8. HYBRID NUMERICAL SOLUTION

with boundaries (v, w−dw) and (v, w+dw) equals the total mass of probability
entering the cell minus the total mass leaving the cell.

In order to exploit the fact that the relative variance of W(t) is small, we
suggest an approximative solution of the stochastic hybrid model given above.
The main idea is not to compute the full density h and the probability mass
ρ but only the distribution of V (t) as well as the conditional expectations
E[W(t) |V (t) = v]. Thus, in our numerical procedure the distribution of W(t)
is approximated by the different values E[W(t) |V (t) = v], v ∈ Ŝ that are
taken by W(t) with probability Pr(V (t) = v).

Assume that at time t we have the approximation p(t) of the discrete stochas-
tic model, that is, for all states s that have a probability that is greater than δ
we have p(t)

s > 0 and for all other states s we have p(t)
s = 0. At time t the expec-

tations of one or more populations reached a certain large population threshold.
Thus, we switch to a hybrid model where the large populations (index set D̄)
are represented as continuous deterministic variables W(t) while the small pop-
ulations (index set D̂) are represented by V (t). We first compute the vector of
conditional expectations

Ψ(t)
v := E[W(t) |V (t) = v] =

∑
s∈v

s̄ · p(t)
s ,

and we recall that v ∈ Ŝ represents the set of states that are equal to v on
dimensions D̂. We also compute the distribution p̂(t) of V (t) as

p̂(t)
v :=

∑
s∈v

p(t)
s .

Now, we integrate the system for a small time interval of length dt > 0.
This is done in three steps as described below. For t′ ∈ [t, t+ dt), we will write
Ψ(t′)

v for the approximation of E[W(t′) = w |V (t′) = v]. The i-th element of
the n̄-dimensional vector Ψ(t′)

v is denoted by ψ(t′)
v,i . The value p̂(t′)

v denotes the
approximation of Pr(V (t′) = v). The vector p̂(t′) contains the elements p̂(t′)

v .

8.2. MATHEMATICAL MODEL 121

(1) Update distribution. We first integrate p̂(t) for dt time units according
to a CME with dimension n̂ to approximate the probabilities Pr(V (t+ dt) = v)
by p̂(t+dt)

v , that is, p̂(t+dt) is the solution of the system of ODEs

dp̂
(t′)
v

dt′
=

m∑
j=1

αj

(
v− d̂j ,Ψ(t′)

v−d̂j

)
· p̂(t′)

v−d̂j

−
m∑
j=1

αj(v,Ψ(t′)
v) · p̂(t′)

v (8.3)

with t′ ∈ [t, t + dt) and v ∈ Ŝ. We use the initial condition p̂
(t)
v . Note that

this equation is as Equation (2.4) except that the species in D̄ are removed.
Moreover, the population sizes w are replaced by the conditional expectations
Ψ(t)

v at time t. Note that we do not know the values Ψ(t′)
v for t′ > t and take

Ψ(t)
v as an approximation.

(2) Integrate. For each state v ∈ Ŝ with p̂(t)
v > δ, we compute an approxima-

tion Φ(t+dt)
v of the conditional expectation

E[W(t+ dt) |V (t′) = v, t′ ∈ [t, t+ dt)],

that is, we assume that the system remains in state v during [t, t+dt) and that
the expected numbers of the large populations W(t) change deterministically
and continuously in time. Thus, the n̄-dimensional vector Φ(t+dt)

v is obtained
by numerical integration of the ODE

dΦ(t′)
v

dt′
=

m∑
j=1

d̄j · αj(v,Φ(t′)
v) (8.4)

with initial condition Φ(t)
v = Ψ(t)

v . The above ODEs are similar to Equa-
tion (6.1) except that for t′ ∈ [t, t + dt) the value E[αj(x(t′))] is approx-
imated by αj(v,Φ(t′)

v). For instance, if the j-th reaction is a bimolecular
reaction that involves two populations with indices i, ` in D̄ then the value
E[αj(v,W(t′)) |V (t′) = v] is approximated by cj ·φ(t′)

v,i ·φ
(t′)
v,` where the two last

factors are the elements of the vector Φ(t′)
v corresponding to the i-th and `-th

population. Thus, in this case the correlations between the i-th and the `-th
populations are not taken into account which is reasonable if the two popula-
tions are large. Note that the correlations are taken into account when at least
one population is represented as a discrete stochastic variable. If, for instance,
i ∈ D̂ and ` ∈ D̄, then we use the approximation cj · vi · Φ(t′)

v,` where vi is the
entry in vector v that represents the size of the i-th population.

122 CHAPTER 8. HYBRID NUMERICAL SOLUTION

(3) Distribute. In order to approximate E[W(t + dt) |V (t + dt)] by Ψ(t+dt)
v

for all states v ∈ Ŝ, we have to replace the condition {V (t′) = v, t′ ∈ [t, t+ dt)}
by {V (t+ dt) = v} in the conditional expectation Φ(t+dt)

v that was computed
in step 2. This is done by “distributing” Φ(t+dt)

v according to the change in the
distribution of V (t) as explained below. The idea is to take into account that
V (t) enters state v from v′ during the interval [t, t+dt). Assume that [t, t+dt)
is an infinitesimal time interval and that q(v′,v, dt), v 6= v′ is the probability
to enter v from v′ within [t, t+ dt). Then

Pr(V (t+ dt) = v) =
∑
v′ 6=v

q(v′,v, dt) · Pr(V (t) = v′)

+

1−
∑
v′ 6=v

q(v,v′, dt)

 · Pr(V (t) = v) . (8.5)

Thus, we approximate E[W(t+ dt) |V (t+ dt) = v] as

∑
v′ 6=v

Φ(t+dt)
v′ · q(v′,v, dt) · Pr(V (t) = v′|V (t+ dt) = v)

+Φ(t)
v · (1−

∑
v′ 6=v

q(v,v′, dt)) · Pr(V (t) = v|V (t+ dt) = v) . (8.6)

Obviously, we can make use of the current approximations p̂(t) and p̂(t+dt) to
compute the conditional probabilities Pr(V (t) = v′|V (t+ dt) = v). For a small
time step dt,

q(v′,v, dt) ≈ dt · αj(v′,Ψ(t)
v′)

if v′ = v− d̂j and q(v′,v, dt) ≈ 0 otherwise.

Using Equation (8.6), we compute the approximation Ψ(t+dt)
v ≈ E[W(t +

dt)|V (t+ dt) = v] as

Ψ(t+dt)
v =

m∑
j=1

Φ(t+dt)
v−d̂j

·
p̂

(t)
v−d̂j

p̂
(t+dt)
v

· αj(v− d̂j ,Ψ(t)
v−d̂j

) · dt

+Φ(t+dt)
v · p̂

(t)
v

p̂
(t+dt)
v

1−
m∑
j=1

αj(v,Ψ(t)
v

 · dt). (8.7)

Note that the sum runs over all direct predecessors v− d̂j of v.

Example 8.1. We consider a gene regulatory network,
called the exclusive switch [75]. It consists of two genes with a common promo-
tor region. Each of the two gene products P1 and P2 inhibits the expression of

8.2. MATHEMATICAL MODEL 123

0 50 100
0

50

100

P1

P
2

0 50 100
0

50

100

P1

P
2

Figure 8.1: Probability distribution of the exclusive switch in Example 1 for two
different parameter combinations.

P1 P2

P1 or P2
but not both

gene 1 gene 2common
promotor

v1 v2 v3

c5 · ψv1(1, t)

c7

c6 · ψv1(2, t)

c8

1

Figure 8.2: Illustration of the exclusive switch in Ex. 1 (picture is adapted
from [75]). The stochastic hybrid model with only three discrete stochastic
states and two differential equations per state.

the other product if a molecule is bound to the promotor region. More precisely,
if the promotor region is free, molecules of both types P1 and P2 are produced.
If a molecule of type P1 (P2) is bound to the promotor region, only molecules
of type P1 (P2) are produced, respectively. We illustrate the network in Fig-
ure 11.2. The system has five chemical species of which two have an infinite
range, namely P1 and P2. If s = (s1, . . . , s5) is the current state, then the first
two entries represent the populations of P1 and P2, respectively. The entry s3

denotes the number of unbound DNA molecules which is either zero or one. The
entry s4 (s5) is one if a molecule of type P1 (P2) is bound to the promotor region
and zero otherwise. The chemical reactions are as follows. Let j ∈ {1, 2}.

– We describe production of Pj by DNA→ DNA +Pj. Thus, dj = ej − e3 + e3

and αj(s) = cj · s3.

– We describe degradation of Pj by Pj → ∅ with dj+2 = −ej and αj+2(s) =
cj+2 · sj.

– We model the binding of Pj to the promotor by DNA + Pj → DNA.Pj with
dj+4 = −ej − e3 + ej+3 and αj+4(s) = cj+4 · sj · s3.

– For unbinding of Pj we use DNA.Pj → DNA +Pj with dj+6 = ej +e3−ej+3

and αj+6(s) = cj+6 · sj+3.

124 CHAPTER 8. HYBRID NUMERICAL SOLUTION

– Finally, we have production of Pj if a molecule of type Pj is bound to the
promotor, i.e., DNA.Pj → DNA.Pj + Pj with dj+8 = ej − ej+3 + ej+3 and
αj+8(s) = cj+8 · sj+3.

Depending on the chosen parameters, the probability distribution of the exclusive
switch is bistable, i.e. most of the probability mass concentrates on two distinct
regions in the state space. In particular, if binding to the promotor is likely,
then these two regions correspond to the two configurations where either the
production of P1 or the production of P2 is inhibited. We illustrate the dynamics
of the exclusive switch in Figure 8.1 by plotting the probability distribution for
two different parameter combinations.

The expected number of molecules of type P1 and/or P2 may become high,
depending on the chosen parameters. If, for instance, c1 = c2 = c9 = c10 = 0.5,
c3 = c4 = c7 = c8 = 0.005, c5 = c6 = 0.01, and we start initially without any
proteins, i.e. with probability one in state y = (0, 0, 1, 0, 0), then after 500 time
units most of the probability mass is located around the states s = (92, 2, 0, 1, 0)
and s = (2, 92, 0, 0, 1) (compare the plot in Figure 8.1, left). Note that s3 =
0, s4 = 1, s5 = 0 refers to the case that a molecule of type P1 is bound to the
promotor and s3 = s4 = 0, s5 = 1 refers to the case that a molecule of type P2 is
bound to the promotor. Since for these parameters the system is symmetric, the
expected populations of P1 and P2 are identical. Assume that at a certain time
instant, both populations reach the threshold from which on we approximate them
by continuous deterministic variables (we consider the unsymmetric case later,
in Section 8.4). The remaining discrete stochastic model then becomes finite
since only P1 and P2 have an infinite range in the original model (n̄ = 2, n̂ = 3).
More precisely, it contains only 3 states, namely the state v1 where the promotor
is free (s3 = 1, s4 = s5 = 0), the state v2 where P1 is bound to the promotor
(s3 = 0, s4 = 1, s5 = 0), and the state v3 where P2 is bound to the promotor
(s3 = s4 = 0, s5 = 1), see also Figure 11.2. The differential equations which are
used to approximate the conditional expectations Ψ(t+dt)

v1 , Ψ(t+dt)
v2 , and Ψ(t+dt)

v3

are

dφ
(t′)
v1,j

dt′
= cj − c2+j · φ(t′)

v1,j
− c4+j · φ(t′)

v1,j

dφ
(t′)
v2,j

dt′
= −c2+j · φ(t′)

v2,j
+ (c7 + c9) · (2− j)

dφ
(t/)
v3,j

dt′
=−c2+j · φ(t′)

v3,j
+ (c8 + c10) · (j − 1)

8.2. MATHEMATICAL MODEL 125

P1 P2

P1 or P2
but not both

gene 1 gene 2common
promotor

v1v2 v3

c5 ·ψv1(1, t)

c7 c6 ·ψv1(2, t)

c8

1

promotor
is free

P1 is
bound

P2 is
bound

Figure 8.3: The discrete stochastic part of the stochastic hybrid model of Ex-
ample 1.

where φ(t′)
v,1 and φ

(t′)
v,2 are the elements of the vector Φ(t′)

v representing the
populations of P1 and P2, respectively (v ∈ {v1,v2,v3}). Since j ∈ {1, 2} each
of the three states has a system of two differential equations, one for P1 and
one for P2. The transition rates in the discrete stochastic part of the model are
illustrated in Figure 8.3. Thus, after solving the differential equations above to
compute Φ(t+dt)

v for each v we obtain the vector Ψ(t+dt)
v of the two conditional

expectations for P1 and P2 from distributing Φ(t+dt)
v1 , Φ(t+dt)

v2 , Φ(t+dt)
v3 among the

three states as defined in Equation (8.7). For the parameters used in Figure 11.2,
left, the conditional expectations of the states v2 and v3 accurately predict the
two stable regions where most of the probability mass is located. The state v1 has
small probability and its conditional expectation is located between the two stable
regions. It is important to point out that, for this example, a purely deterministic
solution cannot detect the bistability because the deterministic model has a single
steady-state [75]. Finally, we remark that in this example the number of states
in the reduced discrete model is very small. If, however, populations with an
infinite range but small expectations are present, we use the threshold abstraction
described in Section 3.4 to keep the number of states small.

If at time t a population, say the i-th population, is represented by its
conditional expectations, it is possible to switch back to the original discrete
stochastic treatment. This is done by adding an entry to the states v for the
i-th dimension. This entry then equals ψ(t)

v,i. This means that at this point
we assume that the conditional probability distribution has mass one for the
value ψ(t)

v,i. Note that here switching back and forth between discrete stochastic
and continuous deterministic representations is based on a population threshold.
Thus, if the expectation of a population oscillates we may switch back and forth
in each period.

We summarize the basic steps of our hybrid method for a time step of length
dt in Algorithm 8.1. We assume that the sets D̄ and D̂ at time t are given and
as in the previous chapter, S is a data structure that has nodes x for each states
x.v that have significant probability, the field x.p contains the probability of the
state, and x.Ψ, x.Φ contain the conditional expectation of the state. The steps

126 CHAPTER 8. HYBRID NUMERICAL SOLUTION

Algorithm 8.1 A single iteration step of the hybrid algorithm.
1: choose step size dt;
2: update all x.p from t to t+ dt by integrating Equation (8.3);
3: for all x ∈ S do
4: x.Φ← x.Ψ; // Set initial condition
5: update x.Φ by integrating Equation (8.4)
6: for all x ∈ S do
7: update x.Ψ according to Equation (8.7);
8: for all i ∈ D̂ do
9: Ei ←

∑
x∈S x.v · x.p;

10: if Ei ≥ bi then
11: D̂ = D̂ \ {i} ;
12: D̄ = D̄ ∪ {i} ;
13: S′ ← ∅;
14: for all x ∈ S do
15: x′ ← find(x̂.v,S)
16: if x′ = null then
17: x′.v← (̂x.v);
18: x′.p← x.p;
19: x′.Ψ← respective conditional expectation;
20: S′ ← S′ ∪ {x′} ;
21: else
22: x′.p← x′.px.p;
23: S = S′;
24: for all i ∈ D̄ do
25: Ei ←

∑
x∈S x.Ψ · x.p;

26: if Ei < bi then
27: D̄ ← D̄ \ {i} ;
28: D̂ ← D̂ ∪ {i} ;
29: for all x ∈ S do
30: extend x.v by x.ψi;
31: remove x.ψi in x.Ψ;

in Algorithm 8.1 are then used to compute p̂(t+dt), Ψ(t+dt)
v and to update D̄,

D̂, and S. In our implementation, we choose

dt = min
x∈S

1∑m
j=1 αj(x.v, x.Ψ)

since this is the minimal average residence time of all states in S. Moreover,
we solved Equation (8.3) using the RK4 method described in Section 4.4. Note
that in line 10 we test whether the i-th species should be represented as a
deterministic variable. This is done by comparing the expectation with the
population threshold bi. If the index i becomes deterministic, we have to reduce
the set S by removing the i-th entry of each node x ∈ S. Let v̂ be the state

8.3. PROPAGATION MODEL 127

vector that results from v if only entries with indices in D̂ \ {i} are considered.
We compute the probability p̂(t+dt)

v̂ of v̂ at time t+ dt as

p̂
(t+dt)
v̂ =

∑
v:vk=v̂k,k 6=i

p̂(t+dt)
v

where the sum ranges over all vectors v that are equal to v̂ except for the i-th
entry. In lines 14-23 we execute this by updating the field p of each node of the
new state space S′. In line 19 we use the “unreduced” distribution to compute
the expectation of the i-th species at time t + dt under the condition that the
current state is v̂, for all v̂ of the reduced state space. Clearly, if we change the
representation of several species, the reduction of state space can be performed
in a single loop. For simplicity, we omit this improvement in our pseudocode.
In a similar way as we reduce the state space we expand it in lines 26-31 because
the expectation of the i-th species is less than bi. Recall that ψ(t)

v,i is the entry of
the vector Ψ(t)

v that represents the conditional expectation of the i-th species.
We approximate the expectations of all species in D̄ as

E[W(t+ dt)] ≈
∑
x∈S

x.Ψ · x.p.

In line 30 we modify the marginal probability distribution of the random variable
that represents the i-th species in such a way that, with probability x.p it has
the conditional expectation x.ψi.

8.3 Propagation Model

We now show how to express Equations (8.4) and (8.7) using a discrete-time
propagation process (f̃ (k))(k∈N0) of a propagation model Ñ . For this propa-
gation model Ñ we can then relate the valuation of f̃ (k) to the conditional
aggregated solution of TCM M at time t by making the time transformation
t = h · k, where h is an integration step. For the simplicity of the presentation
we assume that all integration steps are equal.

We define Ψ̃(t)
v = Ψ(t)

v · p̂(t)
v and then, from equation(8.7) we have that:

128 CHAPTER 8. HYBRID NUMERICAL SOLUTION

pset
purely

stochastic
stochastic

hybrid
purely

determ
.

ex.
tim

e
|S|

error
pop.

thres.
ex.

tim
e

|S|
m
1

m
2

m
3

ex.
tim

e
m
1

1a
11h

46m
in

8
·10

5
7
·10
−

5
50

15sec
4
·10

2
0.005

0.2
0.30

1sec
0.03

100
1m

in
50sec

3
·10

3
0.004

0.2
0.30

1b
7m

in
43sec

5
·10

4
7
·10
−

7
50

1m
in

19sec
6
·10

3
0.01

0.19
0.30

1sec
0.03

100
2m

in
50sec

3
·10

4
0.01

0.19
0.30

2
4h

51m
in

2
·10

5
4
·10
−

5
50

25sec
4
·10

2
0.06

0.08
0.09

1sec
0.45

100
28sec

6
·10

2
0.06

0.07
0.09

3
2m

in
21sec

7
·10

5
6
·10
−

5
50

18sec
6
·10

3
0.02

0.08
0.16

1sec
0.05

100
1m

in
41sec

4
·10

4
0.01

0.05
0.12

Table
8.1:

R
esults

for
the

exclusive
sw

itch
exam

ple.

8.3. PROPAGATION MODEL 129

Ψ̃(t+dt)
v =

m∑
j=1

Φ(t+dt)
v−d̂j

· p̂(t)
v−d̂j

· αj(v− d̂j ,Ψ(t)
v−d̂j

) · dt

+Φ(t+dt)
v · p̂(t)

v (1−
m∑
j=1

αj(v,Ψ(t)
v) · dt). (8.8)

From Equation (8.4) we have that

Φ(t+dt)
v · p̂(t)

v = Ψ̃(t)
v +

m∑
j=1

d̄j · αj(v,Ψ(t)
v) · p̂(t)

v · dt.

and therefore, we can rewrite Equation (8.8) as:

Ψ̃(t+dt)
v =

m∑
j=1

Φ(t+dt)
v−d̂j

· αj(v,Ψ(t)
v−d̂j

) · p̂(t)
v−d̂j

· dt

+Ψ̃(t)
v +

m∑
j=1

d̄j · αj(v,Ψ(t)
v) · p̂(t)

v · dt

−Φ(t+dt)
v ·

m∑
j=1

αj(v,Ψ(t)
v) · p̂(t)

v · dt. (8.9)

For a TCM M = 〈S,y, {C1, . . . Cm}〉, and a species split
{
D̂, D̄

}
, and inte-

gration step h, we construct the propagation model Ñ =
〈
Ŝ,M, ζ, π

〉
with:

– mass spaceM = [0, 1]× Rn̄≥0 × Rn̄≥0, which allows the propagation of proba-
bilities and of the functions Ψ̃ and Φ,

– initial mass vector ζs =

〈1, sD̄, sD̄〉 if s = y,

〈0, 0〉 if s 6= y,

– edge function π is defined by its respective components πp, πΦ, πΨ̃, where:

– the probability edge function, in accordance with Equation (8.3):

πp
v→v+d̂j

(
〈
p,Φ, Ψ̃

〉
) = p · αj

(
v, Ψ̃

p

)
· h

130 CHAPTER 8. HYBRID NUMERICAL SOLUTION

– the Φ-edge function, in accordance with Equation (8.4):

πΦ
v→v(

〈
p,Φ, Ψ̃

〉
) =

m∑
j=1

d̄j · αj (v,Φ) · h

– the Ψ̃-edge function, in accordance with Equation (8.9):

πΨ̃
v→v+d̂j

(
〈
p,Φ, Ψ̃

〉
) = Φ · αj

(
v, Ψ̃

p

)
· p · h

πΨ̃
v→v(

〈
p,Φ, Ψ̃

〉
) =

m∑
j=1

d̄j · αj
(

v, Ψ̃
p

)
· h.

Just to demonstrate the expressiveness of PMs, we give the description of a
second propagation model that approximates the same conditional aggregated
solution, but in a different way. Ñ ′ =

〈
Ŝ,M, ζ, π

〉
with:

– mass space M = [0, 1] × Rn̄≥0, which allows the propagation of probabilities
and of the un-normalized conditional expectations µ̃,

– initial mass vector ζs =

〈1, sD̄〉 if s = y,

〈0, 0〉 if s 6= y,

– edge function π is defined by its respective components πp, πµ, where:

– the probability edge function, similar to Equation (8.3)

πp
v→v+d̂j

(〈p, µ̃〉) = p · αj
(

v, µ̃
p

)

– the µ̃-edge function directly propagation the value of the change vector:

πµ̃
v→v+d̂j

(〈p, µ̃〉) =
(
µ̃

p
+ dj

)
· p · αj

(
v, µ̃
p

)
πµ̃v→v(〈p, µ̃〉) = −

m∑
j=1

dj · p · αj
(

v, µ̃
p

)
.

And here, it is the continuous-time behaviour that matches the original
TCM, i.e. g′(t) ≈ p(t).

8.4. EXPERIMENTAL RESULTS 131

8.4 Experimental Results

We implemented the numerical solution of the stochastic hybrid model described
above in C++ as well as the fast RK4 solution of the discrete stochastic model
described in Section 4.4. In our implementation we dynamically switch the
representation of a random variable whenever it reaches a certain population
threshold. We ran experiments with two different thresholds (50 and 100) on an
Intel 2.5GHz Linux workstation with 8GB of RAM. In this section we present 3
examples to that we applied our algorithm, namely the exclusive switch (see also
Example 8.1), Goutsias’ model, and a predator-prey model. Our most complex
example has 6 different chemical species and 10 reactions. We compare our
results to a purely stochastic solution where switching is turned off as well as to a
purely deterministic solution. For all experiments, we fixed the cutting threshold
δ = 10−14 to truncate the infinite state space as explained in Section 3.4.

Exclusive Switch. We chose different parameters for the exclusive switch
in order to test whether our hybrid approach works well if

1) the populations of P1 and P2 are large (a) or small (b),
2) the model is unsymmetric (e.g. P1 is produced at a higher rate than P2 and

degrades at a slower rate than P2),
3) the bistable form of the distribution is destroyed (i.e. promotor binding is
less likely, unbinding is more likely).

The following table lists the parameter sets (psets):

pset c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

1a 5 5 0.0005 0.0005 0.1 0.1 0.005 0.005 5 5
1b 0.5 0.5 0.0005 0.0005 0.1 0.1 0.005 0.005 0.5 0.5
2 5 0.5 0.0005 0.005 0.1 0.1 0.005 0.005 5 0.5
3 0.5 0.5 0.0005 0.0005 0.01 0.01 0.1 0.1 0.5 0.5

We chose a time horizon of t = 500 for all parameter sets. Note that in the
case of pset 3 the probability distribution forms a thick line in the state space
(compare the plot in Figure 8.1, right). We list our results in Table 8.1 where
the first column refers to the parameter set. Column 2 to 4 list the results of a
purely stochastic solution where “ex. time” refers to the execution time, |S| to
the average size of the set of significant states and “error” refers to the amount of
probability mass lost due to the truncation with threshold δ, i.e. 1−

∑
x∈S x.p.

The columns 6-10 list the results of our stochastic hybrid approach and column
5 lists the population threshold used for switching the representations in the
stochastic hybrid model. Here, “m1”, “m2”, “m3” refer to the relative error of

132 CHAPTER 8. HYBRID NUMERICAL SOLUTION

m
odel

purely
stochastic

stochastic
hybrid

purely
determ

.

ex.
tim

e
|S|

error
pop.
thres.

ex.
tim

e
|S|

m
1

m
2

m
3

ex.
tim

e
m
1

G
outsias

1h
16m

in
1
·10

6
4
·10
−

7
50

8m
in

47sec
1
·10

5
0.001

0.07
0.13

1sec
0.95

100
48m

in
57sec

6
·10

5
0.0001

0.0003
0.001

p.-prey
6h

6m
in

5
·10

5
1
·10
−

7
50

8m
in

56sec
2
·10

4
0.06

0.15
0.27

1sec
0.86

100
1h

2m
in

8
·10

4
0.04

0.11
0.23

Table
8.2:

R
esults

for
G
outsias’m

odeland
the

predator-prey
m
odel.

8.4. EXPERIMENTAL RESULTS 133

the first three moments of the joint probability distribution at the final time
instant. For this, we compare the (approximate) solution of the hybrid model
with the solution of the purely stochastic model. Since we have five species,
we simply take the average relative error over all species. Note that even if a
species is represented by its conditional expectations, we can approximate its
i-th moment by

E[W(t)i] ≈
∑
x∈S

(x.Ψ)i · x.p

where the i-th power of the vectors are taken component-wise. Finally, in the
last two columns we list the results of a purely deterministic solution according
to Equation (6.9). The last column refers to the average relative error of the
expected populations when we compare the purely deterministic solution to the
purely stochastic solution. Note that the deterministic solution of the exclusive
switch yields an accurate approximation of the first moment (except for pset
2) because of the symmetry of the model. It does, however, not reveal the
bistability of the distribution. As opposed to that, the hybrid solution does
show this important property. For pset 1 and 3, the conditional expectations
of the 3 discrete states are such that two of them match exactly the two stable
regions where most of the probability mass is located. The remaining conditional
expectation of the state where the promotor region is free has small probability
and predicts a conditional expectation between the two stable regions. The
execution time of the purely stochastic approach is high in the case of pset 1a,
because the expected populations of P1 and P2 are high. This yields large sizes
of S while we iterate over time. During the hybrid solution, we switch when
the populations reach the threshold and the size of S drops to 3. Thus, the
average number of significant states is much smaller. In the case of pset 1b, the
expected populations are small and we use a deterministic representation for
protein populations only during a short time interval (at the end of the time
horizon). For pset 2, the accuracy of the purely deterministic solution is poor
because the model is no longer symmetric. The accuracy of the hybrid solution
on the other hand is less dependent on the symmetry of the model. Finally, for
pset 3 the purely stochastic solution is fast because the production and binding
rates are smaller compared to the other psets and fewer reactions occur per
time unit. For a population threshold of 100 the hybrid model rarely uses a
deterministic representation of the protein populations. Therefore the speed-up
is small in that case.

134 CHAPTER 8. HYBRID NUMERICAL SOLUTION

0 1 2 3 4
10

12

14

16

18
Species M

stoch
determ
hyb

0 1 2 3 4
0

20

40

60

80

100

120
Species RNA

stoch
determ
hyb

Figure 8.4: Expected populations in Goutsias’ model.

Goutsias’ Model. We reconsider Example 4.2 with parameters that differ
from the original parameters used in [44] in that they increases the number of
RNA molecules (because with the original parameters, all populations remain
small).

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0.043 7e-4 71.5 3.9e-6 0.02 0.48 2e-4 9e-12 0.08 0.5

Table 8.2 shows the results for Goutsias’ model where we use the same
column labels as above. We always start initially with 10 molecules of RNA,
M, and D, as well as 2 DNA molecules. We choose the time horizon as t = 4.
Note that the hybrid solution as well as the purely deterministic solution are
feasible for much longer time horizons. The increase of the size of the set of
significant states makes the purely stochastic solution infeasible for longer time
horizons. As opposed to that the memory requirements of the hybrid solution
remain tractable. In Figure 8.4 we plot the means of two of the six species
obtained from the purely stochastic (stoch), purely deterministic (determ), and
the hybrid (hyb) solution. Note that a purely deterministic solution yields very
poor accuracy (average relative error of the means is about 95%).

Predator Prey. We apply our algorithm to the predator prey model de-
scribed in [38]. It involves two species A and B and the reactions are A→ 2A,
A + B → 2B, and B → ∅. The model shows sustainable periodic oscillations
until eventually one of the populations reaches zero. We use this example to test
the switching mechanism of our algorithm. We choose rate constants c1 = 1,
c2 = 0.03, c3 = 1 and start initially with 30 molecules of type A and 120
molecules of type B. For a population threshold of 50, we start with a stochas-
tic representation of A and a deterministic representation of B. Then, around
time 1.3 we switch to a purely stochastic representation since the expectation of
B becomes less than 50. Around time t = 6.1 we switch the representation of A
because E[A(t)] > 50, etc. We present our detailed results in Table 8.2. Similar
to Goutsias’ model, the deterministic solution has a high relative error whereas

8.4. EXPERIMENTAL RESULTS 135

the hybrid solution yields accurate results even though they are less accurate
than the results for Goutsias’ model. The reason is that the prey population
becomes very large and its large variance is not adequately represented by the
small number of discrete states. For instance, at the final time instant t = 10
the expected population size of prey is around 16,000.

Discussion. Our experimental results show that for the examples that we
considered the hybrid approach is faster than the purely stochastic approach
and more accurate than the purely deterministic approach. Clearly, more com-
plex case studies have to be made to substantiate the usefulness of our approach
in practice. Our hybrid solution will always be at last as accurate as a purely
deterministic solution. An estimation of the approximation error, however, is
difficult because currently no useful error estimates are known. The correlations
between the random variables give hints about the linear dependencies but a
direct relation to the approximation error has not yet been established. We
believe, however, that for most examples, a simple population threshold is suffi-
cient to obtain a solution that is much more accurate than a purely deterministic
solution.

136 CHAPTER 8. HYBRID NUMERICAL SOLUTION

Chapter 9

Future Work: Tail Approximation

In this chapter we define the tail aggregated solution of a chemical master
equation and then we propose a scheme for its approximation. We do not give
the entire algorithm but we solve one of its fundamental components: estimating
probabilities in the tail of a probability distribution.

9.1 Tail Aggregated Solution

We first define tail aggregation with respect to a tail boundary b, and then,
based on this aggregation we define the tail aggregated solution of a chemical
master equation.

Definition 9.0.4 (Tail Aggregation). For a boundary b ∈ Nn>0 we define the
tail aggregation Ŝb to be:

Ŝb = {0 . . . b1 − 1,>b1} × {0 . . . b2 − 1,>b2} × · · · × {0 . . . bn − 1,>bn} ,

where the notation >bi denotes the interval [bi . . .∞). Each element of Ŝb is
called a tail aggregated state.

Through an abuse of notation, we let each vector in Ŝb represent a subset of
S. That is, for all A ∈ Ŝb we have that:

A = {s ∈ S |Ai = si or (si ≥ bi and Ai = >bi)} ,

from which it follows that the aggregation Ŝb defines a partition of S.

137

138 CHAPTER 9. FUTURE WORK: TAIL APPROXIMATION

Example 9.1. For a two dimensional system, with b = {3, 3}, the set tail
aggregated partition of [0 . . . 6]2 is shown in Figure 9.1. The element (1,>3)
represents the subset {(1, s) | s ≥ 3}.

Definition 9.0.5. The tail aggregated solution of a CME with solution p(t),
with respect to the boundary b, is a tuple

〈
p̂(t),µ(t)〉, such that:

– p̂(t) is an aggregated probability vector in
[
Ŝb → [0, 1]

]
p̂

(t)
A =

∑
s∈A

p(t)
s ,

– and µ(t) is a conditional expectation vector in
[
Ŝb → Rn

]
µ

(t)
A =

∑
s∈A

p(t)
s · s.

In order to obtain the exact tail aggregated solution of a chemical master
equation, we must first compute the probabilities p(t)

s and then aggregate them,
according to definition 9.0.5. However, if we are only interested in an approx-
imation of the aggregated solution, a direct method is possible, and usually
desirable due to the state space reduction from S to Ŝb, which leads to a large
saving in the computation time.

9.2 Algorithmic Scheme

First, we formulate an aggregated chemical master equation for any partition
Ŝ of the state space S. Then, we show how this aggregated equation could be
solved numerically when the partition of the state space is the tail partition as
defined above.

We now define S̃ to be the coarsest refinement of Ŝ for which, for each
reaction Rj , the Rj successors of the states belonging to a partition set of S̃
also belong to the same partition set of S̃. Formally:

Definition 9.0.6. Let Ŝ be a partition of the state space S, and, for all s ∈ S,
let ŝ denote the element of Ŝ for which s ∈ ŝ. For a transition class model
M defined over the state space S, we define an equivalence relation ' over the
states in S.

s ' s′ iff ŝ = ŝ′ and ûj(s) = ûj(s′),∀j = 1 . . .m.

9.2. ALGORITHMIC SCHEME 139

We define S̃ to be the set of equivalence classes induced on the space S by
the equivalence relation ', and we let s̃ ∈ S̃ denote the equivalence class that
contains s ∈ S.

As any two states in a '-equivalence class s̃ have successors in the same
'-equivalence class we can define the update function of a '-equivalence class:

ũj(s̃) = ũj(s).

In order to compute the aggregated solution of a transition class model, we
need to solve the equation:

dp
(t)
A

dt
=

m∑
j=1

∑
s′:uj(s′)∈A

p
(t)
s′ · αj(s

′)−
m∑
j=1

∑
s:s∈A

p(t)
s · αj(s), (9.1)

If, for each j = 1 . . .m, there exists a function α̃j : Rn≥0 → R such that

∞∑
k=1

ck · αj(sk) = α̃j(
∞∑
k=1

ck · sk),

then, Equation (9.1) becomes:

dp
(t)
A

dt
=

m∑
j=1

∑
s̃′:ũj(s̃′)⊆A

p
(t)
s̃′ · α̃j(µ

(t)
s̃′)

−
m∑
j=1

∑
s̃:s̃⊆A

p
(t)
s̃ · α̃j(µ

(t)
s̃). (9.2)

Let us consider Ŝb, the tail partition of the state space S of a transition class
model M with respect to the boundary b ∈ Nn>0. And let S̃b be the refinement
of Ŝb according to Definition 9.0.6.

We split the states in the state space S into three classes:

white states: W = {s ∈ S | ŝ = {s}} ,

gray states: G = {s ∈ S | s̃ = {s} and s 6∈ W} ,

black states: B = S \ (W ∪ G).

In Section 9.3 we give a way to approximate the probabilities of gray states,
probabilities that are needed by an algorithm that would implement Equa-
tion (9.2).

140 CHAPTER 9. FUTURE WORK: TAIL APPROXIMATION

Figure 9.1: Partitioning of the state space used for an aggregated solution.

9.3 Tail Approximation

The key observation behind the tail approximation is that almost all probability
distributions that describe the stochastic behaviour of real life have a certain
“continuity” property and that their tail matches the shape of a geometric dis-
tribution. We do not formalize these properties here, but we refer to such real
life distributions as “well-behaved”, in order to distinguish them from other,
possibly random, distributions.

Problem 9.1 (Tail approximation). For an aggregated solution 〈p̂,µ〉 with
boundary b ∈ N , of an unknown probability distribution p, approximate the
probabilities ps of the states s that belong to the gray set G.

We first solve the tail approximation problem for systems of dimension one.

The tail approximation is done in two stages. First, we make a coarse approx-
imation using a shifted geometric distribution and then we iteratively correct
this value with respect to the probability values p̂s with s < b.

Recall that the geometric distribution with meanM is a discrete probability
distribution defined as:

γM (s) = p · (1− p)s, where p = 1
M + 1 .

For the first stage of our approximation, we define the shifted geometric
distribution γ̄M,b : N≥b → [0, 1] to be: γ̄M,b(s) = γM−b(s − b). This function
is used to roughly approximate pb by p̃b = p̂(>) · γ̄µ,b(b), where p̂(>) is the
probability for x > b, and Γµ,b approximates the probability of being in state b
knowing conditioned on x ≥ b and knowing that the expectation for x > b is µ.

9.3. TAIL APPROXIMATION 141

The correction stage of our approximation is based on the observation that
for a well-behaved probability distribution the relative errors of our approxima-
tion at points b and b− 1 are almost equal:

p̃b
pb
≈
p̃(b−1)

p̂(b−1)
.

And therefore, from the above approximation, we obtain the first corrected
approximation p̃c1 :

pb ≈ p̃c1b = p̃b ·
p̂(b−1)

p̃(b−1)
.

This new value of the approximation can be updated in a second correction
step in which the value p̂(b−2) is taken into account. In Section 9.3.2 we present
results for up to three correction steps.

Let us extend the vector p̂ with p̂−1 = 0, and let z < b be the largest value
for which pz = 0. The correction stage of our approximation can have up to
b− z − 1 steps.

9.3.1 Multiple dimensions

Here we are interested in the approximation of the value ps with s ∈ Nn0 . First,
we define the one dimensional sub-stochastic vector ps | i : N0 → [0, 1]. Let s | i
be the set of states that are equal to s on all components except i, and let s | i,x
be the state s where the i-th component is changed to value x. Now, ps | i is a
vector with positive values over s | i with entries ps | i,x = ps | i,x .

For a state s with only one component i for which si = > we apply the
1-dimension tail approximation method on the projection

〈
p̂s | i , µi

〉
.1

Finally, if we have more than one dimensions for which si = >, we make an
independence assumption in order to reduce the problem to one dimension. For
2-dimensions, this assumption is:

p
(t)
(b,b) ≈ p̂

(t)
(b,>) · p̂

(t)
(>,b).

9.3.2 Case Studies

In this section we give statistical evidence that show the level of accuracy of our
approximation. For this, we start with the actual solution of the CME of two
different biochemical reaction networks, from which we compute the aggregated

1The tail approximation can be applied on sub-stochastic vectors as well.

142 CHAPTER 9. FUTURE WORK: TAIL APPROXIMATION

Table
9.1:

R
esults.

M
odel

b
M
ax

abs.
err.

rel.
err.

abs.
err.>

1×10
−

7

1
st

corr.
2

nd
corr.

3
rd

corr.
1

st
corr.

2
nd

corr.
3

rd
corr.

1
st

corr.
2

nd
corr.

3
rd

corr.
pred.

prey
10

2×10
−

3
1×10

−
3

5×10
−

4
8×10

−
2

3×10
−

2
1×10

−
2

46%
46%

43%
50

2×10
−

4
2×10

−
5

1×10
−

6
2×10

−
1

2×10
−

2
9×10

−
4

4%
4%

3%
100

4×10
−

8
1×10

−
9

6×10
−

11
1×10

−
3

6×10
−

5
2×10

−
6

0%
0%

0%
ex.

sw
tich

10
7×10

−
3

1×10
−

2
1×10

−
3

4×10
−

1
4×10

−
1

1×10
−

1
92%

95%
94%

50
1×10

−
3

1×10
−

4
2×10

−
5

1×10
−

1
1×10

−
2

1×10
−

3
46%

46%
12%

100
3×10

−
4

3×10
−

5
3×10

−
6

4×10
−

2
4×10

−
3

4×10
−

4
33%

33%
14%

9.3. TAIL APPROXIMATION 143

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7
x 10

−8

prey

p

Actual probabilities

After correction

Before correction

Figure 9.2: For all boundaries b ∈ [1 . . . 64], we show the comparison between
the actual probability vector pb, the first approximation p̃b and the corrected
approximation p̃c1b . The probability vector p is taken from the solution at time
t = 3 of a predator-prey system and it gives the probabilities over the number
of preys for a fixed number of 46 predators.

Figure 9.3: Zoom on the same comparison as in Figure 9.2.

solution with respect to a boundary b (step in which we loose information).
After that, we use the tail approximation in order to restore the probabilities of
the gray states G from the aggregated solution. Finally, we compare the restored
probabilities with those in the probability distribution we have started with.

We consider two systems: the predator-prey[38] and the exclusive switch[75].
First, we compute the solution of the CME associated to each of these two
systems (at time points t = 1 . . . 5 for predator-prey and t = 10, 20 . . . 100
for the exclusive switch) using our previous algorithm[23] and tool[24]. For
each of the obtained probability distributions p(t), for each of the boundaries
b ∈ {10, 50, 100}, and for all states s in the boundary set G, we consider all
projections ps | i of the solution p(t). It is these projections that we first aggregate
and then restore using tail approximation.

For three correction steps k = 1, 2, 3, the column max. abs. err. of
table 9.1 gives the maximal absolute error computed as

max
s∈G

(
| pcks − ps |

)
.

144 CHAPTER 9. FUTURE WORK: TAIL APPROXIMATION

97 98 99 100 101 102 103
6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8
x 10

−3

b

p

Actual probabilities

After 1st corr.

After 2nd corr

After 3rd corr

Figure 9.4: Approximation of state probabilities in the exclusive switch model.
With each correction step the approximation is closer to the real probabilities.

The column rel. err. gives the relative error for the state with maximal
absolute error. The relative error is computed as:

1−min
(p̃cks
ps
,
ps

p̃cks

)
.

Finally, table 9.1 also reports the percentage of projections for which the abso-
lute error, as defined above, is greater than 1×10−7. In some cases this percentage
is high because the boundary is too small.

In Figure 9.2 we show how the tail approximation performs at all possible
boundaries b of a predator-prey model for the projection p | predator=46. For this
figure, the original probability distribution has been aggregated with respect to
a different boundary b for each possible value of preys. For small boundaries,
the region of the probability distribution at the right of the boundary does not
have a geometric shape and thus the errors are larger. Even more, for very small
boundaries, the correction step can not be applied because the value of p is 0,
and the approximation is completely unacceptable. This is one of the major
problems that an algorithm using this approximation needs to solve. However,
for larger boundaries, the approximation is very accurate and the correction
step is performing well.

Figure 9.4 illustrates the case in which more than one correction steps are
needed in order to obtain and accurate result. As future work, we hope to
design a fix-point algorithm that would detect how many correction steps are
necessary for a given tolerance.

Chapter 10

Related Work

Different hybrid approaches have been proposed in the literature [50, 90, 98]. As
opposed to our approach, they focus on Monte Carlo simulation and consider
the problem of multiple time scales. They do not use deterministic variables
but try to reduce the computational complexity of generating a trajectory of
the model by approximating the number of reactions during a certain time step.

The closest work to ours is the hybrid approach proposed by Hellander and
Lötstedt [54]. They approximate large populations by normally distributed
random variables with a small variance and use Monte Carlo simulation to sta-
tistically estimate the probability distribution of the remaining populations with
small sizes. They consider a single ODE to approximate the expected sizes of
the large populations. As opposed to that, here we consider a set of ODEs
to approximate the expected sizes of the large populations conditioned on the
small populations. This allows us to track the dependencies between the dif-
ferent populations more acurately. Moreover, instead of a statistical estimation
of probabilities, we provide a direct numerical method to solve the stochastic
hybrid model. The direct numerical method that we use for the computation
of the probability distributions of the stochastic variables has shown to be su-
perior to Monte Carlo simulation [22]. Another difference is that the method
in [54] does not allow a dynamic switching between stochastic and deterministic
treatment of variables.

Finally, our approaches are related to the stochastic hybrid models consid-
ered in [11, 15] and to fluid stochastic Petri nets [63]. These approaches differ
from our approach in that they use probability distributions for the different
values a continuous variable can take. In our setting, at a fixed point in time
we only consider the conditional expectations of the continuous variables, which

145

146 CHAPTER 10. RELATED WORK

is based on the assumption that the respective populations are large and their
relative variance is small. This allows us to provide an efficient numerical ap-
proximation algorithm that can be applied to systems with large state spaces.
The stochastic hybrid models in [11, 15, 63] cannot be solved numerically except
in the case of small state spaces.

Chapter 11

SABRE

11.1 Introduction

In this chapter we present SABRE, a tool for stochastic analysis of biochemical
reaction networks. SABRE implements fast adaptive uniformization (FAU), a
direct numerical approximation algorithm for computing transient solutions of
biochemical reaction networks. Biochemical reactions networks represent bio-
logical systems studied at a molecular level and these reactions can be modeled
as transitions of a Markov chain. SABRE accepts as input the formalism of
guarded commands, which it interprets either as continuous-time or as discrete-
time Markov chains. Besides operating in a stochastic mode, SABRE may also
perform a deterministic analysis by directly computing a mean-field approxima-
tion of the system under study. SABRE does not currently offer an implemen-
tation of the hybrid methods introduced in the second part of this thesis. We
plan to add these methods to our tool in a future release.

Numerical analysis tools for discrete-state Markov processes such as PRISM[72],
INFAMY[47], ETMCC[59], MRMC[67], APNNtoolbox[10], SHARPE[60], SPNP[61],
or Möbius[18] have been introduced (see Section 11.6). However, except for IN-
FAMY, these tools do not accept models with possibly infinite state space. It
is important to note that many population models have an infinite state space,
that is, the number of reachable states is infinite. Even when in the real system
the number of molecules, or more generally, individuals is finite, no a priori
bound is known, and models do not include any constraints on the number of
molecules, for example in production rules such as ∅ → A. Another issue is that
existing tools usually implement algorithms that are not optimized specifically
for population models, and do not scale well on such models.

147

148 CHAPTER 11. SABRE

SABRE is a tool for the transient analysis of Markov population models.
In other words, SABRE analysis discrete-time, or continuous-time Markov pro-
cesses that have a structured discrete state space and state-depended rate func-
tions. In Section 11.2 we give more details on the space structure and the state
dependency of rate functions that are present in Markov processes that represent
population models.

SABRE offers both stochastic and deterministic analysis of population mod-
els. For stochastic analysis, SABRE implements three algorithms: standard uni-
formization, fast adaptive uniformization and Runge-Kutta fourth order method.
The different configurations in which SABRE may operate are depicted in Fig-
ure 11.1. The focus of the tool is on the fast adaptive uniformization method,
while the remaining methods are given for completeness and comparison.

SABRE is available on-line at http://mtc.epfl.ch/~mateescu/sabre. First,
the user gives an input model (either in SBML format or in guarded commands
format) and a time horizon and than the transient analysis of the system starts
(see Figure 11.3). More details on the usage of the tool are given in Section 11.3.

11.2 Guarded Commands

Guarded-command models (GCM) is the input formalism of SABRE. GCMs
are a textual description of processes and are given in the style of Dijkstra’s
guarded-command language[25]. Their syntax has subsequently been used by
languages such as Reactive Modules [4] and by the language for specifying
PRISM models[96]. The basic unit within GCMs is a transition class, which
is expressed as a guarded command that operates on the state variables of
the system. A transition class encodes for a possibly infinite number of state
transitions. Within population models, the state variables of the system are
non-negative integers representing numbers of molecules for each species. A
guarded command takes the form

guard |- rate -> update

where the guard is a Boolean predicate over the variables that determines in
which states the corresponding transitions are enabled. The update is a rule
that describes the change of the system variables if the transition is performed.
Syntactically, update is a list of statements, each assigning to a variable an
expression over variables. Assume that x is a variable. If, for instance, the
update rule is that x is incremented by 1, we write x:=x+1. We assume that

http://mtc.epfl.ch/~mateescu/sabre

11.2. GUARDED COMMANDS 149

variables that are not listed in the update rule do not change if the transition
is taken. Each guarded command also assigns a rate to the corresponding
transitions, which is a function on the state variables. Within SABRE, rate is
given in infix notation. In the case of population models, the update function
is incrementing or decrementing each variable by a constant integer.

For a population model with m reactions, the GCM description is a set of m
guarded commands, which we index as guardj ` ratej → updatej , where each
of the commands j, with 1 ≤ j ≤ m, describe the j-th reaction of the model.

GCMs are used to express both CTMCs and DTMCs. The difference be-
tween the two interpretations comes from the semantic given to the rate function
of each command. In the case of CTMCs, for a given reaction j, the rate func-
tion ratej assigns to each state s, a positive real value that represents the rate
of the outgoing transition j.

In the case of DTMCs, the rate function ratej assigns to each state s, a
positive real value that represents the transition probability from state s to its
successor on reaction j. The functions ratej must define probability distribution
over the direct successor state, that is, for each state s we impose that Σj
ratej(s) = 1. If the input is not given in this manner, SABRE will automatically
normalize the rate functions such that the probability distribution condition to
be fulfilled. Note that this is equivalent to interpreting the input as a CTMC
and than considering its embedded DTMC.

GCMs are used to model systems that exhibit a finite number of transition
types, but possibly an unbounded number of states. For example, in a computer
network, the number of type of events is finite (send message, receive message,
add node, etc.) but the number of states is countably infinite, because it depends
on the number of nodes in the network and on the number of requests each of
them has. The same holds for biochemical reaction networks, each reaction
type generates a transition class, but the number of states is countably infinite,
as we do not have any a-priori bound on the variables of the system, due to
productions rules of the type ∅ → A. We therefore conclude that GCMs are a
natural formalism for describing population models[57]

Example 11.1. The bistable toggle switch is a prototype of a genetic switch
with two competing repressor proteins and four reactions. We call the species
A and B and we let x = (xA, xB) ∈ N2

0 be a vector describing a state of the
system. The reactions are given in Table 11.1.

150 CHAPTER 11. SABRE

Table 11.1: Simple toggle switch example
Reaction Guarded command
∅ → A true ` c1/(c2 + x2

B) → xA := xA + 1
A→ ∅ A > 0 ` c3 · x1 → xA := xA − 1
∅ → B true ` c4/(c5 + x2

A) → xB := xB + 1
B → ∅ B > 0 ` c6 · x2 → xB := xB − 1

11.3 Tool Interface

From the tool’s interface, we have several ways of selecting a model for analysis.
One can load an existing model, upload an SBML file or introduce a GCM
text description of the system to analyze. SBML is a standardized format for
representing models of biological processes, such as metabolism or cell signaling
and is the input to SABRE’s core program. GCMs that have update functions
with constant increment (or decrement) have a straight forward translation to
SBML.

Example 11.2. We continue the toggle switch example with its SBML descrip-
tion. For brevity, we only give one reaction of the model. We observe that the
rate function is not restricted to a particular template and is written following
the mathML standard.

0 <sbml ...>

1 <model>

1 ...

3 <listOfSpecies>

4 <species id="A" initialAmount="133"/>

5 <species id="B" initialAmount="133"/>

6 </listOfSpecies>

7 <listOfReactions>

8 <reaction id="R1">

9 <listOfProducts>

10 <speciesReference species="A"/>

11 </listOfProducts>

11.3. TOOL INTERFACE 151

12 <listOfModifiers>

13 <speciesReference species="B"/>

14 </listOfModifiers>

15 <kineticLaw>

16 <math ...>

17 <apply> <divide/>

18 <ci> c1 </ci>

19 <apply> <plus/>

20 <ci> c2 </ci>

21 <apply> <times/>

22 <ci> B </ci>

23 <ci> B </ci>

24 </apply>

25 </apply>

26 </apply>

27 </math>

28 <listOfParameters>

29 <parameter id="c1" value="3000"/>

30 <parameter id="c2" value="11000"/>

31 </listOfParameters>

32 </kineticLaw>

33 </reaction>

34 ...

35 </listOfReactions>

36 </model>

36 </sbml>

Once the model is chosen, we choose a configuration of the analysis by choos-
ing the semantics, the mode and, if needed, the type of stochastic solution. Fi-
nally, we choose a time horizon, or the number of steps for which we want the
system to run. We also give as an input a dump time td, which corresponds
to the intermediate results, that is, the system will compute the distributions
for td, 2 · td, · · · t. The program computes the intermediates and the final re-
sults which are then dynamically plotted for each species, as the computation
runs (see Figure 11.3). If the uniformization method is selected, the user also
needs to provide an estimate of the maximal exit rate over all reachable states.
If the estimate is too small, the compuation needs to be restarted, and if the
estimate is too large, the computation is likely to take longer. It is standard

152 CHAPTER 11. SABRE

uniformization which is especially touched by choosing a too large upper bound
on the maximal exit rate. Estimating this upper bound by heuristics such as
those used for the sliding window algorithm[56] is an on going work.

11.4 Software Architecture

SABRE is available on line, assuring this was a fast and portable release of our
implementation. The core of our tool is implemented in C++, while the website
that hosts it is implemented using PHP and Javascript. The user provides the
desired input through the web interface, than a query is generated to the 3GHz
Linux machine on which SABRE is installed. The server sends back to the user
intermidiate results which are then plotted as we show in Section 11.3.

11.4.1 Components

SABRE’s different components are activated as shown in Figure 11.1. Depend-
ing on the chosen semantics, analysis mode and, if necessary, stochastic solution
type, SABRE calls the coresponding method. Some of the functionalities are
shared among different methods, for example the DTMC solution is accessed
either directly from choosing the DTMC semantics, either indirectly, by the uni-
formization algorithm. As well, Runge-Kutta method, is used both as a solver
of the CME or as the solver of the reaction rate equations.

11.4.2 Data Structure

We present an efficient data structure used by SABRE when used in stochastic
analysis mode. SABRE’s main focus is on a fast implementation of the fast
adaptive algorithm, so we will use this algorithm to motivate the choice of our
data structure. However, the same kind of reasoning works if one wants to opti-
mize the Runge-Kutta implementation. The most computationally demanding
part of fast adaptive uniformization is the probability propagation phase, which
performs the equivalent of one matrix-vector product in a DTMC. We therefore
need a data structure that is efficient during this step.

First, we mention that, for each state, along with the state description,
we need to record additional information about the probability of the state,
about its successors, and about the rates/probabilities of the reactions that
lead to those respective successors. We gather all this information in a structure
called node. During the propagate phase we iterate over all nodes of the state

11.4. SOFTWARE ARCHITECTURE 153

Parser

Fast adap-
tive uni-
formization

Standard
uniformiza-
tion

Runge Kutta

Runge Kutta

Matrix vec-
tor product.

Matrix vec-
tor product.

t or k

td or kd

λ

SBMLGCM

C
T
M
C

D
T
M
C

st
oc
ha
st
ic

deterministic

sto
cha

stic

deterministic

p(td), p(2td) · · · p(t)

p(td), p(2td) · · · p(t)

p(td), p(2td) · · · p(t)

m(td),m(2td) · · ·m(t)

p(kd), p(2kd) · · · p(k)

m(kd),m(2kd) · · ·m(k)

Figure 11.1: Software architecture. Depending on the selected semantics, anal-
ysis mode and, eventually, type of stochastic solution, SABRE computes the
desired results. The vector p(t) is the transient probability distribution after
time t, while the vector p(k) is the transient probability distribution after k
steps. For the deterministic analysis, the values m(t) and m(k) correspond to
the mean field of the corresponding CTMC, respectively DTMC. The value λ
represents the maximum exit rate of the CTMC and is required only by uni-
formization.

space, and for each node we move probability mass along all of its outgoing
transitions. Note that, initially the state space has a single state, and that
states are dynamically added to the state space as they are discovered. That
is, some of the direct successors of n may be newly discovered, and in this case
they are added to the state space data structure. Therefore, ideally, the data
structure used for storing information about the state space would have the
following characteristics.

– [Fast sequential access.] For enumerating all nodes. We note that this is a
property of the array primitive type of most programming languages.

– [Fast search.] For quickly finding the successors of a node. We note that this
is a property of map or hash type of many programming languages.

– [Fast add.] For dynamically adding newly discovered states to the current
state space.

– [Fast delete.] For dynamically removing states that have close to zero proba-
bility.

154 CHAPTER 11. SABRE

Table 11.2: Data structure comparison
Data Structure Sequential access Search Add Delete
Arrays fast slow fast slow
Maps slow fast fast fast
Hybrid solution fast fast complex, but fast complex, but fast

We summarize the comparison between arrays and hashes in Table 11.2.
Arrays allow fast sequential access, fast add but slow search and delete oper-
ations. Hashes allow fast add, delete, search, but slow sequential access. We
propose a hybrid solution that has the advantages of each data structure at the
expense of extra memory usage.

Our hybrid data structure is composed of:

– array nodes that acts as a function from index → node

– hash index that acts as a function from state → index

– vector inactive_nodes of indices of nodes that have become inactive as a
result of a delete.

This mixture of structures lets us give fast implementations for each of the
required operations:

– Sequential access Simple iteration over the elements of nodes.

– Search Search within index followed by an access in nodes.

– Delete state The nodes array is allocated statically, so physically erasing
a node would be expensive. The alternative is to mark the node for dele-
tion by inactivating it –setting its probability to zero– and adding it to the
inactive_nodes vector. Because of their zero probability, inactive nodes are
ignored when iterating over all states. An inactive node has two possible
futures: either it will be reoccupied by a newly added state, either it will be
deleted during a compress phase. The compress phase is initiated when the
number of inactive nodes covers more then 20% of the number of both active
nodes and inactive nodes and it consists of eliminating all inactive nodes and
rearranging the active nodes in a contiguous region.

– Add state When we add a state to the state space, we need to assign it to
a node within the nodes array. The nodes array is allocated statically and
during the program’s initialization phase, it is initialized to 220 free nodes.
When we add a new state, if inactive_nodes is non-empty, that is, if an

11.5. CASE STUDIES 155

Table 11.3: Case Studies Summary
Analysis Model Time Error States
Stochastic Exclusive switch 94s 9e− 8 3047

Deterministic Enzymatic reaction < 1s − 1
Stochastic Moran’s model 49s 0 1001

inactive node exist, assign the state to this node, which now becomes active.
If inactive_nodes is empty, we check whether we still have free allocated
nodes, that is, we check whether the number of active nodes has reached the
size allocated to nodes. If free nodes exist, we assign the new state to a
free node, if free nodes do not exist we need to allocate extra 220 nodes to
nodes and then pick a newly created free node. We note that the reallocation
operation is expensive but happens only rarely, e.g. when the state space first
reaches one million, two millions, three millions states and so on.

11.5 Case Studies

We present case studies for stochastic and deterministic analysis of CTMCs
and for the stochastic analysis of DTMCs. For more and larger experiments
on stochastic analysis of CTMCs we refer the reader to the paper giving the
fast adaptive uniformization algorithm. All our experiments are performed on a
3GHz Intel Linux PC, with 6 GB of RAM. We give the results of our experiments
in Table 11.3.

11.5.1 Genetic exclusive switch

The exclusive genetic switch we analyze involves two species of proteins that
may bound to the same promoter site. We denote the unbounded proteins by
N1 and N2 and the bounded ones by r1 and r2[8]. The guarded commands for
this model are given in Table 11.4. The rate functions are evaluated for the
state (xN1 , xr1 , xN2 , xr2), where xN1 is the number of molecules of type N1 and
so on.

When it is bounded to the promotor site, a protein represses the production
of the other protein. And so, for example, production of N1 only happens if no
N2 molecule is bounded to the promoter site (see rate function of first reaction).
N1 or N2 may bound only to a free promotor site (see rate functions of the third
and seventh reaction). Note that it always holds that xr1 + xr2 ≤ 1.

156 CHAPTER 11. SABRE

Table 11.4: Genetic exclusive switch
Reaction Guarded Command
∅ → N1 true ` g1 · (1− xr2) → xN1 := xN1 + 1
N1 → ∅ xN1 > 0 ` d1 · xN1 → xN1 := xN1 − 1
N1 → r1 xN1 > 0 ` b1 · (1− xr1 − xr2) → xN1 := xN1 − 1;xr1 := xr1 + 1
r1 → N1 xr1 > 0 ` u1 · xr1 → xN1 := xN1 + 1;xr1 := xr1 − 1
∅ → N2 true ` g2 · (1− xr1) → xN2 := xN2 + 1
N2 → ∅ xN2 > 0 ` d2 · xN2 → xN2 := xN2 − 1
N2 → r2 xN2 > 0 ` b2 · (1− xr1 − xr2) → xN2 := xN2 − 1;xr2 := xr2 + 1
r2 → N2 xr2 > 0 ` u2 · xr2 → xN2 := xN2 + 1;xr2 := xr2 − 1

 0 5 10 15 20

 0

 5

 10

 15

 20

 0
 0.002
 0.004
 0.006
 0.008
 0.01
 0.012
 0.014
 0.016
 0.018
 0.02

Figure 11.2: Exclusive switch at time 10000. The x-axis gives the number of N1
molecules and the y-axis gives the number of N2 molecules. Each point of the
plot corresponds to the states of systems that have the have the corresponding
number of N1 and N2 molecules. The darker the point is, the more probability
mass it holds. We can notice the bistable behaviour from the two regions of
black points, one for N1 = 0 and one for N2 = 0.

We run the system from initial state (25, 0, 0, 0) for a period of time of 10000
units with constants: g1 = g2 = 0.05, d1 = d2 = 0.005, b1 = b2 = 0.1, u1 = u2 =
0.005, and present the solution in Figure 11.2

11.5.2 Enzymatic reaction

We use enzyme-catalyzed substrate conversion to exemplify how to perform a de-
terministic analysis under continuous-time semantics. The enzymatic reaction is
described by three reactions (see Table 11.5), that involve four chemical species,
namely, enzyme (E), substrate (S), complex (C), and product (P) molecules.
The state of the system is described by the vector (xE , xS , xC , xP), which gives
the existing number of molecules of each type.

For our experimental results, we chose the same parameters as in [12], that
is, initial state y = (1000, 100, 0, 0), time horizon t = 70, and rate constants

11.6. COMPARISON WITH OTHER TOOLS 157

Table 11.5: Enzymatic reaction
Reaction Guarded Command
E + S → C xE > 0 and xS > 0 ` c1 · xE · xS → xE := xE − 1;xS := xS − 1;xC := xC + 1
C → E + S xC > 0 ` c2 · xC → xE := xE + 1;xS := xS + 1;xC := xC − 1
C → E + P xC > 0 ` c3 · xC → xE := xE + 1;xC := xC − 1;xP := xP + 1

c1 = c2 = 1 and c3 = 0.1. For the case deterministic analysis we can not give
any error bounds, as shown in Table 11.3.

11.5.3 Moran's population model

As a simple example of how SABRE operates on DTMC models we choose
Moran’s genetic population model, which can be seen as a set of biochemical
reactions, more specifically as one reversible reaction.

For a population of N individuals, with two alleles, A1 and A2, we are
interested to find the probability of fixation of A1, that is, the probability for
A1 individuals to be equal to N after a certain time. We have two reactions:
A2 → A1 and A1 → A2. For xA1 individuals with A1 allele and xA2 individuals
with A2 allele, the probability of the first reaction is 1−s

2 + s · xA1
N , where s is a

small constant. As for the second reaction, its probability is 1−s
2 + s · xA2

N .

We choose N = 1000 and s = 2e − 3, the initial state of xA1 = 1 and we
perform a transient analysis until time k = 106, at this time, the probability of
fixation is 0.00049. In this case the error we obtain is 0 because no cutting is
performed, the state space is kept at its complete size of 1001.

11.6 Comparison with other tools

Several tools for stochastic analysis of Markov chains have been developed by
communities such as probabilistic verification, computational biology and per-
formance evaluation among others. Here, we provide a comparison with the
tools that are the closest to SABRE. The PRISM tool [72], which is widely used
in probabilistic verification, considers a more general class of Markov processes
than population models. For instance, it does not restrict the update function
such that it allows only a constant change of the state variables. The models
addressed by PRISM are less structured and typically they do not have state de-
pendent rate functions. PRISM uses powerful minimization techniques such as
bisimulation that do not result in significant reductions in the case of population
model. PRISM requires that upper bounds on the state variables are given as an

158 CHAPTER 11. SABRE

input by the user. As opposed to that the SABRE tool finds appropriate bounds
automatically and avoids an exhaustive state space exploration. The drawback
is that the SABRE tool cannot guarantee the validity of properties such as “Is
the probability to reach state x within t time greater than p?” but gives an ap-
proximate solution. As opposed to that PRISM can guarantee such properties.
On the other hand, since SABRE avoids an exhaustive state space exploration
it is able to handle much larger models with state-dependent rates. Infamy is a
model-checking tool for infinite-state CTMCs by Zhang et al. [47]. Depending
on the desired precision, their algorithm simply explores the reachable states up
to a finite path depth. In contrast, our approach takes into account the direction
into which the probability mass moves, and constructs a sequence of abstract
models “on-the-fly,” during the verification process. Similar approaches have
also been used in the context of biochemical reaction networks [12].

Other tools for stochastic analysis of Markov chains, such as ETMCC[59],
MRMC[67], APNNtoolbox[10], SHARPE[60], SPNP[61], and Möbius[18], are
conceived for answering performance analysis questions and as PRISM, due to
their exhaustive state space exploration can not be applied to infinite models.

Dizzy[92], Snoopy[52] and Copasi[62] are tools for stochastic simulation alone
and not do not compute probability distributions over states.[22] Bio-PEPA[17]
is a language for modeling and analysis of biochemical networks. For numerical
analysis and verification problems Bio-PEPA uses PRISM’s engine.

Chapter 12

Conclusions

The careful reader has noticed that each new chapter was introduced on very
similar lines with regards to what motivated that particular work. More specif-
ically, each chapter introduced a new method to reduce the state space of our
problem by keeping the accuracy of our solutions high, and each method would
solve systems more efficiently than the previous one. Furthermore, most of
our methods are applying techniques from the field of computer aided verifi-
cation to biological probabilistic systems, such as abstract and on-the-fly tech-
niques. Indeed, the numerical analysis for probabilistic systems can be seen as
the counterpart of simulation, just as in software model checking verification
is the counter part of testing. As opposed to non-deterministic model check-
ing, probabilistic model-checking can make use of the information that some
events occur with a very small probability in order to approximate the solution
of the system. Reachability is the building block for software model checking,
and similarly the transient analysis of Markov chains together with steady-state
analysis (which we have not addressed here) are the building boxes for proba-
bilistic model checking, where from the importance of these problems.

We have started with the sliding window method which solves continuous-
time Markov chains by observing only the state space that fits under the current
window of the algorithm. This window is dynamically adjusted and shifted
in order to follow the significant probability mass of the system. Then, we
have moved to methods that deal with the space explosion problem in discrete-
time and not in continuous-time. This switch allows us to keep a very precise
account of the significant support of our solution through threshold abstraction
and on-the-fly techniques. Also, these techniques were presented in the general
framework of propagation models.

159

160 CHAPTER 12. CONCLUSIONS

In the second part of this thesis we have introduce hybrid methods, which
are even more aggressive in reducing the state space of the system by directly
reducing its dimensions. These methods are justified by the nature of biological
systems where stochasticity is induced mainly by molecules that come in small
numbers, and thus a stochastic representation is not needed for molecules that
are available in large numbers with high probability.

Propagation models were introduce in order to offer a common data structure
for our algorithms. This data structure is defined over mass vectors and offers
a propagation operator that moves mass through the space of the system. We
have seen that this mass can be probability mass, can represent expectation of
variables, but it is not restricted to any of these type of values. We have classified
propagation models in linear and non-linear classes and the results presented
in this paper for non-linear propagation models are purely theoretical, as our
implemented algorithms only use linear propagation models.

As future work, the propagation models framework can be enhanced in sev-
eral different directions such as composition or different aggregation techniques.
As well, due to their strong connection to differential equations, we believe that
propagation models might find application outside of systems biology problems.
We also leave as future work an algorithm that uses the tail approximation
technique or other customized hybrid algorithms.

References

[1] P. Abdulla, C. Baier, S. Iyer, and B. Jonsson. Reasoning about probabilis-
tic lossy channel systems. In Proc. CONCUR’00, LNCS, pages 320–333.
Springer, 2000.

[2] P. Abdulla, N. Bertrand, A. Rabinovich, and P. Schnoebelen. Verification of
probabilistic systems with faulty communication. Inf. Comput., 202(2):141–
165, 2005.

[3] P. Abdulla, N. B. Henda, and R. Mayr. Verifying infinite Markov chains with a
finite attractor or the global coarseness property. In Proc. LICS ’05, pages
127–136. IEEE Computer Society, 2005.

[4] Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal Methods in
System Design, 15(1):7–48, 1999.

[5] A. Arkin, J. Ross, and H. H. McAdams. Stochastic kinetic analysis of devel-
opmental pathway bifurcation in phage λ-infected E. coli cells. Genetics,
149:1633–1648, 1998.

[6] G.A. Baker. The essentials of Padé approximants. Academic Press, New York,
1975.

[7] N. Barkai and S. Leibler. Biological rhythms: Circadian clocks limited by noise.
Nature, 403:267–268, 2000.

[8] Baruch Barzel and Ofer Biham. Calculation of switching times in the genetic
toggle switch and other bistable systems. Phys. Rev. E, 78(4):041919, Oct
2008.

[9] P. Bremaud. Markov Chains. Springer, 1998.
[10] Peter Buchholz, Joost-Pieter Katoen, Peter Kemper, and Carsten Tepper.

Model-checking large structured markov chains. J. Log. Algebr. Program.,
56(1-2):69–97, 2003.

[11] Manuela L. Bujorianu and John Lygeros. Towars a general theory of stochastic
hybrid systems. In Stochastic Hybrid Systems, volume 337 of Lecture Notes
in Control and Information Sciences, pages 3–30. Springer, 2006.

[12] K. Burrage, M. Hegland, F. Macnamara, and B Sidje. A Krylov-based finite
state projection algorithm for solving the chemical master equation arising
in the discrete modelling of biological systems. In Proceedings of the Markov
150th Anniversary Conference, pages 21–38. Boson Books, 2006.

[13] H. Busch, W. Sandmann, and V. Wolf. A numerical aggregation algorithm for
the enzyme-catalyzed substrate conversion. In Proc, of CMSB, volume 4210
of LNCS, pages 298–311. Springer, 2006.

[14] Y. Cao, D. Gillespie, and L. Petzold. Efficient step size selection for the tau-
leaping simulation method. J. Chem. Phys., 124(4), 2006.

161

162 REFERENCES

[15] C.G. Cassandras and J. Lygeros. Stochastic hybrid systems: Research issues
and areas. In Stochastic Hybrid Systems, (C.G. Cassandras, and J. Lygeros,
Ed.s), pages 1–14. Taylor and Francis, 2006.

[16] E. Çinlar. Introduction to Stochastic Processes. Prentice-Hall, 1975.
[17] Federica Ciocchetta and Jane Hillston. Bio-pepa: A framework for the modelling

and analysis of biological systems. Theor. Comput. Sci., 410(33-34):3065–
3084, 2009.

[18] David Daly, Daniel D. Deavours, Jay M. Doyle, Patrick G. Webster, and
William H. Sanders. Möbius: An extensible tool for performance and de-
pendability modeling. In Computer Performance Evaluation / TOOLS,
pages 332–336, 2000.

[19] P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reachability analy-
sis of probabilistic systems by successive refinements. In Proc. PAPM-
PROBMIV’01, pages 39–56, 2001.

[20] L. de Alfaro and R. Pritam. Magnifying-lens abstraction for Markov decision
processes. In Proc. CAV, volume 4590 of LNCS, pages 325–338. Springer,
2007.

[21] E. de Souza e Silva and R. Gail. Transient solutions for Markov chains. In Com-
putational Probability, chapter 3, pages 43–79. Kluwer Academic Publishers,
2000.

[22] Frédéric Didier, Thomas A. Henzinger, Maria Mateescu, and Verena Wolf. Ap-
proximation of event probabilities in noisy cellular processes. In Proc. of
CMSB, volume 5688 of LNBI, page 173, 2009.

[23] Frédéric Didier, Thomas A. Henzinger, Maria Mateescu, and Verena Wolf.
Fast adaptive uniformization of the chemical master equation. High Perfor-
mance Computational Systems Biology, International Workshop on, 0:118–
127, 2009.

[24] Frédéric Didier, Thomas A. Henzinger, Maria Mateescu, and Verena Wolf.
Sabre: A tool for stochastic analysis of biochemical reaction networks. In
QEST, pages 193–194, 2010.

[25] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation
of programs. Commun. ACM, 18(8):453–457, 1975.

[26] J. Dunkel and H. Stahl. On the transient analysis of stiff markov chains. In
Proocedings of the 3rd IFIP Working Conference on Dependable Computing
for Critical Applications, 1992.

[27] M. B. Elowitz, M. J. Levine, E. D. Siggia, and P. S. Swain. Stochastic gene
expression in a single cell. Science, 297:1183–1186, 2002.

[28] S. Engblom. Galerkin spectral method applied to the chemical master equation.
Comm. Comput. Phys., 5:871–896, 2009.

[29] J. Esparza and K. Etessami. Verifying probabilistic procedural programs. In
Proc. FSTTCS’04, volume 3328 of LNCS, pages 16–31. Springer, 2005.

[30] J. Esparza, A. Kucera, and R. Mayr. Model checking probabilistic pushdown
automata. In Proc. LICS ’04, pages 12–21. IEEE Computer Society, 2004.

[31] K. Etessami and M. Yannakakis. Algorithmic verification of recursive proba-
bilistic state machines. In Proc. TACAS’05, LNCS, pages 253–270. Springer,
2005.

[32] N. Fedoroff and W. Fontana. Small numbers of big molecules. Science, 297:1129–
1131, 2002.

REFERENCES 163

[33] William Feller. An Introduction to Probability Theory and Its Applications, Vol-
ume 1. Wiley, January 1968.

[34] Lars Ferm, Per Lötstedt, and Andreas Hellander. A hierarchy of approximations
of the master equation scaled by a size parameter. Journal of Scientific
Computing, 34:127 – 151, 2008.

[35] B. L. Fox and P. W. Glynn. Computing Poisson probabilities. Communications
of the ACM, 31(4):440–445, 1988.

[36] E. Gallopoulos and Y. Saad. On the parallel solution of parabolic equations. In
In Proc. ACM SIGARCH-89, pages 17–28. ACM press, 1989.

[37] T. Gardner, C. Cantor, and J. Collins. Construction of a genetic toggle switch
in Escherichia coli. Nature, 403:339 – 342, 2000.

[38] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J.
Phys. Chem., 81(25):2340–2361, 1977.

[39] D. T. Gillespie. A rigorous derivation of the chemical master equation. Phys-
ica A, 188:404–425, 1992.

[40] D. T. Gillespie. Approximate accelerated stochastic simulation of chemically
reacting systems. J. Chem. Phys., 115(4):1716–1732, 2001.

[41] Daniel T. Gillespie. Simulation methods in systems biology. In Formal Methods
for Computational Systems Biology, pages 125–167, 2008.

[42] Byron Goldstein, James R. Faeder, and William S. Hlavacek. Mathematical and
computational models of immune-receptor signalling. Nat. Rev. Immunol.,
4, 2004.

[43] D. Gonze, J. Halloy, and A. Goldbeter. Robustness of circadian rhythms with
respect to molecular noise. PNAS, USA, 99(2):673–678, 2002.

[44] J. Goutsias. Quasiequilibrium approximation of fast reaction kinetics in stochas-
tic biochemical systems. J. Chem. Phys., 122(18):184102, 2005.

[45] W. K. Grassmann, editor. Computational Probability. Kluwer Academic Pub-
lishers, 2000.

[46] D. Gross and D. Miller. The randomization technique as a modeling tool and
solution procedure for transient Markov processes. Operations Research,
32(2):926–944, 1984.

[47] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun Zhang. Infamy:
An infinite-state markov model checker. In CAV, pages 641–647, 2009.

[48] E. Hairer, S. Norsett, and G. Wanner. Solving Ordinary Differential Equations
I: Nonstiff Problems. Springer, 2008.

[49] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and
Differential-Algebraic Problems. Springer, 2004.

[50] E. L. Haseltine and J. B. Rawlings. Approximate simulation of coupled fast and
slow reactions for chemical kinetics. J. Chem. Phys., 117:6959–6969, 2002.

[51] M. Hegland, C. Burden, L. Santoso, S. Macnamara, and H. Booth. A solver
for the stochastic master equation applied to gene regulatory networks. J.
Comput. Appl. Math., 205:708–724, 2007.

[52] Monika Heiner, Ronny Richter, and Martin Schwarick. Snoopy - a tool to design
and animate/simulate graph-based formalisms. In In Proc. PNTAP 2008,
associated to SIMUTools 2008. ACM digital library, 2008.

[53] A. Hellander. Efficient computation of transient solutions of the chemical master
equation based on uniformization and quasi-Monte carlo. J. Chem. Phys.,
128(15):154109, 2008.

164 REFERENCES

[54] A. Hellander and P. Lötstedt. Hybrid method for the chemical master equation.
Journal of Computational Physics, 227, 2007.

[55] D. A. Henderson, R. J. Boys, C. J. Proctor, and D. J. Wilkinson. Linking systems
biology models to data: a stochastic kinetic model of p53 oscillations. In
A. O’Hagan and M. West, editors, Handbook of Applied Bayesian Analysis.
Oxford University Press, 2009.

[56] T. Henzinger, M. Mateescu, and V. Wolf. Sliding window abstraction for infi-
nite Markov chains. In Proc. CAV, volume 5643 of LNCS, pages 337–352.
Springer, 2009.

[57] Thomas Henzinger, Barbara Jobstmann, and Verena Wolf. Formalisms for spec-
ifying markovian population models. In Springer, editor, LIX Colloquium
Reachability Problems’09, pages 3–23, 2009.

[58] Thomas A. Henzinger, Barbara Jobstmann, and Verena Wolf. Formalisms for
specifying Markovian population models. In Proc. LIX Colloquium Reacha-
bility Problems, volume 5797 of LNCS. Springer, 2009.

[59] Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-Kayser, and Markus
Siegle. A tool for model-checking markov chains. STTT, 4(2):153–172, 2003.

[60] Christophe Hirel, Robin A. Sahner, Xinyu Zang, and Kishor S. Trivedi. Relia-
bility and performability modeling using sharpe 2000. In Computer Perfor-
mance Evaluation / TOOLS, pages 345–349, 2000.

[61] Christophe Hirel, Bruno Tuffin, and Kishor S. Trivedi. Spnp: Stochastic petri
nets. version 6.0. In Computer Performance Evaluation / TOOLS, pages
354–357, 2000.

[62] Stefan Hoops, Sven Sahle, Ralph Gauges, Christine Lee, Jürgen Pahle, Natalia
Simus, Mudita Singhal, Liang Xu, Pedro Mendes, and Ursula Kummer.
Copasi - a complex pathway simulator. Bioinformatics, 22(24):3067–3074,
2006.

[63] Graham Horton, Vidyadhar G. Kulkarni, David M. Nicol, and Kishor S. Trivedi.
Fluid stochastic Petri nets: Theory, applications, and solution techniques.
European Journal of Operational Research, 105(1):184–201, 1998.

[64] A. Jensen. Markoff chains as an aid in the study of Markoff processes. Skandi-
navisk Aktuarietidskrift, 36:87–91, 1953.

[65] N. G. van Kampen. Stochastic Processes in Physics and Chemistry. Elsevier,
3rd edition, 2007.

[66] J.-P. Katoen, D. Klink, M. Leucker, and V. Wolf. Three-valued abstraction for
continuous-time Markov chains. In Proc. CAV, volume 4590 of LNCS, pages
316–329. Springer, 2007.

[67] Joost-Pieter Katoen, Maneesh Khattri, and Ivan S. Zapreev. A markov reward
model checker. In QEST, pages 243–244, 2005.

[68] A. Kucera. Methods for quantitative analysis of probabilistic pushdown au-
tomata. Electr. Notes Theor. Comput. Sci., 149(1):3–15, 2006.

[69] T. G. Kurtz. The relationship between stochastic and deterministic models for
chemical reactions. J. Chem. Phys., 57(7):2976 –2978, 1972.

[70] T.G. Kurtz. Approximation of Population Processes. Society for Industrial
Mathematics, 1981.

[71] M. Kwiatkowska, G. Norman, and D. Parker. Game-based abstraction for
Markov decision processes. In QEST, pages 157–166. IEEE CS Press, 2006.

REFERENCES 165

[72] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Prism 2.0: A tool
for probabilistic model checking. In QEST, pages 322–323, 2004.

[73] A. Law and D. Kelton. Simulation Modelling and Analysis. McGraw-Hill Edu-
cation, 2000.

[74] J. W. Little, D. P. Shepley, and D. W. Wert. Robustness of a gene regulatory
circuit. The EMBO Journal, 18(15):4299—-4307, 1999.

[75] Adiel Loinger, Azi Lipshtat, Nathalie Q. Balaban, and Ofer Biham. Stochastic
simulations of genetic switch systems. Phys. Rev. E, 75(2):021904, 2007.

[76] H. Maamar, A. Raj, and D. Dubnau. Noise in gene expression determines cell
fate in Bacillus subtilis. Science, 317(5837):526 – 529, 2007.

[77] R. A. Marie, A. L. Reibman, and K. S. Trivedi. Transient analysis of acyclic
Markov chains. Perform. Eval., 7(3):175–194, 1987.

[78] H. H. McAdams and A. Arkin. Stochastic mechanisms in gene expression. PNAS,
USA, 94:814–819, 1997.

[79] H. H. McAdams and A. Arkin. It’s a noisy business! Trends in Genetics,
15(2):65–69, 1999.

[80] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential
of a matrix, twenty-five years later. SIAM Review, 45(1):3–49, 2003.

[81] C. B. Moler and C. F. Van Loan. Nineteen dubious ways to compute the expo-
nential of a matrix. SIAM Review, 20(4):801–836, 1978.

[82] B. Munsky. The Finite State Projection Approach for the Solution of the Master
Equation and its Applications to Stochastic Gene Regulatory Networks. PhD
thesis, University of California, Santa Barbara, 2008.

[83] B. Munsky and M. Khammash. The finite state projection algorithm for the
solution of the chemical master equation. J. Chem. Phys., 124:044144, 2006.

[84] B. Munsky and M. Khammash. A multiple time interval finite state projection
algorithm for the solution to the chemical master equation. J. Comp. Phys.,
226:818–835, 2007.

[85] J. Norris. Markov Chains. Cambridge University Press, 1. edition, 1999.
[86] P. Patel, B. Arcangioli, S. Baker, A. Bensimon, and N. Rhind. DNA replication

origins fire stochastically in fission yeast. Mol. Biol. Cell, 17:308–316, 2006.
[87] J. Paulsson. Summing up the noise in gene networks. Nature, 427(6973):415–418,

2004.
[88] S. Peles, B. Munsky, and M. Khammash. Reduction and solution of the chemical

master equation using time scale separation and finite state projection. J.
Chem. Phys., 125:204104, 2006.

[89] B. Philippe and R. Sidje. Transient solutions of Markov processes by Krylov
subspaces. In Proc. of the 2nd International Workshop on the Numerical So-
lution of Markov Chains, pages 95–119. Kluwer Academic Publishers, 1995.

[90] Jacek Puchalka and Andrzej M. Kierzek. Bridging the gap between stochas-
tic and deterministic regimes in the kinetic simulations of the biochemical
reaction networks. Biophysical Journal, 86(3):1357 – 1372, 2004.

[91] A. Rabinovich. Quantitative analysis of probabilistic lossy channel systems. Inf.
Comput., 204(5):713–740, 2006.

[92] Stephen Ramsey, David Orrell, and Hamid Bolouri. Dizzy: Stochastic simulation
of large-scale genetic regulatory networks. J. Bioinformatics and Computa-
tional Biology, 3(2):415–436, 2005.

166 REFERENCES

[93] C. Rao, D. Wolf, and A. Arkin. Control, exploitation and tolerance of intracel-
lular noise. Nature, 420(6912):231–237, 2002.

[94] A. Reibman and K. Trivedi. Numerical transient analysis of Markov models.
Comput. Oper. Res., 15(1):19–36, 1988.

[95] Anne Remke. Model checking structured infinite Markov chains. PhD thesis,
Enschede, June 2008.

[96] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathematical Tech-
niques for Analyzing Concurrent and Probabilistic Systems, volume 23 of
CRM Monograph Series. American Mathematical Society, 2004.

[97] Y. Saad. Analysis of some krylov subspace approximations to the matrix expo-
nential operator. SIAM J. Numer. Anal., 29(1):209–228, 1992.

[98] H. Salis and Y. Kaznessis. Accurate hybrid stochastic simulation of a system of
coupled chemical or biochemical reactions. J. Chem. Phys., 122, 2005.

[99] W. Sandmann and V. Wolf. A computational stochastic modeling formalism for
biological networks. In Enformatika Transactions on Engineering, Comput-
ing and Technology, volume 14, pages 132–137, 2006.

[100] R. Sidje, K. Burrage, and S. MacNamara. Inexact uniformization method for
computing transient distributions of Markov chains. SIAM J. Sci. Comput.,
29(6):2562–2580, 2007.

[101] R. Sidje and W. Stewart. A survey of methods for computing large sparse matrix
exponentials arising in Markov chains. In Markov Chains, Computational
Statistics and Data Analysis 29, pages 345–368, 1996.

[102] Roger B. Sidje. EXPOKIT: Software package for computing matrix exponen-
tials. ACM Transactions on Mathematical Software, 24(1):130–156, 1998.

[103] P. Sjöberg. Numerical Methods for Stochastic Modeling of Genes and Proteins.
PhD thesis, Uppsala University, Sweden, 2007.

[104] P. Sjöberg, P. Lötstedt, and J. Elf. Fokker-Planck approximation of the mas-
ter equation in molecular biology. Computing and Visualization in Science,
12:37–50, 2009.

[105] W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Prince-
ton University Press, 1995.

[106] C. Strelen. Approximate disaggregation-aggregation solutions for general queue-
ing networks. In Society for Computer Simulation, pages 773–778, 1997.

[107] P. S. Swain, M. B. Elowitz, and E. D. Siggia. Intrinsic and extrinsic contributions
to stochasticity in gene expression. PNAS, USA, 99(20):12795–12800, 2002.

[108] M. Thattai and A. van Oudenaarden. Intrinsic noise in gene regulatory networks.
PNAS, USA, 98(15):8614–8619, July 2001.

[109] A. van Moorsel and W. Sanders. Adaptive uniformization. ORSA Communica-
tions in Statistics: Stochastic Models, 10(3):619–648, 1994.

[110] A. Warmflash and A. Dinner. Signatures of combinatorial regulation in intrinsic
biological noise. PNAS, 105(45):17262–17267, 2008.

[111] J. Zhang, L. T. Watson, and Y. Cao. A modified uniformization method for
the solution of the chemical master equation. Technical Report TR-07-31,
Computer Science, Virginia Tech., 2007.

[112] L. Zhang, H. Hermanns, E. Moritz Hahn, and B. Wachter. Time-bounded model
checking of infinite-state continuous-time Markov chains. In ACSD, 2008.
China.

Curriculum Vitae

Maria Mateescu

Education

2006 – 2011 Ph.D. in Computer Science
Ecole Polytechnique Fédérale de Lausanne (EPFL)

1999 – 2005 M.Sc. in Computer Science
“Politehnica” University of Bucharest

Experience

2011 Internship at Google as a Software Engineer (Zurich, 3 months)

2006 – 2010 Teaching Assistant for “Theoretical Computer Science” and
other subjects
Ecole Polytechnique Fédérale de Lausanne (EPFL)

2004 – 2005 Software Engineer
Freescale Semiconductors, Bucharest

2003 – 2005 Teaching Assistant
“Politehnica” University of Bucharest

Publications

1. T.A. Henzinger, and M. Mateescu, “Propagation Models for Computing
Biochemical Reaction Networks”, in the Proceedings of the 9th Interna-
tional Conference on Computational Methods in Systems Biology (CMSB
2011) - to appear.

2. T.A. Henzinger, and M. Mateescu, “Tail Approximation for the Chemical
Master Equation”, in the Proceedings of the 8th International Workshop
on Computational Systems Biology (WCSB 2011).

167

168 CURRICULUM VITAE

3. F. Didier, T.A. Henzinger, M. Mateescu, and V. Wolf, “SABRE: A Stochas-
tic Analysis Tool for Biochemical Reaction Networks”, in the Proceedings
of the 7th International Conference on Quantitative Evaluation of Sys-
Tems (QEST 2010), IEEE Computer Society, 2010.

4. T.A. Henzinger, L. Mikeev, M. Mateescu, and V. Wolf, “Hybrid Numerical
Solution of the Chemical Master Equation”, in the Proceedings of the 8th
International Conference on Computational Methods in Systems Biology,
(CMSB 2010), ACM, 2010.

5. F. Didier, T.A. Henzinger, M. Mateescu, and V. Wolf, “Fast Adaptive
Uniformization of the Chemical Master Equation”, in the Proceedings of
the first International Workshop on High Performance Computational Sys-
tems Biology (HiBi 2009), IEEE Computer Society, 2009; and in Systems
Biology, IET journal, 4:6, 2010.

6. F. Didier, T.A. Henzinger and M. Mateescu, and V. Wolf, “Approximation
of Event Probabilities in Noisy Cellular Processes”, in the Proceedings of
the 7th International Conference on Computational Methods in Systems
Biology (CMSB 2009), Lecture Notes in Computer Science 5688, Springer,
2009; and in the Theoretical Computer Science journal, 412, 2011.

7. T. A. Henzinger, and M. Mateescu, V. Wolf, CAV ’09. “Sliding Window
Abstraction for Infinite Markov Chains”, in the Proceedings of the 21st
International Conference on Computer Aided Verification (CAV 2009),
Lecture Notes in Computer Science 5643, 2009; and as “Solving the chem-
ical master equation using sliding windows”, together with R. Goel, in the
BMC Systems Biology journal, 4:42, 2010.

8. J. Fisher, T. A. Henzinger, M. Mateescu, and N. Piterman, “Bounded
Asynchrony: Concurrency for Modeling Cell-Cell Interactions” in the Pro-
ceedings of the First International Workshop on Formal Methods in Sys-
tems Biology (FMSB 2008), Lecture Notes in Computer Science 5054,
2008.

Coordinates

169

Models and Theory of Computation
School of Computer and Communication Sciences
Ecole Polytechnique Féderale de Lausanne (EPFL)
CH-1015 Lausanne

Email: maria.mateescu@gmail.com

Personal Details

Date of birth: 29 July 1981

Citizenship: Romanian

Marital status: Single

	Title
	Abstract
	Résumé
	Acknowledgments
	Previous Publications
	Contents
	Introduction
	Motivation
	Numerical Transient Solutions
	Propagation Models
	Hybrid Propagation Models

	Preliminaries
	Biochemical Reaction Networks
	Transition Class Models
	Chemical Master Equation

	Propagation Models (PM)
	Discrete-time Propagation Process (DTPP)
	Continuous-time Propagation Process (CTPP)
	Linear Propagation Models
	Relation with Transition Class Models

	I Propagation Algorithms
	Introduction
	Discrete Time Propagation
	Introduction
	Straight-forward Solution
	On-the-fly State Space
	Problem Relaxation
	Threshold Abstraction
	Error Tolerance

	Continuous Time Propagation
	Introduction
	Sliding Window
	Sliding Window Abstraction
	Window Construction
	Algorithm
	Time intervals
	Error analysis
	Case Studies
	Conclusions

	Uniformization
	Standard Uniformization (SU)
	Adaptive Uniformization (AU)
	Fast Adaptive Uniformization (FAU)
	Case Studies

	Runge-Kutta Method
	Algorithm

	Related Work
	Stochastic Simulation
	Statistical Estimation of Probabilities
	Experimental Results
	Conclusion

	Finite Space Projection
	Krylov Subspace Method
	Global Krylov Subspace Method
	Local Krylov Subspace Method

	II Hybrid Propagation Models for Biochemical Reaction Networks
	Introduction
	Preliminaries
	Aggregation
	Aggregated state space.
	Aggregated PM

	Reaction Rate Equation
	Derivation of the Deterministic Limit
	Propagation Model

	Naive Hybrid Numerical Solution
	Naive Species Aggregation
	Mathematical Model
	Propagation Model
	Numerical Approximation Algorithm
	Experimental Results

	Hybrid Numerical Solution
	Conditional Species Aggregation
	Mathematical Model
	Propagation Model
	Experimental Results

	Future Work: Tail Approximation
	Tail Aggregated Solution
	Algorithmic Scheme
	Tail Approximation
	Multiple dimensions
	Case Studies

	Related Work
	SABRE
	Introduction
	Guarded Commands
	Tool Interface
	Software Architecture
	Components
	Data Structure

	Case Studies
	Genetic exclusive switch
	Enzymatic reaction
	Moran's population model

	Comparison with other tools

	Conclusions

	References
	Curriculum Vitae

