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Il arrive quelquefois qu’on me peut rien répondre, et
qu’on n’est pas persuadé. On est atterré sans pouvoir
étre convaincu. On sent dans le fond de son ame un
scrupule, une répugnance qui nous empéche de croire
ce qu’on nous a prowvé. Un géometre vous démontre
qu’entre un cercle et une tangente wvous pouvez faire
passer une infinité de lignes courbes, et que vous n’en
pouvez faire passer une droite: vos yeuz, votre raison
vous disent le contraire. Le géométre vous répond grave-
ment que c’est la un infini du second ordre. Vous vous
taisez, et vous vous en retournez tout stupéfait, sans
avoir aucune idée nette, sans rien comprendre et sans
rien répliquer.

Vous consultez un géometre de meilleure foi, qui vous ex-
plique le mystere. <Nous supposons, dit-il, ce qui ne peut
étre dans la nature, des lignes qui ont de la longueur sans
largeur: il est impossible, physiquement parlant, qu’une
ligne réelle en pénétre une autre. Nulle courbe ni nulle
droite réelle ne peut passer entre deux lignes réelles qui
se touchent: ce ne sont la que des jeux de [’entendement,
des chimeres idéales; et la véritable géométrie est l'art
de mesurer les choses existantes.>

Je fus trés content de l'aveu de ce sage mathématicien,
et je me mis a rire, dans mon malheur, d’apprendre qu’il
y avait de la charlatanerie jusque dans la science qu’on
appelle la haute science.

Voltaire, <L ’homme auz quarante écus>, Entretien avec
un géometre, 1768.
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Résumeé

Un théoreme de Drinfel’d (Drinfel’d (1993)) classifie les espaces Poisson-homogénes d'un
groupe de Poisson-Lie a I'aide d'une certaine classe de sous-algebres Lagrangiennes de la
bialgébre de Lie associée au groupe de Poisson-Lie. Ce théoreme est généralisé par Liu
et al. (1998) en une classification des espaces Poisson-homogenes de groupoides de Poisson
par certaines structures de Dirac dans 'algébroide de Courant défini par le bialgébroide
de Lie associé au groupoide de Poisson.

Il est donc naturel de se demander ce qui correspond dans cette classification, ou une ex-
tension de cette classification, a des structures de Dirac plus générales dans la bialgebre ou
le bialgébroide de Lie associés au group(oid)e de Poisson. Nous montrons dans cette these
qu'une plus grande famille de structures de Dirac peut étre considérée. Ces structures
de Dirac définissent de maniere naturelle des espaces Dirac-homogénes du group(oid)e de
Poisson.

Les groupes de Lie et groupoides Dirac ont été introduits par Ortiz (2009) et généralisent a
la fois les groupes de Poisson Lie, les groupoides de Poisson et les groupoides
présymplectiques. Nous prouvons d’une nouvelle maniere ’existence d’une bialgebre de
Lie associée a un groupe de Lie Dirac, et nous trouvons des objets semblant jouer le
role des objets infinitésimaux associés a un groupoide Dirac. Nous trouvons un carré
de morphismes d’algébroides de Lie associés a une structure de Dirac multiplicative et
intégrable, qui généralisent a la fois les bialgébroides de Lie des groupoides de Poisson
(Mackenzie and Xu (1994)), et les deuz formes infinitésimales associées aux groupoides
présymplectiques (Bursztyn et al. (2004)). Nous prouvons aussi l'existence d'un algébroide
de Courant associé a ce diagramme. Cette structure d’algébroide de Courant est induite
de maniere naturelle par la structure standard d’algébroide de Courant sur TG xg T*G
et est isomorphe a 'algébroide de Courant AG xp A*G dans le cas d'un groupoide de
Poisson.

Nous montrons ensuite que les espaces homogénes Dirac des groupes de Lie Dirac (res-
pectivement des groupoides Dirac) correspondent a une certaine famille de structures
de Dirac dans cette bialgebre de Lie (respectivement dans cet algébroide de Courant).
Ces résultats généralisent les théoremes de classification de Drinfel’d (1993) et Liu et al.
(1998).

Nous montrons aussi quand et comment une structure de groupoide est induite sur ’espace
des feuilles d’un sous-fibré multiplicatif et involutif du tangent d’un groupoide. Ceci est
toujours vrai pour une sous-distribution multiplicative du tangent d’un groupe de Lie,
puisque c’est automatiquement l'image invariante a gauche et a droite d'un idéal dans
I’algebre de Lie du groupe de Lie. La distribution est donc dans ce cas automatiquement



de rang constant et involutive et 1'espace des feuilles est I'ensemble des classes a gauche
et a droite d’un sous-groupe normal du groupe de Lie.

Mots clés: Groupes de Poisson-Lie, espaces homogenes, variétés Dirac, groupoides de
Lie, algébroides de Lie, algébroides de Courant.
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Zusammenfassung

Ein Satz in Drinfel'd (1993) klassifiziert die Poisson-homogenen Rdume einer Poisson-
Lie-Gruppe mittels einer speziellen Klasse Lagrangescher Unteralgebren der Lie-Bialgebra
der Poisson-Gruppe. Diese Klassifikation wird in Liu et al. (1998) zu einer Klassifikation
der Poisson-homogenen Raumen eines Poisson-Gruppoids erweitert. Die klassifizierenden
Objekte sind diesmal spezielle Dirac-Strukturen in dem Courant-Algebroid, der durch das
Lie-Bialgebroid des Poisson-Gruppoids definiert wird.

Es erscheint also folgende natiirliche Frage: was wiirde allgemeineren Dirac-Strukturen in
der Bialgebra oder dem Bialgebroid in dieser Klassifikation entsprechen? Wir zeigen dass
es tatsachlich eine groflere Familie von Dirac-Strukturen gibt, die in dieser Klassifikation,
oder eher einer Erweiterung davon, Sinn machen. Sie entsprechen in einer natiirlichen
Weise Dirac-homogenen Rdaumen der Poisson-Lie-Gruppe oder des Poisson-Gruppoids.

Die Begriffe der Dirac-Lie-Gruppe und des Dirac-Gruppoids sind von Ortiz (2009) als
eine gleichzeitige Verallgemeinerung von Poisson-Lie-Gruppen, Poisson-Gruppoiden und
prasymplektischen Gruppoiden eingefithrt worden. Wir zeigen mit einer neuen Metho-
de, dass es eine natiirliche Lie-Bialgebra fiir jede Dirac-Lie-Gruppe gibt, und wir finden
Objekte, die die infinitesimale Information eines Dirac-Gruppoids (zumindest teilweise)
wiedergeben: ein quadratisches Diagramm von Lie-Algebroid-Morphismen, die in natiir-
licher Weise einem (integrablen) Dirac-Gruppoid zugeordnet werden. In den speziellen
Fillen der Poisson-Gruppoide und der prasymplektischen Gruppoide finden wir die dazu-
gehorigen Lie-Bialgebroide (Mackenzie and Xu (1994)) und “IM-2-Formen” (Bursztyn
et al. (2004)). Wir zeigen auch die Existenz eines zur integrablen multiplikativen Dirac-
Struktur assoziierten Courant-Algebroids. Diese Struktur wird von dem standard Courant-
Algebroid TG x TG induziert, und entspricht genau dem Courant-Algebroid AG x p A*G
im Poisson Fall.

Wir zeigen dass Dirac-homogene Riume von Dirac-Lie-Gruppen (von Dirac-Gruppoiden)
in eins-zu-eins Korrespondenz zu spezielle Klassen von Dirac-Strukturen in der Lie-Bialge-
bra stehen (in dem Courant-Algebroid). Diese Klassifikationen verallgemeinern die Sétze
in Drinfel’d (1993) und Liu et al. (1998).

Wir untersuchen zudem involutive, multiplikative Blédtterungen auf Lie Gruppoide und
zeigen wann und wie eine natiirliche Gruppoidstruktur auf den Quotienten der Objekte
und der Pfeile durch die Blatterung induziert wird. Dies ist immer der Fall, wenn das
Lie-Gruppoid eine Lie-Gruppe ist. In diesem Fall ist eine multiplikative Distribution
automatisch das links- und rechtsinvariante Bild eines Ideals in der Lie-Algebra, das heifit
insbesondere dass sie konstanten Rang hat und involutiv ist. Demnach ist sie integrabel,
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und ihre Blatter sind die Nebenrdume einer normalen Untergruppe der Lie-Gruppe.

Stichworter: Poisson-Lie-Gruppen, homogene Raume, Dirac-Mannigfaltigkeiten, Lie-
Gruppoide, Lie-Algebroide, Courant-Algebroide.
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Abstract

A theorem of Drinfel’d (Drinfel'd (1993)) classifies the Poisson homogeneous spaces of a
Poisson Lie group (G, mg) via a special class of Lagrangian subalgebras of the Drinfel’'d
double of its Lie bialgebra. This result is extended in Liu et al. (1998) to a classification
of the Poisson homogeneous spaces of a Poisson groupoid (G=P,7g) via a special class
of Dirac structures in the Courant algebroid defined by the corresponding Lie bialgebroid.
It is hence natural to ask what corresponds via these classifications, or extensions of them,
to arbitrary Dirac structures in the Drinfel’d double or the Courant algebroid associated to
a Poisson group(oid). We show in this thesis that there is a bigger class of Dirac structures
that fits in this correspondence. They correspond naturally to Dirac homogeneous spaces
of the Poisson group(oid).

Dirac Lie groups and Dirac groupoids have been defined by Ortiz (2009) as a generali-
zation of Poisson Lie groups, Poisson groupoids and presymplectic groupoids. We prove
in an alternative manner the existence of a natural Lie bialgebra associated to a Dirac
Lie group, and we find good candidates for the infinitesimal data of a Dirac groupoid;
a square of morphisms of Lie algebroids associated to the multiplicative Dirac structure.
These objects generalize simultaneously the Lie bialgebroid of Poisson groupoids and the
IM-2-forms associated to presymplectic groupoids (Bursztyn et al. (2004)). We show
also the existence of a Courant algebroid associated to these algebroids. This Courant
algebroid structure is induced in a natural way by the ambient standard Courant algebroid
TG x¢ T*G and is isomorphic to the Courant algebroid AG x p A*G in the Poisson case.
We show that Dirac homogeneous spaces of Dirac Lie groups (respectively Dirac groupoids)
correspond to certain classes of Dirac structures in the Drinfel’d double of the Lie bial-
gebra (respectively in the Courant algebroid). These results generalize the classification
theorems in Drinfel’d (1993) and Liu et al. (1998).

Along the way, we study involutive multiplicative foliations on Lie groupoids and show
when and how there is a natural groupoid structure defined on the leaf spaces in the set
of objects and the set of units of the Lie groupoid. This is a fact that is always true
in the Lie group case, where a multiplicative foliation is automatically the left and right
invariant image of an ideal in the Lie algebra, i.e., the leaves are the cosets of a normal
subgroup of the Lie group.

Keywords: Poisson Lie groups, homogeneous spaces, Dirac manifolds, Lie groupoids,
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Lie algebroids, Courant algebroids.
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Introduction

A Poisson groupoid is a Lie groupoid endowed with a Poisson bracket that is compati-
ble with the Lie groupoid structure. Poisson Lie groups were introduced by Drinfel’d
(1983) and studied by Semenov-Tian-Shansky (1985). Their aim was to understand the
Hamiltonian structure of the group of dressing transformations of a completely integrable
system. The systematic study of the geometry of Poisson Lie groups was initiated in the
works of Lu and Weinstein (see Lu and Weinstein (1989), Lu (1990), Lu and Weinstein
(1990), among others). The notion of Poisson Lie group was generalized to the one of
Poisson groupoid by Weinstein (1988) and studied in Mackenzie and Xu (1994), Xu (1995),
Mackenzie and Xu (1998), among others.

A Poisson homogeneous space of a Poisson groupoid is a homogeneous space of the Lie
groupoid that is endowed with a Poisson bracket such that the left action of the Lie
groupoid on the homogeneous space is compatible with the Poisson structures. Poisson
homogeneous spaces of a Poisson Lie group are in correspondence with suitable Lagrangian
subspaces of the double of the Lie bialgebra (see Drinfel’d (1993)). This result is extended
in Liu et al. (1998) to a classification of the Poisson homogeneous spaces of Poisson
groupoids in terms of Dirac structures in their Lie bialgebroids. We show in this thesis
that these correspondence results fit in a more general and maybe more natural context:
the one of Dirac manifolds, which are objects that generalize Poisson manifolds.

Multiplicative and homogeneous Poisson structures. Let G be a Lie group with Lie
algebra g. A Poisson bivector field ¢ € D(A*TG) is multiplicative, and (G,7g) is a
Poisson Lie group, if the group multiplication is compatible with the Poisson structure in
the sense that the multiplication map

m:GxG—=G

is a Poisson map, where G x G is endowed with the product Poisson structure defined
by mg. Equivalently, the graph Graph(wﬁg) C TG xg T*G of the vector bundle homo-
morphism WﬁG : T*G — TG associated to 7 is a subgroupoid of the Pontryagin groupoid
TG xqgT*G=g" of G.

The multiplicative Poisson bivector mg on G induces then a Lie bialgebra structure on
(g,9") and hence a Lie algebra structure on the direct sum of g with its dual g*. By a
theorem in Drinfel’d (1983), the Lie bialgebra structures on (g, g*) over the Lie algebra g
of a connected and simply connected Lie group G are in one-to-one correspondence with
multiplicative Poisson structures on G (see also Lu (1990) among others).

More generally, let G=ZP be a Lie groupoid endowed with a bivector field mg € I'( /\2 TG).

The bivector field 7 is multiplicative if the vector bundle map Wé TG — TG is a Lie
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groupoid morphism over some map A*G — TP, where A*G is the dual of the Lie algebroid
of G2P, and TG=TP and T*G = A*G are endowed with the induced Lie groupoid
structures (see Coste et al. (1987), Pradines (1988), Mackenzie (2005)). Equivalently, the
graph Graph(ﬂé) C TG x¢ T*G of the vector bundle homomorphism ﬂg TG = TG,
associated to mg is a subgroupoid of the Pontryagin groupoid (TG x¢T*G)=(TPx p A*QG)
of G. If the bivector field is a Poisson bivector field, then (G= P, n¢) is a Poisson groupoid.
A Poisson groupoid (G=P, ) induces a Lie algebroid structure on the dual A*G of the
Lie algebroid AG of G= P and a Courant algebroid structure on the direct sum of AG with
A*@. This was shown by Weinstein (1988), Mackenzie and Xu (1994) and Liu et al. (1997).
The pair (AG, A*G) is the Lie bialgebroid associated to (G=P,mg). The one-to-one
correspondence between multiplicative Poisson structures on a target simply connected Lie
groupoid, and Lie bialgebroid structures on its Lie algebroid, was established in Mackenzie
and Xu (2000).

A Poisson homogeneous space (X, mx) of a Poisson Lie group (G, mg) is a homogeneous
space X of G endowed with a Poisson structure wx such that the transitive left action of
Gon X

c:GxX—=>X

is a Poisson map, where G x X is endowed with the product Poisson structure (see for
example Lu (2008)).

Consider the pairing on gx g* defined by ((z,&), (y,7))s = &(y)+n(x) for all (z,§), (y,n) €
g X g*. Let H be a closed subgroup of G with Lie algebra h. A theorem of Drinfel'd (see
Drinfel’d (1993)) states that there is a one-to-one correspondence between mg-homogeneous
Poisson structures 7,z on G/H and Lagrangian subalgebras © of the double g x g* sat-
isfying ©® N (g x {0}) = h x {0} and that are invariant under the restriction to H of
an action of G on g x g* that is induced by mg. This classification and the variety of
Lagrangian subalgebras of the Lie bialgebra of a Poisson Lie group are studied in detail
in Evens and Lu (2001) and Evens and Lu (2006).

The theorem of Drinfel'd has been extended in Liu et al. (1998) to a correspondence
between a certain class of Dirac subspaces of the Courant algebroid AG x p A*G defined
by a Poisson groupoid and its Poisson homogeneous spaces. A Poisson homogeneous space
(X, mx) of a Poisson groupoid (G=P, ) is a homogeneous space X of G=P endowed
with a Poisson structure wx that is compatible with the action of G=2P on J : X — P.

Main results. Because of Drinfel’d’s theorem and its generalization by Liu-Weinstein-
Xu, it appears natural to ask what would correspond in these classifications, or extensions
of them, to more arbitrary Dirac subspaces of g x g* and AG xp A*G. A Dirac structure
in a Courant algebroid (E, p, (-,), [, ]) is a subbundle of E that is Lagrangian relative to
the fiberwise pairing (-, -). It is integrable if its set of sections is closed under the Courant
bracket [-,-]. Dirac structures in T'M X, T*M generalize Poisson brackets in the sense
that the graph of the homomorphism of vector bundles 7# : T*M — T'M associated to a
Poisson bivector field 7 on M defines an integrable Dirac structure on the manifold M.

In this thesis, we study Dirac homogeneous spaces of Dirac Lie groups and more generally
of Dirac groupoids. We show how Drinfel’d’s result generalizes to a classification of Dirac



homogeneous spaces of Dirac Lie groups, and extend then this result to the more general
situation of Dirac groupoids and their homogeneous spaces. Our main theorem (Theorem

6.3.4) generalizes the theorems in Drinfel’d (1993), Liu et al. (1997) and the classification
of Dirac homogeneous spaces of Dirac Lie groups that is given in Chapter 4.

Strategy. As a preparation for the more complicated general groupoid case, we choose
to study first the group case in a separate chapter (Chapter 4). Dirac Lie groups, which
have been defined independently by Ortiz (2008), have the important feature that the
characteristic distribution Gg = Dg N T'G of a multiplicative Dirac structure Dy and its
characteristic codistribution P; = Proj,.,,;(Dg) are always left and right invariant and
have thus constant dimensional fibers on the Lie group G. Hence, integrable multiplicative
Dirac structures on Lie groups are, in a sense, only a slight generalization of the graphs
of multiplicative Poisson bivector fields. The approach in Ortiz (2008) uses this fact to
define the Lie bialgebra of an integrable Dirac Lie group. Here, we formulate everything in
the Dirac setting and obtain the known results, such as the definition of the Lie bialgebra
of a Poisson Lie group, as corollaries in the class of examples given by the Poisson Lie
groups.

We choose this approach because the situation is quite different in the case of a Dirac
groupoid, i.e., a groupoid endowed with a Dirac structure that is a subgroupoid of the
Pontryagin groupoid (TG x¢ T*G) = (TP xp A*G) (see Ortiz (2009)). The key point in
the construction (of Ortiz (2008)) of the Lie bialgebra of a Dirac Lie group is the fact
that the Lie group is foliated by the characteristic distribution of the Dirac structure,
which is multiplicative. If regular, the leaf space inherits the structure of a Poisson Lie
group that naturally defines the Lie bialgebra. In the general groupoid case, there is
no way of controlling the characteristic distribution. Even in the special case of regular
Dirac groupoids, i.e., integrable Dirac groupoids whose characteristic distributions are
subbundles of the tangent space, there are topological conditions on the leaf space of the
foliation for it to become a groupoid. Hence, for an arbitrary Dirac groupoid, there is
no chance of finding a Poisson groupoid that is naturally associated to it as in the group
case. Chapter 3 is dedicated to the study of multiplicative foliations on Lie groupoids and
illustrates in this way the difference between the (easier) theory of Dirac Lie groups and
the theory of Dirac groupoids.

Hence, we need to construct the object that will play the role of the Lie bialgebroid in this
more general setting. We recover the Lie bialgebroid in the particular case of a Poisson
groupoid, and this new approach shows how to see the Courant algebroid AG xp A*G
defined by the Lie bialgebroid (AG, A*G) of a Poisson groupoid as induced by the ambient
Courant algebroid structure on TG x5 T*G. The results known for Poisson groupoids
are guidelines, but it is not possible to use them as it is done in Ortiz (2008) in the
particular case of Dirac Lie groups. Instead of that, the methods used for the study of the
“infinitesimal objects” associated to Dirac groupoids are oriented on our constructions in
the group case.

Along the way, we show indeed that if a Dirac groupoid is integrable, there are several
Lie algebroids over the units that are induced by the Dirac structure. In particular,
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there is a Lie algebroid structure on the set of units 2A(D¢) of the multiplicative Dirac
structure. This was predicted by Ortiz (2009) and generalizes the fact that the dual bundle
A*G — P of the Lie algebroid associated to a Lie groupoid endowed with a multiplicative
Poisson structure inherits the structure of a Lie algebroid over P. We observe that
every Dirac groupoid gives rise to these infinitesimal objects, that encode completely the
integrability of the Dirac structure (Sections 5.2, 5.3 and 5.4). These objects generalize the
Lie bialgebroid in the Poisson case, and the IM-2-form in the presymplectic case (Bursztyn
et al. (2004)). The results in these sections are of independent interest since they give
insights on the infinitesimal geometry associated with a Dirac groupoid, something that
is not fully understood yet.

Outline of the thesis

The background on Lie groupoids and Lie algebroids as well as on Dirac manifolds is
summarized in Chapter 1. Facts about Poisson Lie groups, Poisson groupoids, their clas-
sifications and the classifications of their homogeneous spaces are presented in Section 2.1.
The definitions of the Dirac counterpart are given in Section 2.2, before the homogeneous
spaces of Dirac groupoids are defined in Section 2.3. The results in this last part are new.
In Chapter 3, we study the leaf space of an involutive, multiplicative subbundle of the
tangent space of a Lie groupoid. We show that, under some regularity conditions, there is
a Lie groupoid structure on it, such that the quotient map is a fibration of Lie groupoids.
In Chapter 4, we study Dirac Lie groups and their homogeneous spaces. The geometry
of Dirac groupoids is studied in Chapter 5, and, finally, their Dirac homogeneous spaces
are classified in Chapter 6.

Notation

Throughout this thesis the manifolds that are considered are all paracompact manifolds,
that is, they are Hausdorff and every open covering admits a locally finite refinement.

Let M and N be smooth manifolds. We write T'M for the tangent space of M and
T*M for its cotangent space. The push forward of a map f : M — N will be written
Tf:TM — TN.

The Pontryagin bundle of M is the direct sum T'M & T*M — M, that will be written
TM xpT*M. In general, we will write E X, F for the direct sum of a subbundle E — N
of TM — M and a subbundle F — N of T*M — M, and E®F if E and F are subbundles
of the same vector bundle. The zero section in T'"M will be considered as a trivial vector
bundle over M and written 0y, and the zero section in 7*M will be written 03,. The
pullback or restriction of a vector bundle E — M to an embedded submanifold N of M
will be written E|y. In the special case of the tangent and cotangent spaces of M, we will
write Ty M and T3\ M. The annihilator in 7*M of a smooth subbundle F' C T'M will be
written F° C T*M.

We will denote by X(M) and Q'(M) the spaces of (local) smooth sections of the tangent
and the cotangent bundle, respectively. For an arbitrary vector bundle E — M, the space



of (local) sections of E will be written I'(E) and we call Dom(o) the open subset of the
smooth manifold M where the local section o € I'(E) is defined.

A distribution A on M is a subset A of T'M such that for each m € M, the set A(m) :=
A NT,M is a vector subspace of T,,M. The number dim A(m) is called the rank of A
at m e M.

A local differentiable section of A is a smooth section o € X(M) defined on some open
subset U C M such that o(u) € A(u) for each u € U. We denote by ['(A) the space of
local sections of A. A subdistribution is said to be differentiable or smooth if for every
point m € M and every vector v € A(m), there is a differentiable section o € T'(A)
defined on an open neighborhood U of m such that o(m) = v.






1 Preliminary definitions and facts

In this chapter, we introduce necessary background definitions and facts about Lie group-
oids and Lie algebroids, and Dirac manifolds. Along the way, references to books and
articles where to find more details are given.

1.1 Lie groupoids and Lie algebroids

In order to set conventions and notations, definitions and facts about Lie groupoids and
their Lie algebroids are recalled here. Most of the material and comments in this section
are taken from Mackenzie (1987) and Mackenzie (2005) (see also Moerdijk and Mréun
(2003)).

1.1.1 Lie groupoids

Definition 1.1.1 A groupoid consists of two sets G and P, called respectively the groupoid
and the base, together with two maps s,t : G — P called respectively the source and tar-
get projections, a map € : P — G, p— 1, called the object inclusion map, and a partial
multiplication m : (g, h) — gx h =: gh in G defined on the set

G xpG={(g,h) € GxG[s(g)=t(h)},
all subject to the following conditions:
(i) s(gh) = s(h) and t(gh) = t(g) for all (g,h) € G xp G;
(i1) (gxh)*xl =g (hxl) forall g,h,l € G such that s(g) = t(h) and s(h) = t(l);
(i1i) s(1,) = t(1,) = p for all p € P;
(i) g*lsg) = lygy xg =g for all g € G;

(v) each g € G has a (two-sided) inverse g=' such that s(¢g7') = t(g), t(¢g~') = s(g) and
g*gil = ]-t(g)7 gil *xg= 1s(g)-

A groupoid G with base P will be written G==2P. Elements of P may be called objects
of the groupoid G and elements of G may be called arrows. The arrow 1, corresponding
to p € P may also be called the unity or identity corresponding to p. The set P is often
considered as a subset of G, that is, 1, is identified with p for all p € P.

Note that the inverse in (v) is unique. To see this, one can use the following implications
(see Mackenzie (2005)), which are easy to verify.
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Proposition 1.1.2 Let G=2P be a groupoid and consider g € G.
1. If h € G satisfies s(h) = t(g) and hg = g, then h = lyy).
If 1 € G satisfies t(I) = s(g) and gl = g, then | = 14

2. If h € G satisfies s(h) = t(g) and hg = 14y, then h = g~*.
Ifl € G satisfies t(l) = s(g) and gl = 1y, then | =g~

Definition 1.1.3 A Lie groupoid is a groupoid G on base P together with smooth struc-
tures on G and P such that the maps s,t : G — P are surjective submersions, and
such that the object inclusion map € : P — G, p — 1, and the partial multiplication
G xp G — G are smooth.

If G=2P is a Lie groupoid, then G xp G C G x G is a closed embedded submanifold, since
s and t are submersions. The set P of units is then also a closed embedded submanifold
of G viae: P— G. It is also shown in Mackenzie (2005) that the inversion map of a Lie
groupoid is then a smooth diffeomorphism.

Since t and s are smooth surjective submersions, the kernels ker(7t) and ker(T's) are
smooth subbundles of T'GG. These two vector bundles over G will be written T°G :=
ker(7T's) and TG := ker(T't).

Next, we can define the notions of groupoid morphisms and subgroupoids.

Definition 1.1.4 1. Let (G=P,s,t,m) and (G'=P', s, t',m’) be groupoids. A groupoid
morphism G — G’ is a pair of maps F : G — G', f : P — P’ such thats'oF' = fos,
t'oFF = fotand F(gh) = F(g)F(h) for any (g,h) € G xp G. We also say that F
is a morphism over f. If P = P' and f = Idp, then F is called a morphism over P
or a base-preserving morphism. If G=P and G'=P’ are Lie groupoids, then (F, f)
s @ morphism of Lie groupoids if both I and f are smooth.

2. Let G=P be a groupoid. A subgroupoid of G is a groupoid G'=P’ together with
injective maps I : G' — G and i : P' — P such that the pair (I,1) is a morphism
of groupoids. If G=2P is a Lie groupoid, a Lie subgroupoid of G is a subgroupoid
G'= P such that I : G' — G andi: P' — P are injective immersions.

The closed subset IG := {g € G | s(g) = t(g)} is a subgroupoid of G, but it does not
necessarily inherit a smooth structure from G. It is called the inner subgroupoid of G=P.
A Lie subgroupoid G'=P’ of G=P is embedded if G’ and P" are embedded submanifolds
of G and P, and it is wide if P = P and i = Idp.
Let for instance G=P be a Lie groupoid and let C, be the connectedness component of
p in t7*(p). Then the union
c@) =Jc,

peP
is a wide Lie subgroupoid of G=P that is open in G (see Mackenzie (2005)). It is called
the identity-component subgroupoid of G=ZP. If G=ZP is t-connected, that is, if all the
t-fibers of G are connected, then C(G) = G.
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Example 1.1.5 Any manifold M may be regarded as a Lie groupoid on itself with s =
t = Id); and every element a unity. A groupoid in which every element is a unity is called
a base groupoid. O

Example 1.1.6 Consider a smooth manifold M and a Lie group G. Then the product
M x G x M is a Lie groupoid over M with the source map s = prj, the target map t = pr,
and the multiplication

(m, g,n) % (n, h,p) = (m, gh, p)

for all m,n,p € M and g,h € G. The unity corresponding to m € M is then (m,e, m),
where e is the neutral element of G and the inverse of an element (m,g,n) € M x G x M
is (n,g!,m). This Lie groupoid is the trivial groupoid on M with group G.

In particular, if M = {p} is just one point, we get the Lie group G, and if G = {e} is the
trivial Lie group, we get the pair Lie groupoid M x M = M associated to M. Since this
example will appear often later on, we give the structure maps explicitly. The source and
target maps are defined by t,s: M x M — M, s(x,y) = y and t(z,y) = x. The product
(x,y) * (y,2) of (z,y) with (y, z) is the pair (z,z). The unit 1, associated to z € M is
the pair (z,z) and the set of units {1, | x € M} is equal to Ay, which is an embedded
submanifold of M x M, via the smooth map € : M — Ay, m — (m,m). The subset of
composable pairs (M x M) X (M x M) =M x Ay x M is an embedded submanifold
of (M x M) x (M x M). Finally, the inverse of (x,y) € M x M is (y, ). O

Example 1.1.7 Let p: E — M be a vector bundle over a manifold M. Then FE is a Lie
groupoid with base M, the source and target maps are both equal to the projection p and
the partial multiplication is just the addition in every fiber. O

The last example will not be used in this thesis, but it is also interesting and worth to be
mentioned here.

Example 1.1.8 Let M be a manifold. Then the set II(M) of homotopy classes (7)
relative endpoints of smooth paths v : [0,1] — M is a groupoid on M with respect to the
following structure: the source and target projections are s({y)) = v(0), t({y)) = (1),
the object inclusion map is m — 1, = (k,,), where k,, is the constant path at m, and
the partial multiplication is (§) x (y) = (0 * ), where § * 7 is the standard concatenation
of v followed by 4, namely (6 *v)(t) = v(2t) for 0 < ¢ < 1 and (§ xv)(t) = 6(2t — 1)
for £ <t < 1. The inverse of (v) is (), where 7 is the reverse of the path 7, i.e.,
(t) =~v(1 —t) for all t € [0, 1].

With this structure, II(M) is the fundamental groupoid of M. The vertexr groups s—!(p) N
t~}(p) for p € M are the fundamental groups of M, and the s-fibers are the universal
covering spaces of M. O
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Left and right translations, bisections

Definition 1.1.9 Let G==P be a Lie groupoid and choose g € G. The left translation by
g 1s defined by:

Ly :t7'(s(g)) = t7'(t(g)),  he> Ly(h) = gxh.
In the same manner, the right translation by g is
Ry:s7!(t(g)) = s (s(9)),  h Ry(h) =hxg.

A right translation on G is a pair of diffeomorphisms ® : G — G, ¢ : P — P such that
so®=¢os, tod =t and, for allp € P, the map ®|s-1,) : s ' (p) = s ' (¢(p)) is Ry for
some g € G. A bisection of G=2P is a smooth map K : P — G which is right-inverse
tot: G — P and such that so K is a diffeomorphism. The set of bisections of G will be
denoted by B(G).

If K: P — (is abisection of G= P, then the right translation by K is a right translation:
Rk :G =G, g+ Risg)(9) = g+ K(s(g)):
We will also use the left translation by K,

Ly : G — G, g — LK((SOK)*l(t(g))) (g)

The set B(G) of bisections of G has the structure of a group. For K,L € B(G), the
product L x K is given by

LxK:P—G, (LxK)(p)=L(p)xK((soL)(p) VpeP.

The composition t o (L x K) is equal to Idp since (to (L x K))(p) = t(L(p)) = p for all
p € P, and the composition so(L*K) is equal to (soK)o(so L), which is a diffeomorphism
of P.

The identity element in B(G) is the identity section € : P < G. The inverse K~!': P — G
of K € B(G) is given by

-1

K™ '(p) = (K ((so K)'(p)))

for all p € P. Indeed, it is easy to verify that to K~! =Idp, so K~! = (so K)~! and we
compute for all p € P:

(K1) % K) (p) = K~ (p) * ((soK*) (p))
= (K ((so >))*1 « K ((so K)™\(p))
s (K (< () =»

10
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and

(K* (K_l)) (p) = K(p)x* K Y((so K)(p)) = K(p) » (K ((s oK) Y(so K)(p))))
= K(p)* (K(p))™" = (to K)(p) = p.

We check finally that Rp.x = Rk o Ry, for all K, L € B(G): for an arbitrary g € G, we
have

-1

R (g9) = g* (Lx K)(s(g)) = g% L(s(g)) x K((s o L)(s(9)))
= (Rr(9)) » K(s(RL(9))) = Rx(RL(9))-

Since R, = Idg, we find then simultaneously the equality Rx-1 = Ry' for all K € B(G).
In the following, we will also consider local bisections of G without saying it always
explicitly. A local bisection of G2 P is a map K : U — G defined on an open set U C P
such that to K = Idy and so K is a diffeomorphism on its image. The set of local bisections
of G P with the domain of definition U C P is written By (G). The local right translation
induced by the local bisection K : U — G is the map R : s 1(U) — s7!((s o K)(U)),
g = g+ K(s(g))-

Example 1.1.10 A bisection of a Lie group G is just an element g € G. The right
translation associated to it is the right translation by g. O

Example 1.1.11 Let M be a smooth manifold and consider the pair Lie groupoid M x
M = M associated to it.

Amap K : M ~ Ay — M x M is a bisection of M x M = M if and only if pr; oK = Idy,
and pr, oK is a diffeomorphism of M. The group of bisections of M x M = M is hence
exactly the group Diff (M) of diffeomorphisms of M; a bisection K € B(M x M) is given by
K(m) = (m, ¢x(m)) with some diffeomorphism ¢ : M — M. The map Rx : M x M —
M x M is then given by Ry = Idy; X¢i and its inverse equals R;(1 =Id, ><<;51_(1. O

Groupoid actions Let G=ZP be a groupoid and M a set with a map J : M — P.
Consider the set G xp M = {(g,m) € G x M | s(g) = J(m)}.

A groupoid action of GZPonJ: M — Pisamap ®: Gxp M — M, &(g,m) =g-m =
gm such that

e J(g-m)=t(g) for all (g9,m) € G xp M,
e g-(h-m)=(gxh)-mforall (h,m) € G xp M, and g € G such that s(g) = t(h),
® 1y -m=mforallme M.
The map J is sometimes called the moment map.
Example 1.1.12 Let G=P be a groupoid.
1. G==2P acts obviously on t : G — P via the multiplication.

2. GzPactsonldp: P — Pvia®:Gxp P — P, (g,p) — t(g*xp) = t(g). O

11
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1.1.2 Quotients by normal subgroupoids or normal subgroupoid
systems.

We follow the definitions and conventions of Mackenzie (1987) for normal subgroupoids
and the quotient defined by a normal subgroupoid.

Definition 1.1.13 Let G==P be a groupoid. A normal subgroupoid N of G=ZP is a wide
subgroupoid of G such that for alln € N NI(G) and g € G such that s(g) = s(n) = t(n),
the product gng=" is again an element of N.

If N C @ is a normal subgroupoid of G2 P, one can define the two equivalence relations
~o, on P and ~ on G as follows:

p~oq <= dn € N such that t(n) =p,s(n) =gq

and
g~h <= dngy,ne € N such that g = nihne.

It is easy to check that the quotient G/ ~ has the structure of a groupoid over P/ ~.

If (F,f): (G=P) — (G'=P’) is a Lie groupoid morphism, then the kernel of (F), f)
is the set K = {g € G | F(g) € P’}, which is a normal subgroupoid of G=P. The
induced groupoid G/ ~x =P/ ~k,. as above is in general not equal to G'=2P’, even if
the Lie groupoid morphism is surjective. Hence, this concept of kernel does not adequately
measure injectivity, in the sense that surjective morphisms are not determined by their
kernel as in the group case (Examples 3.1.1 and 3.1.2 will illustrate this). This is why
there is also a more general notion of quotient of a Lie groupoid by a normal object in
Mackenzie (2005).

The Lie groupoid morphism (F, f) is a fibration if both f : P — P’ and F' : G — f'G" are
surjective submersions, where f'G’ is the pullback and F' : G — f'G’ the induced base
preserving morphism. The map f defines a wide subgroupoid R(f) of P x P = P defined
by {(p.q) € Px P | f(p) = f(q)}. Set G/K :={gK | g € G}, where gK ={g*k |k €
K,s(g) =t(k)}. Then there is an induced action § of R(f) on J : G/K — P, J(¢K) = t(g)
given by (p, q)-gK = hK, where h € G is such that F'(h) = F(g) and t(h) = p. The triple
(K, R(f),0) is called the kernel system of (F, f) (see Mackenzie (2005)). It is a normal
groupoid system in the following sense, and the Lie groupoid G’=P’ is the quotient of
G=P by (K,R(f),0).

Definition 1.1.14 (Mackenzie (2005)) Let G=2P be a Lie groupoid. A normal group-
oid system in G=ZP is a triple N = (N,R,0) where N is a closed, embedded, wide Lie
subgroupoid of G, R is a closed, embedded, wide Lie subgroupoid of the pair groupoid
P x P=2P and 0 is an action of R on the map J: G/N — P, J(gN) = t(g) such that
the following conditions hold

1. For (p,q) € R and gN € G/N such that t(g) = q, if 0((p,q),gN) = hN, then
(s(h),s(g)) € R.

12



1.1 Lie groupoids and Lie algebroids

2. For (p,q) € R, we have 6((p,q),qN) = pN.

3. Consider (p,q) € R and gN € G/N with J(gN) = q, and h € G with t(h) = s(g).
Then if 0((p,q), gN) = g'N and 0((s(g'),s(g)), hN) = I'N, then 6((p,q), ghN) =
ghN.

Set
8 ={(h.g) € G x G | (t(h),t(g)) € R and 6((t(h),t(g)), gN) = hN}.

Then 8 is a closed embedded wide Lie subgroupoid of G x G =G and § =2 R is a Lie
subgroupoid of the Cartesian product Lie groupoid G x G=P x P. If prg : § — G,
(g,h) — h and prg : R — P, (p,q) — ¢ are the projections, the square

PTg

S G
txtl lt
R P

is versal, i.e., the pullback R x p G exists as a submanifold of R x G and the induced map
8 — R xp G is a surjective submersion.

If N = (N,R,0) is a normal subgroupoid system, then R = R(f) with a surjective
submersion f : P — P’. If G’ is the set of orbits of G/N under # and < gN > is
the orbit of gN € G/N, then we can write F' : G — G', F(g) =< gN > and we can
define groupoid projections on G’ with base P’ by t' o FF = fotand s’ o F'= fos. The
multiplication of < gN >, < hN >€ G’ with s’ < gN >=1t' < hN > (which is equivalent
to (s(g),t(h)) € R) is given by

< gN >x < hN >=< gh'N >,

where W' N = 0((s(g),t(h)), hN). With these structure maps, the pair G'=2P’ has the
structure of a Lie groupoid such that (F, f) is a fibration. It is called the quotient Lie
groupoid of G=ZP by the normal subgroupoid system N. It corresponds to the unique
Lie groupoid structure on the quotient sets G' = G/8, P’ = P/R such that the natural
projections prg : G — G', pry : P — P’ form a morphism of Lie groupoids (see Mackenzie

(2005)).

In the following, we will use the name regular normal subgroupoid system for the smooth
object defined above, and say normal subgroupoid system for a triple N = (N, R, 0) with-
out the condition that N and R are embedded in G and P x P, respectively. We get a
groupoid structure on G/8=P/R, but without necessarily a smooth structure.

1.1.3 Lie algebroids

The concept of a Lie algebroid is due to Pradines (1967) and generalizes at the same
time the concept of Lie algebra and of the tangent bundle of a manifold. We will see
below that the Lie algebroid of a Lie groupoid is obtained in a process that generalizes
the construction of the Lie algebra of a Lie group.

13
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Definition 1.1.15 Let M be a manifold. A Lie algebroid on M is a wvector bundle
(A, q, M) together with a vector bundle map a : A — TM over M, called the anchor

of A, and a bracket [-,-] : T(A) x T(A) — T(A) which is R-bilinear and alternating,
satisfies the Jacobi identity, and is such that
(X, f-Y]=F-[X,Y]+a(X)(f) Y (1.1)

for all X, Y € T'(A).

The identity

a([X,Y]) = [a(X),a(Y)] (1.2)
follows from (1.1) for all X,Y € I'(A) and f € C*°(M) by expending out [X,[Y, fZ]] in
two ways (see Herz (1953), Kosmann-Schwarzbach and Magri (1990)).
The manifold M is then the base of A. If A — M is a second Lie algebroid on the
same base M, then a morphism of Lie algebroids p : A — A’ over M, or a base-preserving

morphism of Lie algebroids is a vector bundle morphism such that a’op = a and ¢[X, Y] =
[o(X), e(Y)] for all X, Y € T'(A).

Example 1.1.16 Let g be a Lie algebra. Then g is a Lie algebroid over a point. O

Example 1.1.17 Let M be a smooth manifold. Then the tangent space TM of M is a
Lie algebroid on M with anchor the identity and bracket the Lie bracket on vector fields.{

The Lie algebroid of a Lie groupoid Let G=2P be a Lie groupoid. A smooth vector
field X € X(G) is left invariant if it is tangent to the t-fibers, i.e., X € I' (T*G) and

X(gh) =Ty L, X (h)

for any composable pair (g,h) € G xp G. It is easy to see that X is then completely
determined by its restriction to P, since it satisfies X (¢g) = Ty Ly X (s(g)) for all g € G.
Given X € I'(T'G|p), we write X' for the left invariant vector field defined by X, i.e.,
X' (g) = Ty Ly X (s(g)) for all g € G. If X,Y are sections of T'G|p =: AG, then the Lie
bracket [ X', Y] is again left invariant. The bracket [X,Y]sc € I (AG) of X,Y €T (AG)
is defined as the smooth section of AG such that

(XY = (X, Y]ae)-

The vector bundle AG — P inherits then a Lie algebroid structure, with the bracket
defined above and the anchor map a : AG — TP defined by a(u,) = T}s(u,) € T,P for
all u, € A,G, p € P. The triple (AG,a,[-,|ac) is the Lie algebroid of the Lie groupoid
G. For simplicity, we will write [-, -] for the Lie algebroid bracket.

Note that if X € T'(AG), the vector field X! satisfies X! ~¢ a(X) € X(P) since we have
TysX'(g) = Tys(Tyg) Ly X (s(g))) = TysX (s(g)) for all g € G.

In Mackenzie (2000), the Lie algebroid AG of G=2P is defined as AG = T°G|p with Tt
as anchor map and the bracket defined with the right invariant vector fields. To avoid

confusions, we will write (Z\C/}, et 5) for this Lie algebroid over P.

14



1.1 Lie groupoids and Lie algebroids

The exponential map We recall here also the definition of the exponential map for a
Lie groupoid, see Mackenzie (2005).

Let G=P be a Lie groupoid and choose X € T'(AG). Let {¢X : U — U} be a local flow
for X! € X(G). Since T;tX'(g) =0 for all g € G, we have (to ¢;)(g) = t(g) for all t € R
and g € G where this makes sense. For each t € R where this is defined and p € P, the
map ¢ restricts to ¢;* : t71(p) — t7}(p). Choose h € G such that s(h) = p. We have
then Ly, : t74(p) — t71(t(h)) and Ly o ¢;* = ¢;* o L, since the vector field X' satisfies
XU h*g)=T,LyX'(g) for all g € t7'(p). Recall that X := a(X) € I'(P) is defined on
s(U) :== V C P and is such that X! ~; X. Let ¢ be the flow of X. Then we have
{¢X -V — V;}, where V; = s(U,), and ¢ os = so ¢ for all ¢+ where this makes sense.
Set Exp(tX)(p) := g~ %¢;*(g) for any g € UNs~!(p). We have then toExp(tX) = Idy and
so Exp(tX) = ¢ is a local diffeomorphism on its image V;. The map Exp(tX): P — G
is thus a local bisection of G and, for any g € U, we have by definition

97 (9) = g x BExp(tX)(s(g)) = Rexpex) (9).

Each ¢ is hence the restriction to U of a unique local right translation Rpypx) with
Exp(tX) € By (G). This is summarized in the following proposition.

Proposition 1.1.18 (Mackenzie (2005)) Let G=2P be a Lie groupoid, choose X €
I'(AG) and set W = Dom(X) C P. For allp € W there exists an open neighborhood
U of pin W, a flow neighborhood for X, an € > 0 and a unique smooth family of local
bisections Exp(tX) € By(G), |t| < e, such that:

1. 4| Exp(tX)=X,

2. Exp(0X) = Idy,

3. Exp((t+ $)X) = Exp(tX) » Exp(sX), if |t],|s], |s + t]| <e,
4. Exp(—tX) = (Exp(tX)) ™,

5. {soExp(tX) : U — U,} is a local 1-parameter group of transformations for a(X) €
X(P).

Note that we can show in the same manner that the flow of a right invariant vector field
Y is the left translation by a family of bisections {L,;} of G satisfying so L; = Id on their
domains of definition and such that t o L; are diffeomorphisms on their images. Hence,
the flow of Y commutes with the flow of X! for any left invariant vector field X! and we
get the fact that

Y7, X' =0 (1.3)

forall Y € I'(T3.G) and X € I'(AG).

Note also that if G=2P is a Lie groupoid, then the set of values Exp(tX)(p), for all X €
['(AG), p € P and t € R where this makes sense, is the identity-component subgroupoid
C(G) of G2 P (see Mackenzie and Xu (2000), Mackenzie (2005)).

15



1 Preliminary definitions and facts

1.1.4 Lie bialgebroids, associated Courant algebroids

Let M be a smooth manifold and (A — M, a,[-,-]) a Lie algebroid on M. For k > 0,
lett \" A* denote the k-th exterior power bundle on M. The exterior derwative d :
r (/\k A*) —T (/\kJrl A*) is defined by

kt1
dgb(Xla s 7Xk+1) = Z(_I)H—la(Xl) (gb (Xla s 7Xi7 s 7Xk+1>)
i=1
+3 (- HJQZ)(Xi,Xj],Xl,...,Xi,...,Xj...,XkH)
1<J

for ¢ € F(/\’“A*), X, € T(A), 1 <i<k+1and (df)(X) = a(X)(f) for all f €
C=(M)=T(\"A*) and X € T'(A).
For X € I'(A) and k > 0, the Lie derivative £x : I' (/\]C A*) —T (/\]C A*) is defined by

k
i=1
forp e T (/\/LC A*), Y; € I'(A), 1 <i <k (see for instance Mackenzie and Xu (1994) for a

quick review of these objects). In a similar way, the Schouten bracket and Lie derivative
of multivector fields extend to A. The generalized Schouten bracket

(A xp(m (R »

is characterized by the conditions that | (/\1 A) xT (/\1 A) =T (/\1 A) coincide
with the Lie algebroid bracket, that [X, f] = a(X)(f) for X € I'(A) and f € C*°(M) and
that the properties

[D1, Do) = —(—=1)*=Dm=V[D, Dy,
(=1)F VDD, Dy, D) + (—=1) VED[[Dy, Dy), D]
+ (=)D =D([Dg, Dy), Do) =0,
[D1, Dy A Ds] = [Dy, Do) A Dy + (—=1)*™=Y Dy A [Dy, D5

hold for all D; € T (/\/LC A), Dy e T'(A™A) and D3 € T' (A" A) (see Mackenzie and Xu

(1994), Kosmann-Schwarzbach and Magri (1990)).

Assume that the dual A* — M of A is endowed with a Lie algebroid structure (A* —
M, a,, [ ,]+) such that the following (equivalent) identities holds for the induced maps d :
L'(A°A*) =T (A*A*) and d. : T (A*A) = T'(A® A) and the brackets [-, -] (respectively
[-,+].) induced on T' (A* A) (respectively T' (A® A*)):

di-, i =[d, s+ [.,d]. and d.[,]=[de,]+][, di]
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(see for instance Kosmann-Schwarzbach (1995)). Then the pair (A, A*) is a Lie bialgebroid
and the direct sum vector bundle A & A* — M endowed with the map p = a @ a,, the
symmetric non degenerate bilinear form (-, -) given by ((Zm, ®m), (Ym, Bm)) = Qn(Ym) +
B () for all (,, am), (Ym, Bm) € (A® A*)(m), m € M, and the bracket on its sections
given by

(0.0, (1,00 = (Y] £2Y = £ - 3d.fa(¥) - 50X)) (15)

0 B+ £x5— £ya+ 3d(aly) - 500) )

for all (X, «),(Y,B8) € I'(A @ A*) is a Courant algebroid in the sense of the definition
below.

Definition 1.1.19 (Liu et al. (1997)) A Courant algebroid over a manifold M is a
vector bundle E — M equipped with a fiberwise non degenerate symmetric bilinear form
(-,-), a skew-symmetric bracket |- | -] on the smooth sections T'(E), and a vector bundle map
p: E— TM called the anchor, which satisfy the following conditions for all ey, eq, e3 €

I(E) and f € C(M):
1. [lex, €], es)] + e.p. = D (([es, eal, €5) + ¢.p.),
2. p(le1, e2]) = [p(er), ple2)],
3. lex, feo] = fler, o] + (p(e1) ez — (1, €2) D,
4. poD =0, ic., for any f,g € C=(M), (Df, Dg) =0,
5. pler){ez, e3) = (ler, ea] + Dfex, €2), €3) + (€2, [e1, e3] + Dfex, €3)),

where D : C°(M) — I'(E) is defined by

(D) = p(e)(f)

for all f € C*(M) and e € T(E), that is, D = 3 op*od : C°(M) — I'(E). Here,
p: E — E* is the isomorphism defined by the non degenerate bilinear form (- ,-).

Example 1.1.20 Consider a smooth manifold M, the Lie algebroid (T'M, [-,-],a = Idrp)
and its dual, the cotangent space T*M endowed with the trivial bracket [-,-], = 0 and
the trivial anchor map a, = 0. The map d induced by TM on the sections of A*T*M
is here simply the usual de Rham derivative. The map d, induced by (7*M,0,0) on the
sections of A*TM is trivial since d.(f)(a) = a.(a)(f) =0 for all « € Q' (M).

Hence, the pair (T'M,T*M) is a Lie bialgebroid since the equation d[-,-], = [d-,]. +
[, d], is trivially satisfied.
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1 Preliminary definitions and facts

The direct sum Py, = T'M X, T*M endowed with the projection on T'M as anchor map,
p = Pryyy, the symmetric bracket (-, -) given by

<<Um7 Oém), (wm7 ﬁm» = am<wm> + 6m<vm> (16>
for all m € M, vy, w,, € T,,, M and oy, By, € T;; M and the Courant bracket given by

(060,80 = (1XY) L8 — fyat Jdlav) -500)) ()

= (107 £ - ivda — Ja(x0. 7))

for all (X, «),(Y,5) € T'(Pu ) is then a Courant algebroid. The map D : C*(M) —
I'(Py) is given by Df = £(0,df). O

1.1.5 “Higher” Lie groupoids

The tangent prolongation of a Lie groupoid Let G=2P be a Lie groupoid. Applying
the tangent functor to each of the maps defining G yields a Lie groupoid structure on
TG with base TP, source T's, target Tt and multiplication Tm : T'(G xp G) — T'G. The
identity at v, € T,P is 1,, = T,ev,. This defines the tangent prolongation TG=TP of
G=P or the tangent groupoid associated to G=P.

The cotangent Lie groupoid defined by a Lie groupoid If G=2P is a Lie groupoid,
then there is also an induced Lie groupoid structure on 7*G= A*G = (T'P)°. The source
map s : T*G — A*G is given by

S(ay) € AL G for o, € TG, S(ag)(us(g)) = ag(Ts(g)Lytis(g))
for all ug(g) € Agy)G, and the target map t : T*G — A*G is given by
’E(ag) € A;‘(g)G, ’E(ag)(ut(g)) =qy (Tt(g)Rg(ut(g) — Tt(g)sut(g)))
for all wuyg) € Ay G. If () = t(ey,), then the product a, * oy, is defined by
(g * ap)(vg * vn) = ag(vy) + an(vn)

for all composable pairs (vg,v,) € T(gn) (G xp G). This Lie groupoid structure was
introduced in Coste et al. (1987) and is explained for instance in Coste et al. (1987),
Pradines (1988) and Mackenzie (2005). Note that the original definition was the following:
let Ag be the graph of the partial multiplication m in G, i.e.,

Ag={(9,h,gxh) | g,h €G,s(g) =t(h)}.

The isomorphism ¢ : (T*G)? — (T*G)3, ¥(«, 8,7) = («, B, —7) sends the conormal space
TAc® C (T*G)3|a, to a submanifold A, of (T*G)3. It is shown in Coste et al. (1987) that
A, is the graph of a groupoid multiplication on T*G, which is exactly the multiplication
above.
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The “Pontryagin groupoid” of a Lie groupoid If G=P is a Lie groupoid, there is
hence an induced Lie groupoid structure on Pg = TG X T*G over TP xp A*G. We will
write Tt for the target map

Tt: TG xqT*G — TP xp A*G
(UgaO‘g) = (Tt(vg),t(ag)) ’

Ts for the source map
Ts: TG XgT*G%TP XPA*G

and Te, T¢, Tm for the embedding of the units, the inversion map and the multiplication
of this Lie groupoid.
The canonical projection TG xg T*G — G is a Lie groupoid morphism.

Example 1.1.21 (The Pontryagin groupoid of a Lie group) Let G be a Lie group.
Then the Lie groupoid structure of the Pontryagin bundle P over g* simplifies as follows.
The target and source maps t and s are defined by

Tt : TG xq TG* — g
(vg,9) € T,G x T,G* +— (T.Ry)*ay

and
Ts : TG xq TG* — g
(vg,09) € T,G x T,G* — (T.Ly)*ay °

If Ts(vy, og) = Tt(wp, Br), then the product (v,, ay) * (wp, Br) makes sense and is equal to

(vg, 0tg) * (wp, B) = (Tthvg + Ty Lywy, (Tgth—l)*O{g)
— (Tth’Ug + Tthwh, (Tgth—l)*ﬁh) .

The identity map Te : g* — P¢ is given by Te(§) = (0,€) € g x g* and the inverse map
Ti: P — Pg is defined by

Ti : (vg, org) = (_Tg(Lg‘le‘l)UgvTg‘l(LgRg)*ag)
for all (vg, ay) € TG x¢ T*G. O

Example 1.1.22 Consider a smooth manifold M and the pair Lie groupoid M x M = M.
The tangent groupoid T'(M x M) =TM of M x M = M is easily seen to be T'M X
TM =TM, the pair groupoid associated to T'M.

The Lie algebroid A(M x M) of M x M = M is the set TX , (M x M). A vector (v, wn,) €
Taw) (M x M) lies in T(tmm)(M x M) if 0 = Timm)t(Vm, Wm) = vn. Hence, we have
A(M x M) = (0rpr Xar TM)|a,, and its dual A*(M x M) ~ (TAp)° CT*(M x M)|a,,
is given by A7 (M x M) = {(=am, an) | an € T; M} for all m € M.
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Next, we give the structure of the cotangent groupoid T*(M x M)=2 A*(M x M). If
(s n) € T (M x M), then t(am, o) € ({0} X T, M)* = A% (M x M),

(m,n) (m,m)

t(tm, ) Oy V) = (v, ) (Tin,m) Rim,n) ((Oms Vi) — TS(0, 1))
= (am, an)(T(mym)R(mm)((Oma Um) = (Vs Um)))
= (am, an)(_T(m,m)R(m,n) (Vm; 0m))) = —(m, @) (Vn, 0n) = =i (0m)

for all v, € T,, M, and hence t(a,,, @,) = (m, —p). In the same manner, we show that
$(am, ) = (—a, ay,). The product of (a,, o) and (—au,, o) is then given by

((m, an) * (=, @p)) (Vim, vp) = (s @) * (—ny ) (Vi 0n) * (V5 )

= (Oém, an)(vm, Un) + (_anv ap) (Um Up) = (Oém, ap)(vmv Up)

for any (vm,vp) € T py(M x M) (and any choice of v, € T, M), and hence

(s ) * (=, ) = (A, ).

1.1.6 Homogeneous spaces

The notion of homogeneous space for a groupoid action is more subtle than for groups
(Liu et al. (1998), Mackenzie (1987), Brown et al. (1976)). One natural candidate for
such a space is G acting on itself by left translations, but this action is not transitive in
the usual sense, since s(gx) = s(z), so that the action is transitive only on each s-fiber.
The following intrinsic definition is given in Liu et al. (1998).

Definition 1.1.23 A G-space X over P is homogeneous if there is a section o of the
moment map J : X — P which is saturating for the action in the sense that Gxo(P) = X.
The isotropy subgroupoid of the section o consists of those g € G for which g x o(P) C
o(P).

Let G=2P be a Lie groupoid and H=P a wide subgroupoid of G. Define the equivalence
relation
g~y g < JheHsuchthat gxh =g

on GG and
G/H =G/ ~p={gH | g € G},

where

gH ={g*h|s(g)=t(h) and h € H}.
Since t(g x h) = t(g) for all g x h € gH, the map t factors to a map

J:G/H—= P, JgH)=t(g)
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for all gH € G/H. The multiplication m : G xp G — G factors to a groupoid action ® of
G=PonlJ:G/H — P,
(g, g'H) = (9*g)H

for all (g,g'H) € G xp (G/H) ={(9,9'H) | s(g) = J(¢'H) = t(g")}.
It is shown in Liu et al. (1998) that a G-space is homogeneous if and only if it is isomorphic
to G/H for some wide subgroupoid H C G. This is the definition that will be used here.

Example 1.1.24 Let G=2P be a groupoid. The two extreme examples of homogeneous
spaces of G are the following.

1. In the case where the wide subgroupoid is P, the equivalence classes are gP = {g*p |
p € P,p=s(g9)} = {g} and the quotient is just G/P = G with the first action of
Example 1.1.12.

2. If the wide subgroupoid is G itself, then the equivalence classes are gG = {gxh | h €
G,t(h) =s(g)} =t (t(g)) and the quotient is G/G = P, with projection equal to
the target map t : G — G/G ~ P and with the second action in Example 1.1.12. {

Assume that H is a t-connected wide Lie subgroupoid of G and that G/H is a smooth
manifold such that the projection ¢ : G — G/H is a smooth surjective submersion. We
will say for simplicity that G/H is a smooth homogeneous space of G=P.

Consider the Lie algebroid AH = TpH C TpH C TpG seen as a subbundle of AG
over P and the subbundle H C TG defined as the left invariant image of AH, i.e.,
H(g) = Tyg)Ly (Asq)H) for all g € G. We show that H = ker Tq and G/H is the leaf
space of the foliation on G defined by the involutive subbundle H C TG.

The vector bundle H is spanned by the left invariant vector fields X!, for X € I' (AH) C
I'(AG). Since H is an immersed submanifold of G, AH is a subalgebra of AG, and I'(H)
is hence closed under the Lie bracket.

Choose g € G and v, € H(g). Then vy = Tyg)Lyusg) for some ugy) € Agg)H and there
exists a curve ¢ : (—e,e) — t7(s(g)) N H such that ¢(0) = s(g) and ¢(0) = ug(,). We have
then v, = §(0), if v : (—&,e) = t7'(t(g)) is defined by () = g * c(t) for all t € (—¢,¢).
We can hence compute Tyqu, = 4 |t:0 (gov)(t) = g*c(t))H = 0 since c(t) € H
for all t and thus

e

(g*c)H = {gxct)xh|s(c(t)) =tlh),he Hy ={gxh|s(g) =t(h),h € H} = gH.

Conversely, if p € P and v, € ker(T,q), then we have T,t(v,) = T,nJ(T,qv,) = 0 and
hence v, € A,G. Let ¢ : (—¢,e) = G be such that ¢(0) = p and ¢(0) = v,. Since p € H
and £ o C()H = T,qu, = 0, we find that v, is tangent to H, and hence v, € A H. If
g € G and v, € ker(T,q), then Tytvy = 0 and hence ugy) = TyLy,-1v, € Agy)G. We find
then Tyg)q(TyLy-1vy) = Tyr®y-1(Tyquy) = 0 and hence TyLy,-1v, € Agy)H, which yields
vy € H(g).

If g and ¢’ are in the same leaf of H, we find without loss of generality one invariant
vector field X! € T'(H), X € T'(AH) and ¢ € R such that ¢’ = ¢;X(g), where ¢~ is the flow
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of X! (in general, g and ¢’ can be joined by finitely many of such paths). We have then
Tyx(0(X' (X (g))) = 0 for all s € [0,¢], and hence (q o ¢7)(g) = q(g) for all s € [0,1].
This leads to ¢’H = gH. Conversely, if ¢H = gH, it is easy to show, using the fact that
H is t-connected, and hence H = C'(H) = {Exp(tX) |t € R, X € T(AH)} that g and ¢
are in the same leaf of J{.

Consider the set B(H) of (local) bisections K : U C P — H of H such that to K = Idy
and s o K is a diffcomorphism. We have gH = {Rk(g) | K € B(H)} and G/H is the
quotient of G' by the right action of B(H) on G. A function f € C*°(G) pushes forward
to the quotient G/H if and only if it is invariant under Ry for all bisections K € B(H).

1.2 Generalities on Dirac structures

Dirac structures (Courant (1990), Courant and Weinstein (1988)) provide a unified frame-
work for the study of (closed) 2-forms, (Poisson) bivectors, (regular) foliations and also a
convenient geometric setting for the theory of nonholonomic systems and circuit theory.
They also have a wide range of applications in geometry and theoretical physics.

We give in this section the definition and important properties of Dirac structures. In the
last subsection, we show how infinitesimal symmetries of a subbundle of the Pontryagin
bundle integrate to symmetries under flows. This result is standard and widely used, but
its proof is difficult to find in the literature.

1.2.1 Dirac manifolds

As we have seen in Example 1.1.20, the Pontryagin bundle Py := TM X T*M of a
smooth manifold M is endowed with the non-degenerate symmetric fiberwise bilinear
form of signature (dim M, dim M) given by (1.6). The orthogonal space relative to this
pairing of a subbundle E C P, will be written E* in the following. A Dirac structure (see
Courant (1990)) on M is a Lagrangian vector subbundle D C P,,;. That is, D coincides
with its orthogonal relative to (1.6), D = D*, and so its fibers are necessarily dim M-
dimensional.

Let (M,D) be a Dirac manifold. For each m € M, the Dirac structure D defines two
subspaces Go(m), G1(m) C T,,M by

Go(m) :=A{vy € T;,M | (v1,0) € D(m)}

and
Gi(m) :={vm € T,,M | 3, € T; M : (vy,, 0y) € D(m)},

and two subspaces Po(m),P1(m) C T M defined in an analogous manner. The dis-
tributions Go = UpenGo(m) and Py = UpenrPo(m) are not necessarily smooth. The
distributions Gy = Uy,earGi(m) (respectively P1 = UpenP1(m)) are smooth since they
are the projections on T'M (respectively T*M) of D. The distribution Gq is called the
characteristic distribution of the Dirac structure.
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Integrable Dirac manifolds A Dirac structure D on a manifold M is integrable if
['(D),T'(D)] € T'(D), where [-, ] is the bracket defined in (1.7). Since (X, «), (Y, 3)) =0
if (X,a),(Y,pB) € I'(D), integrability of the Dirac structure is expressed relative to a non-
skew-symmetric bracket that differs from (1.7) by eliminating in the second line the third
term of the second component. This truncated expression is called the Courant-Dorfman
bracket in the literature:

[(X,Oz),(Y,ﬁ)] = ([Xay]a‘EXﬁ—ina) (18)

for all (X,a),(Y,B) € I'(D). The restriction of the Courant-Dorfman bracket to the
sections of an integrable Dirac bundle is skew-symmetric and satisfies the Jacobi identity.
It satisfies also the Leibniz rule:

(X, a), (Y, B)] = FI(X, ), (Y, B)] + X (f) - (Y, ) (1.9)

forall (X, ), (Y,B) € I'(D) and f € C*°(M). Note that this equality is true for all sections
(X, ), (Y,B) € I'(Pa) (see for instance Bursztyn et al. (2007)), but the Courant-Dorfman
bracket is not skew-symmetric on arbitrary sections of Pj;.

The Dirac manifold (M, D) is integrable if and only if the tensor Tp € I' (/\3 D*) defined
on sections (X, «), (Y, ), (Z,v) of D by

To((X,), (v, 8),(2,%)) = ([(X,), (v, 8}, (2.7)) (1.10)
vanishes identically on M (see Courant (1990)). Note that we have
To((X1, 1), (X2, @2), (X5, a5)) = on ([X2, X)) + Xi(az(X3)) + c.p. (1.11)

for all (X1, aq), (X2, as), (X3,a3) € I'(D). It is also easy to check that the cotangent part
of

(X1, 1), [(X2, a2), (X5, a3)]] + c.p.
is equal to

d (To((X1, 1), (X2, a2), (X3, 23)))
for all (X7, 1), (Xs, as), (X3, 3) € T'(D).

More generally, if (E — M, p, (-, ), [, ]) is a Courant algebroid, we can define in the same
manner as above a Dirac structure D in E as a Lagrangian subbundle. It is integrable if
its set of sections is closed under the bracket [-, -].

Poisson manifolds as integrable Dirac manifolds The following example shows how
Dirac manifolds generalize Poisson manifolds. This example will be very important in the
following, since we will generalize results known for Poisson manifolds to results about
Dirac manifolds.
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Example 1.2.1 Recall that a Poisson manifold is a manifold M which set of smooth
functions is endowed with a skew-symmetric bracket

{,}:C®(M) x C*(M)— C*(M)

that satisfies the Jacobi identity and such that {f, -} : C®(M) — C*°(M) is a derivation
for any f € C*(M). A Poisson bracket on a manifold M is equivalent to a skew-
symmetric bivector field 7 € X%(M) given by w(df,dg) = {f,g} for all f,g € C>®(M).
The Jacobi identity is equivalent to [m, 7] = 0, where the bracket is the Schouten bracket
on multivector fields (see (1.4)).

Let M be a smooth manifold endowed with a globally defined bivector field 7 € T’ ( /\2 TM ) .
Then the subdistribution D, C P,; defined by

D,(m) = {(7*(atm), ) | @y € TEM}  for all m € M,

where 7% : T*M — TM is defined by 7%(a) = 7(a,-) € X(M) for all a« € QY(M), is a
Dirac structure on M. It is integrable if and only if the bivector field satisfies [r, 7| = 0,
that is, if and only if (M, ) is a Poisson manifold. O

Note that in the following, we will also be interested by non integrable Dirac structures
(and hence also by graphs of skew-symmetric bivector fields that are not Poisson), since
the objects that we will study also have interesting properties in the non integrable case.

The product of two Dirac manifolds. Let (M, Dy) and (N,Dy) be Dirac manifolds.
Consider the product M x N. We identify in the following always (without mentioning
it) the tangent space T'(M x N) with TM x TN, and write (v,, w,) for the elements of
T (M x N) =T,M x T,;N. That is, an element of X(M x N) is written (X,Y’) with
X € X(M)and Y € X(N). We identify in the same manner 7%(M x N) with T*M xT*N.
The product Dirac structure Dy, @ Dy on M x N is the product of Dy; and Dy: the pair
(X,Y), (a, B)) is a section of Dy @Dy if and only if (X, ) € T'(Dy;) and (Y, 3) € T'(Dy).
The Dirac manifold (M x N,Dy; @ Dy) is integrable if and only if (M, D,,) and (N, Dy)
are integrable.

Symmetries of Dirac manifolds Let (M,D) be a Dirac manifold and G a Lie group
with ® : G x M — M a smooth left action. Then G is called a symmetry Lie group of D
if for every g € G the condition (X, a) € ['(D) implies that (®}X, (IJZoz) € I'(D). We say
then that the Lie group G acts canonically or by Dirac actions on M.

Let g be a Lie algebra and £ € g — &y € X(M) be a smooth left Lie algebra action. The
Lie algebra g is said to be a symmetry Lie algebra of D if for every £ € g the condition
(X,a) € I'(D) implies that (£¢,, X, £¢,,a) € T'(D).

1.2.2 Dirac maps and Dirac reduction

Let (M,Dys) and (N, Dy) be two Dirac manifolds and F': M — N a smooth map. Then
F is a forward Dirac map if for all n € N, m € F~'(n) and (v,,a,) € Dy(n) there
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exists (U, @) € Dps(m) such that T, Fv,, = v, and o, = (T,,F)*a,. The map F is
a backward Dirac map if for all m € M, n = F(m) and (v, ) € Das(m) there exists
(Un, ) € Dy(n) such that T, Fv,, = v, and o, = (T,,F)*a,. If F is a diffeomorphism,
then it is easy to check that it is a backward Dirac map if and only if it is a forward Dirac
map.

Let M and N be smooth manifolds and ¢ : M — N a smooth map. Assume that N is
endowed with a Dirac structure Dy. The pullback ¢*Dy of Dy is the subdistribution of
Py defined by

E|<w¢(m)7 ﬁqb(m)) S DN(¢<m>>
(¢"Dn)(m) = S (Um, ) € Par(m) | such that T5,0(vn) = Weam) (1.12)

and Ay = (ngb)*ﬁzﬁ(m)

for all m € M. Each fiber of ¢*Dy is Lagrangian in TM x ,; T*M (see for instance Jotz
and Ratiu (2011)). Hence, if ¢*Dy is smooth, it is a Dirac structure on M such that ¢
is a backward Dirac map. The Dirac structure ¢*Dy is then the backward Dirac image
of Dy under ¢. The forward Dirac image of a Dirac structure under a map is not always
Lagrangian. We will see below a situation where it is a Dirac structure.

Let (M, D) be a smooth Dirac manifold with a smooth proper Dirac action of a Lie group
G on it, such that all isotropy subgroups of the action are conjugated. Then the space
M := M/G of orbits of the action is a smooth manifold and the quotient map ¢ : M — M
is a smooth surjective submersion. Set K =V x,; O7+ys, where V is the vertical space of
the action. We have the following theorem (see Jotz et al. (2011a)).

Theorem 1.2.2 Let G be a connected Lie group acting in a proper Dirac manner on
the Dirac manifold (M, D), such that all isotropy subgroups are conjugated. Assume that
DNXK* has constant rank on M, where Kt = TM ¢ V°. Then the Dirac structure D on
M induces a Dirac structure D on the quotient M = M /G given by
S P _ . | 3X € X(M) such that X ~, X
D(m) = {(X(m),a(m)) € TmM xT:M and (X, q"G) € T(D)

for all m € M. If (M,D) is integrable, then (M,D) is also integrable.

The Dirac structure D is then the forward Dirac image ¢(D) of D under q.

Let G=P be a Lie groupoid and H a t-connected wide Lie subgroupoid of G=P such
that G/H = G/H has a smooth manifold structure and the projection ¢ : G — G/H is
a smooth surjective submersion (see the background notions about homogeneous spaces
of Lie groupoids in Subsection 1.1.6). We have the following pull-back diagram of vector
bundles

TG xg H°)(H xg O0p+g) —=T (G/H) xg/u T* (G/H) .

| |

G/H
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Set Ky := H X Oy« and hence K& = TG xg H°. Let D be a Dirac structure on G and
assume that

(R X, Rjca) € I'(D) for all (X, ) € I'(D) and K € B(H), (1.13)

i.e., the Dirac structure is invariant under the right action of H on GG. Then we can show
that

[T (Xy), T (DNXy)] C DD+ XKp). (1.14)
If D is integrable, then we have in a trivial manner

[r (Dm%ﬁ)H,P(DﬂfK}{)H] C T(D + Xp), (1.15)

where I' (D N CKﬁ)H is the set of sections of D N K3 that satisfies
(R X, Riea) = (X, )

for all K’ € B(H). Hence, all the hypotheses for the Dirac reduction theorem in Zambon
(2008) (see also Jotz et al. (2011a)) are satisfied, and we get the following result in our
particular situation.

Theorem 1.2.3 Let G=P be a Lie groupoid and H a t-connected wide Lie subgroupoid
of G=P such that G/H = G/H has a smooth manifold structure such that the projection
q: G — G/H is a smooth surjective submersion. Then we have in particular the reduced
standard Courant algebroid T (G/H) xg/u T (G/H) on G/H.

Let D be a Dirac structure on G such that DNKy; has constant rank and (1.13) is satisfied.
Then D descends to a Dirac structure q(D) on G/H. If furthermore D is integrable, then
q(D) is integrable.

The Dirac structure ¢(D) on the quotient G/H is given by

3X € X(G) such that } . (1.16)

F<Q<D)) = {(X,@) S F(PG’/H) X ~y X and (X, q*@) c P(D)
In other words, ¢(D) is the forward Dirac image of D under ¢ : G — G/H. If Xy C D,
then D = ¢*(¢(D)).

1.2.3 Invariant Dirac structures on a Lie group

Definition 1.2.4 A Dirac structure D C TG xg TG* on a Lie group G is called left
invariant (respectively right invariant ) if it is invariant under the action of G on TG X
T*G induced from the left (right) action of G on itself.
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1.2 Generalities on Dirac structures

Let G be a Lie group with Lie algebra g and let ® be a Dirac subspace of g x g*, that is,
D is a vector subspace of g x g* that is orthogonal to itself relative to the pairing (- ,-),
defined on g x g* by ((z,&), (y,n))s = n(x) + £(y) for all x,y € g and &, n € g*. We set

go:={reg|(z,00e®}, g :={reg|IKecg :(z,§ €D},

po:={€g"[(0,§) €D} and pr:={{ecg |[Ireg:(z,{ecD}
Then we have 98 = plupi = gOugT = Po, and 138 =t
Let © be a Dirac subspace of g x g*, and define ®' on G by

D'(g) = {(TeLyz, (TyLy)"€) | (x,6) € D}

for all ¢ € G. Then D' is a left invariant Dirac structure on G. Conversely, if D is a left
invariant Dirac structure on a Lie group G, then D = D!, where ® := D(e) C g X g*.
The next proposition shows that the integrability of ! depends only on @ (see also
Milburn (2007)).

Proposition 1.2.5 The Dirac structure D' is integrable if and only if (([z, y])+&([y, 2]) +
[z, 2]) = 0 for all pairs (x,€), (y,n) and (2,() € D.

PROOF: Recall that D! is integrable if for all sections (X, a), (Y,3) € I'(D!), we have
(X, ), (Y,B)] = ([X,Y], £x8 — iyda) € T(D!).

By (1.9), it suffices to show this for a set of spanning sections of D!. For (z,£) € D, the
left invariant pair (z',&'), defined by (2'(g),&'(g)) = (T.Lyz, (TyL,-1)*€) for all g € G, is
a section of D', Choose (z,¢), (y,n) and (2,¢) € ®. Then we have [xl,yl} = [z,y]" by
definition of the Lie bracket on g, £,n' = (ad’ n)!, iyldgl = (ad, 6!, where for £ € g* and

x € g, the element ad}; & € g* is defined by ad}; &(y) = £([y, z]) for all y € g. We get

<(['T7y]l7 £m”7l - iyldfl) ’ (zlu Cl)> = C([:c,y]) + ?7([2,37]) + f([yv Z])

Hence, since the sections (zl,Cl), for all (2,{) € D, are spanning sections for D!, we
conclude that [(:pl, f'l) , (yl, nl)} = ([z,y], ipdnt — iyzdfl) is a section of D' if and only if
C([z,9]) +n([z,2]) + &([y, 2]) = 0 for all (2,¢) € D. O

1.2.4 Invariance of Dirac structures under infinitesimal actions

Proposition 1.2.6 Let E be a subbundle of the Pontryagin bundle TM Xy T*M of a
smooth manifold M. Let Z € X(M) be a smooth vector field on M and denote its flow by

G- If
[(Z,0),(X,a)] = £2(X,a) e T(E)  forall (X,«a)e€'(E),

where |-, -] is the Courant-Dorfman bracket, then

o;(X,a) e (E)  forall (X,a)€e'(E) and t € R where this makes sense.
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1 Preliminary definitions and facts

Corollary 1.2.7 Let D be a Dirac structure on a smooth manifold M. If Z € X(M) is a
vector field such that

[(Z,0),d] € (D) forall deT(D),
then ¢;d € T'(D) for all d € T'(D) and t € R where this makes sense.

PROOF (OF PROPOSITION 1.2.6): The subbundle E of Py; = T'M x 3, T*M is an embed-
ded submanifold of P,;. For each section o of P,;, the smooth function i, : T M x y;T*M —
R is defined by l,(v,a) = (o(q(v,q)), (v,a)) for all (v,a) € TM xp T*M, where
q: TM xy T*M — M is the projection. For all e € E, the tangent space T.E of
the submanifold E of P,; is equal to

ker {delo |oeT (EL)} )
Consider the complete lift Z to Py, of Z, i.e., the vector field Z € ¥(P);) defined by
Z(ly) = liz0).01 and  Z(q"f) = ¢"(Z(f))

for all o € I'(Pys) and f € C°°(M) (see Mackenzie (2005)).
Note that if o € I' (E*), then we have £;0 € I' (E*) since for all 7 € I'(E):

(£go,1y=Z ((0,7)) — (0, £77) = 0.
Choose e e Eand 0 € T (EL). Then we have

(Aelo)(Z(e)) = (2(15)) (¢) = lzopo1(€) = Lea(e) = 0.

Hence, the vector field Z is tangent to E on E. As a consequence, its flow curves starting

at points of e remain in the submanifold E.
We check that the flow ®; of the vector field Z is equal to (T'¢y, (¢—¢)*), i.e.,

(I)t (Uma am) = (Tm(bt(Um)a Qpy © Tq&t(m)(bft)
for all (v,,, ) € Par(m). We have, for all o = (Y, ) € T'(Pyy):

d d
Tl (Du(vm, 0m)) = — ((&1(m)), (T e(vm), O © Ty (m)6-1))
- % (Y (¢e(m)), B(d:(m)))s (Tt (V) m © Tpymyd—1) )

= % (97 (Y, ) (m), (vm, am)) = (61 (£2(Y, B))(m), (Vm, o))
= liz.0)0) (P1(Vm, ) = Z(ly) (Pe(0m, vm)) -
In the same manner, we compute for any f € C*°(M):
) @l ) = 2 7(0um)) = Z()(04m) = 204 1) (@1fvim, ).
Choose a section (X, a) € I'(E) and a point m € M. We find

(07 (X, 0))(m) = (Ts,(m) 0+ X (¢1(m)), gy (m) © Trn6e) = ¢ (X, @) (de(m))) € E(m)
since (X, a)(¢¢(m)) € E(¢y(m)). Thus, we have shown that ¢; (X, «) is a section of E. [
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2 Multiplicative Poisson and Dirac
structures

A Poisson Lie group is a Lie group endowed with a Poisson structure that is compatible
with the Lie group structure. Poisson Lie groups were introduced by Drinfel’d (1983)
and studied by Semenov-Tian-Shansky (1985). The systematic study of the geometry of
Poisson Lie groups was started with the works of Lu and Weinstein (see for instance Lu
and Weinstein (1989), Lu (1990), Lu and Weinstein (1990)).

There are two main reasons for the wide interest in Poisson Lie groups. First, the Quan-
tum Yang-Baxter Fquation, which is a basic equation in statistical mechanics and quan-
tum field theory, has solutions that define quantum groups in the sense of Faddeev and
Drinfel'd (Drinfel'd (1986)). Since one can take formally the classical limit of a quantum
group to get a Poisson Lie group, Poisson Lie groups are good objects of study for the
quantization of Poisson manifolds. Another motivation for studying Poisson Lie groups
is to understand the Hamiltonian structures of the groups of dressing transformations of
certain integrable systems. For some integrable systems, there is a Lie group called the
dressing transformation group, that plays the role of hidden symmetry group of the system.
The dressing transformation group does not in general preserve the Poisson structure on
the phase space, but it carries a natural Poisson structure that makes it a Poisson Lie
group, and the dressing action defines a Poisson action (Semenov-Tian-Shansky (1985)).
A Poisson homogeneous space of a Poisson Lie group is a homogeneous space of the Lie
group that is endowed with a Poisson structure such that the left action of the Lie group
on the homogeneous space is a Poisson map. Poisson homogeneous spaces of Poisson Lie
groups are in correspondence with suitable subspaces of the direct sum of the Lie algebra
with its dual.

The notion of Poisson Lie group was generalized to the notion of Poisson groupoid by
Weinstein (1988), and the homogeneous spaces of Poisson groupoids were studied and
classified in Liu et al. (1998).

In this chapter, we start by recalling the definitions of Poisson group(oid)s and their homo-
geneous spaces and state the theorems that will be generalized later on in a classification
of Dirac homogeneous spaces of Dirac groupoids. Then we give the definitions of multi-
plicative Dirac structures on Lie groups and Lie groupoids, together with some examples.
Finally, we define the action of (T'G x¢T*G)=(TP xp A*G) on T(G/H) xg/u T*(G/H)
associated to the left action of a Lie groupoid G=P on a homogeneous space G/H. Using
this, we define the notion of a Dirac homogeneous space of a Dirac groupoid. This defini-
tion turns out to generalize in a straightforward manner the one of Poisson homogeneous
spaces of a Poisson group(oid).
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2 Multiplicative Poisson and Dirac structures

2.1 Poisson Lie group(oid)s and Poisson homogeneous
spaces

We recall in this section some background notions about Poisson Lie groups, Poisson
groupoids and their homogeneous spaces. Most of the material here can be found for
instance in Laurent-Gengoux et al. (2007).

Definition 2.1.1 Let G be a Lie group endowed with a Poisson bivector rg. Then (G, 7g)
15 a Poisson Lie group if the multiplication m is a Poisson map, where G X G is endowed
with the product Poisson structure, or equivalently, if

re(gh) = TRyme(g) + TLyma(h) 2.1)
forall g,h € G.
Equation (2.1) yields then automatically 7 (e) = 0 and
TRgn-17c(gh) = TRy-176(g) + Adg (TRp-17e(h))
for all g,h € G. The map
Cro :G—=9gAg

defined by
Cﬂ'G (g) = TRg_”TG<g>

for all g € G is hence a group 1-cocycle. By derivation at e, we get a Lie algebra 1-cocycle
dCre 90— 0Ng
and the fact that [7g, 7¢] = 0 is equivalent to
(deCri)” @" Ng" = g
being a Lie algebra bracket on g*.

Definition 2.1.2 A Lie bialgebra is a pair (g,v) with a Lie algebra g and a Lie algebra
1-cocycle v : g — g A g such that the dual map v* : g* N g* — g* defines a Lie algebra
bracket on the dual g* of g.

Alternatively, one says that a Lie bialgebra (g, g*) is a pair of dual Lie algebras such that
the map g — g A g dual to the Lie bracket on g* is a Lie algebra 1-cocycle.

The following theorem of Drinfel’d shows that the construction above yields a classification
of Poisson Lie groups.

Theorem 2.1.3 (Drinfel’d (1983)) Let G be a connected and simply-connected Lie
group with Lie algebra g. Then the Lie bialgebras (g,g*) are in one-to-one correspon-
dence with the multiplicative Poisson structures g on G.
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2.1 Poisson Lie group(oid)s and Poisson homogeneous spaces

If (g,¢") is a Lie bialgebra, there is an induced Lie algebra structure on g x g* that is
given by

[(xag)a (?/ﬂ?)] = ([i’, y] - ad;x + adz Y, [6777] + ad; n—- ad; g) )
for all z,y € g and &, € g*. Note also that there is a natural non degenerate symmetric

pairing on g x g*, given by ((z,€), (y,7))g = §(y) +n(z) for all x,y € g and §,n € g*. The
Lie algebra g x g* is called the (Drinfel'd) double of the Lie bialgebra.

The Lie algebra defined this way by the Lie bialgebra of a given Poisson Lie group has an
important role in the classification of the homogeneous spaces of this Poisson Lie group.

Definition 2.1.4 Let (G, 7g) be a Poisson Lie group and H a closed subgroup of G. A
Poisson bivector field ng/u on G/ H is mg-homogeneous if the left action o : G x G/H —
G/H of G on G/H is a Poisson map, where GX G /H is endowed with the product Poisson
structure. The pair (G/H,mq/u) is then a Poisson homogeneous space of the Poisson Lie

group (G, 7c).

If (G/H,mq/m) is a Poisson homogeneous space of a Poisson Lie group (G, mg), one can
look at the pullback Dirac structure ¢*(Dx,, ), where ¢ : G — G/H is the surjective sub-

mersion and D, is the graph of the vector bundle homomorphism Temt: TH(G/H) —
T(G/H), as in Example 1.2.1. The fiber ® := (¢*(Dx.,,,))(e) C g x g* over e of this Dirac
structure satisfies then

1. hx {0} =Dn(gx{0}),

2. ® is a subalgebra of g x g*,

TG/H

3. ® is Lagrangian,

where b is the Lie algebra of H. Drinfel’d classifies the Poisson homogeneous spaces of a
Poisson Lie group in terms of such Lagrangian subalgebras of g x g*.

Theorem 2.1.5 (Drinfel’d (1993)) Let (G, n¢) be a Lie group with Lie bialgebra (g, g*)
and let H be a closed subgroup of G with Lie algebra fy. There is a one-to-one correspon-

dence between mwg-homogeneous Poisson structures on G/H and Lagrangian subalgebras
D Cgxg* such that h x {0} =D N (g x {0}).

This theorem is as the origin of this thesis. The first question that arises is if it is possible
to drop the condition on the intersection of the Lagrangian subalgebra with g x {0}. This
leads us to the notion of “Dirac homogeneous spaces” of Poisson Lie groups, as we will
see in Chapter 4. The proof of this theorem, which is rather short in Drinfel’d (1993) (see
Diatta and Medina (1999), Lu (2008), Evens and Lu (2001) for more details about the
proof, see also Liu et al. (1998)), will be natural in the general framework of Dirac Lie
groups and their homogeneous spaces.

Recall that if (M, m/) is a Poisson manifold, a smooth submanifold N of M is coisotropic
if for all n € N, we have my(a, 8,) = 0 for all a,, B, € T,,N° C T* M. Equivalently, the
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2 Multiplicative Poisson and Dirac structures

Hamiltonian vector field corresponding to any function that is constant on NN is tangent
to N (see Weinstein (1988)), i.e., 7%, (a,) € T, N for all ay, € T, N° C T* M.

We write (M, —my;) or shorter M for the manifold M endowed with the opposite Poisson
structure and if (IV, ) is another Poisson manifold, we write (M x N, my @ my) for the
product Poisson manifold.

Consider now a Lie groupoid G=P endowed with a Poisson bivector 7.

Definition 2.1.6 The pair (G=P, ng) is a Poisson groupoid if the graph
Ac={(g.h,g*h) g, h € G s(g) =t(h)} SCGxCGxG
of the multiplication map m is a coisotropic submanifold of (GX G X G, mq ® 7 ® (—7¢g)).

Poisson Lie groupoids were introduced in Weinstein (1988) and studied in Weinstein
(1988), Xu (1995), Mackenzie and Xu (1994) among other, see also Mackenzie (2005).

It is shown in Mackenzie and Xu (1994) that (G=P, ) is a Poisson Lie groupoid if and
only if the vector bundle map WﬁG : T*G — TG associated to mg is a morphism of Lie
groupoids over some map a, : A*G — TP (the restriction of Wé to A*G). Equivalently,
the graph D, C P (see Example 1.2.1) of the multiplicative Poisson structure mg on
G=3P is a subgroupoid of the Pontryagin groupoid (TG xg T*G)=(TP xp A*G).

It is shown in Weinstein (1988) that the manifold P of identity elements of a Poisson
groupoid G is coisotropic in G, and its conormal bundle TP° C T*G|p thereby acquires
a Lie algebroid structure. This conormal bundle may be identified with A*G, the dual
vector bundle of AG, in a standard way. The Lie algebroid structure on the dual A*G
of the Lie algebroid AG — P of G=2P is then such that (AG, A*G) is a Lie bialgebroid
(see Mackenzie and Xu (1994), Mackenzie (2005)). Hence, there is a Courant algebroid
structure on AG xp A*G — P as in Section 1.1.4.

Multiplicative Poisson structures on a t-connected and simply connected Lie groupoid
are classified by the possible Lie bialgebroid structures on the Lie algebroid of the Lie
groupoid.

Theorem 2.1.7 (Mackenzie and Xu (2000)) Let (AG,A*G) be a Lie bialgebroid,
where AG is the Lie algebroid of a t-connected and simply connected Lie groupoid G=P.
Then there is a unique Poisson structure on G that makes G into a Poisson groupoid with

Lie bialgebroid (AG, A*G).

Let now H be a wide t-connected Lie subgroupoid of G=P such that the quotient G/H
is a smooth manifold and the projection ¢ : G — G/H is a surjective submersion.

Definition 2.1.8 Assume that G/H is endowed with a Poisson structure g u. The pair
(G/H,mg/u) is a Poisson homogeneous space of the Poisson groupoid (G=P,ng) if the
graph

Aeym ={(9,9H,99'H) | 9,9 € G,s(g9) =t(¢")} C G x (G/H) x (G/H)

of the left action of G2 P on G/ H is a coisotropic submanifold of (Gx(G/H)x(G/H), n¢®
Ta/u ® (—7q/m))-
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2.2 Multiplicative Dirac structures on Lie group(oid)s

We will give in Section 2.3 an interpretation of this by means of an action of P = TP xp
A*G on Pgp.

The following theorem classifies the Poisson homogeneous spaces (G /H, m¢ ) of a Poisson
groupoid (G=P, 7g) in terms of Lagrangian subalgebroids © of AG xp A*G such that
DN (AG xp 04+¢) = AH Xp 04+, where AH is the Lie algebroid of H, seen as a
subalgebroid of AG.

Theorem 2.1.9 (Liu et al. (1998)) For a Poisson groupoid (G=P, n¢), there is a one-
to-one correspondence between Poisson homogeneous spaces (G/H, 7 i) and reqular Dirac
structures ® of its tangent Lie bialgebroid, where H is the t-connected closed subgroupoid
of G corresponding to the subalgebroid ® N (AG Xp 04+¢).

2.2 Multiplicative Dirac structures on Lie group(oid)s

Definition 2.2.1 (Ortiz (2009)) A Dirac groupoid is a Lie groupoid G = P endowed
with a Dirac structure Dg such that Dg C TG Xg T*G is a Lie subgroupoid. The Dirac
structure D¢ is then said to be multiplicative.

Note that in Ortiz (2009), Dirac manifolds are always integrable by definition. Here, we
will also study non integrable Dirac structures.

The set of units of this Lie groupoid is then a subbundle of (T'G x¢ T*G) |p, that will be
written A(Dg) — P in the following. It will be studied more carefully in Section 5.2.

In the case of a Lie group, we have the following equivalent definition. The proof of the
equivalence can be done as the proof that we will give later for an analogous statement
about homogeneous spaces (see Proposition 2.3.4).

Proposition 2.2.2 A Dirac Lie group is a Lie group G endowed with a Dirac structure
Dg C TG xg T*G such that the group multiplication map

mZ(GXG,Dg@Dg)%(G,Dg)

is a forward Dirac map.

We give here the standard examples of Dirac groupoids, which will illustrate the theory
later on.

Example 2.2.3 As we have seen in the previous section, (G=3 P, m¢) is a Poisson groupoid
if and only if (G=P, D,,) is an integrable Dirac groupoid. O

Example 2.2.4 Let G2 P be a Lie groupoid. A 2-form wg on G is multiplicative if the
partial multiplication map m : G xp G — G satisfies m*wg = prj wg + pri wg. The graph
D... = Graph(wf, : TG — T*G) C Pg is then multiplicative, and (G=P,D,,.) is a Dirac
groupoid, see Ortiz (2009), Bursztyn et al. (2009). The 2-form is closed if and only if the
Dirac groupoid is integrable.
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2 Multiplicative Poisson and Dirac structures

Conversely, if a Dirac groupoid (G=P,D¢) is such that G; = T'G, then D¢ is the graph
of the vector bundle homomorphism TG — T*G induced by a multiplicative 2-form. If
the set of smooth sections of D¢ is closed under the Courant-Dorfman bracket, then the
2-form is closed.

Note that presymplectic groupoids have been studied in Bursztyn et al. (2004), Bursztyn
and Crainic (2005). These are Lie groupoids endowed with closed, multiplicative 2-forms
satisfying some additional non degeneracy properties that will be recalled in Example

5.1.13. O

Example 2.2.5 Let (M,D,;) be a smooth Dirac manifold. Recall from Example 1.1.22
the higher Lie groupoid structures on T (M x M)=TM and T*(M x M)=T*M. We
check that the Dirac structure Dy; © Dy;, defined by

(U, 04y,) € Dpg(m) }

(Dys © Dyg)(m,n) = {((Um, —Un), (O, ) € Parscar(m,n) and (vy, ) € Das(n)

for all (m,n) € M x M, is a multiplicative Dirac structure on M x M = M. This
generalizes the fact that if (M, 7)) is a Poisson manifold, then M x M = M endowed
with my @ (—myy) is a Poisson groupoid.

If ((Vmy —n), (Qm, ) € (Dar © Dar)(m, n), then, by Example 1.1.22] we have

Tt((Vm, —vn), (s @n)) = ((Vm, V), (Qm, —aim)) € (Dar © Do) (m, m)
and
Ts((Vims —Vn), (Qny @) = (=0, —0n), (=, @) € (Dar © Dar)(n,m)

by definition of Dy, © Dj;. Choose a composable pair ((vy,, —v,), (Qm, @,)) € (D ©
Dar)(m,n), ((—vn, —vp), (—an, ) € (Dar © Das)(n, p). Then we have

((Umv _Un)v (amv an)) * ((—Un, _Up>7 (_anv ap)) = ((Umv _Up)v (amv ap))v

which is an element of (Dy; © Dys)(m,p). Finally, if (v, —vn), (Qm, n)) € (Dy ©
Dar)(m,n), then (v, —vn), (i, a)) ™t equals ((—vy, V), (—n, —auy,)), which is also an
element of (Dy; © Dyy)(n, m).

We call the Dirac groupoid (M x M = M,Dy; © Dyy) the pair Dirac groupoid associated
to (M,Dyy). It is integrable if and only if (M, D) is integrable. O

2.3 Dirac homogeneous spaces

To be able to define the notion of a homogeneous Dirac structure on a homogeneous space
of a Lie groupoid, we have to prove the following proposition.

Proposition 2.3.1 Let G=2P be a Lie groupoid acting on a smooth manifold M with
momentum map J : M — P. Then there is an induced action of TG=TP on TJ :
TM — TP.
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2.3 Dirac homogeneous spaces

Assume that M ~ G/H is a smooth homogeneous space of G and let ¢ : G — G /H be the
projection. The map J: T*(G/H) — A*G, J(ayn) =t (Tyq)*ayw) for all gH € G/H s
well-defined and ® : T*G X p+¢ T*(G/H) — T*(G/H) given by

(q)(ag/, O‘gH)) (T(gCgH)q)(Ug/v UgH)) = g (vy) + agr (vem)
defines an action of T*G = A*G on J : T*(G/H) — A*G.

In the following, we often write ay - oy iy for <AI>(ozg, Q).

PROOF: We have to check first that J and ® are well-defined. We verify that j(agH)
doesn’t depend on the choice of the representative g. Choose ¢ and ¢’ € G such that
g'H = gH, and choose ayg € T,;(G/H). Since [gH = lg'H for all | € G such that
s(l) = t(g) = t(¢’) =: p, we know that ¢ o R, and ¢ o Ry coincide on their domain of
definition s~'(p) and we see that t((T,q)*agn) € A3G is given by

E((qu*)agh’)(uz)) = ayr(Tyq o Ty Ry(up — Tysuy)) = aur(Ty(q 0 Ry)(up — Tysuy))
g (Ty(q o Ry )(up — Tpsuy)) = (( q) g ) (up)

for all u, € A,G.

Now assume that a; € T;G and oy € T,5(G/H) are such that §(ay) = j(ag/H). We have
to show that @(ag, agp) is well-defined. Choose vggmr = Tig.9m)P(vg, vy rr) € Togu(G/H).
Choose a bisection K through g, and a bisection K’ through ¢’. Then X' := qo K’ is
a section of J through ¢’H because Jo X' = Jogo K’ = to K' = Idp. If we define
P : G/H — G/H by @k (z) = ®(K((so K)'J(z)),z) we have P 0 q = qo Ly, and it
is easy to check that Ry = qo Rgs. Then, by a formula in Liu et al. (1998), we have for
any vy € TG such that Tyquy = vy pg:

Vgg' H = TgRg{/Ug + Tg/H(I)KUg/H - Tg/H<(I)K o Ry o J)Ug/H
=T,(qo Ri)vg+Ty(qo Li)vy —Ty(qo Lk o Rirot)vy
=Tyeq (TyRivg + Ty Lgvy — Ty (L o Rir o t)vg) = Tygq(vg * vy),

which is defined since Tytvy = Ty (Joq)vy = Tynd(vyn) = T,sv,. Note that the formula
that we have used in the last equality was proven by Xu (1995). Conversely Ty, q(vgxv,) =
vy - Tyrquy for all composable pairs (vy,vy) € T() (G xp G) and ®(ay, ayp) satisfies

(Tygq)" (EI\)(O‘gv O‘g/H)> =ag* ((Tyq) agn).

This holds for any choice of ¢” € G such that ¢"H = ¢'H, since if vyr € T»G is such that
Tyrqugr = Ty quy, then it is easy to see from the computation above that T g (Vg *vgr) =
Ty q(vg * vy). Since this defines (IJ(ozg,ag/H) in an unique manner, @(ag,ag/H) is well-

defined.
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2 Multiplicative Poisson and Dirac structures

We show next that & defines an action of T*G = A*G on J : T*(G/H) — A*G. For all
ag € T;G and agy € T (G /H) such that $(ay) = J(ay ), we have by the considerations
above J(ay - Oég/H)A: t(Tyyq) (g - agn)) = t(ay x (Tyq) agn) = t(ay). If a € TG is
such that §(oy) = t(oy), the product o, - (o - ayr) is defined by
(Tiggq) (0 - (g - agn)) = ar % (Tygq)*(ag - atgn) = % ag* (Tyq) agn
= (uxay) * (Tyq) agn = (Tiggq) ((u* ag) - agn),

and hence we get o - (o -y i) = (ayxay) - oy since ¢ is a smooth surjective submersion.
Finally, the product J(ayp) - ooy satisfies

(Tg’q)* <j<ag’H) : O‘g’H) = j(‘)‘g’H) * (Tg/q>*‘)‘g’H

E((Tg’q)*ag’H) * (Tyq) agn = (Tyq) agm,

which shows that j(ang) CQgH = QgH. O

Corollary 2.3.2 If G/H is a smooth homogeneous space of G=P, there is an induced
action T® = (TP, ) of

(TG Xa T*G) = (TP Xp A*G)
on

TJ:=TJx J: (T(G/H) xg/u T*(G/H)) = (TP xp A*G).

We will show that the following definition generalizes in a natural manner the notion of
Poisson homogeneous space of a Poisson groupoid.

Definition 2.3.3 Let (G=P,D¢) be a Dirac groupoid, and G/H a smooth homogeneous
space of G P endowed with a Dirac structure Dg/p. The pair (G/H,Dg/u) is a Dirac
homogeneous space of the Dirac groupoid (G=P,Dg) if the induced action of (TG X¢g
T*G)= (TP xp A*G) on T): (T(G/H) xquT*(G/H)) — (I'P x p A*G) restricts to an
action of

DG:§QKD0) on T‘”DG/H : Dg/H — Q[(Dg)

Let (G,D¢g) be a Dirac Lie group and H a closed connected Lie subgroup of G. Let
G/H = {gH | g € G} be the homogeneous space defined as the quotient space by the
right action of H on G. Let ¢ : G — G/H be the quotient map. For g € G, let
o, : G/H — G/H be the map defined by o,(¢'H) = gg’H. In Chapter 4, we will work
mostly with the definition given by the following proposition.

Proposition 2.3.4 Let (G,Dg) be a Dirac Lie group and H a closed connected Lie sub-
group of G. Let G/H be endowed with a Dirac structure Dg/p. The pair (G/H,Dgy) is
a Dirac homogeneous space of (G,Dg) if and only if the left action

oc:GxG/H—G/H, o,9H)=g9H

is a forward Dirac map, where G x G/H is endowed with the product Dirac structure
DG &P Dg/H.
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2.3 Dirac homogeneous spaces

This is easily shown to be equivalent to the following: for all gH € G/H and (vym, agn) €
Dg/u(gH), there exist (wy, By) € Da(g) and (Uew, Verr) € Daym(eH) such that

ﬁg = (TgQ)*<agH)a YeH = (TeHUg)*<agH)a and UgH = quwg + TeHUgueH- (22>

Before we prove the proposition, we need to show that the distributions Gy and P; asso-
ciated to a multiplicative Dirac structure on GG are left and right invariant. The following
result has been shown independently by Ortiz (2008).

Proposition 2.3.5 Let (G,Dg) be a Dirac Lie group. The associated codistribution
(respectively distribution) Py (respectively Go) has constant rank on G, and is given by
Py = pl = p7 (respectively Go = gl = gi;), where p; = P1(e) and go = Go(e).

Note that p; equals then automatically the set of units Tt(Dg) = Ts(Dg) of D¢ seen as a
subgroupoid of TG xg T*G.

PRrROOF: If v, is an element of Go(g), we have (vy,0,) € Dg(g) and Tt(v,, 04) = Ts(vy, 04) =
0 € g*. Thus, since (0,-1,0,-1) € Dg(g9™'), we have (0,-1,0,-1) * (vy,0,) € Dg(e) and
(vg,0g) % (0g-1,04-1) € Dg(e). But it is easy to see that 0g-1 x vy = Tg-1 ym(0g-1,v,) =
TyLy-1vy and vy%x0,-1 = Ty Ry-1v4, and we get (T, L,-1v4,0.) € Dg(e) and (TyR,-1vg,0.) €
D¢ (e). We have thus shown that T, L,-1Go(g) C go and T, R,-1Go(g) C go. Conversely, if
T € go, then (z,0) € Dg(e) and (T.Lyz,0,) = (04,0,4) x (x,0) € Dg(g) and (T.R,z,0,) =
(x,0) % (04,05) € Dg(g). Thus, we have shown the equalities Go(g) = T.Lyg90 = T R,80
and Gy has constant rank on G.

As a consequence, P; is the annihilator of Gy, has also constant rank on GG and satisfies

P1=p] =pi. O
PROOF (OF PROPOSITION 2.3.4): Assume first that the map
0:(GxG/H,Dg®Dg/u) = (G/H,Dg/n), (¢',gH) — ¢'gH

is a forward Dirac map. We show that (G/H,Dg/x) is a Dirac homogeneous space of
(G, Dg) in the sense of Definition 2.3.3.
The map J : T*(G/H) — g* is given here by J(ong) = (T.R,)*(Tyq)*ayn. By (2.2),
(Tyq)*agm € P1(g) and since Py is left and right invariant, we find that J has image in p;.
Choose (vg, ) € Dg(g) and (vym, agm) € Dg/u(gH) such that (TeLy)*ay, = s(ay) =
j(ag/H) = (T.(qo Ry))*agz. We have to show that (vy, ay) - (vgm, gn) is an element
of Dg/u(gg'H). Choose (wygr, Bygrr) € Dayu(gg’'H). Then, since o is a forward Dirac
map, there exists (ug,7,) € De(9) and (ugm, Vo) € Daya(g'H) such that
Wogrr = Tig.gm0 (g, ugn) = Tynogugm + Togq(TyRyug),
Vg = (Ty(q0 Ry)) Bog and Yor = (Tyrog) Begn-

We can then compute

((vg, ag) - (Vgm, gmr), (Wogrt, Bogrr))

= ((Tlg.gmyo(vg, v91), g - agn), (Tig,9m)0 (g, ugn), Bygr))

= ag(ug) + agu(ugn) + Begu(Tynogugn + Te(q o Ry )ug)
= ((ug, Tg(q 0 Ry )" Bygnr), (Vg, g)) + ((ug . (Tyr0g) Bognr), (Vg tgm)) =040 =0,
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2 Multiplicative Poisson and Dirac structures

since (ug, Ty(q © Ry)*Bygnr), (vg: g) € Da(g) and (ugn, (Tynog) Bygn), (Wyn, agu) €
Dg/u(9'H). Since (weg i, Bggrr) € Daym(9g'H) was arbitrary, we have shown that

(vg, ) - (Vgmr, gmr) € DG/H(QQ/H)L = DG/H(QQ/H>-

Conversely, we assume that (G/H,Dg/y) is a Dirac homogeneous space of (G,Dg) in
the sense of Definition 2.3.3 and we show that o is a forward Dirac map. Choose
gvgg/H,agg/H) € Dg/u(gg’'H). Then we know that (T,yq)*aggr € P1(g9’) since J(aggm) =
t(Tyyq) gyrr) = TRy ((Tyg q) gy ) and, by Lemma 2.3.5, Py is right invariant. Hence,
there exists v,y € TyeG such that (vyy, (Tyeq) oyyn) € Da(gg’). If we set o :=
(T,Ry ) (Tyeq)*agerr € P1(g), there exists in the same manner v, € T,G such that

(Ugn( (qo R )) agg’H) S DG(Q)'
Leti: G — G be the inversion map. Then

(vg, (Ty(q o Rg/))*agg/H)il = (Tyivg, (Tg‘l(q o Ryy o Lg)) agyn) € DG(gil)

and since

S (((Tg(q o Rg’))*agg’H)il) = f«Tg(q o Ry)) aggrir) = t (Tygq) aggm) = j(agg/H)v

we have

(v, agrrr) = (vg, (Ty(q o Rg’))*agg’H)il (Vggrms Qggrrr) € DG/H<9/H)-

By definition, we have then T{y gm0 (vg, Vg ) = Vggr, g = (Tyuoy) agen and oy =
(Ty(g o Ry)) g O

Example 2.3.6 Consider a Poisson homogeneous space (G/H, ) of a Poisson groupoid
(G=P,mg), i.e., the graph Graph(®) C G x G/H x G/H is a coisotropic submanifold
(see Liu et al. (1998)).

Consider the Dirac groupoid (G=P, D) defined by (G=P, ) and the Dirac manifold
(G/H,Dg/n), defined by Dy = Graph(r* : T*(G/H) — T(G/H)). We verify that
(G/H,D¢/p) is a Dirac homogeneous space of the Dirac groupoid (G=P, D,,,).

Choose oy € Ty (G/H) and set p := t(g) = J(gH). Then we have for all v, € T,G and
vy € T,G such that T,sv, = T,tv, = TyuJ(T,qu,):

A(O‘QH)(UP) + agr(Tyquy) — agH(T(p,gH)a(vm Tyquy))
=t((T, 94 ) O‘gH)@p) + agr(Tyqug) — agr(Tyq(vy * vy))
(E(T,

Vagr) * (Tyq)* O‘gH) (vp x vg) — ((Tyq) gmr ) (vp * vy) = 0.
This shows that (J(agH), agH, —agH) S (T(p,gvaH)Ag/H)o, which implies

75 (s (o)) ) = 1 (on)
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2.3 Dirac homogeneous spaces

and %
Wé (J(O‘gH)> : 71'ﬁ(O‘gH) = 7Tﬁ(O‘gH)

since Agp is coisotropic. Hence, we have shown that

ﬂg (j(ong)> =TJ (Wﬁ(agH)) =Ts <7TﬁG <j(agH)>)

and hence

~

T (x(0g0r) agnr) = s (s (Uoga)) Ileagn)) € Ao 0)

for all agpr € Ty (G/H). Let now o € TG be such that § (o) = j(agH). Then we have
Ts (71'2(04;)) = 1%, (3(ay)) = 75, (j(agH)> = TJ (7*(agm)) since g is multiplicative, and

hence Ts (7*(cvy ), ) = TJ (7*(tgr), atgrr). Since for all vy € TG and v, € T,G such
that T's(vy) = Tt(v,) = TI(T,qv,), we have

g (vy) + g (Tyqug) — (g - g ) (Vg - Tyqug)
=ay (vy) + g (Tequg) — (g - agr ) Tyeq(vy x vy)

= (ag * (Tgq) g ) (Vg * vg) — (g * (Tyq) agm)(vy * vg) = 0,

we get again
(ag, g, —ay - agm) € (T(g’vgh,g’gH)AG/H)

and hence

7%(0/9) : 7Tﬁ(‘)‘gH) =7 (ag - agn) -

Conversely, we show in a similar manner that if T® restricts to an action of D, on D,
then the graph of the left action of G on G/H is coisotropic. O

Example 2.3.7 Let (G=2P,wg) be a presymplectic groupoid and H a wide subgroupoid
of G P. Assume that G/H has a smooth manifold structure such that the projection
q : G — G/H is a surjective submersion. Let w be a closed 2-form on G/H such that
the action ® : G xp (G/H) — G/H is a presymplectic groupoid action, i.e., ®*w =
Prgpw + prgwe. Let D, be the graph of the vector bundle map W T(G/H) —
T*(G/H) associated to w. It is easy to check that the pair (G/H,D,) is an integrable
Dirac homogeneous space of the integrable Dirac groupoid (G=P,D,,,), see Example
2.2.4. O

Example 2.3.8 Let (G=P,D¢) be a Dirac groupoid. Then (t: G — P,Dg) is a Dirac
homogeneous space of (G=P,D¢). O
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3 Multiplicative foliations

Let GG be a Lie group with Lie algebra g and multiplication map m : G xG — G. Then the
tangent space T'G of GG is also a Lie group with unit 0. € g and with the multiplication map
Tm: TG x TG — TG. A multiplicative distribution S C T'G is a distribution on G that
is a subgroup of T'G. The zero section of T'G is contained in S and T'm(0y, v,) = T L,vp,
for any g, h € G and v, € T} G, where L, : G — G is the left translation by g. Thus, the
distribution S is left invariant and consequently a smooth left invariant vector bundle on
G defined by S(g) = s'(g) with s the vector subspace S(e) = SN g of g. In the same
manner, S is right invariant and we find that s is invariant under the adjoint action of G
on g. Hence s is an ideal in g and the subbundle S C T'G is completely integrable in the
sense of Frobenius. Its leaf V through the unit element e of GG is a normal subgroup of
G and since the leaf space G/S of S is equal to G/N, it inherits a group structure from
G such that the projection G — G/N is a homomorphism of groups. If N is closed in G,
the foliation defined by S is regular and the leaf space G/S = G/N is a Lie group such
that the projection is a smooth surjective submersion.

If G=P is a Lie groupoid, we have seen in Subsection 1.1.5 that its tangent space T'G is,
in the same manner as in the Lie group case, a Lie groupoid over T'P, the tangent space
of the units. Hence, we can define more generally:

Definition 3.0.9 Let G = P be a Lie groupoid and TG = TP its tangent prolongation.
A subdistribution S C TG is multiplicative if S is a (set) subgroupoid of TG = TP.

In this chapter, we show that if a smooth multiplicative subbundle S C T'G is involutive
with a completeness condition, and its space of leaves G/ S satisfies a certain compatibility
condition with the left translations, then G/S inherits a groupoid structure over the leaf
space of the intersection TP NS in P. We use the theory about normal subgroupoid
systems in Lie groupoids (see Mackenzie (2005)) to show the main theorem of this chapter
(Theorem 3.3.11). It is also possible to show in a direct manner that, under the necessary
conditions, one can define a groupoid structure on the leaf space. Yet, since our two
leadings examples (Examples 3.1.1 and 3.1.2) illustrate the discussion in Mackenzie (2005)
about kernels of Lie groupoid morphisms (see also Subsection 1.1.2), we choose to use the
theory in this book. We show that there is a natural normal subgroupoid system in G= P,
that is associated to the multiplicative subbundle S. The induced quotient groupoid is
then exactly the leaf space G/S of S.

If S C TG is a multiplicative, involutive subbundle, then Dg = S @ S° is an integrable,
multiplicative Dirac structure on G==P. Hence, since multiplicative foliations on Lie
groupoids are in this manner particular examples of integrable Dirac groupoids, this chap-
ter gives a first idea of the difference between the Dirac groups and the Dirac groupoids.
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3 Multiplicative foliations

As an application of Theorem 3.3.11, we will show in Chapter 5 that, under rather strong
regularity conditions on its characteristic distribution, a Dirac groupoid (G=P,D¢) is
the pullback of a multiplicative Poisson structure on a quotient groupoid of G==P. In the
group case, these required regularity conditions are much weaker. For example, we will
see that they are always satisfied if the underlying Lie group is simply connected.

Outline of the chapter In the first section of this chapter, we start by giving two
examples of integrable multiplicative distributions where the leaf spaces inherit groupoid
structures. Then we study general properties of multiplicative subbundles of the tangent
space T'G of a Lie groupoid G=P (Section 3.2), before we show in the third section how
all the structure maps of the Lie groupoid “descend” to the leaf space of an involutive
multiplication foliation (Section 3.3). In Section 3.4, we give the Lie algebroid of the
obtained Lie groupoid in the context of ideal systems.

3.1 Examples

The two examples in this section illustrate the general theory in the following sections.
We study two completely integrable, multiplicative distributions on special classes of Lie
groupoids and show that their spaces of leaves inherit groupoid structures. In general, we
will have to assume that the distributions have constant rank, that the elements of special
spanning families of vector fields are complete and that their leaves satisfy an additional
condition on compatibility with the left translations. We will see that these two last
regularity conditions are satisfied in both examples, although the studied distributions
are here not necessarily subbundles of the tangent space.

Example 3.1.1 Let M be a smooth manifold and M x M = M the pair groupoid. If
D is a smooth subdistribution of TM, then S :=D xD CTM x TM ~T(M x M) is
a multiplicative subdistribution of TM x TM =T M. Its intersection with TA,; is Ay,
where Ap(m, m) = {(vm, V) | vm € D(m)}, which is also a smooth subdistribution of
If D is completely integrable in the sense of Stefan and Sussmann, then S and Ap are
also completely integrable. Let prg : M x M — (M x M)/S and prq, : M — M/D
be the quotient maps. If NN,,, respectively N, is the leaf of D through m, respectively
n, then the leaf of S through (m,n) € M x M is Ny, ) = Ny X N,. Thus, the space
(M x M)/S of leaves of S coincides with M /D x M /D via the map ¢ : (M x M)/S —
M/D x M/D, prg(m,n) — (pro(m), pro(n)). To see this, note that if (m,n) and (m’,n’)
are in the same leaf of S, then there exists without loss of generality one smooth vector
field X = (X1, X3) € T(DxD) such that (m/,n’) = ¢;X (m,n) = (¢ (m), ¢;*(n)) for some
t € R, where ¢~, ¢*1, X2 are the flows of X, X, X», respectively. But then m,m’ and
respectively n,n’ are in the same leaves of D. We get pry(m) = pry(m/'), pry(n) = pry(n’)
and ® is thus well-defined. It is obviously injective and surjective, and since the following
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diagram commutes,
M x M

Iy X Pro
Prs

(M x M)/S—=M/D x M/D

it is easy to check that it is a homeomorphism.
The pair (prg, pry) is a groupoid morphism, where (M x M)/S ~ M/D x M /D is endowed
with the pair groupoid structure, M/D x M/D = M/D. That is, the following diagram
commutes

M x M —=%(M x M)/S

I

M M/D

Prp
and we have prS<<m7 n) * (nap)> = prS(m7 n) *prs<”ap) for all m,n,p € M.

Consider now the union
N = UmeMN(m,m) - UmeM(Nm X Nm)

of leaves of S through the unities (m, m) € Ays. Note that (m,n) € N if and only if there

exists ¢ € M such that prg(m, n) = prg(q, q), that is, (prp(m), prp(n)) = (pry(q), pro(q))
and hence pry(m) = prp(q) = pro(n). Thus, we have

N ={(m,n) € M x M | prg(m,n) € Apyp} = ker(prg, pry)

and N is a normal subgroupoid of M x M in the sense of Mackenzie (1987).

Following Mackenzie (1987), we define the equivalence relations ~, on M ~ Ay and ~y
on M x M by
(m,m) ~, (n,n) <= (m,n) € N

and
<m7n> ~N (p7 Q) — (mvp)v <n7Q) € N,

and we get a groupoid structure on (M x M)/ ~y = M/ ~,. But here, we see immediately
that

(m,n) ~n (p,q) < (m,p),(n,q) € N <= prop(m) = pry(p) and pry(n) = pry(q)
<= prg(m,n) = prg(p, q)
and
(m,m) ~o (n,n) <= (m,n) € N <= pry(m) = pry(n).

Hence, we have (M x M)/S = (M x M)/ ~y and M/D = M/ ~,. Thus, the quotient
groupoid that we obtain by the normal subgroupoid N is exactly the groupoid defined by
the leaf space of the multiplicative distribution S.
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Note that (m,p)N € (M x M)/N is given by

(m,p)N = {(m,p)x (p,q) | (p,q) € N} ={(m,q) | ¢ € N} = {m} X N,.

If R:={(m,n) € M x M| m~p n} is the relation defined by D on M x M, and 6 :
Rxpr (M x M)/N)— (M xM)/N, 6((n,m),{m} xN,) ={n}xN,, then N = (N, R, 0)
is a normal groupoid system in M x M = M and the set of points in the orbit of (m, p)N
under 6 is equal to

U om).{m}xN)= | {n}x N, =Ny x N, =Ny

{neM|(n,m)eR} {neM|n~pm}

The set Sy associated to N = (N, R, ) is then

Sn = {((m,n), (p,q)) € (M x M) x (M x M) ‘ 9((m’p)’{rg}1®]€q?rf{m} < N, }

= {((m,n), (p,q)) € (M x M) x (M x M) | m ~ppand n ~p q}
={((m,n),(p,q)) € (M x M) x (M x M) | (m,n) ~s (p,q)}

The groupoid structure induced by (N, R, #) on (M x M) /8y = M /R is again the groupoid
defined by the leaf space of the multiplicative distribution S.

If D is an involutive subbundle of T'M such that the leaf space M /D is a smooth manifold
and pry : M — M/D a smooth surjective submersion, then the induced groupoid (M x
M)/S = M/D is a Lie groupoid.

Note that the leaf through (m,n) of SNTY M x M) = Orpr X D equals {m} x N,,, which
is exactly the intersection of the leaf N,, x N, of S through (m,n) with t!(t(m,n)) =
{m} x M. This implies that the compatibility condition (3.5) that we will have to assume
in the general case is satisfied here (see also Remark 3.3.8):

L(m,n)(N(nm) N ({n} X M)) = L(mm)({n} X Nn) = {m} X Nn = N(m,n) N ({m} X M)
for all (m,n) € M x M. O

In the next example, we get in the same manner a groupoid structure on the leaf space of
the involutive multiplicative distribution that is considered. This time, it does not coincide
with the quotient by the kernel N but rather with the quotient by the normal subgroupoid
system defined by the union N of leaves through the units. This illustrates the different
definitions of normal subgroupoids in the two references Mackenzie (1987) and Mackenzie
(2005), and the fact that the notion of normal subgroupoid systems of groupoids is needed
to generalize to groupoids the relation between the kernel of surjective homomorphisms
and normal subgroups of a group (see Mackenzie (2005) and also Subsection 1.1.2).

Example 3.1.2 Let M be a smooth manifold and p : R¥ x M — M a trivial vector
bundle over M. Then R* x M = M has the structure of a Lie groupoid over the base M
(see Example 1.1.7).
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In the following, we identify T'(R* x M) with R* x R* x T'M, and we write T(, ) (RF x
M) = {z} x R* x T,,M. The source and target maps in T(R* x M)=TM are then
Ts(z,v,v,) = Tt(x,v,v,) = v, and the partial multiplication is given by (z,v,v,,) *
(y,w,vp) = (x+y,v+w,v,). Hence, the groupoid T (R* x M)=TM is a vector bundle
groupoid R?* x TM = TM.

Consider a completely integrable distribution F in 7'M and a vector subspace W C RF.
It is easy to see that S := R¥ x W x F is an integrable multiplicative distribution in
T(R* x M).

The leaf of S through (z,m) is the set (x + W) x L,,, where L,, is the leaf of F' through
m. The intersection TM NS equals F' and we have a foliation M/F'. It is easy to see that
the quotient (R* x M)/S ~ (R¥/W) x (M/F) inherits the structure of a groupoid over
M/ F such that the diagram

RF x M —== (RF/W) x (M/F)

i ]

M M/F

Prp

commutes and (prg, prp) is a morphism of groupoids. If (z,m) and (y,n) are in the same
leaf of S, then x —y € W and n € L,,. In particular, the elements s(x, m) = t(z,m) =m
and s(y,n) = t(y,n) = n are in the same leaf of F. Hence, we can define maps s,t :
(R¥/W) x (M/F) — M/F by s((x + W) x L,,) = t((x + W) x L,,) = L,,. The product
of (x+W) x L, with (y+ W) x L, is defined if and only if L, = L,, and it is then equal
to (x+y+ W) X Ly,

The multiplication is hence defined as follows: if s(z,m) = m ~g n = t(y,n), then there
exists z € y+W (for instance z = y) such that (z,m) ~g (y,n) and the product is the class
of (x,m)*(z,m) = (x+2z,m) in (R¥x M)/S, that is, (x+2z+W)x L,, = (x+y+W) X Ly,.
The set N = UpenLom) is given here by N = Upeyr(W X Lp) = W X (Upen L) =
W x M. Tt is a normal subgroupoid of R¥ x M and defines consequently equivalence
relations on M and on R* x M:

m~on < 3(z,p) € N such that t(x,p) =m and s(z,p) =n & m=n=p
and
(x,m) ~n (y,n) < I(z,p) € N =W x M such that t(z,p) = m,s(z,p) =n

and (x,m) * (2,p) = (y,n)
Sm=nandx—yeW

The quotient groupoid defined by N is hence (R¥/W) x M = M, which is this time not
isomorphic to (R¥ x M)/S = M/F, except if F is trivial. It seems that we loose too much
information about S in the construction of the normal subgroupoid N.

We have hence to consider the normal subgroupoid system defined by S on R* x M = M.
The normal subgroupoid system is the triple N = (N, Rp,0), where N = W x M is the
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wide subgroupoid, R is the wide subgroupoid of M x M=M defined by Rr := {(m,n) €
M xM|m~pn}={(mmn) € M xM,|prp(m)=rprp(n)} and 0 is the action of Rp
on G/N = (Rk/W) x M given by 0(m,n)(x + W,n) = (z + W, m). Note that G/N is
equal to (R*/W) x M because, by definition, G/N = {(z,m)N | (z,m) € R* x M}, with
(x,m)N = {(x,m)* (w,m) |w e W} = (x+W) x {m}.

Define 8 C (R* x M) x (R*¥ x M) by

8 = {((z,m), (y,n)) | (m,n) € Rp and (m, n)(y + W,n) = (x + W,m)}.

The quotient of M by the equivalence relation Ry is exactly the leaf space of F'in M,
and the quotient of R* x M by the equivalence relation 8 is the leaf space of S in R¥ x M.
We have indeed

(x,m) ~8 (yan) < m~pn and rT—yeE 44 <:>prs(a:,m) = prS(yan)

for all (z,m), (y,n) € R* x M.

The quotient groupoid defined by N is (R¥ x M)/8 = M/Rp. Using the equalities (R* x
M)/8§ = (R¥ x M)/S = (R*/W) x (M/F) and M/Rp = M/F, it is easy to see that all
the groupoid maps are well-defined and

RF x M =2 (R* x M) /8

L

M M/Rp

PTR
commutes. We have hence shown that the two groupoid structures on
(RF x M)/S=M/(SNTM)

coincide.

Note that the leaf of SN THR* x M) = SN (TR x 07p) = (R¥ x W) x 07y through
(x,m) equals (x + W) x {m} and is exactly the intersection of the leaf (z + W) x L,, of
S through (z,m) with t=!(t(z,m)) = R* x {m}. O

We will generalize these results to the leaf space of any involutive multiplicative subbundle
S of TG =TP for an arbitrary Lie groupoid G=P, under technical assumptions about
the compatibility of the leaves of S with the left translations L,, g € G and with the
source and target maps.

3.2 Properties of multiplicative subbundles of T'G

Note that the fact that S C T'G is a subgroupoid implies in particular that s(v,) € S(s(g))
and t(v,) € S(t(g)) for all g € G and v, € S(g). This yields splittings of the subbundle
over the set of units.
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3.2 Properties of multiplicative subbundles of T'G

Lemma 3.2.1 Let G=2P be a Lie groupoid and S C TG a multiplicative subbundle.
Then the intersection S N'TP has constant rank on P. Since it is the set of units of S

seen as a subgroupoid of TG, the pair S=(S NTP) is a Lie groupoid.

The bundle S|p splits as S|p = (SNTP) & (SN AG). Furthermore, if we denote by

St the intersection S NT*G of vector bundles over G, we have S*(g) = 04 x S*(s(g)) =
Ty Lg (S*(s(g))) for all g € G. In the same manner, S*(g) = S*(t(g)) * 04 for all g € G.

As a consequence, the intersections S N TG and S NT*G have constant rank on G.

Note that these statements for multiplicatives tangent subbundles will be generalized in
Theorem 5.1.5 and Lemma 5.1.7 to similar properties for arbitrary multiplicative Dirac
structures. Also Corollary 3.2.2 is a result that holds in the more general situation of
Dirac groupoids (see Proposition 5.2.1).

PRrROOF: We start by showing that the intersection S|p NTP is smooth. If p € P and
v, € S(p) NT,P, then we find a smooth section X of S defined at p such that X (p) = v,.
The restriction of X to Dom(X) N P is then a smooth section of S|p, and, since s is
a smooth surjective submersion, and S is a subgroupoid of T'G, the image T's(X|g) is a
smooth section of S|pNTP. Furthermore, we have T's(X|s)(p) = T's(X(p)) = T's(v,) = v,
since v, € T, P.

Since the intersection S NT P is a smooth intersection of vector bundles over P, we know
(for instance by Proposition 4.4 in Jotz et al. (2011b)) that it is a vector bundle on P. In
particular, it is the set of units of S seen as a subgroupoid of T'G.

Since S is a vector bundle on G, it has constant rank on G and in particular on P. For
each p € P, we can write S(p) = (S(p)NT,P)®(S(p)NT;G) = (S(p)NT,P)D(S(p)NT,G).
Indeed, if v, € S(p), then we can write v, = T,tv, + (v, — Tptv,) = T,sv, + (v, — T,s0p).
From this follows the fact that S|p N TpG and S|p N THG have constant rank on P. If
vy € S*(g), then we have T's(0,-1) = Oyq) = T't(vy), and since S(g~') is a vector subspace of
T,-1G, we have 0,-1 € S(g~'). Since S is multiplicative, we find hence 0,-1%v, € S(s(g)).
But 0,1 xv, = 4 |t:0 g ' xc(t), with ¢ : (—e,e) — t7!(t(g)) satisfying ¢(0) = g and
¢(0) = vg. Thus, we find 0,-1 x v, = TyL,~1v,. We show the other inclusion and the
equality S°(g) = Tyg) Ry (S°(t(g))) in the same manner.

Since S|p N AG and S|p NTHG have constant rank on P, we get from this that SN TG
and S N T°G have constant rank on G. O

Corollary 3.2.2 Let G=P be a Lie groupoid and S a multiplicative subbundle of T'G.
The induced maps Tys : S(g) — S(s(g)) N Ty P and Tyt = S(g) — S(t(g)) N Ty P are
surjective for each g € G.

PROOF: The map T's: S/(SNT*G) - SNTP is a well-defined injective vector bundle
homomorphism over s : G — P. Since

rank(S/(S NT°G)) = dim((S/(S NT°G))(g)) = dim(S(g)) — dim(S(g) N T;G)
= dim(5(t(g))) — dim(S(t(g)) N T, G)
= dim(S5(t(g)) N Ty P) = rank(S NTP)
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3 Multiplicative foliations

for any g € G, both vector bundles have the same rank, and the map is an isomorphism
in every fiber. Thus, the claim follows. O

The following corollary (see also a result in Mackenzie (2000) about star-sections) will be
used often in the following.

Corollary 3.2.3 Let G=P be a Lie groupoid and S C TG a multiplicative subbundle.
Let X be a section of I'(SNTP) defined on Dom(X) =: U C P. Then there exist sections
X,Y € I'(S) defined on U := s 1(U), respectively V.=t~ (U) such that X ~s X and
Y ~t X

PrOOF: Since the induced map T's : S/(SNT*G) — SNTP is a smooth isomorphism in
every fiber, there exists a unique smooth section o of S/(SNT*G) defined on s~ (U) such
that T's(o(g)) = X(s(g)) for all g € U. Choose a representative X € I'(S) for o, then we

have T,;sX (g) = X(s(g)) for all g € U. O

We say that a vector field X € X(G) is t- (respectively s-) descending if there exists
X € X(P) such that X ~ X (respectively X ~g X), that is, for all g € Dom(X), we
have T;tX (g) = X(t(g)).

Corollary 3.2.4 Let GZZP be a Lie groupoid and S C TG a multiplicative subbundle.
Then

1. S is spanned by local t-descending sections and

2.5 is spanned by local s-descending sections.

PRrROOF: Choose g € G and smooth sections X1, ..., X} of SNTP spanning SNTP on a
neighborhood U; of t(g). Choose also Y7, ...,Y,, spanning (SNT*G)|p in a neighborhood
U, of s(g). The vector fields Y/, ..., Y span S N TG on the neighborhood s~1(Us) of ¢
and we find smooth t-descending sections X7, ..., X, of S such that X; ~; X, on t=1(0).
The sections Y{,...,Y! X;,..., X, are t-descending and span S on the neighborhood

Y m?

U:=s1(Uy) Nt }(Uy) of g. O

Let M be a smooth manifold and F' C T'M a subbundle spanned by a family F of vector
fields. If F' is involutive, it is integrable in the sense of Frobenius and each of its leaves is
an accessible set of & i.e., the leaf L,, of F' through m € M is the set

keN, Xq,...,. X eF,tq,...,t, €R
_ X1 X s 31, y Ak s U1, y Vk
Lm_{ b O 00yt (m) and ¢~ is a local flow of X }

(see Ortega and Ratiu (2004), Stefan (1974), Sussmann (1973), Stefan (1980)). If the

multiplicative subbundle S C T'G is involutive, we get the following corollary which will
be very useful in the next section.
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3.3 The leaf space of a regular multiplicative subbundle of T'G.

Corollary 3.2.5 Let G=2P be a Lie groupoid and S C T'G an involutive multiplicative
subbundle. Then S s completely integrable in the sense of Frobenius and its leaves are
the accessible sets of each of the two following families of vector fields.

FL ={X € T'(9) | IX € X(P) such that X ~; X} (3.1)
Ty ={X € T(9) | 3X € X(P) such that X ~¢ X}. (3.2)

By Corollary 3.2.3, there exists for each section X of TP N S defined on U C P a section
of S that is defined on t~!(U) and t-related to X. We can find a family of spanning
sections of SNT P that are all complete, but the corresponding sections of .S are then not
necessarily complete. In the following, we will have to assume that SNTP is spanned by
the following families of vector fields:

X € I'(9) such that X ~; X
FL = XeT(SNTP) and X, X are complete , (3.3)
Dom(X) =t~} (Dom(X))

X € I'(S) such that X ~¢ X
Fy:=K Xel(SNTP) and X, X are complete , . (3.4)
Dom(X) = s~} (Dom(X))

Note that there exists a complete family 3_:’; if and only if there exists a complete family
F%, since the vector fields in F% are the inverses of the vector fields in % and vice versa.
We say that S is complete if it has this property. Also, note that the multiplicative
distributions in Examples 3.1.1 and 3.1.2 are complete.

3.3 The leaf space of a regular multiplicative subbundle
of TG.

Let G==P be a Lie groupoid and S C T'G' an involutive multiplicative subbundle. Then
S is completely integrable in the sense of Frobenius. Let pr : G — G/S be the projection
on the space of leaves of S.

It is easy to check that the intersection S NTP is an involutive subbundle of TP and
hence itself also completely integrable. Let P/S be the space of leaves of SNTP in P
and pr, the projection pr, : P — P/S.

For g, h € G, we will write g ~g h if g and h lie in the same leaf of S and [¢] := {h € G |
h ~g g} for the leaf of S through g € G. By the following proposition, we can use the
same notation for the equivalence relation defined by the foliation by S NT'P on P. We
will write [p], for the leaf of S N TP through p € P.

Note that g and h € G lie in the same leaf of S if they can be joined by finitely many flow
curves of vector fields lying in % or F% (see Corollary 3.2.5). For simplicity, if g ~g h,
we will often assume without loss of generality that ¢ and h can be joined by one such
integral curve.
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3 Multiplicative foliations

Proposition 3.3.1 Let G=2P be a Lie groupoid and S C T'G an involutive, multiplicative
subbundle. If p and q lie in the same leaf of SNTP, then p and q seen as elements of G
lie in the same leaf of S. Hence, there is a well defined map [e] : P/S — G/S such that
proe = [¢] o pr,.

ProOOF: Choose p and ¢ € P lying in the same leaf of SNT'P. Then p and ¢ can be joined
by a concatenation of segments of integral curves of vector fields in SNT'P. Without loss
of generality, assume that p = ¢;*(¢) for some t € R, where ¢X is the flow of a section
X € T(SNTP). Then there exists a smooth section X € I'(S) such that X|p = X, i.e.,

X~ X, and p=¢€(p) = e(gth(q)) = ¢X(e(q)) = ¢;*(q) shows that p ~g q. O

We will see that under certain conditions, the space G/S inherits a groupoid structure
over P/S. If the foliation is regular, we will get a Lie groupoid G/S=P/S. We start by
showing that the structure maps s, t, i induce maps on G/S.

Proposition 3.3.2 Let G=2P be a Lie groupoid and S C T'G an involutive, multiplicative
subbundle. Choose g,h € G such that g ~g h. Then s(g) ~g s(h) and t(g) ~g t(h) and
we get induced maps [s|, [t] : G/S — P/S defined by [s|([g]) = [s(9)l.. [t}(lg]) = [t(g)]o for
all g € G.

Proor: If g and h € G are in the same leaf of S, we find by Corollary 3.2.5 smooth
s-descending vector fields Xi,..., X, € I'(S) and ¢1,..., ¢ € Rsuch that h = ¢}, o...0
o; (9), where ¢' is the flow of the vector field X; for each ¢ = 1,..., k. There exist then
smooth vector fields X1,..., X, € I'(SNTP) such that X; ~¢ X;, and hence, if ¢ is the
flow of the vector field X;, so ¢’ = ¢* os for i = 1,..., k. We compute then

s(h) =s (¢}, 0...0¢1,(9)) = &4, 0.0, (s(9)),

which shows that s(h) and s(g) lie in the same leaf of SNTP. The map [s] : G/S — P/S,
lg] — [s(g)]o is consequently well-defined. We show in the same manner, but using this
time the family (3.1), that [t] : G/S — P/S, [g] — [t(g)]o is well-defined (note that we
don’t use here the completeness of J%). O

Proposition 3.3.3 Let G=P be a Lie groupoid and S C T'G an involutive, multiplicative
subbundle. Choose g,h € G such that g ~g h. Then g~ ~g h™'. Hence, [i] : G/S —

G/S, [il(lg]) = [i(9)] = [g7"] is well-defined.

PRrROOF: If g ~g h, then there exists without loss of generality one smooth section X &€
['(S) and o € R such that g = ¢ (h). Since X (¢ (h)) € S(¢2(h)) for all 7 € [0, 0], the
curve ¢ : [0,0] = G, () = (¢X(h)) ™! satisfies ¢(1) = Tyx )i (X(¢2(h))) € S(i(¢2(h)))
for all 7 € [0,0]. The image of ¢ lies hence in the leaf of S through ¢(0) = h~!. Since
c(o) = g7, we have shown that h™t ~g g7 L. O

Hence, we have shown that the structure maps €, s, t and i project to well-defined maps
on P/S and G/S. For the multiplication, which cannot be defined in this straightforward
manner, we will need the following technical lemmas. Note that we have not used the
completeness condition until here.
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3.3 The leaf space of a regular multiplicative subbundle of T'G.

Lemma 3.3.4 Let G=P be a Lie groupoid and S C TG be a complete multiplicative
involutive subbundle of TG. If g € G and t(g) ~gs p € P, then there exists h € G such
that g ~g h and t(h) = p. In the same manner, if s(g) ~s p € P, then there exists h € G
such that g ~g h and s(h) = p.

PROOF: Choose a vector field X € F% and o € R such that p = ¢X(t(g)). We find
then a t-descending vector field X ~; X defined at g. Since X and X can be taken
complete by hypothesis (see (3.3)), the integral curve of X starting at g is defined at o
and we have t(¢X(g)) = ¢X(t(g)) for all 7 € [0,0]. Set h := ¢=X(g), then h ~g g and

t(h) = ¢X (t(g)) = p. 0

Lemma 3.3.5 Let G=P be a Lie groupoid and S C TG a complete, involutive, mul-
tiplicative subbundle. Choose g € G and set s(g) =: p € P. By Proposition 3.3.2, the
source map s : G — P restricts to a map sig : [g] = [plo. This map is a smooth surjective
submersion. In the same manner, tg : [g] —= [t(g)]o is a smooth surjective submersion.

PRrROOF: The map s is surjective by Lemma 3.3.4. The leaf [p], of SN TP through p is
an initial submanifold of P, that is, the inclusion ¢, : [p]o < P is an injective immersion
such that for any smooth manifold @, an arbitrary map f : @ — [p], is smooth if and
only if ¢, o f: @ — P is smooth (see for instance Ortega and Ratiu (2004)).

We have v, 0s[q] = s0 (g, Where ¢y : [g] < G is the injective immersion. Since the right
hand side of this equality is smooth, we find hence that sy is a smooth map. For any
h € [g], we have

Ths[g} : Th[g] — Ts(h) [p]o.

Since Ty[g] = S(h) and Typ)[ple = S(s(h)) N Tyn) P, we find using Corollary 3.2.2 that
Tys|q) 1s surjective. 0

Theorem 3.3.6 Let G=3P be a Lie groupoid and S C TG a complete, involutive, multi-
plicative subbundle. The subset N := Upep[p] C G is a wide subgroupoid of G2 P.

PrROOF: We have P C N by definition.

First, we have to show that if g, h € G are in N and composable, then gxh € N. Assume
that g € [p] for some p € P. Since g ~g p, we have s(g) ~g s(p) = p by Proposition
3.3.2 and hence g ~5 p ~g s(g). If b € [g], then we find in the same manner that
h ~g q ~g t(h), and since s(g) = t(h), we find that we can take p = ¢ = s(g) = t(h) and
that we have g, h € [p].

We find hence without loss of generality one t-descending vector field X € I'(S) and 0 € R
such that h = @2 (t(h)), where ¢ is the flow of X. Since X is t-descending, there exists
X € T(SNTP) such that X ~; X. We have then t(h) = to ¢X (t(h)) = ¢X (t(h)). Using
Lemma 3.3.5, we find a curve ¢ : [0, 0] — [g] such that s(c(7)) = ¢ (t(h)) for all 7 € [0, 7]
and ¢(o) = g. Set ¢’ := ¢(0). Then we have ¢’ ~g g ~g p and ¢(7) € S(c¢(7)) for all
T € [0,0]. We get also for all 7 € [0,0]:

(soc)(r) = ¢ (t(h) = (tody) (t(h)).

51



3 Multiplicative foliations

Hence, (1) x ¢X (t(h)) is defined for all 7. We have also

T (¢()) = X (O (t(h)))) = Tox eyt (X(6X (1))

and, consequently, the product

¢(r) * X (97 (t(h)))

is defined for all T € [0, o], and takes values in S(c(7)x¢X (t(h))) since S is multiplicative.

T

Consider the curve v : [0, 0] = G, (1) = ¢(7) x ¢X(t(h)). Then

§(7) = o= elr) < X (1(A)) = é(r) % X (6 (1) € S(,(7)

for all 7 € [0,0], and y(0) = ¢, v(0) = g * h. Since ¢’ € [p], this shows g x h € [p].
Finally, we have to check that if g € N, g € [p] for some p € P, then g=* € N. This

follows directly from Proposition 3.3.3: since g ~g p, we have g7! ~g p~! = p. Hence,

gltelp] CN. 0

Consider the wide subgroupoid Rg of the pair groupoid P x P = P defined by

Rs={(p,q) € Px P|p~sq}=1{(p,q) € PxP|pr,(p) =pr.(q)}

Consider also the quotient G/N of G by the subgroupoid N. That is, the elements of
G/N are the sets gN :={gxn|n € N, s(g9) =t(n)}, g € G.

Lemma 3.3.7 Let G=P be a Lie groupoid and S a complete involutive multiplicative
subbundle of TG. Let N be the wide subgroupoid of G=P associated to S. Then, for any
p € P, we have pN = [p| Nt~ (p) and for any g € G, gN C [g] Nt (t(g)).

PROOF: Choose p € P and n € pN. Then n € N and t(n) = p. Since n € N, n ~g q for
some g € P and thus p = t(n) ~g t(q) = ¢. This shows that n € [p] Nt~1(p). Conversely,
if g € [p] Nt 1(p), then ¢ € N by definition of N and t(g) = p. Thus g = pxg € pN.
This shows pN = [p]Nt~!(p) for all p € P.

Choose g € G and set p = s(g). Choose h € [p] Nt~ '(p). Then h ~g p and there exists
without loss of generality one t-descending vector field X ~ X and o € R such that
h = ¢X(p). Then p = t(h) = (to ¢X)(p) = éa (p). As in the proof of the preceding
theorem, we can choose a smooth curve ¢ : [0, 0] — [g] such that s(c(7)) = ¢= (p) for all
7€ [0,0] and ¢(c) = g. Set ¢’ = ¢(0). Then s(g') = p and since (soc)(7) = (to ¢ )(p) for
all 7 € [0, 0], we find that v : [0,0] = G, ¥(7) = (1) x X (p) is well-defined and tangent
to the leaf of S through ¢’ x p = ¢’. But since y(o) = g % h, this yields gxh ~g ¢’ ~5 g
and hence gxh € [g]. We have thus shown that gN = g ([p] Nt~ (p)) C [g] Nt~ (t(g)).O

In the situation above, we have gN = gxs(g)N = g* ([s(g9)] Nt~1(s(g))). Hence, if

g*(s(9) Nt (s(9))) = [gf Nt (t(g))  forall g€ G, (3.5)
then gN = [g] Nt (t(g)) for all g € G.
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3.3 The leaf space of a regular multiplicative subbundle of T'G.

Remark 3.3.8 The condition (3.5) is satisfied for instance if [g] Nt~ (t(g)) has one con-
nected component and is hence the leaf of the involutive vector bundle TG N S through
g. This is the case in Examples 3.1.1 and 3.1.2. JAN

Proposition 3.3.9 Let G=2P be a Lie groupoid and S a complete involutive multiplica-
tive subbundle of TG such that the foliation of G by the leaves of S satisfies condition
(3.5). Let N and Rg be the wide subgroupoids of G=P and P x P = P associated to S.
Define J: G/N — P by J(gN) =t(g) for allg € G. Set

Rs xp (G/N) = {((p,q), gN) | s(p,a) = ¢ = t(g) = J(gN)}
and
0:Rs xp(G/N)— G/N, 0(p,q)(gN)=hN if h~gg issuch that t(h)=p.

The map 0 is an action of the groupoid Rg = P on J: G/N — P. The orbit

U 0(p,t(g))(gN)

{pePl(p,t(g9))ERs}

of gN by this action is, as a set, the leaf [g] of S through g.

In other words, G/S = (G/N)/Rs and if pry : G — G/N, pry, : G/N — (G/N)/Rg are
the projections, then the following diagram is commutative.

a—YG/N

N

G/S

PROOF: We show that 6 is well-defined. The existence of h in the definition of 8((p, ¢), gN)
is ensured by Lemma 3.3.4. If gV € G/N, J(gN) = q and h, R’ are such that t(h)
t(h') =p ~g q, and h ~g5 g, h' ~g g, then we have h ~g I/ and hence [h] Nt71(t(h)) =
[R']Nt71(t(h)). The condition (3.5) yields then A’ N = hN.

Next, we check that 6 is an action of Rg=P on J: G — G/N. Choose gN € G/N and
set p = t(g). We have then (p,p) € Rg and 0((p,p), gN) = gN since g ~g g and t(g) = p.
By definition of 6, we have J(6((q,p),gN)) = q¢ = t(¢,p). Choose (q,7), (r,p) € Rs. Since
q~g 1 ~gp,we find h and [ in G such that h ~g [ ~g g and t(h) = q, t(l) = r. We get
then 0((q,r) * (r,p), gN) = 0((¢,p), gN) = hN = 0((q,7),IN) = 0((q, ), 0((r, ), gN)).

It remains to show that for any gN € G/N, the orbit

U ). 9N)

{pePl(pt(9))€Rs}
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is the leaf [g] of S through g. We have

neNheG h~gg }

U 9((p,t(g)),gN):{h*” such that (t(h),t(g)) € Rg,s(h) = t(n)

{p€P|(p,t(9))ERs }

={h*xn|ne€ N,heG,h~g g such that s(h) =t(n)}

since g ~g h implies t(g) ~g t(h). For simplicity, we call this union M,. We have [g] C M,
since for all h € [g], we know that t(h) ~g t(g) and hence h*s(h) € M, sinces(h) € P C N.
Conversely, if hxn € M,, then we have h ~g g and since hN = [h] Nt~ (t(h)) by the
condition (3.5), we find that hxn € [h] = [g]. O

Note that the map @ is well-defined if and only if the foliation defined by S on G satisfies
(3.5).

Theorem 3.3.10 Let G==P be a Lie groupoid and S a complete, multiplicative, involutive
subbundle of TG such that the foliation of G by the leaves of S satisfies (3.5). Then the
triple N = (N, Rg,0) is a normal subgroupoid system on G=P.

PRrOOF: Choose (p,q) € Rg and gN € G/N such that J(gN) = ¢. Then 6((p,q),gN) =
hN for any h ~g g such that t(h) = p. We have then s(h) ~g s(g) by Proposition 3.3.2,
and hence (s(h),s(g)) € Rs. We know also that 6((p,q),qgN) = pN since p € G is such
that p ~g ¢ and t(p) = p.

Consider (p,q) € Rg and gN € G/N such that J(¢N) = q. Choose hN € G/N such that
t(h) =s(g). Set 0((p,q),gN) = ¢g'N, then ¢’ ~g g, hence s(¢’') ~5 s(g) = t(h) and we can
set 0((s(¢’'),s(g)), hN) =: K*N. We have to show that 6((p,q), ghN) = ¢'W’N. That is, we
have to show that g x h ~g ¢’ x h’. Since g ~g ¢’, there exists without loss of generality
one s-descending vector field X € I'(S) and o € R such that ¢ = ¢X(g), where ¢~ is
the flow of X. Let X € I'(SNTP) be such that X ~; X, and choose a t-descending
vector field Y € T'(S) defined at h such that Y ~; X. Consider 1" = ¢Y¥ (h) and the curve
c:[0,0] = G, c(t) = ¢;*(g)*x @Y (h). The product ¢;X(g)x ¢} (h) is defined for all ¢ € [0, o]

because
(s0 7 )(9) = ¢i (s(9)) = 97 (t(h)) = (to &y )(h)
and we have
c(t) = X(¢7 (9)) * Y (¢¢ (h)) € S(c(t)).
Thus, the curve c is tangent to the leaf of S through ¢(0) = g x h and its endpoint is
c(0) = ¢35 (9) x by (h) = g’ x 1"

This shows that g x h ~g ¢’ * h”. Now since b’ ~g h ~g h" and t(h') = s(¢') = t(h") we
have h” € [ Nt~ (t(h')) = I'N by condition (3.5). This leads to ¢'h” € ¢'h'N C [¢'I/]
and hence gxh ~g g’ *h" ~g g x h'. O

We get hence the main theorem of this chapter.
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3.3 The leaf space of a regular multiplicative subbundle of T'G.

Theorem 3.3.11 Let G==P be a Lie groupoid and S a complete, multiplicative, involutive
subbundle of TG such that the foliation of G by the leaves of S satisfies (3.5). Then there
is an induced groupoid structure on the leaf space G/S = P/S such that (pr,pr,) is a
groupoid morphism.

Remark 3.3.12 In the situation of the previous theorem, the groupoid structure on
the leaf space of S is defined as follows. The object inclusion map is the map [¢] as in
Proposition 3.3.1, the source and targets are the maps [s] and [t] as in Proposition 3.3.2
and the inversion is [i] as in Proposition 3.3.3.

If [g], [h] € G/S are such that [s|([g]) = [t]([h]), then there exists A’ € G such that h ~g R’
and s(g) = t(h'). The product of [g] and [h] is given by [g] x [h] = [g x }]. A

Example 3.3.13 Consider a Lie groupoid G=P and let a connected Lie group H act
freely and properly on G=P by Lie groupoid homomorphisms. Let ® : H x G — G be
the action. That is, for all h € H, the map ®;, : G — G is a groupoid morphism over
the map ¢, := ®y|p : P — P. Let V C TG be the vertical space of the action, i.e.,
V(g) = {&c(g) | € € b} for all g € G, where b is the Lie algebra of H.

We check that V C T'G is multiplicative. Choose £5(g) € V(g). Then we have

d d

Tit(&elg) = - 70t(®exp(t§)(g)) =@, Pexp(i) (t(9)) = Ep(t(9)) € V(t(g)) N Trg) P

and in the same manner
Tys (Ea(g)) € V(s(g)) N Ty P.

This shows also that VN TG = VN T'G = 07, in this example.
If £6(g) € V(g) and ng(g’) € V(¢') are such that

Tys (€alg)) = Tyt (nely))

then we have s(g) = t(¢') =: p and

Ep(p) =np(p),

which implies £ = 7 since the action is free. We get then

. d
Ea(g) xna(y’) = Calg) *Ealy’) = 7| Pew)(9) * Pexpe) (9
t=0
d / / /
== Pexpte) (9% 9") =Ealg*g') € V(gxg').
t=0

The inverse of £g(g) is then g(g™!) for all £ € h and g € G.
It also follows from the considerations above that the vector fields &, are t- and s-
descending to &p. Hence, V is spanned by complete vector fields, that are t-related to
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3 Multiplicative foliations

complete vector fields. The leaf of V through g € G is equal to {®,(g) | h € H} and we
find

gl Nt (t(9)) = {Pnlg) | h € H, ¢n(t(g)) = t(g9)}
= {9} = g* ([s(g)) Nt~ (s(9)))

since the action of H on P is free.

Hence, we recover from Theorem 3.3.11 the fact that the quotient G/H=P/H has the
structure of a Lie groupoid such that the projections pr : G — G/H, pr, : P — P/H
form a Lie groupoid morphism. O

In the situation of Theorem 3.3.11, assume that the induced groupoid G/S=P/S is a
Lie groupoid and pr, pr, are smooth surjective submersions. Choose vy, € T}, (G/S) and
v € Tiny(G/S) such that Tig[slvyg = Tiw[tjvp. Since [s(g)] = [s]lg] = [t][r] = [t(h)],
there exists by Lemma 3.3.4 ' ~g h such that t(h') = s(g) =: p. Assume without loss
of generality that h’ = h. Choose v, € TyG and v, € T},G such that T prv, = vj, and
T}, proy, = vp). Since this yields

T, pro(Tysvy) = Tig[s|(Ty prvg) = Tiglslvyg = Tinltlvpm = T, pro(Thton),

we find Tysv, — Tt € S(p) N T,P and hence, by Corollary 3.2.2, a vector w, € S(g)
such that Ty sw, = Tysv, — Tytv,. We get then

vig) * Vi) = Ty pr(vg — wy) * Ty prop = Tgun pr((vg — wy) * va).

If ayg € Tj;(G/S) and oy € Tj;,(G/S) such that [g](a[g]) = [’E](Oé[h]), then, as above, we
can assume without loss of generality that s(g) = t(h). Choose ugg) € Agq)G. Then we
have Tis() [t}(Ts(g) Pr Usg)) = Ts(g) Pr(Tsg)tus(g)) = 0 and hence Tyig) prusig) € Als(e))(G/59)-
We compute

S((Ty pr) " ovg)) (us(g)) = (T Pr)* e (0g * us(g)) = vy (T pr(04 * us(y)))
= g (Og) * (T5(g) DT Us(y)))

= [s](cvg) (Ts(g) P us(g)) = [t](vpn)) (T5(g) PT Us(g))
= ) ((Ts(g) Pr ts(g) — Tis(g)1[S](Ts(9) DT Us(g))) * Opny)
= o (Th pr ((us(g) — Ta(g)Stis(g)) * 0n) ) = £((Th pr) o)) (us(g) )

Thus, we have shown that

(T, pr)*agg) = (Tug pr)*[s) (o)),
(T pr)* o) = (Tin pr)* [t (o),
S((Ty pr)” a[g]) t((Th pr) o)

> U
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3.4 The Lie algebroid of the quotient Lie groupoid

and hence that (T pr)*og + (T} pr)*aj, makes sense. Choose v, € T;G and v, € T),G
such that T,sv, = Thtvy. Then we have

((Ty pr)*agg * (Th pr) o)) (vg * vp) = g (T, prog) + agp(Th proy)
= (g * o)) (T prvg = T, pr vp,)
= (g * ) ) (Tgun Pr(vg * v1))

= (Tgun pr)" (v * Q) (Vg * VR).

We have thus shown the following lemma, which will be useful for the proof of Theorem
5.1.2.

Lemma 3.3.14 In the setting of Theorem 3.3.11, if G/S=P/S is a Lie groupoid and
(pr,pr,) a pair of smooth surjective submersions, choose vy € Ti(G/S) and vy €
T (G/S) such that Tigslvyg = Tinltlvw. Then we can assume without loss of gener-
ality that s(g) = t(h). If vy € T,G and v, € TRG are such that Typrv, = v and
Ty, proy, = vy, then there exists wy € S(g) such that Tys(vy —wy) = Thtvy,. We have then
T pr((vg — wg) % vn) = vjg * Vi) ) .

If agg) € Tj;)(G/S) and oy € 175, (G/S) are such that [s|(ayg) = [t|(ap), then

S((Ty pr)*ay) = (Tygy pr)*s(eyg),  t((Thpr) o)) = (Tywy pr)*t(am),

hence § (T, pr)*ayy) =t (T pr)*oqn) and we have

((Ty pr)*agg) * ((Thpr) o) = (Tgun pr)* (g * pp)-

3.4 The Lie algebroid of the quotient Lie groupoid

We discuss here shortly the construction of the Lie algebroid of the quotient Lie groupoid.

Definition 3.4.1 (Mackenzie (2005)) Let ¢ : A — A’, f : P — P’ be a morphism
of Lie algebroids. Then (p, f) is a fibration if both f and ¢' : A — f'A’ are surjective
submersions, where f'A’ — P is the pullback of A" under f.

That is, a morphism (¢, f) of Lie algebroids is a fibration if f is a surjective submersion
and ¢ is a fiberwise surjection.

Definition 3.4.2 (Mackenzie (2005)) Let A be a Lie algebroid on a manifold M with
anchor map a. An ideal system of A is a triple § = (J,R,0), where J is a wide Lie
subalgebroid of A, R = R(f) = {(m,n) € M x M | f(m) = f(n)} is a closed embedded,
wide Lie subgroupoid of M x M = M corresponding to a surjective submersion f : M —
M, and where 6 is a linear action of R on the vector bundle A/J — M such that

1. if X, Y € T'(A) are 0-stable, i.e., 0((p,q), X(q)+J(q)) = X(p)+ J(p) for all (p,q) €
R, then [X,Y] is 0-stable,
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3 Multiplicative foliations

2. if X € (J) and Y € T'(A) is 0-stable, then [X,Y] € T'(J),
3. the anchora: A — TM maps J into TYM = ker Tf,

4. the induced map A/J — TM/T? M is R-equivariant with respect to 6 and the canon-
ical action 6y of R on TM /T M.

Here, the canonical action 0y of R on TM/T'M is given by 6 ((p, q),vq+quM) =
vp + TJM if Ty fop, =Ty fv,.

In the situation of Theorems 3.3.10 and 3.3.11, if the normal subgroupoid system N
is regular, then the quotient G/S=P/S is a Lie groupoid and (pr,pr,) is a fibration.
Consider the vector bundle A% := SNAG over P and the subgroupoid R(pr,) of Px P = P.
Then there is an induced action @ of R(pr,) on AG/A® defined by ((p,q),u, + A%(q)) =
u, + A%(p) if T, pru, = T, pru,. Since T's sends A% into S NTP = TP P, one can check
that Js := (A%, R(pr,), #) is an ideal system of AG. It is the kernel system of the fibration
of Lie algebroids AG — A(G/S) defined by the fibration (pr, pr,) of Lie groupoids (see
Mackenzie (2005) for more details).

Theorem 3.4.3 (Mackenzie (2005)) If (A — M, a,[-,:]) is a Lie algebroid and J =
(J,R(f),0), f: M — M, an ideal system of A, then there exists a unique Lie algebroid
structure on the quotient vector bundle A" = A/§ — M’ such that the natural map § :
A=A, f: M — M is a morphism of Lie algebroids with kernel system .

The induced Lie algebroid AG/Js — P/S is the Lie algebroid A(G/S) of the Lie groupoid
G/S=P/S.
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4 The group case

Let (G, 7¢) be a Poisson Lie group. A theorem of Drinfel'd (see Theorem 2.1.5) relates
the mg-homogeneous Poisson structures on GG/H to Dirac subspaces of the double Lie
algebra g x g* defined by 7, with characteristic subspace equal to b, the Lie algebra of
H.

Hence, it appears natural to ask which kind of objects would correspond to arbitrary
Dirac structures in g x g* via this correspondence, or an extension of it. The answer
that appears the most reasonable is that we get Dirac homogeneous spaces of the Poisson
Lie group. Since we pass to the category of Dirac manifolds, it is then also natural to
study not only the Dirac homogeneous spaces of Poisson Lie groups, but also of Dirac
Lie groups. This is done in this chapter, where we show how the theorem of Drinfel’d
generalizes to the more general setting of Dirac manifolds.

Dirac Lie groups have been defined independently by Ortiz (2008). His approach uses
the theory about Poisson Lie groups for the definition of the Lie bialgebra of a Dirac Lie
group. Here, we choose to phrase everything in the Dirac setting so that we get the known
results, such as the definition of the Lie bialgebra of a Poisson Lie group, as corollaries in
the class of examples given by the Poisson Lie groups (i.e. with Gy = Or¢g).

The reason why we prefer this approach is because the situation is quite different in the
case of a Dirac groupoid, where the characteristic distribution Gg can be more complicated.
The involved geometry is not necessarily induced by an underlying Poisson groupoid
anymore.

For the generalization of the results in this chapter to Dirac homogeneous spaces of Dirac
groupoids, we will need to construct in Chapter 5 the object that will play the role of the
Courant algebroid in this setting. There, the results known for Poisson groupoids will be
the guidelines, but it will not be possible to use them as it is done in Ortiz (2008) in the
particular case of Dirac Lie groups. Because of the technicality of the constructions for
the general groupoid case, we choose to give in this chapter the proofs for all the results
in the more easy Lie group case, even if most of them will be corollaries of the more
general results later on. In this manner, this chapter stays as self-contained as possible.
Also, the understanding of the constructions in the group case is helpful for the general
constructions in the groupoid case.

The last section of this chapter is about the Poisson Lie group underlying a regular Dirac
Lie group, that is also a Poisson homogeneous space of the Dirac Lie group. We will see
that this has no counterpart in the more general theory of Dirac groupoids.

Outline of the chapter Geometric properties of Dirac Lie groups are studied in Section
4.1 and the construction of the Lie bialgebra of a Dirac Lie group is given, as well as the
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4 The group case

definition of the induced action of G on it.

Dirac homogeneous spaces of Dirac Lie groups are studied in Section 4.2. The main
theorem of this chapter, about the correspondence between (integrable) Dirac homoge-
neous spaces of an (integrable) Dirac Lie group and Lagrangian subspaces (subalgebras)
of g/go X g, is proved in this section.

In Section 4.3, we study the special class of Dirac Lie groups where the characteristic
subgroup N is closed in the Lie group G, and the corresponding Dirac homogeneous
spaces.

4.1 Geometric properties of Dirac Lie groups

Recall that a Dirac Lie group is a Lie group G endowed with a Dirac structure Dg C
TG X T*G such that the group multiplication map

m:(GXG,DGeBDg)—)(G,Dg)

is a forward Dirac map, or, equivalently, such that Dg C TG x¢T*G is a Lie subgroupoid.
More explicitly, there exist for all g,h € G and pairs (vgy, agn) in Dg(gh), two pairs
(wg, By) € Da(g) and (up,vn) € Dg(h) such that

Tigmym(wg, up) = vgr  and  (Bg, ) = (Tgnym) g
That is, we have
Tthuh + Tthwg = Ugn € TghG, Bg = (Tth)*Ozgh and v, = (Tth)*Ozgh.

In this section and the following, (G, Dg) will always be a Dirac Lie group. We denote
by g1 := Gi(e), go := Go(e), p1 := P1(e) and po := Py(e) the fibers of the characteristic
distributions over the neutral element e of G.

The following results are immediate corollaries of Proposition 2.3.5.

Corollary 4.1.1 The subspaces go C g and p1 C g* satisfy Adypr = p1, Adygo = go for
all g € G. Consequently, we have ad}, py C py for all x € g and go is an ideal in g.

PROOF: We have P; = p] = p! and Gy = g = g} by Proposition 2.3.5. Then, for all
g € G and £ € pq, the covector (T,L,-1)*¢ is an element of P1(g) and there exists n € p;
such that (T,L,-1)*§ = (T,Ry-1)™n. This yields Ad;. § = n € p; and p, is consequently
Ad,-:-invariant for all g € G. In the same manner, we show that go is Adg-invariant for
all g € G.

This yields by derivation ad} & € p; for all £ € p; and ad, z € go for all z € gy and z € g,

i.e., [g,80] € go- O

If G is a simple Lie group, the ideal gg is either trivial or equal to g and we get the
following corollary.
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4.1 Geometric properties of Dirac Lie groups

Corollary 4.1.2 If (G,Dg) is a simple Dirac Lie group, the Dirac structure Dg is either
the graph of the vector bundle homomorphism T*G — TG induced by a multiplicative
bivector field on G, or the trivial tangent Dirac structure Dg = TG X Org.

We have also the following proposition.

Proposition 4.1.3 Let (G,Dg) be a Dirac Lie group. Then we have Dg(e) = go X p1 C
g x g*. Consequently, the equality a(e)(Y(e)) = 0 = B(e)(X(e)) holds for all sections
(X, a) and (Y, B) of Dg defined on a neighborhood of the neutral element e.

PROOF: Choose (z,£) € Dg(e). Then we have Ts(z,£) = £ € g* and hence Te(§) =
(0,8) = (2,&) % (2,€) € Dg(e). Thus, (x,0) = (x,£) — (0,€) is also an element of Dg(e)
and = € go. This shows that Dg(e) C go X p; and also p; = po. Because of this last
equality, the inclusion gy X p; C Dg(e) is obvious. O

We see from this that there are no nontrivial multiplicative 2-forms on a Lie group.

Corollary 4.1.4 Let G be a Lie group. Then w = 0 is the only multiplicative 2-form on
G.

Proor: If w is a multiplicative 2-form on G, then the associated multiplicative Dirac
structure D,, satisfies D,,(e) = Graph(w’|, : g — ¢*). Hence the ideal gy C g such that
D.(e) = go x g has to be equal to g. Thus, the kernel of w is Gy = g' = TG and w is
trivial. 0

Remark 4.1.5 Since gg is an ideal in g, the left and right invariant vector bundle Gy =
g, = g5 is completely integrable in the sense of Frobenius and its integral leaf N through
e € G is the normal subgroup of GG integrating the ideal gq of g. If IV is in addition closed
in G, its (left or right) action on G is proper.

We will see later that in certain cases (for example when the Dirac Lie group is integrable),
the induced action of N on (G, Dg) is canonical. Also, since Vy := g}, = gj, is the vertical
space of the action of N on G, it is easy to see that Dg N K7 = D¢ and this intersection
has consequently constant rank on G (recall the paragraph about regular reduction of
symmetric Dirac structures in Section 1.2). If N is closed in G, we can hence build the
quotient gy : G — G/N and (G/N, gn(D¢)) will be shown later to be a Dirac manifold
with gy(Dg) the graph of a skew-symmetric multiplicative bivector field on G/N. In
particular, if (G,D¢) is integrable, the quotient (G/N,qn(D¢g)) will be a Poisson Lie
group. A

Definition 4.1.6 A Dirac Lie group (G, Dg) is said to be regular if the group integrating
go 1s closed in G.

Consider a Lie group G and p : G — G its universal covering. Then there exists a

discrete normal subgroup T of G such that G = G/I" (see Knapp (2002)). The following
proposition is easy to prove.
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4 The group case

Proposition 4.1.7 Let Dg be a multiplicative (integrable) Dirac structure on G. Then
the pullback Dirac structure Dg := p*Dg is an (integrable) multiplicative Dirac structure

on (.

Remark 4.1.8 The integral leaf N through e € G of the characteristic distribution Gg
defined by D¢ on G is normal in G and hence closed since G is simply connected (see
Hilgert and Neeb (1991)). Hence, the quotient G/N is here always well-defined and the
Dirac Lie group (G, D) is regular. JAN

Example 4.1.9 Let G be a connected Lie group. The Lie algebra g of G can be Levi-
decomposed as the semi-direct product g = s @4 rad g with s semi-simple and ¢ : 5 —
Der(rad g) a Lie algebra homomorphism (see for instance Knapp (2002)).

The ideal rad g of g is a solvable ideal of g and its integral leaf R is closed in G (see Hilgert
and Neeb (1991)). The quotient G/R is then a semi-simple Lie group. Let ¢ : G — G/R
be the projection and 7 be the standard multiplicative Poisson structure on the semi-
simple Lie group G/R (see Etingof and Schiffmann (2002) and Lu (1990)). The pullback
¢rDx is an integrable Dirac structure on G. Its characteristic distribution is the left or
right invariant image of the ideal gy = rad g of g and the action of the integral leaf R of
Go on (G, q;Dx) is canonical, the Poisson Lie group associated to this Dirac Lie group as
in Remark 4.1.5 is obviously (G/R, 7). O

The following lemma will be useful for many proofs in this chapter. We will always use
the following notation. If £ is an element of the subspace p; C g*, then the one-form
¢ e QNG), defined by &'(g) = o T,L,1 for all g € G, is a section of P; by Proposition
2.3.5. We denote by X¢ € X(G) a vector field satisfying (X¢, ') € I'(Dg). The vector field
X is not necessarily unique: all Y € X:+T'(Go) satisfy then the condition (Y, ¢') € I'(Dg).
Note that the pair (X¢,&') € I'(Dg) is such that Ts(X¢, &) (g) = € for all g € G.

Lemma 4.1.10 Choose £ € p; and corresponding vector fields X¢ and XAdZ_l ¢ forhe .
Then the inclusion

Xe(gh) € ThLgXe(h) +TyRnXaa:_, e(9) + Gol(gh) (4.1)
holds for all g € G.

Remark 4.1.11 If Y and Yjq: ¢ € X(G) are such that (Ye, "), (Yaa; ¢, (Ady, €)") € I'(De),
then we can show in the same manner

Ye(hg) €  TylnYaa;e(g) + TuRyYe(h) + Go(hg)
for all g € G. A
PROOF (OF LEMMA 4.1.10): By Example 1.1.21, we have

Tt(Xe(h), €' (h)) = Adj-1 € = Ts(Xaa:_, e(9), (Adj-1 €)'(9))-
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Hence, the product (X¢(h), & (Rh)) * (Xaar_, e(9), (Adj £)Y(g)) € Dg(gh) is defined and

equals

(Tmm(Xag;_ el9), Xe(h)), (TynLy-1) €' (1)
= (ThLoXe(h) + Ty R Xaa;_, e(9),€0M))
which concludes the proof. O

Proposition 4.1.12 Let £ and n be elements of p; and X¢, X,) € X(G) corresponding
vector fields. The one-form £X§7)l — andfl 1s left invariant and equal to (de(nl(Xg)))l.

PROOF: Choose x € g and, using the preceding lemma and the notation (ad &)(y) =
&([y, z]) for all £ € g*, 2,y € g, compute

(£x.n' —ix,d&) (a')(g)
() (9) + 7L X)) ~ X,(€)0) + 21 (X)) (0) — E(£0X,)(0)
D (3| oot Boa i Xelaesp(t) ) + (£4)(X)(0)

d
n'(9)(Xaar,, . ¢(9) +1 ( yy

Xe
= n'(
a1 d

o R Xelexp( 1))

+ (ad (X, (9)
| A €008 @) + £ Xele) + () (X))
= (a2 &) (X)) + £t (X)) (€) — (£ar)(Xe)(e) + (s £)(X,)(0)
= d. (1'(Xe)) (),

where we have used Proposition 4.1.3 and £,n' = (ad%n)! € T'(P;) by Corollary 4.1.1. [J

dt

t=0

d

Definition 4.1.13 Let (G,Dg) be a Dirac Lie group. Define the bilinear, antisymmetric
bracket

[lipxpi— gt by (€] =ddn'(Xe))
where Xe € X(G) is such that (X¢, &') € T'(Dg). That is, we set the notation £x,1' —
ix,d¢’ =: [§,n]" and hence [(Xe, &), (Xy.n')] = ([Xe, Xy, [€,n]') for all &1 € p1.

Note that [£, 1] does not depend on the choice of the vector field X. Indeed, if Y, € X(G)
is an other vector field such that (Y, &') € I'(Dg), we have Y — X € I'(Gg) and hence
H(Xe) = 11((Xe — Ye) + e)) = nl(Ye) since 5f € D(Py).

The bilinearity of the bracket is obvious. For the antisymmetry, choose &, € p;. Then
we have &'(X,) + n'(X¢) = 0 since (X, &') and (X, n') are sections of D, and this leads
to

€,n] = de (n'(Xe)) = de (—€1(X,)) = —[n. €.
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4 The group case

As a direct corollary of Proposition 4.1.12 we recover the generalization to the Dirac case
of the fact that every multiplicative Poisson structure on a torus is trivial.

Corollary 4.1.14 Consider an Abelian Dirac Lie group (G,D¢g) and choose x in the Lie
algebra g. Then the equality

(n'(X¢)) (g - exp(tx)) = [€, n](tz) + (n'(Xe)) (9)

holds for all g € G and t € R.
As a consequence, if Dyn is a multiplicative Dirac structure on the n-torus R"™/Z", then
Drn is a direct sum

D’]I"n - GO X’H‘n P]_.

PROOF: We have shown in Proposition 4.1.12 that £x,1'—ix, &' = [¢,7]" is a left invariant
one-form on GG. We have for all £, € p; and x € g:

(€ n)!(2") =(£x' — ix,dE)(2") = 0'(£aXe) + (£a8)(Xy) (4.2)
(see the proof of Proposition 4.1.12)
= ' (1 (X)) — (£an')(Xe) + (£8)(X,)
=a' (1 (X¢)) — (ady )" (Xe) + (ad €)' (X,) = 2'(n'(Xe)) (4.3)

since ad ¢ = ad’n = 0 because g is Abelian. We get d(n'(X¢)) = [£,7]' and the equality
4R: Vf = Ry (L f) for all f € C%(G) yields

exp(tz exp(tz

d (4.3) .

@(nl(Xg)) (gexp(tz)) = Rl (2'(0(Xe))) (9) = Rigpua (€ 0)(2)) = [€,7]()

for all g € G and t € R. We get

(n'(Xe)) (gexp(te)) = [ n)(z) - t + (n'(Xe)) (9) = [£,m](tx) + (0'(Xe)) (9)-

On the n-dimensional torus T", we have exp(tz) = tx + Z" for all z € g = R" and all
t € R. This yields

(1'(X¢)) (exp(te)) = [€, nl(tz) + (1'(Xe)) (0) = [&, n](tx)

for all z € R" and all t € R. But since the function (n'(X)) is well-defined on T" =
R™ /7", the equality [£, n](tz) = [{,n](tz+ 2) has to hold for all z € R", ¢ € R and z € Z".
This leads to [¢,1] = 0 and hence n'(X) is constant and equal to its value at the neutral
element; n'(X¢)(0) = n(Xe(0)) = 0 for all £,n € p; by Proposition 4.1.3. Thus, each
spanning vector field X, £ € py, of Gy is annihilated by P; and is consequently a section
of Go. O

The next proposition shows that the value of [£, 7], for £, € p1, can be computed with
any two one-forms in I'(P;) taking value &, 7 in e.
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Proposition 4.1.15 Let o, € T'(P1) be such that a(e) = & and f(e) =n € p1. Then
we have

[€,m] = de(B(Xa)),
where X, € X(Q) is such that (X,,«) € I'(Dg).

PRroOOF: First, we show that £,-a € I'(Py) for all & € I'(Py). For all g,h € G we have
(Lya)(h) = agn o ThLy = (T Ly)* agn. This is an element of P1(h) since ay, € P1(gh) and
P, is left invariant by Proposition 2.3.5. Thus, we get

Lra)h) = L] (L)) € Pa(h)

t=0

3 *
since (L,

ya)(h) € P1(h) for all t. Choose € g and compute

(€, n)(x) = 2" (1 (X)) () = n(£arXe(e)) = Ble)(Lar Xe(e))
= 2"(B(Xe)) — (£28)(Xe)(e) = —a"(¢'(X5))(e)
= —&(£ar Xpg(e)) = —ale)(£ar Xp(e))
= — Lo (a(Xp))(e) + (£ora)(Xp)(e) = de(B(Xa)) ()

In the fifth and ninth equalities, we have used the fact that £,-a, £,-8 € T'(P1) and
Proposition 4.1.3. O

The next lemma holds for integrable Dirac Lie groups, and is in general not true if the
Dirac Lie group (G, Dg) is not integrable, as shows the example following it. Recall that
N is the normal subgroup of G defined by the integral leaf through e of the integrable
subbundle Gy C T'G.

Lemma 4.1.16 If (G,Dg) is integrable, then we have
<£ILX, £xl(){>7 (£17"X7 OE:BTO[) € F(DG)

for all x € gy and (X,a) € I'(Dg), and the pairs (R: X, Ri«) and (L X, L «) are also
elements of I'(Dg) for allm € N.

PROOF: The right and left invariant vector fields 2" and 2! defined on G by an element
of go are sections of Gy = gi = gl. If (G,Dg) is integrable, we have (£,X, £a) =
[(2!,0), (X, a)] and (£, X, £,ra) = [(2",0), (X, a)] € T'(Dg) for all (X, ) € I'(Dg).

For each z € gy, the flow of ! is Rexp(tz) and the flow of 2" is Leyp(sr). Thus, by Corollary
1.2.7, we have (R X, Rexp(m a) and (L7 10X, L pun@) € T'(De) for all (X, a) €
['(Dg). This yields the claim since N is generated as a group by the elements exp(tx),

x € go and small ¢. O
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Example 4.1.17 Consider the Dirac structure Dgs defined on the Lie group R? as the
span of the sections

(0:,0), (204,dy), (—20,,dx)
of Pgs. It is easy to show that (R3, Dgs) is a Dirac Lie group (see also Corollary 4.1.14 for
a description of the multiplicative Dirac structures on R™). It is not integrable because,
for instance, the bracket of (9, 0) and (z0,, dy) is equal to (0., 0), which is not a section of
Dgs. The Dirac structure is obviously not invariant under the action of N = {(0,0)} x R
on R3. O
The following theorem shows how to decide if the action of N on (G, D¢) is canonical.

Theorem 4.1.18 The Dirac Lie group (G,Dg) is N-invariant if and only if the bracket
[-,:] defined in Definition 4.1.13 has image in p;.

Example 4.1.19 Consider again Example 4.1.17. The bracket on
p1 = span{dz(0), dy(0)}
is given by [dy(0),dz(0)] = do ((dz)(20;)) = dz(0) & p1. O

For the proof of Theorem 4.1.18, we need to introduce a new notation and show a lemma,
that will also be useful in the following.

Definition 4.1.20 Choose £ € p; and x € g. Then the elements

ad; £ € py and adg z € p] = 9/do
are defined by (ad €)(y) = &(y,2]) for ally € g, and (adt ) () = [, €)(x) for all n € pr.
Note that ad ¢ is an element of p; by Corollary 4.1.1.

Lemma 4.1.21 Choose £ € p; and X¢ € X(G) such that (X¢, &) € T'(Dg). Then we
have for all x € g:

(L£aXe)(e) +go=—ad;z € g/go

and consequently
£Xe € (—adi x)' + Xaare + T(Go) (4.4)

forall g € G.

ProOOF: Choose n € p; and compute

D((£0X) (€)) = £a0 (X)) () — (£ar) (Xe)(e) = [6,7)(@) — 0 = 1 (— adg ).
This yields the first equality. Using this and the proof of Proposition 4.1.12, we get:
' (£aXe) = — (ad}; §)'(X,) + 1 (£ Xe(e))
=1 (Xaaze) +71' ((—adga)) = 0 (Xagz¢ + (—adg2)') .
Since the left invariant one-forms 7!, for all n € py, span I'(P;) as a C*°(G)-module,

we have a (£, X¢) = a (Xaaz¢ — (adf x)!) for all o € T'(Py), and hence we are done using
Go = P;°. O
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Remark 4.1.22 Note that if x is an element of gy, we have

( ILX£7 é ) [(xl70) ) (X§7£l)] € F<DG)
if D¢ is integrable. Since z lies in the ideal gy and & € p; = g, we have ad}, & = 0, thus
L8 = (ad: €)' = 0 and we get £, X¢ € T'(Go).
With Lemma 4.1.21, we can show that this is true without the assumption that D¢ is
integrable; we need only the hypothesis that the bracket on p; has image in p;. We have
then
£ Xe € Xoaz ¢ — (adi 2)' +T(Go) = Xo — (adf 2)" + T(Go) = I'(Go).

The vector field X is indeed an element of I'(Gg) by definition, and for all n € p;, we have
(ad x)(n) = [n,&](x) = 0 since [n,&] € py and 2 € go, which shows that adf z is trivial in
/g0 and thus (ad; )" € T'(Go). JAN
PROOF (OF THEOREM 4.1.18): If the right action of N on (G,Dg) is canonical, we
have (R:Xe, R:¢Y) € T'(Dg) for all n € N and € € p;. This yields (£,Xg, xlg)

I'(Dg) for all = € go. Since Dg(e) = go X p1, we get £, X(e) € go. Hence, we have

(€, m](z) = 2'(n(Xe))(e) = (ady n)(Xe(e)) + (£, Xe(e)) = 0 for all §,n € py and z € go
and consequently [£,7] € p;.

Conversely, if [£, 7] € py for all £, € py, we get £.Xe € I'(Gp) by Remark 4.1.22. Hence,
recalling that ad’ & = 0 for z € go and £ € p;, we can compute

d * *
dt <<Rexp tx) 57 exp(tm)fl)7 (Xm nl)> <g>

:%(q ) (Riepta) Xe)(9) + (Ripan€)(9) (X, (9)))

=1 (Rip(e) (£ Xe)) (9) + (Rip iy (ads €)1 (X)) (9)
=1n0TyLg1 0 Tyexp(ta) Rexp(—ta) (L2 Xe) (gexp(tz))
= (Ad} 4wy 1) (£ Xe) (gexp(ta)) = 0

since Adge, ) 1 € P1 and £ Xe € T'(Go). But this yields

exp(tz)

<<R:Xp ta:)X§7 exp( ta:)f ) ( )> <g> = <<R:xp(0 a:)X§7 exp( Oa:)g ) ( )> (g)

= ((Xe,6), (Xy,1)) (9) = 0
for all ¢ € R, which shows that (R}, tx)Xg,ReXp(m)fl) is a section of D¢ for all ¢t € R.

Hence, since N is generated as a group by the elements exp(tx), for x € gy and small
t € R, the proof is finished. O

The following theorem will be useful in the next subsection about integrable Dirac Lie
groups.

Theorem 4.1.23 The equality

(€, nl ([, y]) =(ad, §)(ad; ) — (ad; &) (ad, y) + (ad; n)(ade y) — (ad, n)(ad; z)  (4.5)
holds for all §,m € p1 and x,y € g.
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PROOF: By Definition 4.1.13, we have [&,7]([z,y]) = [z, y]' (n'(X¢)) (e) for any z,y € g
and &,n € p;. Hence we can compute

&, ([, ) =[z, 9] (' (X¢)) () = £ £y (n'(Xe)) () = £ L1 (1'(Xe)) (e)
Lo (L0 (Xe) + 1/ (£ Xe)) (€) — £ (£ (Xe) + 7' (£2Xe)) (e)
=L, ((ady ) (Xe) + ' (—adfy)' + 7' (Xaaze)) (€)

— £y ((adi ) (Xe) + 7' (—adg )" + 7' (Xaaze)) (e).

Since 7'(—adg y)' and n'(— ad z)" are constant functions on G, we get hence:

€, n)([z, y])
=L, ((ad) n)'(Xe) + 0" (Xaaze)) (€) — £yt ((ade ) (Xe) + 7' (Xaaze)) ()
:(deﬂ(ad;; M (Xe) + (ad) ) (£ Xe) + (£a1") (Xaaze) + 7' (fszad;g)) (e)

= (i’yz(adi ) (Xe) + (ady n)' (£ Xe) + (Ly') (Xaaze) +1' (£y ad2§)>(e)
=(ad; ady n)(X¢(e)) — (adyn)(adg 2) + (adi n) (Xagze(e)) — 7 (adZd;g x)

— (ad ad; n)(Xe(e)) + (ad; n)(adg y) — (adyn) (Xaazele)) +n (adsg: ¢ ) -

Since Dg(e) = go x p1 and p; is ad}-invariant for all € g, the first, third, fifth and
seventh terms of this sum vanish. Thus, we get

&) ([, y)) = —(ad; m)(ad; @) = (ady; ¢ =) + (adt m) (adg y) + 1 (acs; ¢ y)

= —(ady n)(ad¢ ) + [ad; §, n](z) + (ad; n)(adg y) — [ad; & 1](y)
= —(ad, n)(ad; ) + (ad; §)(ady z) + (ad; n)(ad; y) — (ad; &) (adyy). O

Remark 4.1.24 Equation (4.5) is equivalent to either one of the following equations for
all z,y € gand &, n € py:

ad (€, 7)) = [ad; & ] — [ady 7, ] + adiy. , € — adgq: . 1, (4.6)

adg([z,y]) = [adg 2, y] = [adgy, 2] —adyge ey +adygz e v € pr=0/00  (47)
A

Let (G,Dg) be a Dirac Lie group. Then the space \”g/go is a G-module via

g ((x+980) Ay +80) = (Adgz + go) A (Adgy + go)

by Proposition 2.3.5, and by derivation, it is a g-module via

z-((x+g0) A (y+80) = ([z,2] +80) A (¥ + go) + (7 + go) A ([2,9] + 80).
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Theorem 4.1.23 states then that the map § : g — A”g/go defined as the dual map of
[-,-]: A’p1 — g is a Lie algebra 1-cocycle, that is, we have

6([z,y]) =2 -6(y) —y-0(x)

for all z,y € g. Hence, we can associate to each Dirac Lie group (G,Dg) an ideal g
and a Lie algebra 1-cocycle 6 : g — /\2 g/g0. If (G,Dg) is a Dirac Lie group, then the
map C : G — A\’ g/go defined by C(g)(&,n) = 1" (Ye)(9) = =€ (Y;)(g), where Y; € X(G)
is a vector field satisfying (Y¢,&") € I'(D¢), is a Lie group l-cocycle, i.e., it satisfies
C(gh) = C(g) + Ad,C(h) for all g,h € G. The proof of this uses Remark 4.1.11. We
have C'(e) =0 € g/go A g/go by Proposition 4.1.3 and

(A.C) ) Em) = &

4
dt

C(exp(tz))(§,n)

t=0

. n"(Ye)(exp(tz))

Prop. 4.1.15 [

§nl(z) = o(x)(&,n)

for all £,1 € p;.

Note that if G is connected and C' : G — /\2 9/go is a Lie group 1-cocycle integrating
d, that is, with C(e) = 0 and d.C' = ¢, then C is unique (see Lu (1990)) and D¢ is
consequently given on G by

Da(9) = {(T.Ry(C(9)*(§) +2),€"(9)) | § € pr, @ € go} (4.8)

for all ¢ € G, where C(g)* : g/go — g is defined as follows. Choose a vector subspace
W C g such that g = go® W, then we have an isomorphism ¢y : W — g/go, w — w+ go.
Set C'(g)*(&) = ¢y (Cg)(&,-)) for all € € p; = g5. Note that by definition, (4.8) does not
depend on the choice of W.

Conversely, let G be a connected and simply connected Lie group and gy an ideal in g.
Choose a Lie algebra 1-cocycle § : g — /\2 9/go- Then there exists a unique Lie group 1-
cocycle C': G — A\?g/go integrating ¢ (see for instance Dufour and Zung (2005)). Define
Dg C Pg by (4.8). Then it is easy to check that D¢ is a multiplicative Dirac structure
on G. We have shown the following classification theorem, that generalizes Drinfel’d’s
classification of Poisson Lie groups (Drinfel'd (1983)).

Theorem 4.1.25 Let G be a connected and simply connected Lie group with Lie algebra
g. Then we have a one-to-one correspondence

C g ideal , 1:1 multiplicative Dirac
{(907519—>A2g/90)' fo =10 }H{ P }

0 Lie algebra 1-cocycle structures on G

We will see in the next subsection that the integrable multiplicative Dirac structures
on G correspond via this bijection to the pairs (go, 0:9— /\2 g/go) such that the dual

[,] ;== 6" : A\® g3 — g* defines a Lie bracket on g8 =: p;.
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Example 4.1.26 1. Consider G = R". Then any vector subspace V C R" ~ TyR"
is an ideal in g = R™ and any 0 : R" — /\2 R™/V is a cocycle since the cocycle
condition is trivial in this particular case. The cocycle C' integrating ¢§ is then the
unique linear map C' : R" — /\2 R™/V with dgC = 9, that is, C' is equal to ¢ if
we identify G = R"™ with g = ToR" via the exponential map. This shows that each
multiplicative Dirac structure on R" is given by

Dan(r) = {(8(r)*(€) + 2,€) | € € Vo, € V} CT,R" x T;R",

with V a vector subspace of R”, § : R — A’R"/V a linear map and 6(r)? defined
as in (4.8) with a complement W of V' in R".

2. Let G C GL,(R) be the set of upper triangular matrices with non-vanishing deter-
minant. The Lie algebra g of GG is then the set of upper triangular matrices. Its
commutator gy := [g,g] is the set of strictly upper triangular matrices, and inte-
grates to the normal subgroup N C G of upper triangular matrices with all entries
on the diagonal equal to 1. Note that G is not connected. The connected component
of the neutral element e € G is the set of upper triangular matrices with strictly
positive diagonal entries.

The quotient g/go is isomorphic to the set of diagonal matrices in g. Since gy = [g, g,
it is easy to see that the cocycle condition is satisfied for a linear map 6 : g — /\2 9/9o
if and only if 6|4, vanishes, that is, if and only if § factors to d : g/go — A”g/go. In
other words, the dual map [-,-] of a Lie algebra 1-cocycle § has necessarily image
in p; ;= gj. Hence, it C : G — /\2 g/g0 is the Lie group 1l-cocycle associated to
a multiplicative Dirac structure Dg on G, then the dual of its derivative at e has
image in pq, that is, the bracket on p; defined in Definition 4.1.13 has automatically
image in p;. Since N is closed in GG, this shows by Remark 4.1.5 and Theorem 4.1.18
that any multiplicative Dirac structure on G with gy = [g, g] is automatically the
pullback to G under g : G — G/N of the graph of a multiplicative bivector field on
G/N.

More generally, this result holds for any Dirac Lie group (G,Dg) such that gy =
9, g]- O

4.1.1 Integrable Dirac Lie groups: induced Lie bialgebra

In continuation of the results in the preceding subsection, we can show that the inte-
grability of (G,Dg) depends only on the properties of the bracket defined in Definition
4.1.13.

Theorem 4.1.27 The Dirac Lie group (G,Dg) is integrable if and only if the bracket
[-,-] on p1 X p1 defined in Definition 4.1.13 is a Lie bracket on p;.

70



4.1 Geometric properties of Dirac Lie groups

In this case, Theorem 4.1.23 implies that the pair (g/go, p1) is a Lie bialgebra.

Of course, with Theorem 4.1.18, we could show this theorem by considering the Lie
bialgebra structure defined on (g/go, p1) by the multiplicative Poisson structure on G/N
(recall Proposition 4.1.7 and Remarks 4.1.5 and 4.1.8), but, in preparation of the more
general case of Lie groupoids where this easier method is not possible, we prefer to do
that in the setting of Dirac manifolds.

For the proof of the theorem, we will need the following lemmas about the tensor Tp,
(see Section 1.2 about Dirac manifolds).

Lemma 4.1.28 Let (G,D¢) be a Dirac Lie group. The tensor Tp,, is given by
2o ((Xer €1, (X1, (Xer €)) =X (X)) + Xe(¢' (X)) + X, €1(Xc)
=[Gl (Xe) = [6.A'(Xy) = [n.€]'(Xe)  (4.9)
for all £,m,C € p1 and corresponding X¢, X,), X¢ € X(G), and in particular
Toe(€)((z,€), (y,n), (2,C)) =[€, 1] (2) + [n, (] (z) + [¢, €](y) (4.10)
for any x,y, z € go.

PRrOOF: Choose £,7,¢ € p; and corresponding vector fields X¢, X, X € X(G). Then
(1.11) yields

TDG <(X§> 51)7 (Xm 771)7 (XCv d)) :Cl([Xfa XU]) + Sl([Xm XC]) + nl([XC> Xﬁ])
+ X (£1(X)) + Xe(n' (X)) + X, (¢'(Xe)).-

Using the definition of the bracket, we have also

[Cv 77]1<X£) + [57 <]1<X77> + [777 §]1<XC)
=(£x.10' —ix,d")(Xe) + (£x.C" = ix dE)(X,) + (£x,E" — ix dn')(X¢)

=2 (12, Xe) + 1 ([Xe, X)) + €1(1Xc, X))
+3 (X (' (X0) + X' (X)) + X (€1(X)))
= = 2T ((Xe, €), (X 1), (X, €)) + X' (X)) + XelC'(X,)) + X, (€1(X0)).
Evaluated at e, this leads to

Toe(@((Xe(0),€), (X,(e), ). (Xc(e), C)
= 2 (A (X (X)) + duCHX)) (Kele)) + (X)) (X, )

2
— [ nl(Xe(e)) = [€, C1(Xy(e)) — [m&](&(@))
=[& nl(Xc(e)) + [0, (l(Xe(e)) + [, €](Xy(e))- 0
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Lemma 4.1.29 Assume that the bracket on pi X py has image in py. Then,

Too (X, €, (X501, (X, ¢)

is independent of the choice of the vector fields X¢, X,), X¢ € X(G). The tensor Tp,
defines in this case a tensor Sp, € T(\*P1*) by

Soa(€' 1 ¢") = Tog (Xe, €, (X, 1), (Xei )
for all &,m,¢ € py1 and (G, Dg) is integrable if and only if Sp, vanishes on G.

PrOOF: Consider (4.9). Since [¢,7] € p1, we have [, 9] (X + Z) = [¢,n]'(X,) for all
Z € I'(Gp). Thus, we have only to show that X¢ (n'(X¢)) is independent of the choices of
Xe, X¢. Choose Z and W € I'(Gg) and compute

(Xe + Z2)(n' (X + W) = Xe (' (X)) + Z(n' (X)) + (X + Z2) (o (W)
= Xe(n'(X¢) + Z(n'(X())

since n'(W) = 0. For any x € go, we have z'(n'(X¢)) = (adin)'(X¢) + n'(£aX) = 0
since ad;n = 0 and £.X, € I'(Gy) by Remark 4.1.22. Since I'(Gp) is spanned as a
C*(G@)-module by {z! | # € gy}, we are done.

Recall that the pairs (z!,0) and (X¢, &), for all € gy and £ € p; span the Dirac bundle
D¢. Hence, to prove the integrability of D¢, we have only to show that the Courant bracket
of two sections of Dg of this type is a section of Dg. We have already [(azll, O) , (:clz, 0)} €
I'(Dg) for all 71, 25 € go since go is an ideal in g and [(2',0) , (X¢,&')] = (£ X, (ad} €)'
(£,X¢,0) € T(Dg) by Remark 4.1.22 . Thus, we have only to show that ([X¢, X,], [£,1]")
is a section of D¢ for all £, € p1. Since [£, ] € p1, we have ((2/,0), ([Xe, X,], [€,n]")) =
[€,n](z) = 0 for all x € go. The Dirac structure D¢ is thus integrable if and only if
(([Xe, X, [€,m), (Xe, ¢Y)) = 0 for all £,n,¢ € py, that is, if and only if Sp,, = 0. O

PROOF (OF THEOREM 4.1.27): We have to show that the bracket has image in p; and
satisfies the Jacobi identity if and only if the Dirac Lie group (G, D¢) is integrable.
Assume first that (G, Dg) is integrable. The tensor Tp, vanishes identically on G and

[(Xivfl)v (Xm??l)] = ([X&Xn]a £X5771 - andgl) = ([X£7 XW]? [&ﬁ]l)

is a section of Dg for any &, n € p;. Hence the covector [¢,n] = d.(n'(X¢)) is an element
of p; for all £, € p;. We get then using (4.9)

[§, [C.ml] + [0, (€, ¢l + (€5 [, €]
:de (Kan]l(Xﬁ)) + de ([ga C]Z(Xn)) + de ([nag]l(XC))

= —2d, (To ((Xe &), (X0, 1), (X, €)) ) + de (Xe (0 (X)) + Xel€'(X0)) + X, €1(X0)))
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for all £, (,n € p;. We have for any x € g:

d, (X(n'(Xe)) (x) = * (Xc((Xe))) (e)
Wa, (1 (X)) (—ad: z) + d, ((adn)'(Xe)) (Xe(e) + Xe (1 ((— adg 2)! + Xaaze)) ()

= [§nl(=adc2) + [€, ad; n](Xc(e) + [ad €, n](Xc(e) = [¢, [§, nll(2).

We have used the equality Dg(e) = go x p1 and [€, ad} 7], [ad} &, 7] € p1 as we have seen
above. This leads to

€ 1C )+ [, 16,1+ 16, 1, €] = —de (To, ((Xe, €), (X1, (Xe, ) ) ) = 0.

For the converse implication, we know by Lemma 4.1.29 and the hypothesis that the Lie
bracket has image in p; that we have only to show the equality Sp, = 0. We compute
£,(Sp,) for any z € g. It is given for any g € G and &,n,( € p; by

(£S04 (9)(&'(9),'(9) ¢'(9))
=L (Soa(€',1', (") (9) = Soa((ad; €)', 0, ¢)(g)
— Spa (€', (adym)', ¢')(g) = Spa (61", (ad; €)') (9)-
Using the definition of Sp,, (4.9), (4.4) and (4.6), one can show that

£,1 (Soe(€'7,¢)) = Soo((adz €)', ¢') + So (€', (adz ), ¢)
+ Soa (€' (adi €)) + (116, €]+ (16, L] + [0, €1,¢]) (@),

Since [-, -] : p1 X p1 — p; satisfies the Jacobi identity by hypothesis, this shows that
£.5p, = 0 for all x € g and consequently that Sp, is right invariant. Thus, we get

Spe(9) (€7(9),¢"(9),n"(9)) = Sbe(e)(€,¢,n)

(4.10)
6 (Xe(e)) + €. I (Xa(e)) + [1.€](Xe(e) = 0
since [+, -] has image in p; and Dg(e) = go x p1. Hence, we have shown that Sp, vanishes
identically on G and the Dirac Lie group (G, Dg) is consequently integrable by Lemma
4.1.29. 0J

Remark 4.1.30 1. We can see from the last proof that

(£25906)(€, ¢ ") = [[& ), <)+ [0, €1 €] + [[¢, €], m)

if the bracket on p; X p; has image in p;. This shows that £,:Sp,, is left invariant and
we can see using (4.10) and D¢ (e) = go X py that Sp,, () = 0. Thus, Sp,, € (A P1*)
is multiplicative (see for instance Lu (1990)).

2. Note that if (G, D¢) is integrable, then [£, 1] € p; and we get [X¢, X, € X[g 21+1'(Go)
for all {,n € p; and any vector field X[, such that (X[s,n] £,n l) € I'(Dg). A
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Recall that since gy is an ideal of g, the quotient g/go has a canonical Lie algebra structure
given by [x 4+ go,y + go] = [z, y] + go for all 2,y € g. Recall from Theorems 4.1.23 and
4.1.27 that if (G, Dg) is integrable, then the pair (g/go,p1) is a Lie bialgebra. The Lie
algebra structures on g/go and p; induce then a double Lie algebra structure on g/go X p1,
with bracket given by

[(SL’ + go, 5)7 (y + o, 77)] = ([.T, y] - ad; x+ adz Y + go, [57 77] + ad; n— ad; g) ) (411>
for all z,y € g and &, € p; (see for instance Chapter 2 or Lu and Weinstein (1990)).

4.1.2 The action of G on g/gg X p;
Theorem 4.1.31 Let (G,D¢) be a Dirac Lie group. Define
A:G x(g/g0 X p1) = 8/80 X P

by
A(Qa ($ + 9o, f)) = (Adg T+ Tng*lX&(g) + o, AdZ*l f)

for all g € G, where X¢ € X(G) is a vector field such that (X¢, &) € T'(Dg). The map A
is a well-defined action of G on g/go X p1.

PrROOF: We prove first the fact that the action is well-defined, that is, that it doesn’t
depend on the choices of z and X,. Choose 2’ € g such that 2’ + gy = = + go. Then
' —x =: 19 € go and

Ady 2’ = Ady(z + z0) = Adyx + Ady g € Adyz + go

for all g € G, since gy is Adg-invariant for all g € G.

Next, if X¢ and X{ € X(G) are such that (X¢,£&') and (X{,€') € T(Dg), the difference
Xé — X is a section of Gy and hence we can write (Xé — X¢)(g9) = T.Ryyo with yo € go.
This leads to

TgRg-1Xé(g) =TyR,~1Xe(9) + yo € TyR,;~1Xe(9) + 9o

The map A is hence shown to be well-defined. We show next that A is an action of G on
9/9o0 x p1. We have to show that

Ag, Alg, (x + 80,6))) = A(d'g, ( + 90, €))

for all g, € G, x € g and £ € p;.
We have with the same arguments as above

- (Adg/(Adg 2) + TyyRy1 g1 Xe(9'g) + g0, A’ (A g))

) (Ady(Ady @) + TyoRysg (TyLy Xe(g) + Ty ByXaa: , () + 80, Adlys (A1 €) )
= (Ady(Ady 3+ Ty Ry Xe(9)) + Ty Ry Xaar_ e(') + 00, Ad-s (Ady g))
= Ay (Adg r+TyR,-1Xe(g9) + 9o, Ad;_l §) = Ay (Ay(z+ g0,§)) . O
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4.2 Dirac homogeneous spaces

Remark 4.1.32 Assume that the bracket on p; x p; has image in p;.

We have N C G z440,6), Where G(z4q0,¢) is the isotropy group of (z + go, &) € 9/80 X p1.
Indeed, for n € N, we have Ad,,x € x + g, for all z € g and hence Ad;_, £ = ¢ for all
¢ € p1. The proof of this is easy, see also Ortega and Ratiu (2004), Lemma 2.1.13. Since
(Xe,€') € T(Dg) and n € N, we know by Theorem 4.1.18 that (R} X, Ri¢') € I'(De).
Hence, we have R} X¢(e) € go because Dg(e) = go X p1, that is, T, R,,—1 X¢(n) € go. Using
this and Ad,, x € x + go, we get Ad,,z + T,,R,-1X¢(n) € x + go.

Thus, we get a well-defined action A of G/N on g/go x p1, that is given by A(gN, (z +
90, €)) = A(g, (z + g0, §)) for all g € G. A

If (G, Dg) is integrable and N is closed in G, the next theorem shows that A is the adjoint
action of G/N on g/go X p; integrating the adjoint action of g/go defined by the bracket

on g/go X Pq.
Theorem 4.1.33 Assume that (G,Dg) is an integrable Dirac Lie group. The adjoint
action of g/go >~ /g0 X {0} C g/go X p1 on g/go X p1 “integrates” to the action A of G
on g/go X p1 in the sense that

d

2| Alewmty). (v +90,) = [(y + 80,0), (z + g0, §)]

t=0
for ally € g and (x + go,&) € g/g0 X P1-
PrOOF: Choose z,y € g and £ € p; and compute

d
o | Alexp(ty), (2 + g0,€))
t=0
d *
=7 (Adexp(ry) & + Texp(ty) Rexp(—t) Xe(exD(ty)) + 80, AdZy 4y €)
t=0
. (49) . )
= (ly, 2] + £, Xe(e) + go.ady &) = ([y, 2] — adfy + go, ad; €)
:[(y+9070)7(l‘+907§)] L]

4.2 Dirac homogeneous spaces

4.2.1 Properties of Dirac homogeneous spaces

Let (G, Dg) be a Dirac Lie group and H a closed subgroup of G. Let g be the Lie algebra
of G and b the Lie algebra of H. Recall from Proposition 2.3.4 that (G/H,D¢/pg) is a
Dirac homogeneous space of (G, D¢) if the left action ¢ of G on G/H is a forward Dirac
map.

We show first that the characteristic distribution of a Dg-homogeneous Dirac structure
is left invariant. In order to simplify the notation, we write Gy and Py, respectively, for
both the distributions, respectively codistributions, defined by Dg on G and by Dg/g on
G/H. It will always be clear from the context which object is referred to.
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4 The group case

Lemma 4.2.1 Let (G,D¢) be a Dirac Lie group. Let G/H be a homogeneous space of G
endowed with a Dg-homogeneous Dirac structure Dg/p. Then the codistribution Py has
constant rank on G/H. Consequently,the distribution Go defined by Dg/u on G/H s also
a subbundle of T(G/H). More explicitly, the distribution Go and the codistribution Py are
given by

Go(gH) = Tonoy,Go(eH) and Pi(gH) = (Tyuo,-1)"Pi(eH)

for allgH € G/H.

PrOOF: We show that Pi(gH) = (Tyno,-1)*Pi(eH) for all g € G: choose first £ e
P1(eH), then there exists # € T,5(G/H) such that (z,£) € Dg/u(eH) and hence w,-1 €
T,-1G and ugy € T,u(G/H) such that

(wy=1, (Ty=1(q 0 Ry))*€) € Dalg ™),

(ugm, (TgHUg‘l)*g) S DG/H<9H)
and
(Teq ° T9_1R9)<wg_l) + jngO-g_1 (ugH> =1T.

This yields immediately
(Tynog-1)"Pr(eH) C Pi(gH).
The other inclusion is a direct consequence of (2.2). Thus, the codistribution P; is a

subbundle of T*(G/H) and its annihilator is equal to Gg, which is consequently given by
Go(gH) = T.no,Go(eH) for all g € G. O

The fact that o is a forward Dirac map yields immediately: for all h € H and (ve, enr) €
Dg/u(eH) = Dg/u(hH), there exist (wy, Br) € Da(h) and (uem, Yerr) € Da/u(eH) such
that 8, = (Thq)*(err), Yer = (Teron) (en), and veg = Thqwp + Tegoper .

Definition 4.2.2 Let (G,Dg) be a Dirac Lie group and H a closed connected Lie subgroup
of G. We say that a subspace S C g/bh x (g/b)" has property (x) if for all h € H
and (z,€) € S, there exist (wy, By) € Da(h) and (3,7) € S such that B, = (Thq)*(£),
n= (TeHUh)*(g): and r = Thqwh + TeHO'hg'

By the considerations above, if (G/H,D¢/) is a Dirac homogeneous space of the Dirac
Lie group (G, D¢), then D¢y (e) has property (x). This leads to the following lemma.

Lemma 4.2.3 Let £ be a Dirac subspace of g/b x (g/h)* with the property (x). Then the
inclusions (T,q)*p1 C p1 and T.qge C go hold, where py C (g/b)" and go C g/b are the
subspaces defined by £.

PRrROOF: Choose o € py, then there exists v € g/h such that (v,a) € £. By (%), there
exist (we, Be) € Dg(e) and (tem, Yerr) € £ such that 8. = (T.q)*a, Yen = (Tegon)*a, and
v = T.qwe + uey. The covector . = (T.q)*av is an element of p;. The second inclusion is
a consequence of the first. ([l
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4.2 Dirac homogeneous spaces

We call in the following © := (T.¢)*£ C g x g* the pullback Dirac subspace of £ C
g/b x (g/b)* with Property (%), that is

D = {(z,€) | 3¢ € (g/h)" such that (T.q)*¢ = € and (T.qz,§) € £}.

Lemma 4.2.4 Let p| C g* and gy C g be the vector subspaces associated to the Dirac
subspace ® C g x g*. Then we have the inclusions

go+hCgy and py CpiNbH°

Hence, we have go x {0} €D C g x p; and the vector space ® = D /(go x {0}) can be
seen as a subset of §/go X P1.

PrOOF: We know from Lemma 4.2.3 that T.qgo C go and (7.q)*p1 C p1. The inclusions
here follow directly from this and the definition of ©. U

4.2.2 The pullback to G of a homogeneous Dirac structure
Consider a Dirac Lie group (G, D) and let © be a Dirac subspace of g x g* satisfying
gOX{O}QCDngpl (**)

We denote by g; C g and p] C g* the subspaces defined by ©. We have gy C g; and
pi C p; and we can define the generalized distribution D C P by

= {(2'(9) + v4,€'(9)) € Pa(9)] (z,€) € D and (vy,¢'(9)) € Da(g)} (412

for all g € G. Note that D is smooth since it is spanned by the smooth sections (X¢+2', &),
with (z,¢) € © and X¢ € X(G) such that (X, &) € I'(Dg).

Proposition 4.2.5 Let (G,D¢g) be a Dirac Lie group and © a Dirac subspace of g X g*
satisfying (xx). The induced subset D C TG xg T*G as in (4.12) is a Dirac structure on
G.

The construction of the Dirac structure D is inspired by Diatta and Medina (1999).
Note that the codistribution P;" induced by D on G is equal to P, = p’ll by definition and

consequently the distribution Gy' induced by D on G is equal to Gy'. We have Gy C Gy’
and Pl/ Q Pl.

PROOF: Choose g € G and (z'(g) + vy, & (9)), (¥'(9) + wy,n'(g)) € D(g), ie., with
(z,€), (y,n) € D and (Ugjfl(g)), (wg,n( )) € Dg(g). We have

((2'(9) + vg. €(9)) , (W' (9) + wy. n'(9)))
= ((vg.€(9)) - (wg:n'(9))) + {(=,), (y,m)) = 0,

since Dg = D and © = . This shows D(g) C D(g)*.
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4 The group case

Conversely, let (ug,7,) € Pa(g) be an element of D(g)*. Then we have v,(z'(g)) =
((z'(g),0), (ug,7,)) = 0 for all z € gj, and 7, is thus an element of P;'(g) C Pi(g).
Choose v, € T,G such that (vy,7,) € Dg(g) and set w, = u, — vy. Then we get for any

(x,€) € O:
((wg ), (2, 6)(9)) = 74(2'(9)) + €' (9) (wy)
= 7,(z'(9)) + £ (9)(wy) + £'(9)(vg) + 74(Xe(9))

where X € X(G) is such that (X¢,&') is a section of Dg that is defined at g. We
have used the identity &'(v,) + 7,(X¢(g)) = 0 which holds because (X¢, &) € I'(Dg) and
(vg,74) € Di(g). But this equals

((vg + wg, 79), (Xe +2',6)(9)) = ((ug, %), (Xe + 2, €)(9)) = 0,

since (X¢ + 2!, &") is by definition a section of D and (u,,7,) € D(g)*. This shows that
(wy,7,) € D(g9)* = D'(g). Hence, we have shown (ugy,7,) = (w, + v,,7,) € D(g). O

Remark 4.2.6 If (Z,a) is a section of D, then we have (Z,a) = (X, + Ya, o) with X,
and Y, € X(G) such that (X,,a) € I'(Dg) and (Y,,a) € I'(D'). Hence, we have

(Z(e), a(e)) = (Yale), afe)) + (Xa(e),0) € D + (go x {0}) =D

because Dg(e) = go x p1 and go x {0} € D. Since © and D(e) are Lagrangian, this shows
that © = D(e). A

Let now H be a closed subgroup of G’ with Lie algebra b, and denote by ¢ : G — G/H
the smooth surjective submersion. Let D¢/ C g/h % (g/h)" be a Dirac subspace, such
that © C g x g* defined by © = (T.q)*D¢/u satisfies (xx). Recall that property () has
been defined in Definition 4.2.2.

Theorem 4.2.7 The following are equivalent for Dq/p and D as above and D as in
(4.12).

1. Dq/u has property (*)
2. Ap (®/(go x {0})) CD/(go x {0}) for allh € H
3. D 1s invariant under the right action of H on G

4. (G,D) projects under q to a Dirac homogeneous space (G/H,Dg/u) such that
Dg/H(eH) = QG/H-

PROOF: Assume first that g,y satisfies (x) and choose (z + go,§) € D/(go x {0}). We
have then (z,£) € © and there exists £ € (g/h)" such that (Teq)*¢ = £ and (Teqz, §) €
Da/u. By (%) for (Teqz,§) € Dy and h™! € H, there exists (wp-1,,-1) € Dg(h™?)
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4.2 Dirac homogeneous spaces

and (y,7) € Dg/g such that f,-1 = (T-1q)*€, 1 = (Togop—1) € and Toqr = Togo,-—19 +
Th-1qwp,-1. We compute

(Tethl)*ﬁh—l = (Th—lq o jﬁethl)*éT = (Teq o Thfth o Tethl)*g = Ad271 g

and also

Ad; 1 & = (Th-1qo T Lyp-1)"E = (Tegon-1 0 Teq)*¢ = (Toq)™n =: 1.
This yields also n € py, and there exists a vector field X, € X(G) such that (X,,n') €
I'(Dg) and X,(h™1) = wp-1. We have

_ 4.1 _
X,(€) = Xaar_,ehh™) 2 T Ly Xnar |, o(h™Y) + ThRy Xe(h) + 2

1
with z € go. We get
y = TowonToqr — TogonTh-1qup— = ThgToLyx — ToqTy-1 Ly X, (R71)
~ T (TthflTeth + Ty Ryo1 Xe(h) — Xaa:,ele) + z> .
Since (y,7) is an element of g x, we have (y,n) € © for any y € g such that Toqy = ¥.
Hence, the pair (Adpz + Ty Rp-1X¢(h) — Xaar_ ¢(e) +2,m) = (Adpx + T Rp-1Xe(h) —

Xadar_,¢e(e) + 2, Adj -1 §) is an element of D. With Xaar_, ¢(e) + 2 € go, this shows that
A(h, (SL’ + go,f)) = (Adhl’ + Tth—1X£<h) + go, Adz_l f) € @/(go X {0})

Assume next that ©/(go x {0}) is H-invariant and choose a spanning section (X¢ + 2, ¢')
of D, hence with (z,£) € D and X, € X(G) a vector field satisfying (X¢,&') € T'(Dg).
Since (x + go, &) is an element of ©/(go x {0}) we get for an arbitrary h € H

Ah(ﬂf + go,g) = (Adhﬂf —+ Tth—ng(h) -+ go,Ad;_l f) c ©/<90 X {0}),

and hence
(Adhl‘ + Tth—le(h), Ad2_1 f) €D. (413)

Then we can compute for g € G:
(R (Xe +2')(9), Rrh(€)(9))

= (Tgth—lTeLghl‘ + Tgth—ng(gh), g @) gthflgfl @) Tth)
4.1 *
Tl Ady e+ Ty R (T, B Xaa:_, el9) + TLyXe(h) + T,RAT.Ly2), (Adj—1 €)' (9))

for some z € go. Thus, we get

(Bi.(Xe + ) (9), Bi€)(9))
((Ad2)'(9) + Xag;_, e9) + (TiRims Xe())' (9) + (). (Adj-1 €)'(9))

((Adwa + TR X)) (9) + Xaai_, (9): (Adi1 €)' (9)) + (2, 0)(g).
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4 The group case

By the definition of D and (4.13), we get consequently that

(R5(Xe +2')(g), Ri(§)(9)) € D(g)

note that 2! is a section of Gog C Gj), and hence that the right action of H on (G, D) is
0 &
canonical.

Assume that the right action of H on (G, D) is canonical. We use Theorem 1.2.2. The
vertical space Vy of the right action of H on G is Vi = h' C Gy’ since by definition of ®
and g, we have h C g). Thus, we have P;" C V5° and hence, D N K% = D. The reduced
Dirac structure Dg/y is then given by

oo -0+ (%) [ 2

We have to show that this defines a Dirac homogeneous space of (G,D¢). Note first
that if (Z,£) € Dg/m(eH), then there exists (z,£) € D(e) = D (see Remark 4.2.6) such
that T.gr = 7 and (T,.q)*¢ = £ But then (7,€) is an element of ®g/m. The other
inclusion can be shown in the same manner and we get D¢/ (eH) = Dg/r. Choose then
gH € G/H and (v,&) € Dg/u(gH), that is, (v,&) € Tyu(G/H) x Tyr(G/H)* such that
there exists v € T,G with T,qu = v and (v, (Tyq)*@) € D(g). Then we can write v as a
sum v =w—+u Wlth w,u € T,G such that (w, (T,q)*@) € Dg(g) and (u, (Tyq)*a) € D'(g),

e, (TyLy1u,(TeLy)* o (qu)*@) €. Since (TeLg)* o (Tyq)'a = (Teq)*(Temoy) @, we
get (TeqTyLy-1u, (Togog) @) € Dgug = Dgyu(eH). Set u := T.qTyL,1u, then we have
Tegogu = Tyqu and hence

v =Tyoqw + Tyqu = Tyqw + Tegogu.

The proof of the last implication 4 = 1 is given by (2.2). O

We have immediately the following corollary, which, together with the preceding theorem,
classifies the Dirac structures on G/ H that make (G/H, D¢ i) a Dirac homogeneous space
of (G, Dg)

Corollary 4.2.8 Let (G,D¢g) be a Dirac Lie group, H a closed Lie subgroup of G and
(G/H,D¢/u) a Dirac homogeneous space of (G,D¢). The Dirac structure Dg g on G/H
is then uniquely determined by Dg/p(eH) and (G, Dg).

ProoF: Since (G/H,D¢/u) is a Dirac homogeneous space of (G,D¢), the subspace
De/u(eH) satisfies (x) by (2.2), and ® = T.q*Dg/n(eH) satisfies (x*) by Lemma 4.2.4.
Define D as above. Then, by the preceding theorem, we get that D is right H-invariant
and projects under ¢ to a Dirac structure ¢(D). It is easy to check that ¢(D) = Dg/p. O

Remark 4.2.9 1. Since the vertical space of the right action of H on (G, D) denoted
here by Vy is equal to h' and hence contained in Gy, the Dirac structure D is the
backward Dirac image of D¢/ under ¢ (see Section 1.2).
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4.2 Dirac homogeneous spaces

2. The quotient ©/(go x {0}) is easily shown to be a Lagrangian subspace of g/go X p;
if and only if D¢y is a Lagrangian subspace of g/ x (g/h)" satisfying (sx). JAN

Corollary 4.2.10 The Dirac homogeneous space (G/H, D¢ ) is integrable if and only
if the smooth Dirac manifold (G, D) defined by Dg/u(eH) as in (4.12) is integrable.

ProoOF: It is known by the theory about Dirac reduction that if an integrable Dirac
manifold (M, D) is acted upon in a free and proper canonical way by a Lie group H, then
the quotient Dirac manifold (M/H, ¢(D)) is also integrable. Hence, if (G, D) is integrable,
then (G/H,Dg/i) is also integrable.

For the converse implication, we deduce from the proof of Theorem 4.2.7 that
(£aX, Laa) is an element of I'(D) for all sections (X, «) of D and Lie algebra elements
€ € b. This yields that D = D N K satisfies

I'(Xy), (D) CT(D+ Xpg).

We get from a result in Jotz et al. (2011a) that D is spanned by right H-descending
sections (X,a) € I'(D), that is, with [X,T'(Vy)] € T'(Vy) and a € T'(Vy°)*. Hence, it
suffices to show that if (X, «) and (Y, ) are such elements of I'(D), then their bracket
(X, a), (Y, )] is a section of D.

Since (X, ) and (Y, 3) are H-descending and (G/H,Dg/p) is the Dirac quotient space
of (G,D), we find (X, @) and (Y, 3) € I'(Dg/x) such that X ~; X, Y ~, Y, o = ¢*@ and
B=qp.

We have then [X,Y] ~, [X,Y] and £x8 — iyda = ¢*(£58 — ipda). If (G/H,Dg/m)
is integrable, the pair [(X, &), (Y, )] = ([X,Y], £33 — iyda) is a section of D¢ . By
construction of the Dirac quotient of a Dirac manifold by a smooth Dirac action, there
exists a smooth vector field Z € X(G) such that (Z,¢*(£53 — igda)) is an element of
['(D) and Z ~, [X,Y]. But then there exists a smooth section V € T'(Vg) = ['(h') such
that Z + V = [X,Y]. Since h! C Gy, this yields

(X, a),(Y,0)] = (X,Y], £xB —iyvda) = (Z, £x5 — iyda) + (V,0) € ['(D)
and thus the Dirac manifold (G, D) is integrable. O

Remark 4.2.11 1. If (G/H,Dg/y) is integrable, the Dirac structure D is also inte-

grable as we have seen above and the subbundle Gy’ = g{)l is integrable in the sense
of Frobenius. The vector subspace g; C g is then a subalgebra and the integral leaf
of Gy’ through e is a Lie subgroup of G, which will be called J in the following.
As in the proof of Lemma 4.1.16, we can show that the right action of J on G is
canonical on (G, D). Theorem 4.2.7 yields then

A; (D/(go x {0})) € D/(go x {0})

for all j € J.
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4 The group case

2. We can also show that if (G, D¢) is N-invariant, then (G,D) is N-invariant. By
Theorem 4.1.18, the bracket on p; X p; defined in Definition 4.1.13 has image in 1,
and by Remark 4.1.32, we know then that the action of N on g/go X p; is trivial.
Hence, we have A,,(D/(go x {0})) =D /(go x {0}) for all n € N, and we can apply
Theorem 4.2.7. A

4.2.3 Integrable Dirac homogeneous spaces

We consider here an integrable Dirac Lie group (G,Dg), a closed Lie subgroup H of G
(with Lie algebra b) and a Dirac homogeneous space (G/H,Dg/i) of (G,Dg). As above,
we consider the backward image ® = (1.q)*D¢/u(eH) of Dg/p(eH) under Teq, i.e.,

D = {(=, &) | €g,& € (g/h)* such that (T.qz,&) € Dg/n(eH)},
and the Dirac structure D defined by ® on G as in (4.12) and Proposition 4.2.5.

Theorem 4.2.12 The quotient ©/(go x {0}) is a subalgebra of g/go X p1 if and only if
(G, D) (or equivalently (G/H,Dg/u)) is integrable.

PROOF: Choose (z,&), (y,n) in D, then the pairs (X¢+2', &) and (X, +y',7') are sections
of D. We have by Proposition 4.1.12, Definition 4.1.13, Proposition 4.1.21 and Remark
4.1.30:
[(Xe +2',&), (X, + ') (4.14)
= ([Xe, Xy + £ X — £, Xe + [1,y], £x,0' — ix,dE' + £ —i,dE)
4.4 * * * *
2 (X + Xaazn — (ad} 2)' = Xoaz ¢ + (ad? y)' + [z, 9]', ([€, 1] + adly — ady €)')
+(Z,0) for some Z € I'(Go)

= (X[f,n}-‘rad; n—ade + ([SL’, y] - ad;a: + adz y)l7 ([gu 77] + ad; n— adz f)l) 9 (415>

(

where we have chosen the vector field X(e ;)4 aar n—adl € 1= Xigm — Xad; €= Xad; e+ Z.

If (G, D) is integrable, we have [(X¢ + !,&"), (X, +y',7)] € (D), and hence its value at
the neutral element e is an element of ® by Remark 4.2.6. But since Xj¢ yj4aar n—ad’ e(e)
is an element of go, (4.15) yields

[(Xe + 2,6, (X, + 9, 0")] (e)
€ ([z,y] —ad; z 4+ adiy, [£, 1] + ad, n — ad;; £) + (g0 x {0}).

This leads to

[(x + g0,€), (Y + g0,7)]
= ([z,y] — ady z +adi y + go, [§, ] + ad; n — ad, §) € D/(go x {0}).
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For the converse implication, it is sufficient to show that for all (z, ), (y,n) € ©, we have
[(Xe +a',€), (X, +4',0")] €T(D)
since D is spanned by these sections. By hypothesis, we have

[( 4+ 80,€), (y + g0, 1)]
= ([z,y] — ady z +ad; y + go, [§, 1] + ad; n — ad, §) € D/(go x {0}) (4.16)

for all (z,£), (y,n) € ® and the claim follows using (4.15). O

We have proved the following theorem which is a generalization of the theorem in Drinfel’d
(1993).

Theorem 4.2.13 Let (G,Dg) be a Dirac Lie group and H a closed subgroup of G with
Lie algebra by. The assignment

Da/u = ® = (1eq)"Dayu(eH)

gives a one-to-one correspondence between (G, D¢)-Dirac homogeneous structures on G/ H
and Dirac subspaces ® C g X g* such that

1. (go+h) x {0} €D Cgx (pNh),
2. ©/(go x {0}) is Lagrangian in g/go X p1, and
3. Ap (®/(go x {0})) CD/(go x {0}) forallh € H.

If the Dirac Lie group is integrable, then (G/H,Dg/u) is integrable if and only if © /(go %
{0}) is a subalgebra of g/go X p1.

Example 4.2.14 1. Let (G,Dg) be a Dirac Lie group and (G/H,D¢/g) a Dirac ho-
mogeneous space of (G,Dg) corresponding by Theorem 4.2.13 to the Lagrangian
subspace © C g x g*. Then, again by Theorem 4.2.13 applied to the Lie subgroup
{e} of G and the Dirac subspace © C g x g*, we get that (G, D) is a Dirac homo-
geneous space of (G,Dg). If (G,Dg¢) is integrable, we recover the fact that (G, D)
is integrable if and only if ®/(go x {0}) is a subalgebra of g/go X p1, that is, if and
only if (G/H,Dgyu) is integrable.

2. Choose a Dirac Lie group (G,Ds) and assume that the corresponding bracket on
p; has image in p; and that the Lie subgroup N is closed in G. The Lagrangian
subspace go X p; of g x g* satisfies (x*) and the corresponding Dirac structure D
is equal to Dg by definition. Since N corresponds to the Lie subalgebra gy of g
and fixes g/go X p; pointwise by Remark 4.2.11, we get from Theorem 4.2.7 that
the quotient (G/N, qn(Dg)) is a Dirac homogeneous space of the Dirac Lie group
(G,D¢). We will study this particular Dirac homogeneous space in section 4.3. ¢
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4 The group case

Remark 4.2.15 The previous theorem does not reduce, in the case of Poisson Lie groups,
to the same theorem but with gy set to be {0}, as in many previous statements in this
chapter. Indeed, the theorem of Drinfel’d (Drinfel’d (1993)) gives a correspondence be-
tween homogeneous Poisson structures on a homogeneous space G/H of a Poisson Lie
group (G, {-,-}) and Lagrangian subalgebras ® C g x g* satisfying 4,0 C © for all
h € H and the equality © N (g x {0}) = bh x {0} (see Drinfel'd (1993)), that is, gy = b.
Here, we have © N (g x {0}) = g; x {0} and we get the following cases.

1. go € h = gi: the Dirac homogeneous space is a Poisson homogeneous space of the
Dirac Lie group (G, Dg). Furthermore, if go = {0}, the Dirac Lie group is a Poisson
Lie group and we are in the situation of Drinfel’d’s theorem. The case gg = b (see
the second part of Example 4.2.14) will be studied in section 4.3.

2. b C g;: the Dirac homogeneous space has non-trivial Go-distribution and is hence
not a Poisson homogeneous space of (G, D). Therefore, in the case where gy = {0},
we obtain a Dirac homogeneous space of a Poisson Lie group. A

Example 4.2.16 Consider an n-dimensional torus G := T". In Corollary 4.1.14, we
have recovered the fact that the only multiplicative Poisson structure on T" is the trivial
Poisson structure m = 0, that is D, = Op» X T*T". The Lie algebra structure on g x g* is
given by [(7,€), (y,n)] = ([z,y],ad; n — ad; §) = (0,0) since the Lie group T" is Abelian.
Hence, every Dirac subspace of g x g* is a Lagrangian subalgebra. Indeed, it is easy to
verify that each left invariant Dirac structure on T" is an integrable Dirac homogeneous
space of the trivial Poisson Lie group (T", 7 = 0).

In general, if (G,7 = 0) is a trivial Poisson Lie group, the Lie algebra structure on
g X g* is given by [(z,€), (y,n)] = ([z,y],ad;n — ad,§). The (G,7 = 0)-homogeneous
Dirac structures on G are here the left invariant Dirac structures ®' on G. Hence, the
integrable homogeneous Dirac structures on G are the left invariant Dirac structures ©'
such that ® is a subalgebra of g x g*. But ®© is a subalgebra of g x g* if and only if

(([z,y],adzn —ad; £), (2,¢)) = &(ly, 2]) + n([z, 2]) + (([=,y]) = 0

for all (z,&), (y,n) and (z,{) € ©. We recover Proposition 1.2.5 about the integrability
of a left invariant Dirac structure on G, see also Milburn (2007). O

4.3 The regular case

We will see in this section that if (G, D) is an integrable regular Dirac Lie group, i.e, such
that the leaf N of the involutive subbundle Gg through the neutral element e is a closed
normal subgroup of G, then the Lie bialgebra (g/go,p1) =~ (g/g0, (g/80)") arises from a
natural multiplicative Poisson structure 7 on the quotient G/N, that makes (G/N, ) a
Poisson homogeneous space of (G, Dg).
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4.3 The regular case

Theorem 4.3.1 Let (G,D¢) be a reqular Dirac Lie group such that the bracket on p; has
image in p1. The reduced Dirac structure Dg/ny = qn(De) on G/N (that is a homogeneous
Dirac structure of (G,Dg), see Example 4.2.14) is the graph of a multiplicative skew-
symmetric bivector field m on G/N. If (G, D¢) is integrable, the quotient (G/N,D¢g/n) =:
(G/N,7) is a Poisson Lie group, and the induced Lie bialgebra (g/go, 1) ~ (8/80, (8/80)")
as in Remark 4.1.30 is the Lie bialgebra defined by (G,Dg) as in Theorems 4.1.28 and
4.1.27,

Since each normal subgroup of a simply connected Lie group G is closed (see Hilgert and
Neeb (1991)), we have the following immediate corollary.

Corollary 4.3.2 Let (G,D¢) be an integrable, simply connected Dirac Lie group. Then
D¢ is the pullback Dirac structure defined on G by qn : G — G/N and a multiplicative
Poisson bracket on G/N.

The proof of Theorem 4.3.1 will be repeated in the more general situation of regular Dirac
groupoids (Theorem 5.1.2). We chose to do it here in the group case in order to let this
chapter as self-contained as possible.

PROOF (OF THEOREM 4.3.1): Since go is an ideal in g, the Lie subgroup N is normal
in G. If it is closed in G, the left or right action of N on G is free and proper and the
reduced space G//N is a Lie group. Let gy : G — G/N be the projection.
The vertical distribution Vy of the left (right) action of N on G is the span of the right
invariant vector fields ", for all x € gg, that is, Vy = Gg. This yields Ky = Vy Xg0r:g =
Go X O+, and hence K3, = TG X P;. The intersection Dg N Ky is consequently equal
to Dg and has constant rank on G. Hence, Dg pushes forward under ¢ to a Dirac structure
Dg/n on G/N. The set of smooth local sections of D¢/n is given by

{( ) e X(G/N) x (G | T QI that 2 X }

Since N lets (G,D¢) invariant by Theorem 4.1.18 and is connected by definition, we
have [['(Ky),I'(Dg)] € T'(Dg) and we get using a result in Jotz et al. (2011a) that
D¢ is spanned by its N-descending sections, that is, the pairs (X,a) € T'(Dg) with
[X,T(Vy)] CT(Vy) and a € T (V)Y (see Jotz et al. (2011Db) or Jotz et al. (2011a)). The
vector subbundle P; = VS, of TG is spanned by its descending sections since Vy is a
smooth integrable subbundle of TG (see Jotz et al. (2011a)), and the push-forwards of
the descending sections of V3, are exactly the sections of the cotangent space T*(G/N) of
G/N. Since Dg is spanned by its descending sections (X, «) € I'(D¢), Py is in particular
spanned by descending sections belonging to descending pairs in I'(Dg). This shows
that the cotangent distribution P; defined by Dg/v on G/N is equal to T*(G/N), and
(Tyqn)*(T;xG/N) = P1(g) for all g € G. This yields that Dg/y is the graph of a skew-
symmetric bivector field 7 on G/N. Thus, if we show that (G/N,Dg/n) is a Dirac Lie
group, we will have simultaneously proved that (G/N, ) is multiplicative.
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4 The group case

We show that D¢y is multiplicative. Choose a product gNg'N = g¢'N € G/N and
(Vgg'ns Oggn) € Dayn(gg'N). Then there exists a pair (vyy, age) € Dg(gg’) such that

Togqnvey = Vggn  and  (Typqn) Qggn = Qgyr.
Since D¢ is multiplicative, we can find w, € T,G and uy, € TG such that
TyRywy + Ty Lyug = vy,  (wg, (TyRy) yy) € Dal(g),

and

(ug, (Ty Lg)"tgqr) € De(g).
We have vy 1= (Ty Ly)* gy € P1(g'), By == (TyRy) gy € P1(g) and hence, by the con-
siderations above, there exist S,n € P1(gN) and J,n € P1(¢'N) satisfying (T,qn)*Byn =
By and (Tyqn)*Yg¢n = 7vg¢. By construction of Dg/y, we have then (Tyqnwy, Bgn) €
Da/n(gN) and (Tygnug, Ygn) € Dan(g'N).
We compute

Tg/NLgNTg/qNug/ + TgNRg’NTgCIng = LggqN (Tg/Lgugr —+ TgRg/wg)

= TygqnNVgg = Ugg'N,

(Tg"JN)* ((Tg’NLgN>*5‘gg/N) = (Tg/Lg)* ((ng/‘JN)*agg/N)
= (Tg’Lg)* Qgg = Vg = (Tg’qN)*%’Na

and in the same manner (T,qn)* (TynRyn)*@gyn) = By = (Tyqn)*Byn- This leads to
(TynLon) (Agyn) = Fgn  and  (TynRyn) (Aggn) = Bon

since ¢y is a smooth surjective submersion. Hence, we have shown that (G/N,Dg/n) is
a Dirac Lie group which we will also write (G/N, ) in the following since D¢ n is the
graph of a multiplicative skew-symmetric bivector field 7 on G/N.

The last statement is obvious with the considerations above and Proposition 4.1.15. [

Furthermore, we can show that each Dirac homogeneous structure on G/H, H a closed
subgroup of GG, can be assigned to a unique Dirac homogeneous space of the Poisson Lie
group (G/N, ) if the product N - H remains closed in G.

Let (G/H,Dg/r) be a Dirac homogeneous space. We assume that the Lie subgroup N - H
(with Lie algebra go + b) is closed in G. The Lie group N acts by smooth left actions
given by n- gH = ngH for all n € N and g € G on the homogeneous space G/H. This
is well-defined since if ¢g7'¢’ € H, we have ¢~ 'n"'ng’ € H and hence ngH = ng'H.
It is easy to check that the quotient of G/H by the left action of N is equal to the
quotient of G' by the right action of V- H. Indeed, the class of gH in (G/H)/N is the set
{ngH |n € N} = NgH. But since N is normal in G, this class is equal to g/NH, which
is the class of the element g € GG in the quotient by the right action of N - H on GG. Since
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4.3 The regular case

G/(N - H) has the structure of a smooth regular quotient manifold and the maps gy and
gn.p are smooth surjective submersions, the projection gy : G/H — (G/H)/N is also
a smooth surjective submersion.

In the second diagram, we have (G/N)/(NH/N)~G/(N-H)~ (G/H)/N.

NxG™M  q G W G/H
Idn XQHl \LQH QNL Ny \LQN,H
NxG/H—~G/H G/N ———>G/(N - H)

We have the following theorem. We assume here for simplicity that the Dirac Lie group
(G,Dg) is integrable, but analogous results can be shown for a Dirac Lie group that is
just invariant under the action of the induced Lie subgroup N.

Theorem 4.3.3 Let (G/H,Dg ) be an integrable Dirac homogeneous space of the inte-
grable Dirac Lie group (G,Dg) such that N and N - H are closed in G.

The Lie group N acts smoothly on the left on (G/H,Dg, ) by Dirac actions, and the Lie
group N - H acts smoothly on the right on the Dirac manifold (G,D) by Dirac actions.
The quotient Dirac structures on G/(N - H) ~ (G/H)/N are equal and will be called
Deyvmy- The pair (G/(N-H),Dgynmy) is a Dirac homogeneous space of the Poisson Lie
group (G/N, ) and of the Dirac Lie group (G,Dg¢).

Conversely, if (G/(NH),Dg/vmy) is a Dirac homogeneous space of the Poisson Lie group
(G/N, ), then the pullbacks (G/H, qx y(Dgyvmy)) and (G, qyg(Dayvmy)) are Dirac ho-
mogeneous spaces of the Dirac Lie group (G,Dg).

PRrROOF: Consider again the Dirac subspace ® = (T.qu)*Dg/u(eH) C g x p;. We write
D for the quotient ©/(go x {0}). Since (G, D¢) and (G/H,D¢/p) are integrable, we get
from Theorem 4.2.13 that © is a subalgebra of g/go X p; and from Remark 4.2.11 that
9 is N-invariant. We have then A, C © for all nh € N - H and, by Theorem 4.2.13,
the group N - H acts on (G, D) by Dirac actions and the quotient (G/(N - H), qnu (D)) =:
(G/(N - H),Dg/ng) is an integrable Dirac homogeneous space of the Dirac Lie group
(Ga DG) _

Next we show that the left action ® of N on (G/H,Dg/u) is canonical. Let (X, a) be
a section of Dg/zr. Then there exists (X, «) € T'(D) such that X ~,, X and a = ¢ja.
We have qg o L, = ®, 0 qg for all n € N and hence L} X ~,, ®*X and Lia = ¢;®:a.
Since the action of N on (G,D’) is canonical, we have (L* X, L:«) € T'(D) and the pair
(@1 X, ;@) is consequently a section of Dgyp.

Let V be the vertical space of the action ® of N on G/H and X = V Xg g Op«/m).
The subbundle V of T'(G/H) is spanned by the projections to G/H of the right invariant
vector fields " on G, for all x € go, and V° is spanned by the push-forwards of the
one-forms ¢, for all £ € p; NH°. But since DNKE = D € TG x¢g (p1 N H°)", and
Dg/a = qu(D), we get easily Dg/g N K+ = Dg/m, which has consequently constant
dimensional fibers on G/H. Thus, by the regular reduction theorem for Dirac manifolds,
the quotient ((G/H)/N,qnu(Dg/u)) is a smooth Dirac manifold.
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4 The group case

We have then to show that the quotient Dirac structure gy 5 (De/m) is equal to Dg /(v gy If
(X @) is a section of gy i (D), then there exists (X, @) in T'(Dg/xr) such that X ~g,
X and ¢n @ = . But then there exists (X, ) € T'(D) such that X ~,, X and o = ¢j;a.
Then we have o = qiqy g = qyp®, X ~gyy X and (X, &) is a section of Dg/np. This
shows qn,#(De/u) € Da/vm and hence equality since both Dirac structures have the same
rank.

Finally, we show that (G/(N - H),D¢/vm)) is a Dirac homogeneous space of the Poisson
Lie group (G/N,m). The Lie bialgebra of the Poisson Lie group (G/N,7) is (g/80,P1)
with the bracket as in (4.11). We have

(Tengnne)Dayiveny(eNH) = (Tugy) (Teavm ) Deyvm (eNH))
=D/(g0 x {0}) € g/g0 x p1.

By Remark 4.1.32, the action of G on © /(g x {0}) induces an action of G/N on D /(go x
{0}); this is exactly the action of G/N defined by the Poisson Lie group (G/N,7) on
its Lie bialgebra. Since ®/(go x {0}) is N H-invariant, it is NH/N-invariant under A.
Since ©/(go x {0}) is a Lagrangian subalgebra of g/go x p; and (go + b)/go x {0} C

D/(go x {0}) C g/go x h° N py, we are done by Theorem 4.2.13.

For the converse statement, we use Remark 4.1.32 about the action A of G/N on g/go X p1
and apply the first part of Example 4.2.14 to the Dirac Lie group (G/N, ) and the closed
subgroup NH/N of G/N and to the Dirac Lie group (G,D¢) and the closed subgroup
NH of G. 0

Now choose an integrable Dirac homogeneous space (G/H, D¢/ ) of (G, D¢) and let (G, D)
be the Dirac structure on G defined as in the preceding section. Since D is integrable and
Gy is left invariant, it is an involutive subbundle of T'G' which is consequently integrable
in the sense of Frobenius. Then the integral leaf J of Gy’ through the neutral element e,
which was defined in Remark 4.2.11, is a Lie subgroup of G.

Lemma 4.3.4 If the Lie subgroup J is closed in G, it acts properly on the right on (G,D’)
by Dirac actions. The intersection DﬂfK 7, withX; =V Xg 0 = ggl Xa 07+, 15 equal
to D' by definition of J and we can build the quotient (G/J,q;(D)), where q¢; : G — G/J
1s the projection.

Furthermore, since N C J is a normal subgroup, the quotient J/N is a Lie group if
N is closed in G. It acts properly on the right on G/N and we can see that G/J ~
(G/N)/(J/N) as a homogeneous space of G/N.

PROOF: We have seen in Remark 4.2.11 that if (G, D) is integrable, we have 4,0 = D for
all j € J. By Theorem 4.2.7 (note that all the hypotheses are satisfied since g, x {0} C
® C g x p} and the Dirac subspace ® is equal to the pullback ® = T.q%(T.q;®) ), we get
that the Dirac manifold (G, D) is right J-invariant. O

In the following diagram, the dashed arrows join Dirac Lie groups to their Dirac homo-
geneous spaces.
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4.3 The regular case

Theorem 4.3.5 Under the hypotheses of the preceding lemma, the pair (G/J,q;(D)) =:
(G/J,mgy) is a Poisson homogeneous space of the Dirac Lie group (G,D¢) and of the
Poisson Lie group (G/N, ).

PRrROOF: By Theorem 4.2.13 and Lemma 4.3.4, (G/J, 7g,;) is a Dirac homogeneous space
of the integrable Dirac Lie group (G,D¢). The quotient ©/(go x {0}) is a Lagrangian
subalgebra of g/go x p1 with (go +g5) X {0} = g5 x {0} €D S gxp} =g x ((g5)" Np1).
Furthermore, D /(g x {0}) is A;-invariant and hence also A;y-invariant by Remark 4.1.32
for all j € J (see also the proof of the preceding theorem). Hence, (G/J,mqys) is also a
Dirac homogeneous space of the Poisson Lie group (G/N, 7).

Note that since Gy’ = V,, the quotient Dirac structure Dg/; := ¢;(D) has vanishing
characteristic distribution and is hence a Poisson manifold (see the proof of Theorem
43.1) O

Finally, we give examples where it is not possible to build the diverse quotients as above.

Let SLo(R) be the universal covering of the Lie group SLy(R).

Example 4.3.6 1. Consider the Lie group

G = (T2 x sf;(ﬁ)) T,
where I' is the group homomorphism Z (ng\(-]li)) ~ 7 — T? given by ['(z) =
(e7V22 ¢i%) for all z € Z(SLy(R)) (or more generally a group homomorphism with

—~—

dense image in T?). The graph of T' is a discrete normal subgroup of T? xSLy(R)
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4 The group case

90

and hence the quotient GG is a Lie group. The Lie algebra of GG is equal to the direct
sum of Lie algebras g = R? @ sly(R) and has hence gy := sl3(R) as an ideal. The
corresponding Lie subgroup N of GG corresponds to the images of the elements of

—_—

SLy(R) in G and is hence by construction not closed in G. Let G be endowed with
the trivial Dirac structure such that go = slo(R); the quotient Poisson Lie group
(G/N,7) does not exist here.

. Consider G = T* x R with coordinates s1, 9, $3, 54, t and the integrable Dirac struc-

ture given by go = span{x; }, p1 = span{&s, &3, &4, {5} and D the (necessarily) trivial
multiplicative Dirac structure

D¢ = gf) Xa pll = Spal {('rllv 0)7 (07 gé)v <07 éé)v <07 ééll)v (07 gé)} )
where

= v/2ds1(0) — ds2(0) 9, (0) + v/20,,(0) + 0,(0)
53 ds;(0) — dt(0)
&4 = ds3(0)
§s = dsy(0)

The group N is then equal to N = { ( ‘/_”, 1,1, t) ‘ t e ]R} and is closed in G as

the graph of a smooth map R — T*. The quotient (G/N, 7) is a torus T* with trivial

Poisson Lie group structure. Consider the subgroup H = {(e*", e2V2li | 1 t)|te

R} of G. Then H is closed in G and each Dirac subspace ® C R® x R®" with
(h+go) x {0} C g x (h°Np;) induces a homogeneous Dirac structure on G/H ~ T*.

The subgroup N - H of G is dense in T? x {1}? x R C G and is hence not closed in
G.

Consider now the Dirac subspace

_ (05,(0),0),  (95,(0),0),  (v/305,(0) + 05,(0),0), .
9"“’&“{ (3(0),0), (X, ds3(0) — v3ds4(0)) }Of“g

with X € g an arbitrary vector satisfying (ds3(0) — v/3ds4(0))(X) = 0. The Dirac
structure D = D' defines a Dirac homogeneous space structure of (G,D¢) since
90 + b C gh, but the leaf J of Gy’ through the neutral element 0 is equal to J =
{(e%, e? V3l et 5) |0, p,t,s € R} and thus dense in G. O



5 The geometry of Dirac groupoids

Recall from Theorem 2.1.9 that the Poisson homogeneous spaces of a Poisson groupoid
(G P, i) are classified in terms of Dirac structures in the Courant algebroid AG x p A*G.
To generalize this to a classification of the Dirac homogeneous spaces of a Dirac groupoid,
one needs hence to determine the object that will play the role of the Lie bialgebroid in
this more general situation. We show in this chapter that an integrable multiplicative
Dirac structure on G=2P defines a Courant algebroid on P. In the case of a Poisson
groupoid, we recover the Courant algebroid structure on AG xp A*G as in (1.5), and in
the case of a Lie groupoid endowed with a closed multiplicative 2-form, we find simply
the standard Courant bracket on TP xp T*P. This new approach shows how to see the
Courant algebroid structure on AG x p A*G as induced by the ambient Courant algebroid
structure on TG xg T*G.

The geometry is more involved in the Lie groupoid case than in the Lie group case, where
the Lie bialgebra of the Dirac Lie group can be defined using the theory that is already
known about Poisson Lie groups. By Theorem 4.3.1 and Remark 4.1.8, we can always
construct the Lie bialgebra of a Dirac Lie group by considering a Poisson Lie group that
is canonically associated to the Dirac Lie group. As we will see, the reason for this
is that the characteristic distribution of a Dirac Lie group is exactly the kernel of the
restriction to Dg of the source and target maps Ts and Tt and this is not the case in
the general situation of Dirac groupoids. The next issue is the fact that multiplicative
foliations on Lie groups are much more easy to handle with than multiplicative foliations
on Lie groupoids, as we have seen in Chapter 3. We will see in the first section of this
chapter that, under strong regularity conditions on the characteristic distribution of a Lie
groupoid, there is a smooth surjective forward Dirac submersion on a Poisson groupoid
(see Theorem 5.1.2). Yet, the hypotheses that have to be made on Gq together with the
technicalities in Chapter 3 give a flavor of the difficulties in the groupoid case. There is
no way of defining a Lie bialgebroid by this associated Poisson groupoid, since it doesn’t
exist in general. The constructions that we have made to recover the Lie bialgebra in
Chapter 4 are nevertheless useful guidelines for the general case, that will be treated in
the same spirit.

Along the way, we will define several Lie algebroids and a Courant algebroid associated
to an integrable Dirac groupoid. These objects turn out to generalize in a sense the
infinitesimal data known in the presymplectic and Poisson cases. In particular, we give
an integrability criterion for Dirac groupoids in terms of these algebroids. In Mackenzie
and Xu (2000) the multiplicative Poisson bivector field on G=P integrating a given Lie
bialgebroid is constructed. It seems that the main difficulty is to show that the bivector
field is Poisson. Our integrability criterion gives an alternative method for this.
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5 The geometry of Dirac groupoids

Although the work in this chapter was originally a preparation for the classification of the
homogeneous spaces of a Dirac groupoid, it has become independently interesting since
we find new results on the infinitesimal data of Dirac groupoids.

Outline of the chapter In Section 5.1, we show a theorem on the quotient of a “regular”
Dirac groupoid by its characteristic foliation. Then we give (under some hypotheses) a
generalization to Dirac groupoids of a theorem in Weinstein (1988) about the induced
Poisson structure on the units of a Poisson groupoid.

In Section 5.2, we study the set 2(D¢) of units of a multiplicative Dirac structure, seen as
a subgroupoid of (TG x¢ T*G) = (TP xp A*G). We show that if the Dirac Lie groupoid
(G=P,Dg) is integrable, then there is a Lie algebroid structure on this vector bundle
over P. In Section 5.3, we show that the integrability of the Dirac groupoid is completely
encoded in the Lie algebroids that we find in the previous section. In the next section 5.4,
we define a vector bundle over P that is associated to the Dirac structure Dg. We prove
the existence of a Courant algebroid structure on this vector bundle if the Dirac structure
is integrable. In Section 5.5, we prove that there is an induced action of the bisections of
G'=P on the vector bundle defined in Section 5.4. In Sections 5.2, 5.4 and 5.5, each one
of the main results is illustrated by the three special examples of Poisson Lie groupoids,
multiplicative 2-forms on Lie groupoids and pair Dirac groupoids.

5.1 General facts

First, we study the characteristic distribution of an arbitrary Dirac groupoid. The results
here illustrate how the situation in the case of Dirac groupoids is different from the case
of Dirac Lie groups.

Proposition 5.1.1 Let (G=P,Dg) be a Dirac groupoid. Then the subbundle Go C TG
is a (set) subgroupoid over TP N Go.

PRrROOF: Choose (g,h) € G xp G and v, € Go(g), vn € Go(h) such that T's(v,) = Tt(v
Then we have (vg,04) € Da(g), (vn,0n) € Dg(h) such that Ts(vg, 04) = (T's(vy), Os(q))
(T't(vn), Ogny) = Tt(vn, 0,) and hence

)

Tt(vg,04) € Da(t(g)),  Ts(vy,04) € De(s(g)),

(Ugvog)il S DG(gil)

and

(vg,04) % (vp, 05) € De(g * h).
Since (vy,04)"" = (v;",04-1) and (vg,04) * (vn, 0n) = (vg * h,0gup), this shows that
Ts(vy) € Go(s(g)), Tt(vg) € Go(t(g)), v, ' € Go(g™") and vy * vy € Go(g % h). O
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Unlike the special group case, the distribution Gg doesn’t need here to be smooth in
general. If Gy associated to an integrable Dirac groupoid (G=P,D¢) is assumed to be
a vector bundle on G, then we are in the same situation as in the group case. Yet, we
know by the considerations in Chapter 3 that, even if it is regular, the quotient G /Gy
doesn’t necessarily inherit a groupoid structure. If Gy is complete, the leaf space G /G
inherits a multiplication map if and only if the leaves of Gy satisfy the technical condition
(3.5). Hence, this is an additional (topological) obstruction to the existence of a Poisson
groupoid structure on the quotient G/Go.

Since each manifold can be seen as a (trivial) groupoid over itself (i.e., with t =s = Idy,),
any Dirac manifold can be seen as a Dirac groupoid, which will, in general not satisfy
these conditions. Thus, trivial Dirac groupoids and pair Dirac groupoids yield already
many examples of Dirac groupoids that do not have these properties and the class of
Dirac groupoids described in Theorem 5.1.2 seems to be a small class of examples.

Theorem 5.1.2 Let (G=P,D¢) be an integrable Dirac groupoid. Assume that Go is
a subbundle of TG, that it is complete and that the leaves of Go satisfy (3.5). If the
leaf spaces G /Gqy and P/Gq have smooth manifold structures such that the projections are
submersions, then there is an induced multiplicative Poisson structure on the Lie groupoid
G /Gy = P/Gy, such that the projection pr : G — G /Gy is a forward Dirac map.

ProOF: Recall that since D¢ is integrable, the vector bundle Gq is involutive. Since Gg is
multiplicative by Proposition 5.1.1 and all the hypotheses for Theorem 3.3.11 are satisfied,
we get that G/Go=P/Gyp has the structure of a Lie groupoid such that if pr: G — G /Gy
and pr, : P — P/Gq are the projections, then (pr, pr,) is a Lie groupoid morphism.

We have D(;ﬂ(TG XG'GOO) = Dgﬂ(TG Xa Pl) = DG and [F(GO xGOT*G), F(Dg)] - P(DG')
because Dg is integrable. Hence, by a result in Jotz et al. (2011a), we find that the Dirac
structure pushes-forward to the quotient G/Gy. The Dirac structure pr(Dg) is given by

Jv, € T,G such that (v, (T, pr)*ayg) € Da(g)
and Ty pro, = v

pr(D6)(lg]) = {(v[g},a[gp & Pose(19)

for all g € G. The integrability of pr(D¢) follows from the integrability of Dg. If (v}, 0) €
pr(D¢)([g]), there exists v, € TG such that T prv, = vy, and (vg,0) € Dg(g). But then
we get v, € Go(g) and hence vy = T, prv, = 0. This shows that the characteristic
distribution Gq associated to the Dirac structure pr(D¢) is trivial, and since it is integrable,
pr(D¢) is the graph of the vector bundle homomorphism 7*(G/Gy) — T(G/Gp) associated
to a Poisson bivector on G/Go.

We have then to show that the Dirac structure pr(D¢g) on G/Gp is multiplicative. Choose
(vig), @) € Pr(De)([g]) and (vp), o) € pr(De)([h]) such that Ts(vig), o)) = Tt(vpm, agm)-
We can then assume without loss of generality that s(¢g) = t(h) (see Lemma 3.3.14). By
the definition of pr(D¢), we find then v, € T,G and v, € T},G such that T, prv, = vy,
Ty proy, = vy and (vg, (T pr)*aqg) € Da(g), (va, (Th pr)*aq)) € Da(h). Since

Ts(vy, (T, pr)*agg) € Da(s(g))
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and
Ti(g) Pr(Tysvy) = Tiglslvyg),

(T pr)* (I8 (@) = S((T, pr)" o),

we find that
T[s](vyg), ) € pr(De)([s][g])

(see Lemma 3.3.14). In the same manner, we get that T[t](v}y, ajg) € pr(De)([t][g]) and
the Dirac structure is closed under the source and target maps on Pg/q,.
By Lemma 3.3.14, we find w, € Go(g) such that Tys(v, — w,) = Thtvy, and Ty, pr((v, —
Wy) * V) = Vg * v By the same Lemma, we have §((T, pr)*ayy) = t((T} pr)*ap) and
(T pr)*agg * (Th pr)* o = (Tgun pr)*(age) * agn). The pairs (vy —wg, (Ty pr)*ag) € Da(g)
and (vp, (Th pr)*on)) € Dg(h) are hence compatible and their product,

((vg — wg) x vn, (Tgun pr)*(a[g] * O‘[M))

is an element of Dg(g % h). Since it pushes forward to (vig * vp), g * aqp)), we find that
(vig) * vin), g * pny) € Pr(De)([g] * [A]).

It remains to show that the inverse (v, aq) " is an element of pr(D¢g)([g]™!). Re-
call that [g]™" = [g7']. We have (v, (T, pr)*ajg)~" € Dg(g7!). Since ((Typr)*oyy) *

<(Tg,1 pl")*oz[;}l) = t((T, pr)*ay,) and in the same manner ((T ~1pr)* [g]> (T, pr)*oyy) =

$((Ty pr)*ayy), we find that (T,-1 pr)*a [] = ((T,pr)*aj)~". Since (pr,pr,) is a mor-

phism of Lie groupoids, we find also that Ty-1 pr(v; ) = (Tg pru,)~! = [;]1 Thus,
2"

(vg, (T, pr)*ag)~" € Dg(g~') pushes forward to (v[g], , which is consequently an
element of pr(Dg)([g]™!). O

Remark 5.1.3 In the Lie group case, the Poisson Lie group (G/N, ¢(D¢)) associated to
an integrable Dirac Lie group (G, D) satisfying the necessary regularity assumptions was
also a Poisson homogeneous space of the Dirac Lie group. Here, the Poisson Lie groupoid
associated to the Dirac groupoid is, in general, not a Poisson homogeneous space of the
Dirac groupoid since the quotient G/Gq is not a homogeneous space of the Lie groupoid
G=P. A

For the sake of completeness, we show next how the result in Weinstein (1988) about the
induced Poisson structure on the units of a Poisson Lie groupoid can be generalized to the
situation of Dirac groupoids. For that, we need to study the units of the Dirac groupoid.
It is natural to ask what the set of units of D¢ is, when seen as a subgroupoid of (TG X
T*G)=(TP xp A*G). It is easy to see that Dg is a Lie groupoid over Dg N (T'P x p A*G).
We will write A(D¢) := Dg N (TP x p A*G) for the set of units of Dg. Here, we will show
that it is a vector bundle over P.

Definition 5.1.4 1. Let (G=P,D¢) be a Dirac groupoid and A(D¢) the set of units
of Dg, i.e., the subdistribution Dg N (TP xp A*G) of TP xp A*G. We write a, :
A(D¢g) — TP for the map defined by a,(v,, ap,) = v, forallp € P, (v,, a,,) € A, (De).
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2. We write ker Ts, respectively ker Tt for the kernel T°G x¢g (T*G)° (respectively
T'G x¢ (T°G)°) of the source map Ts : P — TP xp A*G (respectively the tar-
get map Tt : P — TP xp A*G). We denote by 1°(Dg) the restriction to P of
Dg NkerTs, i.e.,

]s(Dg) = DG N (TISDG Xa (TIBG)O) = (DG N ker TS)|P.
In the same manner, we write I'(D¢g) := Dg N (TpG X (T5G)°) = (Dg Nker Tt)|p.

Theorem 5.1.5 Let (G=2P,Dg) be a Dirac groupoid. Then the Dirac subspace Dg|p
splits as a direct sum

Dg‘P = (DG N (TP Xp (TP)O)) D (DG N (T};.G Xp (T;G)O»
= 2A(Dg) @ I'(Dg)

and in the same manner

Dg‘P = (DG N (TP Xp (TP)O)) D (DG N (TIS;.G Xp (T};.G)O>)
=A(Dg) ® I*(Dg).

The three intersections are smooth and have constant rank on P.

PRrOOF: Choose p € P and (v,, o) € Dg(p). Then we have Tt(v,, ;) € De(p) and hence
also (vp, o) — Tt(vp, o) € Da(p). We find that v, — Tptv, € T;G and Tpt(v,) € T, P, and
in the same manner t(a,) € A*G = (T,P)°, by definition, and «, — t(a,) € (T3G)°.
Since

(Vp, o) = Tt(vp, ) + ((vp, ) — Tt(vy, ),

we have shown the first equality. The second formula can be shown in the same manner,
using the map Ts : Dg(p) — Da(p) N (TP x A3G).

Next, we show that the intersection of Dy with TP xp A*G is smooth. Choose p € P
and (vp, ay,) € Da(p) N (TP x A3G). Since D¢ is a smooth vector bundle on G, we find
a section (X, a) € I'(Dg) defined on a neighborhood of p such that (X, a)(p) = (v,, ).
The restriction (X, a)|p is then a smooth section of Dg|p. We have Ts((X,a)|p) €
[(De N (TP xp A*G)) and Ts(X, a)(p) = (1,50, a|1i6) = (vp, ) since v, € T,P and
o, € AyG = (T,P)°.

Thus, we have found a smooth section of Dg N (TP xp A*G) defined on a neighborhood
of p in P and taking value (v,, a,) at p.

Since (Dg|p)" = Dg|p and TP x p A*G = (TP x p A*G)" are smooth subbundles of P/ p,
we get from Proposition 4.4 in Jotz et al. (2011b) that Dg N (TP xp A*G) has constant
rank on P. By the splittings shown above and the fact that Dg|p has constant rank on P,
we find that the two other intersections have constant rank on P, and are thus smooth.[]
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5 The geometry of Dirac groupoids

In the case of a Dirac Lie group, the bundle I°*(Dg) — P is go — {e}, as shows the
next example. We will see later that I°(D¢) has a crucial role in the construction of the
Courant algebroid associated to a Dirac groupoid (G=P, D¢). The fact that the left and
right invariant images of this subspace are exactly the characteristic distribution of the
Dirac structure is a very special and convenient feature in the group case, that makes the
Dirac Lie groups much easier to understand than arbitrary Dirac groupoids (see Chapter
4).

Example 5.1.6 If (G,D¢) is a Dirac Lie group, we have P = {e} (the neutral element
of G),

De(e) N (TeP x (T.P)°) = Dg(e) N ({0} x g7) = {0} x ps
and

Da(e) N(T2G x (T, G)°) = Da(e) N (g x {0}) = go x {0}.
We recover hence the equality Dg(e) = go X p1 (Proposition 4.1.3).
In this particular case, Dg is a Poisson structure if and only if Dg(e) is equal to the set
of units of TG xg T*G={0} x g*, i.e., go = {0} and p; = g*. In the general case, this is
not true since the intersection with TP x p A*G of the graph of a Poisson bivector 7g on
a Lie groupoid G is equal to the graph of the restriction of WﬁG to A*G. O

Lemma 5.1.7 Let (G=P,Dg) be a Dirac groupoid. For all g € G, we have

Da(g) Nker Tt = (0,4, 0,) * ]St(g)(Dg)
and

D (g) Nker Ts =I5, (Dg) * (0, 0y).
The intersections Dg Nker Tt and Dg N ker Ts have consequently constant rank on G.
PRrROOF: Choose g € G and vy € TG, asg) € T, P such that (vs(), (T5(9)s) as(g)) €
Da(s(g)). Then we have Tt(us(g), (T5(9)5)"s(g)) = (Os(g); Os(g)) and (0y,04) € D (g) with
Ts(04,04) = (0s(g), Os(g))- Thus, the product

(0g, 0g) * (us(g), (Ts()s) " as9))
makes sense and is an element of D¢ (g) N ker Tt.
Conversely, choose (vy, ay) € Da(g) N (T;G x¢ (T;G)°). Since Tt(vy, ag) = (Ox(g), Ox(g)) =
Ts(04-1,0,-1) and (0,-1,0,-1) € Da(g™?), the composition
(0g-1,0g-1) * (vg, arg)

makes sense and is an element of Dg(s(g)) Nker Tt = IJ, (D¢). Since (04-1,04-1) =

(0,4,0,)~t, we have shown that (v,, a,) € (0,4,0,) * I3 (De).

There is hence an isomorphism

Da(s(g)) N (Te,)G % (T5,G)°) +» Dalg) N (T,G x (T;G)°) .

s(g

As a consequence, Dg N ker Tt has constant rank along s-fibers. Since Dg N ker Tt has
constant rank on P by Theorem 5.1.5, it has hence constant rank on the whole of G. [
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Example 5.1.8 If (G=P,7g) is a Poisson Lie groupoid, then 74 (d(s* f)) € T(T*G) for
all f € C™(P) (see Weinstein (1988)). The intersection D, N ker Tt is hence spanned
by the sections (7%(d(s*f)),d(s*f)), with f € C>(P), and has constant rank. The
intersection Dy, Nker Ts is spanned by the sections (74 (d(t* f)), d(t* f)) with f € C=(P).¢

Using this, we will show the next main theorem of this section. We will need the following
lemma.

Lemma 5.1.9 Let G P be a Lie groupoid. Choose g € G and set p = t(g). Then, for
all o, € TSP, we have

—(Tg-19)"ap = ((Tgt)*ap)il :
Proor: Compute for any u, € A4,G, :
JE((Tgt)*O‘p)Wp) = ((Tyt)" ap)(Tp Ry (up — Tysuy)) = ap(Tet(TpRy(uy — Tpsuy)))
= ap(Tpt(up — Tpsup)) = ap(Tytuy — Tpsup) = —((Tps) ap)(uy)
and
S(—=(Ty-18) ) (up) = —((Ty-15) ") (T, Lg-1uy)
= —ap(Ty-15(TpLg-1up)) = —ap(Tysu,) = —((T8) ap) (up).

In the same manner, we set ¢ = t(¢~') = s(g) and compute for any u, € A,G:

f(_<Tg‘1s>*O‘p)<uq) = _<<Tg‘1s)*ap>(Tng‘l(uq — Tysuy))
= —ay(Ty-1s(T Ry (ug — Tysuy))) = 0

and
s((Tyt) ap)(ug) = (Tyt) ap)(Ty Lyug) = ay(Tyt(TyLguy)) = 0.

Hence, we can compute ((Tyt)*cy,) * (—(Ty-15)*ay,) and (—(T,-15)* ) * ((Tyt)*cyy). We
choose for any u, € T;G two vectors uy,-1 € T,-1G and u, € T,G such that u, = ug-—1 xu,
and we get

((=(Tg-rs)"ap) * (Tgt) ) (ug) = (—=(Tg-15)"ap) (ug-1) + ((Tyt) o) (ug)
— —ap(TgAS’LLgfl) + ap(Tgtug)
= —ap(Tytuy) + ap(Tytu,) = 0,

which shows that (—(T-15)*a,) % ((Tyt)* o) = 04 = 5((Tyt)* ). For any w, = wy*w,-1 €
T,G, we compute in the same manner

(Tyt) ) x (=(Ty-15)"ap)) (wp) = ayp(Tytwy) — ap(Ty-15w4-1)
= ap(Tptwy) — ap(Tpswy,) = ay, o (Tpt — Tps)(wy).

Thus, ((Tyt)*ap) * (—(Ty-15)"a) = t((Tyt) ). O
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Remark 5.1.10 If (v,, (T,5)*«,) is such that T,tv, = 0,, then Tt(v,, (T,s)*a,) = (0,,0,).
If g € G is such that s(g) = p, then (04, 04) * (v, (T)5)* ) = (T, L4vp, (Tys)*a,) for all
ges(p)

To see this, let ¢ : (—e,e) — t7!(p) be a curve such that ¢(0) = p and ¢(0) = v,. We

can then compute 0y x v, = T(4,ym(0g,v,) = 2| _ gxclo) = T,Lgv,. If v, € T,G,
the equality v, = v, x (T,sv,) yields (0, x (T),s)* ozp)( ) 04(vg) + (( s)*ay,) (T, svg) =
ap(Tysvg) = ((Tys) ) (vg)- A

Now we can prove a generalization of the fact that the units of a Poisson groupoid inherit a
Poisson structure such that the target map if a Poisson map and the source is anti-Poisson
(see Weinstein (1988)).

Theorem 5.1.11 Assume that (G=2P,D¢) is a Dirac groupoid such that TP N Gq is
smooth. Define the subspace Dp of Pp by

b {@p,%) . (p)’ a(wp,(Tpt)*ipghihzfii) n (Tffgpx (4,G)°) } (5.1)

for allp € P. Then Dp is a Dirac structure on P.

Furthermore, if for all g € G, the restriction to Go(g) of the target map Tyt : Go(g) —
Go(t(g)) N Ty P is surjective, then the maps t : (G,Dg) — (P,Dp) and s : (G,Dg) —
(P,—Dp) are forward Dirac maps, where —Dp is the Dirac structure defined on P by
Dp(p) = {(=vp, ap) € Pp(p) | (vp, ) € Dp(p)}-

The characteristic distribution Go© of (P, Dp) is then equal to the intersection Gy N T'P.
Note that this theorem generalizes Theorem 4.2.3 in Weinstein (1988) (see also Weinstein
(1987), Coste et al. (1987) for the special case of symplectic groupoids), since in the
Poisson case, we have Gy = O7¢ and the hypotheses are consequently trivially satisfied. If
all conditions are satisfied, the Dirac structure on P is just the push forward of the Dirac
structure on G under the quotient map t: G — G/G ~ P (see Example 1.1.24).

PROOF: First note that I°(Dg) ® ((GoNT'P) X p04+c) = DaN(TpG x p AG®). Indeed, we
have obviously I°(Dg) @ ((Go N TP) xp 04:¢) € Dg N (TpG xp AG®), and conversely, if
(vp, (Tpt)* ) € D (p) N (T,G x A,G°), we have Ts(v,, (Tpt)*ay,) = (Tpsvy, 0) € De(p) and
hence (vp, (Tpt)* o) = (v, = Tpsvp, (Tpt) o) + (Tysvp, 0) € I5(De) + ((Go(p) N T, P) x {0}).
By the hypothesis on Gy N T'P, the intersection Dg N (TpG X p AG®) is hence smooth
and has consequently constant rank on P by a Proposition in Jotz et al. (2011b). The
space Dp is smooth since it is spanned by the smooth sections of GgN'T'P and the smooth
sections (TtX, «) for all (X", t*«a) € I'(Dg N ker Ts).

We show that Dp(p) = Dp(p)* for all p € P. If (Ttv,, o), (Tptwy, B,) € Dp(p), that is,
with (v,, (Tpt)*ay,), (wy, (Tpt)*B,) € Da(p) N (T,G x (A,G)°), we have

(Tptvy, o), (Tytwy, Bp)) = ((vp, (Tpt) ), (wy, (Tt)*By)) =0

since (vy, (Tpt)*ayp), (wy, (Tpt)*B,) € Dg(p). This shows the inclusion Dp(p) C Dp(p)*.
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Conversely, if (v,,a,) € Dp(p)t C Pp(p) and y, € T,G is chosen such that T,ty, = v,,
then we have

((wp, (Tp0)"Bp), (yp: (Tpt) ) = {(Tptwy, By), (vp, ) =0

for all (w,, (T,t)*B,) € Da(p) N (T,G x A,G°). Hence, we get

(Wp (Tyt) ) € (De(p) N (T,G x (A4,G)°)) " = (Da(p) + A,G x {0,})
and consequently (y,, (Tpt)*ap) = (y,, (Tpt)*ap) + (up, 0) for some (y,, (Tpt)*a,) € Da(p)
and u, € A,G. But then Tyty, = T,ty, = v, and (v,, o) € Dp(p).
Assume that the target map Tyt : Go(g) — Go(t(g)) N Ty P is surjective for all g € G.
We show that t : (G,Dg) — (P,Dp) is a forward Dirac map. Choose p € P, g € t7!(p)
and (v, ) € Dp(p). We have to prove that there exists (vq,ay) € Dg(g) such that
a, = (Tyt)* oy, and T tv, = v,. By definition of Dp and the considerations above, there
exists u, € TyG and 2, € Go(p)NT, P such that Tptu,+2, = v, and (u,, (Tpt)*ay,) € I5(Dg).
Then the pair (T,R,u,, (Tyt)*a,) = (up, (Tpt)*ay) x (04,0,) is an element of Dg(g) (this
equality can be shown as in Remark 5.1.10) and by hypothesis, we find z, € Go(g) such
that Tytz, = 2,. The pair (T,R,u, + 24, (T,t)*c,) is then an element of Dg(g) and
Tr(TyRyuy, + 2z5) = Tptuy, + 2, = v,
It remains to prove that s : (G,Dg) — (P, —Dp) is also a forward Dirac map. Choose p €
P, g €s (p) and (vp, ) € —Dp(p). Then (—v,, o) € Dp(p) and, since t(g~') = s(g) =
p, there exists by the considerations above w, € T,-1G such that T,-1tw,—1 = v, and
(—wg-1, (Ty-1t)*a,) € Dg(g™t). But by Lemma 5.1.9, we have then ((—w,-1)~1, —(T,s)*ay)
€ Dg(g). This leads to ((w,-1)71, (Tys)* ) € Dg(g) and since Tys((wy-1) )= Ty-1tw,-—1 =
vp, the proof is finished. O

Note that the hypotheses on the distribution Gg in Theorem 5.1.11 are rather strong. The
following example shows that this theorem can hold under weaker hypotheses.

Example 5.1.12 Assume that (M, D) is a smooth Dirac manifold such that Gg is a
singular distribution. Then, the induced pair Dirac groupoid (M xM = M, D,;6D,/) as in
Example 2.2.5 doesn’t satisfy the conditions for Theorem 5.1.11. The space I*(Dy; ©Dyy)
is here given by

[(Sm,m)<DM © Duy) = {(m, Oy @, 0) | (0, ) € Dpg(m) }
for all m € M, and the space Go N T'A,, is given by
Go(m,m) N Timm)Asr = {(Vms V) | (Um; 0m) € Dag(m)}
for all m € M. Hence, we have
Inmy(Dar © Dar) + (Go(m, m) M TonmyAar) Xarxar {0}
={(Vm, Wi, ¥y O) | (U, @) € Dag(m), (Wi, 0,,) € Dpg(m)}

and we find that the same construction as in Theorem 5.1.11 defines a Dirac structure on
M ~ Ay, which equals the original Dirac structure Dy, on M since its fiber over m € M
18 given by {(vmaam) | (vm,wm,am,O ) € IS (DM S) DM) + GO(m m) N Tmm AM} <>
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Example 5.1.13 Let G=P be a Lie groupoid and ¢ € Q3(P) a closed 3-form. A Dirac
structure on P is said to be ¢-twisted if it is closed under the ¢-twisted Courant bracket
defined by [(X, ), (Y, 5)] = ([X,Y], £x0 — iyda + iyix¢) for all (X, ), (Y,3) € T'(Pp).
Let wg € 02(G) be a 2-form on G. Then (G=P,wg) is a ¢-twisted presymplectic groupoid
if we is multiplicative and satisfies the following conditions:

1. dwg = s*¢ — t*o,
2. dimG = 2dim P and
3. (kerwg)(p) NT,G NT;G = {0,} for all p € P.

Presymplectic groupoids were introduced by Bursztyn et al. (2004). It is shown there that
if (G=P,wg) is a ¢-twisted presymplectic groupoid, then there exists a ¢-twisted Dirac
structure Dp on P such that the target map t : (G,Dg) — (P,Dp) is a forward Dirac
map.

Note that (ker wg)(p) = Go(p), if Go is the characteristic distribution associated to the
Dirac groupoid (G=2P, D, ), see Example 2.2.4. In Bursztyn et al. (2004), a multiplicative
2-form is said to be of Dirac type if it has a property that is shown to be equivalent to
our surjectivity condition on the restriction to the characteristic distribution Gy = ker wg
of the target map Tt. It is shown that if the bundle of Dirac structures defined as in
(5.1) by the multiplicative Dirac structure D, associated to a multiplicative 2-form wg
of Dirac type is smooth, then Dp is a Dirac structure on P such that the target map
t: (G,Dg) — (P,Dp) is a forward Dirac map. Thus, we recover here their two conditions
since we made the hypothesis on smoothness of Gy NT'P to ensure the smoothness of Dp.
It is shown in Bursztyn et al. (2004) that presymplectic groupoids satisfy automatically
these conditions. O

Remark 5.1.14 In the situation of Theorem 5.1.2, the multiplicative subbundle Gq of
TG has constant rank on (. In particular, the intersection T'P N Gy is a smooth vector
bundle over P and for each g € G, the restriction to Gg(g) of the target map, Tyt :
Go(g) = Go(t(g)) N Tyg) P, is surjective (see Lemma 3.2.1). By Theorem 5.1.11, there
exists then a Dirac structure Dp on P such that t : (G,Dg) — (P,Dp) is a forward
Dirac map. Since (G/Go=P/Go,pr(D¢)) is a Poisson Lie groupoid, we know also by a
theorem in Weinstein (1988) that there is a Poisson structure {-,-}p/g, on P/Gq such that
[t] : (G/Go,pr(De)) = (P/Go,{-,}p/q,) is a Poisson map. It is easy to check that the
map pr, : (P,Dp) = (P/Go, {-, }p/c,) is then also a forward Dirac map, i.e., the graph of
the vector bundle homomorphism T*(P/Gy) — T'(P/Gg) defined by the Poisson structure
is the forward Dirac image of Dp under pr,. A

5.2 The units of a Dirac groupoid

In this section, we discuss further properties of the set of units 24(Dg) of a multiplicative
Dirac structure.
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5.2 The units of a Dirac groupoid

Proposition 5.2.1 Let £ = (X¢,0¢) be a section of Dg N (TP xp A*G) = A(Dg). Then
there exists a smooth section & = (X, 0¢) of Dg such that £|p = € and Ts(E(g)) = £(s(g))
for all g € s (Dom (€)).

We say that then that the section & of D¢ is s-descending and we write € ~ €. Indeed,
since X¢ € T(TP) and T,sX¢(g) = Xe(s(g)) for all g € G where this makes sense, the
vector fields X, and X are s-related, X ~; X¢. Following Mackenzie (2000), the pair
(€,€) can also be called a star section of Dg= A(D¢). Note that outside of P, ¢ is defined
modulo sections of Dg N ker Ts.

Consider the smooth section £7! € T'(Dg) defined by £71(g) = (£(g71))~! for all g € G.

Then ¢! is a t-descending section of Dg, €71 ~y €.

ProOF: We have shown in Lemma 5.1.7 that Dg N ker Ts is a subbundle of Dg. Hence,
we can consider the smooth vector bundle Dg/(Dg N ker Ts) over G. Since D¢ is a Lie
subgroupoid of Pc= (TP xp A*G), we can consider the restriction to Dg of the source
map, Ts : Dg — A(D¢). Since Dg N ker Ts is the kernel of this map, we have an induced
smooth vector bundle homomorphism Ts : Dg/(Dg Nker Ts) — 2A(Dg) over the source
map s : G — P, that is bijective in every fiber. Hence, there exists a unique smooth

section [€] of Dg /(D¢ Nker Ts) such that Ts([¢](g)) = &(s(g)) for all g € G. If £ € I'(Dg)

is a representative of [¢] such that &|p = &, then Ts(&(g)) = &(s(g)) for all g € G. O

Lemma 5.2.2 Choose £, € T'(A4(Dg)) and s-descending sections & ~s &, n ~s 7 of Dg.
Then, if £ = (X¢,0¢) and n = (X,,0,), the identity

O£ Xe) + (£200) (X,) =5 ((Oy(£2Xe) + (£20) (X)) |p)  (5:2)

holds for any section Z € I'(AG).

PROOF: Choose g € G and set p =s(g). For all t € (—¢,¢) for a small €, we have

£(g* Exp(tZ)(p)) = (€(g % Exp(tZ)(p))) * (E(Exp(tZ)(p))) " * (E(Exp(tZ)(p))).

The pair
(€(g* Exp(t2)(p))) * (£(Bxp(tZ)(p)))

is an element of Dg(g) for all t € (—¢, ¢) and will be written d;(g) to simplify the notation.
Note that we have

(Truepiz (9) Risp(—12) Xe (g x Exp(t2)(p)), 0 (9 x Exp(tZ) (p)) © Ty Rixp(12))
=061(9) * (Texp2) Rixp(—t2) Xe (Exp(tZ) (p)), 0 (Exp(tZ) (p)) © Ty Rexp(e2)) - (5.3)
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5 The geometry of Dirac groupoids

We compute
(0 (£21X¢) + (£20¢)(Xy)) (9)

= (10 57| (i X0) (0. (Fiene) )
(a0 800 (B X6) 0 (i) )
(0.3@) + 5| (70 (R X0 0, (Bine) () )

o) (7 (£ Xes £70))(p) = (By(£1Xe) + (£700)(K,)) (s(g). O

ot
w

(

8
~

SRS

t=0 t=0

SRS

I
VR

Proposition 5.2.3 Let (G=P,D¢) be a Dirac groupoid. Choose &7 € T'(U(Dg)) and
s-descending sections & ~g £, n ~s 1] of Dg, as in Proposition 5.2.1. Then the Courant-
Dorfman bracket

[Xe, X,), £x,6, — ix, df;)

£

is s-descending and its values on P are elements of TP xp A*G.

PROOF: Since X¢ ~; X¢ and X, ~s X, we know that [X¢, X;] ~5 [X¢, X,]. Since X¢|p =
Xe, X,|p = X, the value of [ X, X ] on pomts in P is equal to the Value of [X¢, X, € X(P).
We check that for all p € P, we have s ((£X£0 ix,df)(g)) = (£x.0, — ix,d0)(p) for

any g € s~ (p).
We have for any Z € I'(AG):

§ ((£x.0y — ix,d0) (9)) (Z(p)) = (£x.0, — ix,db;) (') (9)-

Hence, we compute with (5.2)

(£, — i, d) (2
= Xe(0,(2%) + 0,( £ Xe) — X, (0(21) + Z'(0c(X,,)) — e £.1X,)
(

= Xe(s*(0,(2))) + 0y (£21Xe) — Xy (5" (06(2))) + (£2006)(X)
=" (Xe(0(2)) + 0y(£20Xe) = Xy (0(2)) + (£20)(X,) ).

We have then also for p € P:

(£x:0y —ix,d0) (Z(p)) = (Xe(04(2)) + 04(£21Xe) — Xy (0c(2)) + (£20) (X)) (p)-

Choose X € I'(T'P), then

(£x.0y —ix,d0) (X (p)) = Xe(0,(X))(p) + Oy
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5.2 The units of a Dirac groupoid

since 0,,0; € D(TP°) and X, [X, X¢], X, [X, X,)] € [(TP).
Thus, we have shown that (fxgé’n — andﬁg) |p is a section of A*G = T P° and

S ((£X§9,7 — andeg) (g)) = (£X§9,7 — andeg) (S(g))

for all g € G. O

Theorem 5.2.4 Let (G=P,Dg) be a Dirac groupoid. Then there is an induced antisym-
metric bracket

[,:]x :T(RA(Dg)) x T'(A(Dg)) — T(TP xp A*G)

defined by [€,7], = [£,1]|p for any choice of s-descending sections & ~¢ &, n ~¢ 7 of Dg.
If (G=2P,Dg) is integrable, then (A(Dg), [, ]+, ax) is a Lie algebroid over P.

PROOF: By Proposition 5.2.3, if £ ~ &, 1 ~ 7 then
[(X£>0§)a (Xmen)] ~s ([XﬁvXn]v (fXgen - andQE) |P) :

Thus, we have first to show that the right-hand side of this equation doesn’t depend on
the choice of the sections £ and 7. Choose a s-descending section v ~g 0 of Dg, i.e.,
v € I'(Dg NkerTs) with v|p = 0. For any Z € I'(AG), we find as in the proof of
Proposition 5.2.3

(£x,0 —ix.d0,) (Z') = s"(X,(0¢(2))) + 0c(£21X,) = 5" (Xe(0,(2))) + (£210,)(Xe)
=0:(£ X)) + (£20,)(Xe) since X, =0 and 6, =0

= £Zl<<XV7 (91,), (Xg, 95)) — <£Zl (X£7 9§>7 (Xw 91/)>
= —(£5(Xe,0¢),(X,,0,)).

Hence, at any p € P, we find

(£x,0¢ — ix,d0,)(Z(p)) = —(£21(Xe, 0)(p), (X0, 0,)(p))
= —({£21(Xe, 0)(p), (0p,0p)) = 0.

—~

Thus, we find (£x,0; — ix,d0,)(p) = 0, since we know by the previous proposition that
(£x,0: —ix.db,)(p) € AsG = T,P°. We get hence

[(X0,0,), (Xe, 0¢)] (p) = ([Xo, Xe], £x,0¢ — ix.d0,) (p) = ([0, Xelp, 0,) = (0, 0,).

This shows that the bracket on I'(4(D¢)) is well-defined. It is antisymmetric because the
Courant-Dorfman bracket on sections of D¢ is antisymmetric.

If D¢ is integrable, then for all s-descending &, 7 € I'(Dg), the bracket [£, 1] is also a section
of D¢ and its restriction to P is a section of A(D¢) since it is a section of TP xp A*G.
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5 The geometry of Dirac groupoids

The Jacobi identity is satisfied by [-, -], because the Courant-Dorfman bracket on sections
of D¢ satisfies the Jacobi identity. For any ,7 € I'((D¢)) and f € C*°(P), we have

i [5, 7_7]* = [X&X??} = [a*(€)73*<ﬁ)]

and
&, f 7], () = [(Xe, 0¢), (5" F)(Xy,0)] ()
= Xe(s"f) (X, 0) (p ) (s"f) [(Xe, ), (X, 0)] (p)
= Xe(£)(p) - (X, 0,)(p) + f(p) - [€,71],, (P)
= a.E) () -alp) + f(p) - [& 7], (p)
for all p € P. O

If the Dirac structure D¢ is integrable, we get the structure of a LA-groupoid on D¢
(Mackenzie (2000)). Let G=P be a Lie groupoid, TG=T'P its tangent prolongation and
(A — P,a,|,]a) a Lie algebroid over P. Let © be a smooth manifold. The quadruple
(€; G, A; P) is a LA-groupoid if € has both a Lie groupoid structure over A and a Lie
algebroid structure over GG such that the two structures on €2 commute in the sense that
the maps defining the groupoid structure are all Lie algebroid morphisms. (The bracket
on sections of A(D¢) can be defined in the same manner with the target map, and the
fact that the multiplication in 7*G x ¢ T'G is a Lie algebroid morphism is shown in Ortiz
(2009).) The double source map (g,s) : 2 — G xp A has furthermore to be a surjective
submersion. Recall from Courant (1990) that if Dg is integrable, then D¢ — G has the
structure of a Lie algebroid with the Courant-Dorfman bracket and the projection on T'M
as anchor. Thus, the previous theorem shows that the quadruple (Dg; G,24(D¢); P) is a
L A-groupoid (see also Ortiz (2009)):

D 2
¢ \TG Tt ( G\
Ts
q TG TP

D
|
|
|
I
| Tt
|
/ s V/
P

Then, in the terminology of Mackenzie (2000), our s-descending sections of D¢ are the
star sections of (Dg; G,A(Dg); P). It is shown in Mackenzie (2000) (see also Mackenzie
(1992)), that the bracket of two star sections is again a star section. Here, we have
shown this fact in Proposition 5.2.3 and get as a consequence the fact that 2(D¢) has the
structure of a Lie algebroid over P.

The next interesting object in Mackenzie (2000) is the core K of Q. It is defined as the
pullback vector bundle across € : P — G of the kernel ker(s : @ — A). Hence, it is
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5.2 The units of a Dirac groupoid

here exactly the vector bundle I°(D¢) over P. It comes equipped with the vector bundle
morphisms dypg) : I°(Da) — A(Da), (vp, o) = Tt(vy, o) and 655 : I5(Dg) — AG,
(Vp, o) > v,. We have then a o 655 = a, 0 dy(py) =: k. Furthermore, there is an induced
bracket [, -]rs(p.) on sections of I*(D¢) such that (I°(D¢), [, |rspe), k) is a Lie algebroid
over P. We prove this fact for our special situation in the following proposition.

Recall that if (v,, @), p € P, is an element of I5(D¢), then a, can be written (7t)* 3,
with some 3, € TyP. Furthermore, if o is a section of I*(Dg) C (T°G x¢ (T*G)°)|p,
then o” defined by 0"(g) = o(t(g)) * (04,0,) for all g € G is a section of Dg N ker Ts by

Lemma 5.1.7 and Remark 5.1.10. We write 0" = (X7, t*«,,) with some X, € I' (Z\C/}) and
a, € QL(P).

Proposition 5.2.5 Let (G=P,D¢) be a Lie groupoid. Define [-,-|sps) : I'(I°(Dg)) x
I'(I*(Dg)) — I'((ker Ts)|p) by

([07 T][S(DG))T =[o",7"]
for all sections o, 7 € I'(I°(Dg)), i.e.,
[0, T 1s06) = ([Xos Xo] g6 (F (Lagx,)ar — iaxndas))|p) -

If D¢ is integrable, this bracket has image in I'(I5(Dg)) and I5(Dg) has the structure
of a Lie algebroid over P with the anchor map k defined by k(v,,a,) = Tytv, for all
(vp, ) € I(Dg), p € P.

Note that this bracket on I°(Dg) is the restriction to I°(Dg) of a bracket defined in the
same manner on the sections of (ker Ts)|p. Note also that, if Dg is integrable, the space
I*(D¢) has in the same manner the structure of an algebroid over P.

PROOF: Choose 0,7 € I'(I*(D¢)) and assume that D¢ is integrable. The bracket
0", 7] = (X5, tag) , (X7, tar)]
is then itself a section of Dg. The identity
(X7 taq) , (X7, o)) = (([(Xo, Xrlig) "t (£ 0 — lacx,da))
shows hence that [¢",7"] € I'(Dg N ker Ts) is right invariant and consequently
[0, 7106y = (X5t a0), (XT, t'ar)] |p € T(I°(Dg)).

The bracket [-,-];sp,) satisfies then the Jacobi identity because the Courant bracket on
sections of D¢ satisfies it. The Leibniz rule is easy to check. O

As in Mackenzie (2000), we have thus four Lie algebroids over P:
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5 The geometry of Dirac groupoids

QL(DG)

\/
/\

The anchors a, a, and the map d4 are obviously Lie algebroid morphisms and the theory
in Mackenzie (1992), Mackenzie (2000) yields that dy(p,,) is also a Lie algebroid morphism.

Next, we compute the Lie algebroid 24(Dg) — P for our three “standard” examples.

Example 5.2.6 Let (G:{P 7e) be a Poisson groupoid and D, the graph of the vector
bundle homomorphism 7rG T*G — TG associated to mg. The palr (G=P,D,,,) is an inte-
grable Dirac groupoid. The set of wunits 2A(D,,) of D, equals here

Graph (ﬂé ‘ e CAG—>T P) and is hence isomorphic to A*G as a Vector bundle, via

the maps © := pry.g : A(D,,) - A*G and O7! = (WﬁG‘ ) ,IdA*G> : A*G — A(Dg,)
over Idp. e

The vector bundle A*G has the structure of a Lie algebroid over P with anchor map
given by A*G — TP, a, — m5(a,) € T,P and with bracket the restriction to A*G of
the bracket [+, ], on Q'(GQ) defined by 7g: [a, Blre = £Wé(a)6 - £7r”G(6)O‘ —dng(a, B) for
all a, 8 € QY(G) (Coste et al. (1987)). Thus, A*G with this Lie algebroid structure and
2(D,,) are isomorphic as Lie algebroids via © and ©7 1. O

Example 5.2.7 Let wg be a multiplicative closed 2-form on a Lie groupoid G=P and
consider the associated multiplicative Dirac structure D,_. on G. The Lie algebroid
2A(D,,,) — P is here equal to

wae

A(D.,) = Graph (wg|rp : TP — A*G)

with anchor map a, : (D) — TP given by a, (v,, wg(vy)) = v,. The bracket of two
sections (X, wy(X)), (Y, wg(Y)) € T(A(D.,)) is simply given by

[(R.w5(0)) . (V.02(7))] = (5. 7). ((R.7]).

The Lie algebroid 2(D,,,) is obviously isomorphic to the tangent Lie algebroid TP — P
of P, via the maps pryp : (D) — TP (the anchor map) and (IdTp,w"G\Tp) : TP —
A(Dyy)-

Note that if (G=P,w) is a presymplectic groupoid, then 2A(D,,) is the graph of the dual
of the map o, : AG — T*P in Bursztyn et al. (2009). O
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5.3 Integrability criterion

Example 5.2.8 Let (M, D)) be a smooth Dirac manifold and (M x M = M,Dy; ©Dyy)
the associated pair Dirac groupoid as in Example 2.2.5. The set A(Dy; © Dyy) is defined
here by

A(Dar © Dag) mym) = Tt((Dar © Dar)(m,m)) = { (Vi Um, Qimy —0t) | (U, ) € Dy (m) }

for all m € M. Hence, we have an isomorphism 2(Dy; © Dy;) — Dy, over the map
pry : Ay — M. Sections of A(Dy; © Dyy) are exactly the sections (X, X, «, —a)|a,, for
sections (X,a) € Dy. The section (X, X, a, —a) of Dy © Dy defined on M x M by
(X, X, a,—a)(m,n) = (X(m), X(n),a(m), —a(n)) for all (m,n) € M x M is then easily
shown to be s-descending to (X, X, a, —a)|a,,. Using this, one can check that, if (M, Dy,)
is integrable, the Lie algebroid structure on 2A(Dy; ©D,y) corresponds to the Lie algebroid
structure on (M, Dyy) (see Courant (1990)). O

5.3 Integrability criterion

The main theorem of this section shows that the integrability of the Dirac groupoid is
completely encoded in its square of Lie algebroids. The proof is very technical. We begin
by showing a derivation formula for s-descending sections, that will also be useful later.

Theorem 5.3.1 Let (G=P,Dg) be a Dirac groupoid, & ~¢ & a s-descending section of
D¢ and Z € T'(AG). Then the derivative £ 7 (Xe, 0¢) can be written as a sum

£71(Xe,0e) = (Xgpe,00,) + (Y 55 e z) =2 Lz€ + (0¢,2)’ (5.4)

with Ye 7z € T(AG), agz € QYP) and L€ := (Xg4¢,00,¢) a s-descending section of Dg.
We have £z€ ~¢ Tt (£ 7(Xe, b¢)|p) in the sense that

Ts (Xe,6(9), 0c,¢(9)) = Tt (£21(Xe, 0¢)(s(9)))

forall g € G.
In addition, if (X,,0,) ~s (0,0), then £5(X,,0,) € T'(Dg NkerTs). In particular, its
restriction to P is a section of I°(D¢).

Recall that in the Dirac Lie group case, we had £,:(X¢, &) = (Xaaz¢ + (adg 2)', (ad €)")
for all z € g and £ € p;, with X,g+¢ defined modulo sections of Gy (see (4.4)). The
following lemma will be useful for the proof of this theorem.

Lemma 5.3.2 Let G=P be a Lie groupoid. Choose (X, (t*a)|p) € T'((ker Ts)|p) and
Z € I'(AG). Then we have
£Zl(Xr,t*Oé) =0.

PRrOOF: By the considerations following Proposition 1.1.18, we have £, X" = 0. Since

Z' ~¢ 0, we have £ut*a = t* (£oa) = 0. Thus, £,(X", t'a) = (£ X", £,(tQ)) =
0,0). O
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PROOF (OF THEOREM 5.3.1): Note first that, in general £ (X¢, 8¢) is a section of Dg+
ker Tt: for all 0" = (X7, t*a,) € ['(Dg N ker Ts), we have

<£Z1(X579§)70-T> =Ly (<(X§>0§)’ (X;vt*aa») - <(X§70§)a £Zl(Xgat*0‘a)> =0

using Dg = D and Lemma 5.3.2. This leads to £,1(X¢,0¢) € I' ((DgNkerTs)*) =
I'(Dg + ker Tt). Choose g € G. Then

Tys(£2Xe)(9) = Tys [2', Xe] (9) = [a(2). X (s(9))

and for any W € I'(AG)

S(£210¢(9))(W(s(9))) = (£20)(W')(g) = (Z(s"(0e(W))) — 5" (0c([Z, W]ac)))(9)
= ((a(2))(0:(W)) = 0¢([2, W] ac)) (s(9)).

This shows that Ts (£, (Xg, 0¢)) (9) depends only on the values of Z, X, 0¢ at s(g).
Set

(V05" 06.2)(9) = (09, 0) % (£ Xe, £206)(s(9)) — Tt (£, Xe, £206)(5(9)))

and

(Xeze0c,6)(9) = (£2Xe, £20¢) (9) — (Y{ z:5°a¢.2) (9)
for all g € G. Then (Ygl,za s*ag,z) is a smooth section of ker Tt satisfying
Ts ((Ye 7 s"0e.z) (9) = Ts ((Yez s 0c.z) (s(9)))

by construction for all ¢ € G and L€ = (Xg,¢, 05 ,¢) is consequently s-descending if we
can show that

Ts«Xﬁzﬁv 9LZ€)<9)) = (Xllzﬁv 9LZ§)<5<9>>

for all g € G. Using the computations above for Ts (£ (X, b)), it is easy to see that,
for g € G, we have

Ts ((Xﬁzﬁv 9526)(9)) =Tt <£ZIX£7 £Z”9£) (S(g))7

which, by definition, is equal to (X ¢, 0z ,¢)(s(g)).
It remains hence to show that (X ¢, 6;,¢) is a section of Dg. The equality

(0", (Xepe,0c¢)) = (07, (£ Xe, £210¢)) — (0", (Y{ 5,57 2)) = 0—0

holds for all 0" € I'(ker Ts N D¢), and for all s-descending sections (X, 6,) of Dg, we
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compute
(X, 0) s (Xe e, 024¢)) (9)
= (X, 0) (9), (£21Xe, £210¢) (9) = (Y 55" e 2) (9))
= ((Xy, 0n) (9), (£2:Xe, £210¢) (9))
— (X, 6y) (9) * (X, 60,) (s(9)),
(0g 0g) * ((«fszsafzz@a) (s(g)) = Tt (£ 5 Xe, £0¢) (s(9))))
2 ((X,,6,) (s(g >> <£ZZX5,£zzeg>< s(9)))

— (X3, 0y) (s(9)), (£ Xe, £710¢) (s(g)) — (£szga»5219§)( s(9)))
= <(Xm9n)( (9 )),Tt(£sz§,£zz9g) (s(9))) =

since TP x p A*G = (TP xp A*G)". Thus, we have shown that (X ¢, 0, ,¢) € ['(Dg') =
I'(Dg).

For the proof of the second statement, assume that (X,,0,) is a smooth section of Dg
that is s-descending to (X,,6,) = (0,0). For all left invariant sections (Y, s*y) of ker Tt,
we have

(£2(X,,0,), Y, s*) = £, (X0, 6,), (Y, 5*)) — ((X,,0,), £5(Y',5*7))

= L2 (s" (VX)) +0,(Y)) =" (0.(1Z. Y]ac) + (£a2)7)(X.))
=0

since X, = 0 and 6, = 0. Choose any s-descending section & = (X¢, 0¢) of Dg. Then
<£Zl<XV7 91/)7 <X57 95)) = Ly <(XV7 ‘91/>7 <X57 9§)> - <(Xl/7 91’)7 £Zl(X§7 95)) =0

since £71(X¢,0¢) € I' (Dg Nker Ts)*). We have also £:(X,,6,) € I' ((Dg Nker Ts)*)
and, because the s-descending sections of Dy and the sections of Dg N ker Ts span Dg,
this shows that £,1(X,,0,) € T’ ((Dg + ker Tt)*) = I'(Dg Nker Ts). O

We have also for any s-descending section & of D¢, any section o € I'(I5(D¢)) and Z €
['(AG):

d d
% <RExp(tZ)§7 O-r> (g) = % <£7 R]**]xp(ftZ)o-r> (RExp(tZ) (g))
d
= 51697 (Bexpz)(9)) = 0

since Rj.0" = o" for all bisections K € B(G). (Recall that, by convention, we consider
the bisections satisfying t o K = Idp.) Hence, we get

(Rip2)6:0") (9) = (Bipo2§:0") (9) = (§,07) (9) =0

for all g € G, 0 € I'(I°(D¢)) and t € R where this makes sense and we find consequently
REXp(tz)f € I'(Dg + ker Tt). If the s-fibers of G=P are connected, the set of bisections of
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5 The geometry of Dirac groupoids

G is generated as a group by the bisections Exp(tZ), t € R small enough and Z € I'(AG)
(see Mackenzie and Xu (2000)). We know then that R} € I'(Dg + ker Tt) for any
bisection K € B(G).

We denote here by S(D¢) the set of s-descending sections of Dg. Note that D¢ is spanned
on G\ P by the values of the elements of S(D¢), since Dg N ker T's is spanned there by
the values of the s-descending sections that vanish on P.

Consider the vector bundle E = E(Dg) = Dg/(Dg Nker Tt) ~ (D¢ + ker Tt)/ ker Tt over
G. Since the fiber Dg(g) over g of the Dirac structure is spanned for each g € G\ P by the
values of the elements of S(D¢) at g and, for each p € P, the vector space E(p) is spanned
by the classes &(p) + I(Dg) for all s-descending sections & of D¢, we find that the vector
bundle E is spanned at each point g € G by the elements £(g) + (Dg N ker Tt)(g) for all
e S(D(;) To simplify the notation, we write € for the image of the section £ € S(D¢) in

E, and S(Dg) for the set of these special sections of E. By the considerations above, for
any K € B(G) and ¢ € S(Dg), we can define R := Ri£. If we set in the same manner

P

£p€ = @l/f & L&+ 0c 7t = Evzf € S(D¢)

for all £ € S(D¢) and Z € I'(AG), we find for any g € G:

d

—~—

ai| (Roownd) 0= 5| Figunt)
o
= dt .~ REXptZ S(g)

—~—

_ leag) = LzE(9) = £2€(9)-

Assume here that the bracket on sections of A(Dg) induced by Dg as in Theorem 5.2.4
has image in I'(A(Dg)). Recall from (1.10) the definition of the Courant 3-tensor Tp,
on sections of Dg. We show that T = Tp, induces a tensor T € I' (A\’E*). By the

considerations above, we can define our 3-tensor T by its values on the elements of S(D¢).
Set

F(En.0) = Ten
for all £,1,¢ € S(D¢g). To see that T is well-defined, choose ¢ € G and g € (Dg N

ker Tt)(g). Then there exists o € I'(I*(Dg)) such that o'(g) = oy Then, since [¢,7)] is
s-descending to [£, 7], we have:

T (&(g),n(9),04) =T (£,m,0") (9) = ([&:n). ") (9) = ([, 7. o) (s(g)) =

since [€,7]«(s(g)) € Dg(s(g)) by hypothesis.
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5.3 Integrability criterion

For any bisection K € B(G), we can define the 3-tensor R%. T by
(RicT) (£.C) = Bic (T (Bicr& Rigain B iC) )
for all &,7,¢ € S(Dg). For Z € I'(AG), we can thus define £, T by

a
dt

£Zl—’|v_ - RExp(tZ)-’Iv_’

t=0

We have
Raxp(tZ) (—T_ (év ﬁ) 5) ) - (REXp(tZ)-T_) (REXp(tZ)g7 REXP(tZ)ﬁ? REXp(tZ) 5)

for all £,71,¢ € S(D¢g), which yields
r>€Zl (T <£7 m, C)) = "EZl (T (é7 777 5))

% i Rixpez) (1_ (5, 1, 5))

d * T * & * ~ * *
E (REXp(tZ) T) (REXp(tZ)é-? RExp(tZ)n7 REXp(tZ) C)
t=0

= (£2T) (€3,0) + T (£26,7.€) + T (&.£2n.C) + T (€7, £C)

= (£2T) (£7.0) + T(L26 1.0+ T(6. L, O+ T(E, 1. £2C). (55)
Assume that G= P is t-connected. If £, T =0 for all Z € T'(AG), then we have RT=T
for all K € B(G). Thus, if £, T = 0 we find that T = 0 on G. This implies T = 0 on

G\ P. If in addition T = 0 on P, we can then conclude that T = 0 on G. We will use
this method in the proof of the main theorem of this section. We first need a lemma.

Lemma 5.3.3 Let (G:;_P, D¢) be a Dirac groupoid. Consider three s-descending sections
§~s & nrvs i) and C~s C of Dg. Then, if [€, 7] € T'(A(Dg)), we have

G L&), =[G &l

where the bracket on the right-hand side is the Courant-Dorfman bracket on sections of

TG Xa TG

PROOF: If 7 := [¢, 7], € ['(A(Dg)), then there exists a s-descending section 7 of Dg such

that 7 ~ 7. Since [§,n][p = [, 7], = 7]p and Ts (£, n](9)) = [£,7l(s(9)) = Ts(7(g))
for all g € G, there exists then a section x of ker Ts that is vanishing on P such that
7 —[£,m] = x. Choose p € P. Then, on a neighborhood U of p in G, the section y of
ker Ts can be written y = >_» | fiol with functions fi,..., f, € C°°(U) that vanish on
P N U and basis sections oy, ...,0, of (ker Ts)|p on U N P. We have then

¢ [6n],], = ¢ 7lle = (¢ 16 m + Xlp = [ € nlllp + (6 Xl
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5 The geometry of Dirac groupoids

If we write ¢ = (X¢,w¢), we can compute using (1.9)

n

[CxX] =D (¢ of] + Xe(fi)op)

i=1

Since X¢ is tangent to P on P and f1,..., f, vanish on P, we have X¢(f;)|p = 0. This
shows that [¢, x](p) = 0 for all p € P. Hence, we have [(, [, 7] J* (p) =1[¢, & n)](p). O

Now we can show the main theorem of this section.

Theorem 5.3.4 Let (G=P,D¢) be a Dirac groupoid. Assume that G=P is t-connected.
Then the Dirac structure D¢ is integrable if and only if:

1. the induced bracket as in Theorem 5.2.4 has image in I'(A(Dg)) and satisfies the
Jacobi identity

¢ [&nl,], + [ (¢e] + & mc],], =0  forall&n,¢ € T(ADg))
and

2. the induced bracket on sections of I°(Dg) as in Proposition 5.2.5 has image in
I'(I*(De)).

PrOOF: We have shown in Theorem 5.2.4 and Proposition 5.2.5 that the integrability of
D¢ implies 1) and 2).

Conversely, assume that 1) and 2) hold. We will show that D¢ is integrable. First choose
p € P. The fiber Dg(p) of Dg over p is spanned by the values of the sections in I°(D¢)
defined at p, and the values at p of the s-descending sections of Dg. Since the brackets
on sections of I*(Dg) and 2A(D¢) have values in I'(1°(D¢)), and respectively I'(2((Dg¢)),
we find for all 01, 09,03 € I'(I°(D¢)) and &1, &, &3 € S(Dg):

01, 02]T7 Ug <p> = <[017 UQ]IS(DG)7 03><p> =0
)

Hence, T vanishes over points in P.

Consider the 3-tensor T induced on the sections of E = D¢ /(DaNker Tt) by T and choose
€1,6,& € S(Dg) and Z € T'(AG). We show that (£,T)(&1,&,&) = 0. We have by
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5.3 Integrability criterion

(1.11):

Z'(T(61,6.%))

=7 (wél (X, Xeo]) + Xy (we, (Xey)) + C-p-)

= (weye +5 g 2) ([Xey, Xey)) +we, ([(Xepe, + Ve 2)  Xe])
+we ([Xeo (Xeze +Y42)]) + (Xese + Y4, 2) (we, (X))
+ Xe, (wepe, + 5 ey 2) (Xe,)) + Xey (we, (Xejen + Y, 2))
+ c.p.

= (Weper + 50 2) ([Xey, Xey)) + we ([(Xese, + Y 2) 5 Xes))
+we ([Xeos (Xeze + Y 2)]) + Xege (we (Xe))
+ Xe, (wepe, + 5 ey 2) (Xey)) + Xey (wey, (Xejen + Y, 2))
+ (way&’zﬁz + 5*0452,1@1,2) (Xey) + we (XLYEI,ZQ + Yglg,ygl,z)

+ c.p.

=T (£261,6,8) + 5 e, 2 ([Xey, Xeo]) +we, ([YE, 20 Xes]) +we, ([Xeo, YE, 2])

+ Xfl (S*Oz&,z (Xﬁa)) + X§1 (w§2 (}/51372))

+ (way&’zﬁz + 5*0452,1@1,2) (Xey) + we (XLYEI,ZQ + Yglg,ygl,z)
+ c.p.

=T (£2&,8,8) +5" (ae,7 ([Xe. Xe]))
+ W, (XLYQ’Z&, - Yg&yg%z) — W, (XLYE?“Z& + ngygs’z)
+5" (X (002 (X)) +5" (X (we, (Yeo2)))
+ (wLy&’Z& + S*Ofsz,Ygl,z> (Xey) + we, (Xaygl,m + Yéyw)
+ c.p.

=T (£261,6,89) +5" (06,7 ([Xeo X)) +5 (96 (Veorys — Yoy )
+s (Xfl (&5272 (Xﬁs))) +s (X£1 (@52 (}/%3,2)))

+s" (aﬁz,Ygl,z (Xis)) +s* (@62 <Y€37Y§1,z)>
+ c.p..

In the last equality, we use

We, (X;CYEQ’Z&’;) — Wg (X;CYES’Z§2) + WLYELZ& (ng) +w§2 (XLY51,253>
+ We, (XLYE?”Z&) — Wey (XLYELZ&,) + CULYQ’Z&, <X£1) + Wes (XLYgQ,zﬁ)

+ Wes (XLYELZ&) — Wegy (X;CYE%Zfl) + WLYE?)’Z& (Xﬁg) + We, (XLY§37252>

113



5 The geometry of Dirac groupoids

=We (XLYEQ,Z&)’) + WLYE%Z&, (X&) + Wey <XLY§37251> + wﬁy{37251 (sz)
+ Wey (XLYEI’Z£2) + wﬁygl’z& (XES) =0,
since (Xe,,we,) and (XLYE,Z&WXLYE,Z@) € T(Dg) for i,7 = 1,2,3, i # j. By (5.5), this
yields for all g € G:
(£27) (6,606 (0) =5 (00, ([Xes X))+ (26 (Veureys — Yauress )

+5" (X (a2 (X)) +5" (X (@, (Yey.2)))

+s" <a§2,Y51,Z (sza)) +s* (CD& (YE:’,,Ygl,z))
+ C.p.

= (£2T) (6.6.6) (9)).
But since T vanishes on the units by hypothesis, we find by (5.5) that

(£2T)(E1 €2 6)(s(9)) = Z'(T(€1, €2.63))(s(9))-

Since we know that the cotangent part of [€1, [ &) + [0, €5, &]] + €, [61,&5]] is equal
to d(T (&1, &2, &3)), we find finally, using Lemma 5.3.3, that

(£2T)E 2 )lg) = 2 (T(61,6,6)) (5(0)
= (160,162, & + (62,60, &1 + [0, [61, ) (5(0)), (Z,0)(5(9) )

= (160,62, &L + [62, 6, €] e + 6, 60, €11 (5(9)), (Z,0)(5(9)) )
0

since by condition 1), [-, -], satisfies the Jacobi identity.

Hence, we have shown that £, T = 0 for all Z € I'(AG). This yields that REXP(tz)T =T
for all Z € I'(AG) and t € R where this makes sense and hence, since G' is t-connected

and T vanishes on the units, we find T = 0. Thus, T = 0 on G and the proof is finished.[]

Remark 5.3.5 For Z € ['(AG), define V5 : T'(E) — ['(E) by V€ = L€ for all € €
S(De), and V (2;;1 fi§i> . (Zl( £)E+ fNZéZ) for all fu,..., fr € C®(G) and

—_—

£,....&, € S(Dg). Then Vy is a derivative endomorphism of E over Z!. The map
I'(AG) - T'(D(E)), Z — V7 is a derivative representation of AG on E associated to the
action of AG ons: G — P, Z € T(AG) — Z' (see Kosmann-Schwarzbach and Mackenzie
(2002)). A
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5.4 The Courant algebroid associated to an integrable Dirac groupoid

5.4 The Courant algebroid associated to an integrable
Dirac groupoid
The dual space of 2(Dg) can be identified with Pg|p/A(Dg)*. Since
A(Dg)*" = Dglp + (TP xp A*G) = I'(Dg) @ (TP xp A*G)

and
P(;|p = (TP Xp A*G) + keth|p,

we have ker Tt|
% er Itip

Since Dg|p C A(D¢) @ ker Tt|p, we have I°(Dg) C A(Dg) @ ker Tt|p and the quotient

A(D¢) @ ker Tt|p

%(Dg) = [5<DG)

is a smooth vector bundle over P. Consider the map
Y : ker P]Ft|p ) Q[(Dg) — %(Dg),

U(oc+&) =0+&+I°(Dg)
for all o € T'(ker Tt|p) and £ € T'(A(Dg)). If ¥(o + €) = I3(D¢), then we have o + £ €

I'(D¢|p) and hence o € I'(Dg|p) since & € T'(Dg|p). This yields o € I'(If(Dg)) and the
map ¥ factors to a vector bundle homomorphism

U : (A(Dg))" ® A(De) — B(De)

over the identity Idp.

Set r = rank I*(Dg), n = dim G. Then we have also r = rank I*(D¢) and we can compute
rank B(D¢) = rank(ker Tt) +rank(A(D¢)) —rank I*(Dg) = n+ (n—r) —r = 2n—2r. We
have also rank((21(D¢))* @ A(Dg)) =n — 17 +mn —r = 2n — 2r and since ¥ is surjective,
it is hence a vector bundle isomorphism.

Since (ker Tt|p & A(D¢))" = (ker Tt|p + D¢|p)™ = I5(Dg), the bracket (-,-) restricts to
a non degenerate symmetric bracket on B(Dg), that will also be written (-,-) in the
following.

Recall from Example 5.2.6 that if (G=P,D,,) is a Poisson Lie groupoid, the bundle
A(Dy,,) is equal to Graph(mh|a-q) ~ A*G, a.(€) = n%(€) for all £ € T(A*G) and the
bracket on sections of (D) is the bracket induced by the Poisson structure. In the same
manner, we have (2(D¢))* = ker Tt|p/I*(Dg) = ker Tt|p/ Graph (WékT;@o) which is
isomorphic as a vector bundle to AG. The vector bundle B(D,,,) is thus the vector bundle
underlying the Courant algebroid associated to (G=P,7) We will study this example in
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more detail in Example 5.4.2, where we will show that ®B(D,,) carries a natural Courant
algebroid structure that makes it isomorphic as a Courant algebroid to AG xp A*G. In
this case, we have r = rank I*(D¢) = dim P, since the rank of AG is dim G — dim P.

We show here that if the Dirac groupoid (G=P,Dg) is integrable, the vector bundle
B(Dg) — P always inherits the structure of a Courant algebroid from the ambient
standard Courant algebroid structure of P (see Example 1.1.20).

Because of the special case of Poisson Lie groupoids, we have chosen the notation 8(D¢):
this Courant algebroid will play the role of the “Lie bialgebroid of the Dirac groupoid
(G=P,Dg)”.

Theorem 5.4.1 Let (G=2P,D¢) be an integrable Dirac groupoid and
A(D¢) @ ker Tt|p
I*(Dg)
the associated vector bundle over P. Set b :B(Dg) — TP, b(vy, ) = T,sv,. Define

[-]: T(B(Dg)) x ['(B(De)) = I'(B(Da))

sB(Dg) = — P

by
[€+ 0+ I*(Dg), 1+ 7+ I*(De)] = [€+0',n+ 7] ], + *(Dg)

forallo, 7 €T (ker Tt|p), &, € T(A(Dg)) and s-descending sections & ~s €, n ~s 7 of Da,
where the bracket on the right-hand side of this equation is the Courant bracket on sections
of the Courant algebroid Pg. This bracket is well-defined and (%B(Dg),b, [, ], (-,-)) is a
Courant algebroid.

PRrROOF: The map b is well-defined since T),sv, = 0, for all (v,, a,) € I*(D¢g). We show that
the bracket on sections of B(D¢) is well-defined, that is, that it has image in I'(B(D¢))

and doesn’t depend on the choice of the sections £ +¢ and 7j+7 representing £ +o+I15(D¢)
and 77 + 7 + I*(Dg). We have, writing o' = (X', s*a) and 7' = (Y',s*3),

[(Xe + X', 0c +5"a), (X, + Y, 0, +5°0)]
= [(vaef)a (Xmen)] + £Xl (Xnven) - £Yl (Xﬁvef)

+ <[X, Y]{4G7 "€X£+Xl (S*/B) — £X7I+Yl (S*Oé)

A 05y 7)) - 5 (4 31 0, ()
= [(Xévef)a (Xnaen)] + le (Xnven) - £Yl (Xévef)

- <[X, Yy s* <£X§+a(X)6 - anJra(Y)Oé) (5.6)

b <%d(a()€n +a(Y)) +0e(Y) — B(Xe +a(X)) Hn(X))>> .
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5.4 The Courant algebroid associated to an integrable Dirac groupoid

By Theorems 5.2.4 and 5.3.1, the restriction of this to P is a section of A(Dg) @ ker Tt|p
and depends on the choice of the s-descending sections (X¢, 6¢), (X,,6,) only by sections
of ]S(Dg) .

Choose o € I'(I*(Dg)). Then we have for all (Y, s*3) € I'(ker Tt):

. 07,50)] = (0 £x58) — £y1(tan) + 3 (V) - SHIX) ) = (0.0)

We have used Lemma 5.3.2. If (X, ,) is a section of D¢ that is s-descending to (X, 0,) =
(0,0), then we have (X,,6,) € I'(Dg Nker Ts) and we find smooth sections o7, ..., 0} €
['(Dg N ker Ts) and functions fy,. .., fr € C(G) such that (X,,0,) = Zle fiolr. Then
we get for all (Y s*3) € I'(ker Tt)

k

[(%,,0,), (V',58)] = 3 (fi o7, (Y, '8)] —Y'(f)o + 5 (of, (Y',58)) 0, df»)

=1

k
= - Zyl(fl)0{7

which is a section of Dg N ker Ts. Hence, the restriction to P of [(X,,, 0,), (Yl, s*ﬁ)] is a
section of I*(Dg). o
In the same manner, for i = 1,..., k and any s-descending section (X, 0¢) ~s (X¢, 6e),

[0’;, (Xg, 05)] = ([X;Z, Xg} , fxgieg — iXEd(t*OzJi)>

is a section of Dg since D¢ is integrable Since X¢ ~s Xg and X7 ~s 0, we have
(X7, Xe] ~s [0,X¢] = 0 and we compute for any Y € TI'(AG), using the equality
(tag, ) (Xe) = —0:(X7,):

(£3x2,0 — ixd(tan)) (V') = X7, (B (1)) = ¢ ([X5,.¥']) = Xe ((tar) (V)
C HYH((Fan) (X)) + (Par,) ([Xe, Y7])
= X5, (s (6c(Y))) + (£y1(t a0,))(Xe) = 0.

This shows that [(X;i, t*aai) s (X, 05)] is a section of ker TsN Dg for i = 1,..., k. Then
we get as above

k

(060,60, (X6, 00)] = 3 (107, (X 00)] = Xel o + 30T, (Xe. (0.4

=2 (filol, (Xe,0)] = Xe(fi)or))

which is a section of Dg Nker Ts by the considerations above. Hence, its restriction to P
is a section of I°(Dg). If £ +0 € I'(I°(D¢)), then as above, we find that o € I'(I*(Dg)).
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The section & + ! — (€ 4+ o)" is then a section of D¢ that is s-descending to 0. Since by
the considerations above, we know that

[+ —(E+o),n+7']|, eT(I*(Dg))

and
[(E+0),n+7] |, eT(I*Dg))

for all s-descending sections 1 ~ 7 of Dg and 7 € I'((ker(Tt))|p), we have shown that the
bracket doesn’t depend on the choice of the representatives for (X, 0¢) + (X, (s*a)|p) +
I*(Dg) and (X, 0y) + (Y, (s*F)|p) + I*(Dg).

We show now that (B(Dg), b, [, ], (-,)) is a Courant algebroid. The map
D:C*®(P)—T(B(Dg))
is simply given by

Df = %(O,S*df) + I*(D¢)

since | |
(Df o)) = 5b (0 03)) () = 5Tys05()
for all (v,, ;) € B,(Dg). We check all the Courant algebroid axioms. Choose

(Xe+ X, 0 + (s"a)lp) + I(Dg), (X, +Y,0,+ (s"B)|p) + I*(De)

and

(Xr +Z.0- +(s"y)|p) + I*(Dg) € I(B(Dg))
and let f be an arbitrary element of C*(P).

1. By (5.6), the bracket
[(Xe+ X' 0 +5°), (X, + Y6, +5°5)]
can be taken as the section extending
[(Xe + X, 0c + (s")|p) + I*(Dg), (X + Y, 0, + (s"B)|p) + I*(Dc)]

to compute its bracket with (X, + Z,0, + (s*v)|p) + I*(Dg). Since Pg is a Courant
algebroid, we have

[(XE + Xl7 0{ + S*OZ), (Xn + Yla 077 + S*B)] ) (X’T + Zla e’r + S*/Y)} + C.p.

(0,d ({[(Xe + X', 0c +5*a) , (X, + Y0, +5B)] , (X- + 2,0, +5))))

+ C.p..

[
1
6
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To simplify the notation in the following computation, we define F' € C*°(P),
((X,, +a(Y)) +0:(Y) — B(Xe + a(X)) — 6,(X))
We have then:

([(Xe+ X0 +5"), (X, + Y0, +5B)], (X, + 2,0, +5"7))

2 ([(Xe, b0), (X0 (X, + 2,6, +57)

+ <£Xl Xm 977) - £YZ(X£7 95)7 (XT + Zl7 97’ + 5*7)>

+ <<[X7 Y]%Gv s <£X§+3(X)ﬁ - £Xn+a(Y)a + dF)) ) (XT + Zlu 97 + S*7>>
= 5" ([(Xe. Oe), (X, 0], (Z,7))

+(Lxn+ (YnX,s anx), (X;+ 2,0, +5%))

— (Ly€+ (Yiy s agy), (X: + 21,60, +57))

5 ((IX.Y]a6: £ a8 — Loy + dF) (X, §)>

+5*<< (X, Yac)  £x 400008 — £x,1a y>a+dF) ,7>
= 5'{[(X¢ + X, 0 +5°0) + I(Dg), (X, + Y, 0, +5°5) + I(Dg)]

(X, + 2,0, +57) + *(Da) ).

Hence, if we write eg x, for (Xe + X, 0 + (s*a)|p) + I*(Dg), ete, we have shown
that

[ef,X,aa [emY@ 67’72,7]] + [en,Yﬁa [GT,Z,«/, 6§7X,a” + [eT,Zm [eﬁ,X&w en,Yﬁ”

:§® (<[667X7a7 6W7Y75]7 €T7Z77> + <[6777Y757 €T7Z77j|7 e£7X7a> + <|:€T7Z777 e£7X7a:|7 €W7Y75>) ‘

2. We have
bleg x 0, €n,v,8] = T's [XE + X', Xy + Yl] P = [TS (XE + Xl) , T's (Xn + Yl)}
= [Xf + a(X)’ Xn + a(Y)} = [b(6§7X,a)7 b(envyﬁ)] .
3. We compute

e xas |+ €nv,5]
= [(Xe+ X0 +5%), (s°f) - (X, + Y0, +5B)] | »+I*(Dg)
= (") [(Xe+ X0 +5"), (X, + Y',0, +5°3)
+ (Xe+ XD(s*f) - (X + Y, 0, +5°B)
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—((Xe+ X' 0 +5*), (X, + Y, 0, +s7B)) - %(0, d(s*f)))

+ I*(Dg)

P
= flee.x.ar€ny,s] + blegxa)(f) - enys

—((Xe+X,0: +5a), (X, +Y,0,+5B))Df
= flee xareny,s] T bleexa) (f) - enys — (€. xa enyp) Df.

4. We have obviously bo D = 0.
5. Finally, since Pg is a Courant algebroid, we have the equality

(Xe +X') (((X, + Y0, +58) , (X; + Z', 0. +577)))
:<[(X§ + Xl,Qg + S*O‘) g (Xn + Yl>0n + S*B)} ) (XT + 2,60, + 5*7)>

1
(0.0 ((Xe+ X0+ 570) (X, + Y10, +5°8))) L (X, + 7210, +5)
+([(Xe+ X0 +5"a) , (Xr + 20,0, +5™9)], (X, + Y0, +5°6))

1
+3 ((0,d{((Xe+ X", 0 +5"a), (X, + Z',0- +5))), (X, + Y, 0, +5°B)),

which yields easily, with the same computations as in the previous points

blee,x.0)(€nv,8: €r.2) =([€c.x,0s €nv,8] + D€ X.r €nv.5) €r.2,7)

+ <€n,Y,57 [eg,x,m eT,Z,’y] + ®<€5,X,a7 eT,Z,’y>>' 0J

Example 5.4.2 We show in this example that in the special case of a Poisson groupoid
(G=P,D,,), the obtained Courant algebroid is isomorphic to the Courant algebroid
defined by the Lie bialgebroid associated to (G=P, mg), see Liu et al. (1997), Liu et al.
(1998). This shows how the Courant algebroid structure on AG x p A*G induced by the
Lie bialgebroid of the Poisson Lie groupoid (G=P, g) can be related to the standard
Courant algebroid structure on P = TG x¢ T*G.

In this example, we will write sections of A(Dy,,) as pairs (75(€), €), with £ € T(A*G). A
section of Dy, that is s-descending to (%,(€), €) will be written (X, f).

Recall that the Courant algebroid E,, = AG xp A*G associated to the Lie bialgebroid
(AG, A*G) of (G=P, ) is endowed with the anchor p : AG xp A*G — TP defined
by plvp, ap) = a(v,) + mh(ay) for all p € P and (v,, ) € A,G X A¥G and the sym-
metric bracket (-,-) defined by ((v,, o), (wp, By)) = a,(wy) + B,(v,) for all p € P and
(Vp, ), (wp, By) € AG x A3G. Tts Courant bracket is given by

(X8, (V)] = (X, Y]ag + 82 — €5X — Zd.(€(¥) (X)),

€7 + Sxn — SrE 4 JAEY) —n(X)), (5.7
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5.4 The Courant algebroid associated to an integrable Dirac groupoid

where, if X¢ := 75,(¢) € T(TP) for € € T
LY eT(AG), 7(L£LY) = Xe(r [ T](Y) Vr € I'(A*G)
Lxn e N(AG), (&xn)(Z) =a(X)(n(Z)) —n([X, Z]ac)  VZ € [(AG)
and, for any f € C*(P),
(df)(7) = Xo(f) = Xo(s"f)|p = =7(Xsry),  henced.f = —Xoglp
(df)(2) = a(2)(f) = Z(s*([)), hence df = d(s"f)|ac = $(d(s*f)).
The isomorphism ¥ : AG xp A*G — B(D,,) is given by
V(X (p),6(p) = (X + Xe, ) (p) + I;(Dre),

with inverse

U (up, ap) + I5(Drg)) = (0 — 15 (0), ()
We will check that =" o W = Idg,  and W o W™ = Idgp, ). Note first that U~
well-defined: if (v, ) + I5(Dr) € B,(De), then Tt(vy, ay) € Ap(Dry) by definition of
B(Dy,). This yields Tytv, = 7% (t(ap)). We get v,— —7t(ap) = v,—Tyto, 475, (t(ap) — ap).
But v, — Tptv, € A,G and t(ay) — ap € (T3G)° yields h, (t(ep) — ) € TEG = A,G (see
Weinstein (1988) or the results in Section 5.2). Furthermore, elements of I3(D) are of

the form (ﬂé(d(t*f)p), d(t*f)p) for some f € C*°(P) and we have

07 (o) + (WA D)) d(ES),) + 1(Ds))
= (1 = miay) + (7L 1)) = (A 1)) 8lay) +S(A(EF),))
= (v — 7). 5(0y))

This shows that ¥~! doesn’t depend on the choice of the representative (v,, a,) of (v,, o)+
I5(Drg)-
Choose p € P, X(p) € A,G and §(p) € A;G. Then we have

(U0 W)(X(p),€(p) = ¥ (X + Xe, €)(p) + 1;(Dx))

= (X + X (p) = 75(EP)). 5(E()))
= (X + Xe)(p) — Xe(p), €(p) = (X(p), £(p))-

In the same manner, if (vy, o) = (vp, @p) + I (D) € B,(Dxy), then

(o) ((u.ap))
— (v, — whay), 5(0))
(1 — h(0y) + Th(8(0)), 8(0y)) + I3(Ds)
— (v + mE(5(0p) — ), 8(0) ) + (il = $(0p)) 0 = 8(ay) ) + I3(Drc)

:(vp,ozp> + ];(Dm) = (vp,ap),

G
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5 The geometry of Dirac groupoids
where we use <7TﬁG(ozp —5(ay)), ap — §(0zp)> € I;(Dx). We compute also

(00 ™) ({05 0)) = plvp = 7i(0y), 8(a)) = Tys(v, — () + 7 (3(a))

=Tpsv, = b ((Upv O‘p))
and

(bo W) (X (p),&(p)) = TpsX (p) + Xe(p) = p(X(p), £(p))-

Now we have to show that the two Courant brackets correspond to each other via ¥ and
U~! For this, we have to study (5.7) in more detail for X, Y € I'(AG) and &, € T(A*G).
We begin with the AG-component. Choose 7 € I'(A*G), and compute for any p € P,
using the proof of Proposition 5.2.3:

T (LY — £,X) (p)
= Xe(r(V)(p) = £, 7I(YV) (p) = Xy ((X))(p) + [, 7](X) ()
= Xe(r(Y))(p) = Xe(r(V))(p) = 7(£y2Xe) (p) + X-(E(V))(p) = (£320¢) (X7) (p)
= Xy (r(X))(p) + Xy (T(X)) () + 7(£33X0) (p) = Xo(n(X))(P) + (£x16) (X7) (p)
T(£x1Xy = £y1Xe)(p) + (AE(Y) = d(n(X)) = Ly1be + Lxa6y) (X7)(p)
T(£x1 Xy = Ly1Xe)(p) + (A (E(Y) = 0(X)) + Lx10, — Ly10¢) (X7)(p)
)(p) +

)
:T(£XIX £le§ P T(Xs(n X)— ()) 7T (fyl0§—£xl0 >(p)

)
(d
(s

This shows that
Y = X = (1d=Tt) (L0 X — LyiXe + 7 (£yi = L310,)) = Xrer) eyl

Hence, we get that the left-hand side of (5.7) is

1
[X, Y]AG + (Id —Tt) (£XlX77 — fleg + Wé(fyleg — £Xl077)> — éXs*(f(Y)*U(X)) |p.

For the A*G-component, choose Z € I'(AG) and compute for any p € P:

S(Lxibhy — £yibe) (p)(Z(p)) = (£x:0, —fyleg)( )(p)

= (X(s"(n(2))) = 0,([X, Z)ac) = Y (5°(€(2))) + 0<([Y. 21)) (p)
(a<X)( ( ) = (X, Z]ac) —a(Y)(£(2)) + &([Y, Z]ac)) (p)
= (Lxn — £v§) (2)(p)-

Thus, we have shown that

Lxn— Lyl =5 ((£X18,7 — £Y19£)|p)
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5.4 The Courant algebroid associated to an integrable Dirac groupoid

and the right-hand side of (5.7) is consequently equal to

s(s"d(¢(Y) — (X))

DO | =

(€l 48 (£x10y — £310¢)[p) +

Recall that for p € P, (v, ap) € B,(Dy), we have v,—m5(ay) = v,—Tyto, 415 (t(ay) —ay).
Hence, using the identities

(Id _Tt>([X7 Y]AG = [Xa Y]AG7
(Id =Tt)([Xe, X,
h (B(£x10, — £310¢) — (£x10, — Ly16¢

mg; (Hsd(E(Y) = (X)) = s"d(E(Y) = n(X))) = =5 (s"d(E(Y) = n(X)))

— X (e(v)—-n(X))

)
)
) = (Id—Tt) <7rg(£yl0§ - f:Xlen)) ,
)

on P, one gets for (X,¢),(Y,n) € ['(AG xp A*G):

UU(X, ), U(Y,n)]
= U eg x0, enyvol = U ([(Xe + X', 0¢), (X, + Y7, 0))]|p + I°(Drg))

=yt <[(X§a Oc), (X, On)l[p + £x1(Xyy, 0)|p — £y1(Xe, )| p

(1Yo g €)= (X))

)+F®m0
).ro.)

- <<[X, Y]ac + [Xe, Xy + (£x0X, — £y1Xe) p,

el + (5560 = X)) + (£x0, — L3180

= ([X, Y]AG + (Id —Tt) (leXn — £yLX5 + Wé(fyl@g — £X19n)> — %XS*@(Y)”(X)),
Kmh+%%§d@07—MXDH%«ﬁm%—fw%ﬂw>
=[(X,8), (Y.n)]. o

Example 5.4.3 Consider a Lie groupoid G==P endowed with a closed multiplicative
2-form wg € Q*(G). The Courant algebroid B(D,,,) is given here by

B(D,.) = (Graph(wHTp : TP — A*G) + ker Tt|p) / Graph (WE:|T;G :ThG — (THG)°) .
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5 The geometry of Dirac groupoids

We show that it is isomorphic as a Courant algebroid to the standard Courant algebroid
Pp=TP xpT*P. For this, consider the maps

A:9B(D,,) = TP xpTP, A ((vp, a,,)) = (T,s0,, 5,),

where (T,8)*3, = o, — wi(v,), and

ATH TP xp T*P — B(Day), AT (vps ) = (e(vy), (Ty8) ap + wey(€(vy)))-

Note that A is well-defined: if (v,,q,) € 2,(Dy,) + ker Tt, then t(a,) = wx(T)tv,) and

hence t(a, — wi(vy)) = t(ay,) — wi(Tytv,) = 0,. Thus, the covector o, — wi(v,) can be

written (7},s)*3, with some 3, € T P. (For simplicity, we will identify elements 3, of TP
with (Tps)* 8, € (1;G)° € T;G and v, € T,P with e(v,) € T,P C T,GG in the following.)

Furthermore, if u, € T3G, we have A ((up, wé(up))) = (T8, wi(uy) —wi(uy,)) = (0,,0,).

The map A~! has image in B(D,,,) because for any (v,,a,) € Pp(p), we have
(vp, (Tp8) ey + Wé(vp)) =Tt (v, wg(vp)) + (0, (Tps)"ap) € Ap(Duyg) + (ker Tt),.
Choose now p € P, (v,, o) € B,(Dy,,,) and compute

(At o A) ((Upa O‘p)) = Ail(Tpsvpv Qp — Wé(vp))

= (Tsvp, p — WbG(vp) + wE(Tpsvp))

= (vp, ) + (Tys0p — vy, WE‘(TPSUP —vp)) = (Vp, ap).

In the same manner, if (v,, a,) € Pp(p), we have

(Ao A_l) (vp, ap) = A ((vpv ap + CyG(”p))) = (Tpsvp, ap + Wé(vp) - WbG(vp)) = (vp, ap)

since v, € T,P. The equality b o A™" = pryp is immediate. ) )
Now if (X, a), (Y, ) € ['(Pp), we choose X,Y € X(G) such that X ~; X, X[p = X,
Y ~ Y, Y|p =Y and we compute

+1(D.,))
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5.5 Induced action of the group of bisections on 8(D¢)

Example 5.4.4 Consider the pair Dirac groupoid (M x M = M, D, ©D,,) associated to
an integrable Dirac manifold (M, Dy;) (see Example 2.2.5). The vector bundle *B(Dy, &
Dyr) — Ay is defined here by
An,m)(Dar © Dar) + {0} x T, M x {0} x Ty M

{(Um7 0m7 O,y Om) | (Umu O{m> € DM(TH)}

for all m € M (recall that we have computed (D © Dyy) in Example 5.2.8). Hence, we
get an isomorphism

IT:B(Dy & D) = TM X0 T*M, (U, Wyns O, Bm) = (Wi Bim) (5.8)

over pry : Ay — M, with inverse

O TM xp T*M — B(Dy ©Das), (Wi, Brn) = (O, Wy, Oy B ).

The Courant bracket on B(D,; © Dyy) is easily seen to correspond via this isomorphism
to the standard Courant bracket on Py, = T'M x,; T*M (and hence, doesn’t depend on
D). O

Remark 5.4.5 Consider a Dirac groupoid as in Theorem 5.1.2. Set N := G/Gq and @ =:
P/(TPNGp). Then the Courant algebroid T'G X T*G projects under pr to the Courant
algebroid TN xy T*N. We have a map Tpr : TG xg Py = TN xy T*N, (v, ay) —
(T, pr(vy), ), where gy is such that oy = (T pr)*ajy. By definition of the reduced
Dirac structure pr(Dg) = D, and the results in Theorem 3.3.14, the restriction of this
map to (A(Dg) @ ker(Tt)|p) N (T'G X P1) has image A(D,) + (ker Tty )|g. Furthermore,
we find that (vp, (T, pr)*ay,)) € I;(Da) + Go(p) x 0, if and only if (T, prvp, o) € 153 (Dr).
Hence, the map T pr factors to a map B(Dg) — B(D,). It is straightforward to check

that this is a morphism of Courant algebroids. JAN

5.5 Induced action of the group of bisections on 5(D)

We give here the correct generalization of the action of G on g/go x p; in Theorem
4.1.31. In this section, the Dirac groupoids that we consider are not necessarily integrable.
Hence, the vector bundle B (D) exists, but doesn’t necessarily have a Courant algebroid
structure.

We begin with a lemma, which will also be useful in the following section about Dirac
homogeneous spaces.

Lemma 5.5.1 Let (G=P,D¢) be a Dirac groupoid and (v,,a,) € A,(Dg) @ (ker Tt)|p

for some p € P. If Tt(v,, o) = (Xg(p),ég(p)) € A,(D¢), then (v, ap) = (Xe(p), be(p)) +
(up, (Tps)*p) with some u, € AyG and 7y, € TP and

((Xe, 0¢)(9)) % (vp, ap) = (Xe(g) + TpLguy, Oe(9) + (T45) 1)
for any g € s7X(p) and (X¢,0:) € T'(Dg) such that (X¢, 0¢) ~s (Xe, 0¢).
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5 The geometry of Dirac groupoids

ProoF: If (v,, o) € A, (D)@ (ker Tt)|p, then Tt(v,, ;) € A,(De) and hence Tt(vy, o) =
(Xg, 0:)(p) for some section (X¢,0¢) € T'(2A,(Dg)). The difference (v,, a,,) — (X¢, 0¢)(p) =
(Up, ) — Tt(vp, @) is then an element of (ker Tt)|p and there exists v, € T,/ P such that
(vp, ap) — (Xe, 0¢) () = (up, (Tp5)" ) if we set u, = v, — Tptuy. o

Since the section (X¢, 6¢) € ['(D¢) is a pair that is s-descending to (X¢, 6¢), the product
(Xe,0¢)(g) * (vp, o) is defined for any g € s™*(p).

We compute, using a bisection K through g,

Xe(g) v, = Xe(g9) + Ty Lxv, — T, L (Tptv,) = Xe(g) + T, Lk (uy) = Xe(g) + TpLg(uy).

For the first equality, we have used the formula proved in Xu (1995), see also Mackenzie
(2005).
We have also, for any v, = v, * (Tysv,) € T,G

(0 (9) * ap)(vg) = (0e(g) * ) (vg * (Tysvy)) = e (g)(vg) + ap(Tysvy)
= 0¢(9)(vy) + (app — f(ap))(Tgsvg) = 0c(9)(vg) + (15" ) (Tysvy)
= (6¢(9) + (Tys™ 7)) (vg). O

Theorem 5.5.2 Let (G=P,Dg) be a Dirac groupoid. Choose a bisection K € B(G) and
consider
ri : A(Dg) @ ker Tt|p — B(Dg)

i (05, 0p) = (T Ruc e+ %00, (Do B ) (i1 % 4p) ) + Lore (D),
where (Vg -1, Ak p-1) € Da(K(p)~t) is such that
Ts (’UK(p)fl, OzK(p)fl) = Tt(’l}p, Ozp).
The map rg is well-defined and induces the right translation by K,

PK B(D¢) - B(Dg)
(Up>ap)+I;(DG) = T (Vp, ap).

The map p : B(G) x ['(B(Dg)) — I'(B(Dg)) is a right action.
For the proof of this theorem, we will need the following lemma:

Lemma 5.5.3 Let G P be a Lie groupoid. Choose g,h € G and K € B(G). Choose
(vn, an) € Pa(h), (vg, oy) € Pa(g) such that Ts (vy, og) = Tt (vp, o). Then

Tg*hRK(vg * ’Uh) = Vg * (ThRK’Uh) (59)

and
Qg * ((TRK(h)Rgl)* ah) = (TRK(g*h)R;(l)* (Ozg * ah). (5.10)
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5.5 Induced action of the group of bisections on 8(D¢)

PROOF: Choose g : (—¢,¢) — G, §(0) = vy and h : (—¢,e) — G, h(0) = v, such that
s(g(t)) = t(h(t)) for all t € (—e, ). Then we have

d

T fal
dt |, ,

wh B (vg % vp) = g(t) *x h(t) x K(s(h(t))) = vy * (ThRxws) -

Choose v € T, (g«1)G and any w, € T,G such that Tyt(w,) = Tk, (g«n)t(v). Then we get
using (5.9)

((Try (gemy RE')

*

(o *ah)) (v) = (g * ) (TRK(g*h)R;(lv)
= (ag x o) (wy x w5 (Trye(gem Bi'v))
g(wg) + an (wy " (Tryc(guy R v))

(wg) + (T Ry') " an (wy* xv)
(TRK(h)RI_{l)* ah) (wy * wg_1 * V)
(TricmRx') " an) (v).

This proves (5.10). O

PROOF (OF THEOREM 5.5.2): First, we check that the map rx is well-defined, that is,
that it has image in *8(D¢) and doesn’t depend on the choices made.

Choose p € P, (v, o) € A, (D) @ (ker Tt), and K € B(G). Set K(p) = g. Since the map
rk is linear in every fiber of (D¢ )@ (ker Tt)| p, it suffices to show that the image of (0,,0,)
is 1§, (Dg) for any choice of (vg-1,a4-1) € Dea(g™t) such that Ts(v,-1, ay-1) = (0p,0,) to
prove that it is well-defined. Using (5.9) and (5.10), we get

Tg—lRK(Ug—1 * Op) = Vg-1 * (TpRKop) = Vg-1 * Og
(g1 %0p) 0 Ty gy Rc—1 = arg-1 % (0, 0 TyRpc—1) = g1 % 0.
Thus, we have shown that

i (0p, 0p) = (vg-1, g-1) x (0g,0y) € De(s(g)) Nker Ts = I3, (Dc).

Choose next (v,,q,) € A(Dg) @ (ker Tt)|p such that (v,,a;,) € I3(Dg), that is, such
that (v,,q,) = 0 in B,(Dg). Choose (v4-1,a5-1) € Dg(g™t) such that Ts(vy-1, p-1) =
Tt(vp, opp). Then we have Tj-1 Rk (vy-1%xvp) = Ty-1 R (vg-1 % v % 0p,) = vy—1 % vy, % 0, since
T,sv, = 0. We have also §(c,) = 0, and by (5.10):

(Ts(g)Rl}l)*(aga * Q) = (TS(Q)R;(l)*(Ozg—I * 0y % 0p) = g1 % 0y % Oy,

Thus, 75 (vp, ap) = (Vg-1, ag=1) % (Up, @) * (0g, 0g) € I, (D). The map px : B(Dg) —
B(D¢) is consequently well-defined.

We show now that p : B(G) xB(Dg) — B(D¢) defines an action of the group of bisections
of G=2P on I'("B(Dg)).
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5 The geometry of Dirac groupoids

Choose K,L € B(G), p € P and (vp,a,) in B,(Dg). Set K(p) = g and choose a pair
(vg-1,a5-1) € Dg(g™") such that Ts(v,-1, ay-1) = Tt(vp, o). Set also h := L(s(g)) and
choose (wp-1, By-1) € Dg(h™!) such that Ts(wy-1, By-1) = Tt (vy-1,a-1). Then we have
(K x L)(p) = g x h and we compute, using (5.9) and (5.10):

PL (pK ((vmo‘p)))
= PL ((Tg_lRKv ( Tog) Ry )*) ((vg-1, ag-1) % (Upvo‘p»)
= (Tigeny1 Ricxrs (Tegamy Ricar)™) (w1, Bn1) % (vg-1, ag-1) % (vp, ) + I,y (Dcr)

= PK+L ((vpvap)>

since (wp-1, Bp-1) * (v4-1, ay-1) is an element of Dg((gx h)™!) satisfying

Ts ((wh—l, Bh—l) * (vg—l , O{g—l)) =Ts (Ug—l, O[g—l) = (’Up, Ozp).
O
Example 5.5.4 Consider a Poisson Lie groupoid (G=P, 7). We will compute the action
of the bisections B(G) on B(D,.) ~ AG xp A*G.

Choose K € B(G), p € Pand ¥(X(p),{(p)) € B,(Dxs), (X(p),&(p)) € A,Gx A3G (recall
that ¥ has been defined in Example 5.4.2). If K(p) = g and 6 € Q'(G) is s-descending

to &, then pi (¥(X(p),£(p))) is given by

prc(W(X(p), €)= (T Raclmwhs (0eg™) + X' (g™), (R 06) (5(9)) )
and corresponds to
(™" o pr 0 U)(X(p), &(p))
= (T Riclmh Be(g™) + X' (g7) = m (R Bels(9))):8 (BR') 06 (s(9))) )
— (T(Ly1 0 Ri)X(p) + Tyrs Ric(wh(06(97)) = ms( (R 0e(s(9))),
(Tuo)(Ly 0 Ric1))"€()).

Note that by the general theorem, this doesn’t depend on the choice of 0¢. In the case
of a Poisson Lie group, we recover the action of G on the Lie bialgebroid, see Drinfel’d
(1993). In the case of a trivial Poisson groupoid, i.e., with g = 0, this is simply the pair
of maps on AG and A*G generalizing Ad and Ad" in the Lie group case. O

Example 5.5.5 Consider a Lie groupoid G=P endowed with a closed multiplicative 2-
form wg € Q*G). We will compute the action of the bisections B(G) on B(D,,) =~
TP xpT*P.

Choose a bisection K € B(G), a vector A (v,, o) =
(vp, ) € Pp(p) (recall Example 5.4.3) and set K (p)

Tt(vp, (Tps) o + WbG(vp)) = (Up>wg(vp)) € Ay (Dug).

( (Tps)*ap + wa(vp)) € sBp(ch)a
=g € G. Then we have
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5.5 Induced action of the group of bisections on 8(D¢)

Hence, any vector v,-1 € T,~1G such that Ty-1sv,-1 = v, leads to (v,-1,wk(v,-1)) €
Due (vg-1) and Ts(vy-1, 7 (vy-1)) = Tt(vy, (Tp8)* o + wi(vp)).
The vector px (A1 (v, @) € Byy)(Duy,) is then given by

PK (A_l(vmap))
= (Ty-1 R (vg-1 % vp), (T Ry')" (wé( —1) o ((Tys) ey + Wé(vp))))
= (T Ricvg-r, (T Ry ) (‘“‘%( 1)+ (Ty15)"ay) )

Thus, we get

(Ao pg o A_1>(Upa )
= (Tg—1<s o RK)Ug—l, (TS(Q)R;(I)* (wa(vg_l) + (T 15)* ) wé( 1RKU9—1))
= (Tp<5 o K)up, (TS(g) (so K)il)* ap + (TS(g)RK )'w E‘(U 1) — WE‘( g‘lRKUg‘l)) .

Again, by the general theorem, this doesn’t depend on the choice of vy-1. In the trivial
case wg = 0, pg is simply the map (T'(soK), (T'(so K)~')*) induced by the diffeomorphism
so K on Pp. O

Example 5.5.6 Let (M,D) be a smooth Dirac manifold and consider the pair Dirac
groupoid (M x M = M,D & D) associated to it. Recall from Example 1.1.11 that the
set of bisections of M x M = M is equal to B(M x M) = {Idy} x Diff(M). Choose
K = (Idpy, ¢x) € B(M x M), p:= (m,m) € Ay and (U, Wiy Qs Brn) € Bp(Das © Day).
Then we have Tt(vy,, Wi, Qm, Bin) = (Vs Uy Qi —t) € Ay (Dar ©D ). Set = g (m).
Then we have K(p)~' = (n,m) and (0, v, 0y, —n) € (Dar © Dyr)(n, m) is such that
Ts(0n, Vi, Ony =) = (Vs Uy Oy — Q) = T (Vp, Wiy Qs B )-

The vector pg <(vm, Wy Oy Bm)> is thus given by

PK ((Uma Wiy O Bm)) = (T(n,m)RK(Ona wm)7 (T(n,n)RE(I)*(Ona Bm))
(OnaTm(wama na( n‘b[() Bm)

Recall that B(Dy; ©Dyy) is isomorphic to Py, via (5.8). It is easy to see that the action of
B(M x M) on B(Dy;&Dyy) corresponds via this identification to the action of Diff (M) on
P given by ¢ - (v, i) = (Tn@Um, (Tpum)@ ) i) for all ¢ € DIff(M) and (vy,, o) €
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6 Dirac homogeneous spaces and the
classification

In this chapter, we show that the Courant algebroid found in Chapter 5 is the right
ambient Courant algebroid for the classification of the Dirac homogeneous spaces of a
Dirac groupoid.

We prove our main theorem (Theorem 6.3.4) about the correspondence between (in-
tegrable) Dirac homogeneous spaces of an (integrable) Dirac groupoid and Lagrangian
subspaces (subalgebroids) of the vector bundle (Courant algebroid) B(D¢). This result
generalizes the result of Drinfel’d (1993) about the Poisson homogeneous spaces of Poisson
Lie groups, of Liu et al. (1998) about Poisson homogeneous spaces of Poisson groupoids
and the result in Chapter 4 about the Dirac homogeneous spaces of Dirac Lie groups.
For the sake of completeness, we start by studying the counterpart in the Dirac setting
of some properties that the moment map has in the Poisson case.

6.1 The moment map J

In the Poisson case, if (G/H, D¢/p) is a Poisson homogeneous space of a Poisson groupoid
(G=P,7¢), then the map J : G/H — P is a Poisson map (see Liu et al. (1998)). This is
also true here under some regularity conditions on the characteristic distributions of the
involved Dirac structures.

Theorem 6.1.1 Let (G=P,D¢) be a Dirac groupoid such that Theorem 5.1.11 holds and
(G/H,Dgyu) a Dirac homogeneous space of (G=P,Dg). Assume that the map J|g c/n

Go®M — GoNTP is surjective in every fiber, where Go®'! is the characteristic distribution
defined on G/H by Dg/u. Then the map J: (G/H,Dg ) — (P,Dp) is a forward Dirac
map.

ProOF: Choose (v,,a,) € Dp(p), for some p € P and gH € G/H such that t(g) = p.
Then there exists w, € T5G and u, € Go(p) N T, P such that (w,, (T,t)*a,) € I;(Dg) and
v, = U, + Tptw,. Since Ts(wy, (Tt)*a,) = (0,,0,), and Dg acts on Dg/p, we find that
(wp, (Tpt)* ) - (Ogar, 0grr) € Dgyu(gH). We have w, - 045 = T,(q o Ry)w, and, for all
vgn € Tyu(G/H):

P (Tpt)" o, Ogr) (vgm) = P ((Tpt) e, Ogrr) (Tyr Jvgn - vgnr)
t

((Tpt) ) (Tymd(vgm)) + Ogrr(vgmr)
ap(Tyu(todvgn) = ap(Tyud vgr) = (Tymd) o) (Vgn).
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Thus, we have shown that (7,(¢q o Ry)w,, (TynJ)*ap) € Dayu(gH). We have Ty J(T,(q o
Ry)w,) = T,(J o qo Ry)w, = T,(t o Ry)w, = Tytw, = v, — u,. Choose ugy € Go*(gH)
such that TygJ(ugr) = u,. Then the pair (7,(q o Ry)wy + ugn, (Tgud)*ay) € Da/u(gH) is
such that TypJ (T,(q 0 Ry)wp, + ugn) = vp. O

6.2 The homogeneous Dirac structure on the classes of
the units

Let G=P be a Lie groupoid and G/H a smooth homogeneous space of G=2P endowed
with a Dirac structure D¢ . Consider the Dirac bundle ® = ¢*(D¢/u)|p € Pg|p over
the units P. More explicitly, we have

B « | I pn,0pn) € Deyu(pH)  such that
D(p) - {('Upv ap) € TPG X TpG ap — (qu)*apH and quvp — UpH (61)

for all p € P. We have then the following proposition, that generalizes the analogous fact
in the Lie group case (Lemma 4.2.4).

Proposition 6.2.1 Let (G=P,D¢) be a Dirac groupoid and (G/H,D¢/p) a Dirac ho-
mogeneous space of (G=P,D¢). Then © C Pg|p defined as in (6.1) satisfies

I*(Dg) €D C A(Dg) @ (ker Tt)| p. (6.2)

Thus, the quotient ® = ® /I5(Dg) is a smooth subbundle of B(D¢). We have by definition

ProOF: Choose p € P and (vp, a;,) € I5(Dg) = Dg(p) Nker Ts. Then Ts(vp, o) = (0p, 0p)
and the product (vy, a;) - (Opa, Opr) makes sense. Since (0,z,0p1) € Dg/u(pH ), we have
then (T,qup, ap - Opr) = (Vp, ap) - (Opwr, 0pr) € Degym(pH). But oy - 0,5 is such that
(Tq)* (o - Oppr) = 0y * ((T,q)*0,1) = vy, and we have hence (v, o)) € ®(p) by definition
of ®.

The inclusion I*(Dg) C D yields immediately ® = ©+ C (I°(Dg))* = Dg|p+(ker Tt)|p =
Q[(Dg) ) (ker Tt)|p. O

Theorem 6.2.2 Let (G=P,Dg) be a Dirac groupoid and © a Dirac subspace of Pg|p
satisfying (6.2). Then the set D = Dg - ®© C Pg defined by

(Ugaag) € Da(g),
D(g) = q (vg, ag) x (Us(g)a as(g)) (US( ) D(s(g)),
TS(UQ, Oég) Tt(vs(g), Oés(g))
is a Dirac structure on G and (G,D) is a Dirac homogeneous space of (G=P,Dg).

By Lemma 5.5.1, this is exactly the same construction as in (4.12).
Note that Dg Nker Ts C D by construction: for all (v, o) € Dg(g) Nker Ts, we have
Ts(vg, o) = (Os(g), Os(g)) € D(s(g)) and hence (vy, ag) = (vg, ag) * (Os(g), Os(q)) € D(g)-
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PROOF: By Lemma 5.5.1, D is spanned by sections £ + ¢! such that £ + ¢ is a section of
D (with € € I'(A(Dg)) and o € I'((ker Tt)|p) ) and all the sections of Dg N ker Ts. This
shows that D is smooth.
Choose (vg, ag) * (Vs(g), is(g)) and (wy, Bg) (Ws(g), Bs(q)) € D(g), that is, with
(2>t (100 ) € Do) and (e ). (s B € D(s(s). We have then

)

<(Ug> ag) * (v Us(g)> (g)) (wyv 69) (wS(g 65 >
= ag(wy) + as(g) (Ws(g)) + By(vg) + Bs(g) (Us )
= ((vg; ag), (W, By)) + ((Vs(g): Us(g)) s (Ws(g)s Bs(g))) =

This shows D C D+.
For the converse inclusion, choose (wg, 3,) € D(g)*. Then

(wy, By) € (Da(g) Nker Ts)t = (D¢ + ker Tt)(g)

and consequently, we get the fact that Tt(wg, 8;) € Tt(Dg(g)) = Ry (Dg). We write
t(g) = p and Tt(w,, 3,) = &(p) for some section £ € I'(A(Dg)). Consider a section & €
I'(D¢) such that € ~¢ £ Then we have for all (vy(y), asg)) € D(s(g)) and (vy, ay) € Da(g)
such that Tt(vs(), as(g)) = Ts(vy, org):

<€(g_1) * (wg, By), ( )> <€ * (wy, By), (vg, O‘g)_l * (g, g ) * (US(Q)’ O‘S(g))>
= ((wy, ﬁg)v (Vg g) * (Vs(g)s Qs(g))) + (g™, (vg, O‘g)il>
—0,

since (vg, ag) * (Us(g), Qis(g)) € D(g) and (vg, og) " € D(g™"). This proves that
§(g7™") * (wy, By) € D(s(9))" = D(s(g)),
and hence, if we write {(g71) * (wy, By) = (ws(g), Bs(g)) € D(s(9)),

(wg, By) = (£(97Y) " * (wi(g), Bue)) € D(g).

The second claim is obvious since the restriction to D of the map TJ has image in Tt(Dg) =
2A(D¢) and, by construction of D, the map Dg Xy D, ((vg, ag), (Vn, an)) = (vg, ag) *
(v, ) is a well-defined Lie groupoid action. O

Theorem 6.2.3 In the situation of the preceding theorem, if © is the restriction to P of
the pullback ¢*(Dg/m) (as in (6.1)) for some Dirac homogeneous space (G/H,Dg/g) of
(Gjpa DG); then D = q*(DG/H)

PROOF: Choose (vg, o) € ¢* (Dgyu) (9).- Then ay is equal to (Tyq)* gy for some oy €
Ty (G/H) such that (Tyquy, agm) € Dayu(gH). Then TI(Tyquy, agr) = Tt(vg, ay) €
() (D) and there exists (wy-1, B,-1) € Dg(g™") such that

Ts(wg-1, By-1) = TITyqug, agm).
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Set p = s(g) and consider (upm, Vo) := (Wy-1, Bg-1) - (Tyqvg, agr) € Dy (pH). Then we
have

(To0) vpr = By * (Tyq) agn) = By-1 * oy
by Proposition 2.3.1 about the action of T*G=A*G on J : T*(G/H) — A*G, and

Uprr = Wy—1 - (Tyqug) = T(g717gH)(b(wg—1, Toqug) = Tpq(wy-1 % vg).

Thus, (up, V) = (wy-1, Bg-1) x (vg, 0g) is an element of D(p), and we have (vy, ay) =
(wy-1, By-1)" * (up,7p). Since D¢ is multiplicative and (w,-1, 8,-1) € Dg(g7'), the pair
(wg-1, By-1)~" is an element of Dg(g) and we have shown that (vg, o) € D(g).

Since ¢*(Dg/m) € D is an inclusion of Dirac structures, we have then equality. O

Remark 6.2.4 Note that Theorem 6.2.3 shows that if (G=P,D¢) is a Dirac groupoid,
a Dg-homogeneous Dirac structure on G/H is uniquely determined by its restriction to
q(P) CG/H. A

Example 6.2.5 We have seen in Example 2.3.8 that if (G=2P,D¢) is a Dirac groupoid,
then (t: G — P,D¢) is a Dirac homogeneous space of (G=2P, Dg).

The space D is here the direct sum /°(Dg) @ 2A(D¢). The corresponding Dirac structure
D is equal to Dg by the last theorem. This can also be seen directly from the definition
of D, since D is spanned by the sections (X¢, 0¢) for (X, 0¢) € T'(2(Dg)) and the sections
o" for all o € T'(I*(Dg)), which are spanning sections for Dg. O

6.3 The Theorem of Drinfel'd

Recall that if (G=P, D¢) is a Dirac groupoid, then there is an induced action of the set of
bisections B(G) of G on the vector bundle B(D¢) associated to D¢ (see Theorem 5.5.2).
If H is a wide Lie subgroupoid of G=3P, this action restricts to an action of B(H) on
B(Dg). We use this action to characterize Dg-homogeneous Dirac structures on G/H.

Theorem 6.3.1 Let (G=P,Dg) be a Dirac groupoid, H a t-connected wide subgroupoid
of G such that the homogeneous space G/H has a smooth manifold structure and q : G —
G/H is a smooth surjective submersion. Let ® be a Dirac subspace of Pg|p satisfying
(6.2) and such that AH xp {0} C®. Then the following are equivalent:

1. ®© s the pullback ¢*(Dg/u)|p as in (6.1), where Dg/g is some Dg-homogeneous
Dirac structure on G/H.

2. © =9/I*(Dg) C B(Dg) is invariant under the induced action of B(H) on B(Dg).

3. The Dg-homogeneous Dirac structure D = Dg-® C Pg as in Theorem 6.2.2 pushes-
forward to a (Dg-homogeneous) Dirac structure on the quotient G/H.
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Note that, together with Theorem 6.2.3, this shows that a Dirac structure D¢y on G/H
is Dg-homogeneous if and only if I*(D¢) C (¢*Dg/m)|p and ¢*Da/g = D¢ - (¢*Da/u)lp,
that is, (G/H,Dg/u) is (G= P, Dg)-homogeneous if and only if (G, ¢*Dg/p) is.

For the proof of Theorem 6.3.1, we will need the following Lemma.

Lemma 6.3.2 In the situation of Theorem 6.2.2, we have ® = D|p.

PRrROOF: Choose p € P and (v,, o) € ©(p). Then Tt(v,, o) € A, (D) € Dg(p) and
(vp, o) = Tt(vy, o) * (vp, ) € D(p). This shows ©® C D|p and we are done since both
vector bundles have the same rank. 0

PROOF (OF THEOREM 6.3.1): Assume first that ©® = ¢"(Dg/u)lp for some
Dg-homogeneous Dirac structure Dg/g on G/H and choose K € B(H) and (v,, o) €
D(p), p € P. Then there exists o,y € T;x(G/H) such that o, = (T,9)*a,n and
(Tpqp, apr) € Dayu(pH). If we set K(p) =@ h € H and write (v,,a) for (vp, ;) +
I3(Dg) € D(p) € B,(Dg), we have

PK ((Um ap)) = (Th-1 Ric(vn-1 % vp), (Tymy Ry ) (a1 % ayp)) + I34,)(De)
for any (vj,-1,a,-1) € Dg(h™!) satisfying Ts(vj,-1, ap-1) = Tt(vy, o). Since
TIT,qvy, cprr) = Tt(vy, @) = Ts(vp-1, ap-1),

the product (vs-1, 1) (T,qvp, ayir) makes sense and is an element of D¢/ (s(h) H ). Note
that since K € B(H), we have go Rg = ¢q. The pair (Tj,-1 R (vp-1 %), (Tyn) R')* (-1 %
ap)) satisfies Tyn)q(Th -1 R (vp-1 % vp)) € Tynyu (G/H),

Tinyq(Th-1 R (vp—1 % vp)) = Th-1(q 0 R ) (vp-1 xvp) = Th-1q(vp-1 x vp) = vp-1 - (Tpqup)

and

(TS(h)RI_(l)*(ah*I * ap) = (TS(h)Rl_(l)*(ahfl * (TpQ)*QpH)
= (Tyw R )" (Th-10)" (n-1 - aprr)) = (Tyy@)" (=1 - pir).-

Thus, (Th-1 R (vp-1%v,), (Tsy Ri')* (ap-1%ay,)) is an element of D(s(h)) and pg ((vp, ozp))
is an element of D(s(h)). This shows (1) = (2).

Assume now that ® is invariant under the action of B(H) on B(Dg). Recall the back-
grounds about Dirac reduction in Section 1.2 and also Subsection 1.1.6. Set KX = H xg
O7+c, and hence K+ = TG x He.

We have AH xp{0} C ® by hypothesis. By definition of D and X, this yields immediately
K = H xg {0} €D, hence D C XK+ and DN XK+ = D has constant rank on G. By (1.13),
we have to show that D is invariant under the right action of B(H) on G. We will use
the fact that D is spanned by the sections 0" € I'(Dg N ker Ts) for all o € I'(I*(D¢)) and
(Xe,0¢)+ (X!, s*a) for all sections (X¢, 0¢) + (X, (s*a)|p) € T(D) C T'(A(Dg) @ (ker Tt)|p).
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Choose K € B(H). It is easy to verify that
(R Z", Ry (t*y)) = (Z",t"y) forall (Z,(t"y)|p) € ['(ker Ts|p).

Choose a section (X¢, 0) + (X', s*a) of D. We want to show that (Rj (X + X'), R (0 +
s*a)) is then also a section of D. Choose g € G and set for simplicity h = K(s(g)) €
H, p = s(h), g = t(h) = s(g) and (X¢ + X0 + 5°a)(p) = () € D(p). Then
((Xe,0) + (X', s5*)) (g h) = (X¢,0¢) (g * h) * (up, 7,) and we can compute

(RK Xg + X R;((Qg + s*a)) (g)
= (Tyn Ry (Xe + X") (g% h), (TyRic )" (0 + s ) (g % 1))
= (T Ry (Xe(gh) x ), (TyRi)" (O(gh) 7)) -
Choose (v,, ) € Dg(g) such that Tt(vy, ay) = Tt(Xe(gh),b:(gh)). Then the product
(wh, an) = (vg, g) ™" * (Xe(gh),0¢(gh)) is an element of Dg(h) such that Ts(wp, ) =
(X¢, 0¢)(p) and we have
(Ry(Xe + X, Ry (0 + 5" ) (9)
=(vg, ag) * (Th Ry (vg " * Xe(gh) * up)  (T,RK)" (o' % Oe(gh) x ;)
=(vg, g ) * (ThRI_(l (wp * up) , (TgRk )™ (Bh * Vp)) .

But since ® is invariant under the action of B(H) on B(D¢) and (up,7p) = (up,7p) +
I3(Dg) is an element of D (p), we have

(Th Bz (wn %) s (TyRic) (Bx 7)) + 13(0a) = prcs ((pr30) ) € D).
Because I3(Dg) € D(q), we have consequently

(Th R (wn * up) , (TyRi)* (Bu* 7)) € D(q)

and hence
(Ric (X + X, Ric(6c +5°0)) (9) = (v, ) (ThR (wn %), (T, Rec)* (B % 7)) € D(9)

since (vg, y) € De(g).

We show then that the push-forward ¢(D) is a Dg-homogeneous Dirac structure on G/ H.
By definition of TJ, we have TJ(¢(D)) = Tt(D) C Tt(D¢g) = A(D¢). Choose (vgm, agn) €
¢(D)(¢gH) and (wy, By) € Da(g') such that Ts(wy, By) = TI(vym, agr). Then there exists
vy € T,G such that Tyqv, = vy and (vy, (Tyq)*oyn) € D(g). The pair (vy, (T,9)*cgn)
satisfies then Tt(vy, (T,q) agn) = TI(vgn, ogrr) = Ts(wgy, By) and since (G, D) is a Dirac
homogeneous space of (G=2P, D¢), we have (wy, By ) * (vg, (T,q)*agn) € D(¢'* g) and the
identities (Tygq)"(By -agr) = By x(Tgq)"agn and Ty gq(wyvg) = wy - (Tequg) = wy -vgn-
Thus, the pair (wy, By) - (vgm, agr) is an element of ¢(D)(gg’H) and ¢(D) is shown to be
Dg-homogeneous. Hence, we have shown (2) = (3).
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To show that (3) implies (1), we have then just to show that the vector bundle ©® — P is
the restriction to P of the pullback ¢*(¢(D)). Since D|p = ® by Lemma 6.3.2, we can show
that D = ¢*(¢(D)). This follows from the inclusion H x¢g Or-¢ € D. Choose (vy, ay) €
D(g). Then a, € H(g)°. Thus, there exists ayy € Ty (G/H) such that oy = (Tyq)*aym
and, by definition of ¢(D), the pair (T,quvy, agp) is an element of ¢(D)(gH). But then
(vg, ) € ¢*(¢(D))(g). Conversely, if (vg, ) € ¢*(¢(D))(g), then oy = (T,q)* g for some
agr € T,y (G/H) satisfying (Tyquy, agu) € ¢(D)(gH). By definition of ¢(D)(gH), there
exists then u, € T,G such that (u,, (Tyq)*agn) = (uy, y) € D(g) and Tyqu, = T,qu,.
But this yields that v, — u, € H(g) and hence (vy, o) = (uy, ) + (vg — uy,04) €
D(g) + (F(g) x {0,}) = D(g) since (3¢(g) x {0,}) € D(g). =

Theorem 6.3.3 Let (G=2P,Dg) be an integrable Dirac groupoid. In the situation of the
previous theorem, the following are equivalent

1. The Dirac structure (D) = D¢, is integrable.
2. The Dirac structure D is integrable.

3. The set of sections of ® C B(Dg) is closed under the bracket on the sections of the
Courant algebroid *B(D¢).

PRrOOF: If D is integrable, then ¢(D) is integrable by a Theorem in Zambon (2008) about
Dirac reduction by foliations (see the generalities about Dirac reduction in Section 1.2).
Conversely, assume that ¢(D) is integrable. Since D C TG xg H° and by the proof
of Theorem 6.3.1, the Dirac structure D is spanned by g-descending sections, that is,
sections (X, a) such that o € I'(H°) and R} (X, ) = (X, «) for all K € B(H). Choose
two descending sections (X, a), (Y, 3) of D. Choose (X,a),(Y,3) € I'(¢(D)) such that
(X,a) ~, (X,a) and (Y,3) ~, (Y,5). Then the bracket [(X,a), (Y, /)] descends to
[(X,a),(Y,3)] which is a section of q(D) since (G/H,q(D)) is integrable. But since
H Xg Or«¢ € D, we have D = ¢*(¢(D)) (recall the proof of Theorem 6.3.1). Since
(X, a), (Y, )] is a section of ¢*(¢(D)), we have shown that [(X, «), (Y, )] € I'(D). This
proves (1) < (2).

Assume that (G, D) is integrable and choose two sections eg x o = (X¢ + X, 0 + s*a) +
I*(Dg), enys = (X, +Y,0, +5*B) + I*(Dg) of ® C B(Dg). Then the two pairs (X¢ +
X0 + s*a), (X, + Y' 0, + s*B) are smooth sections of D by construction and since
(G,D) is integrable, we have [(X¢ + X!, 0¢ +s*a), (X, + Y, 0, +s*B)] € ['(D). But since
D = D|p and [€§7X,a, €n7y,5] = [(Xg + Xl, 95 + S*CY), (XW + Yl, 9,7 + S*ﬁ)”p + [s<Dg), this
yields [e¢ xa, €nv,5] € T'(D).

Conversely, assume that I'(D) is closed under the Courant bracket on sections of B(Dg)
and choose two spanning sections (X¢+ X!, 6 +s*a), (X, +Y', 6, +s*3) of D corresponding
to (X¢ + X, 0 +s*alp) and (X, + Y, 0, +s*B|p) € ['(D) CT(A(Dg) & (ker Tt)|p). Since

¢, x,a, €n,y,] 1s then an element of I'(®) and I°(Dg) € ®, we have

[(Xe+ X' 0 +s*a), (X, + Y10, +5B)]|p € T(D)
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by definition of the bracket on the sections of B(D¢). By Theorem 5.3.1, Lemma 5.5.1
and (5.6), the value of [(X¢ + X', 0 +s*a), (X, + Y, 0, +s*3)] at g € G equals

(([(Xe,0e), (X, 6] + L = £v€) (9) )
([(Xe + X', 0 +57a), (X, +Y',0, +5'8))(s(9)))

and we find that [(X¢ + X', 0 +s*a), (X, + Y, 0, +5"3)] is a section of D, since the first
factor is an element of Dg(g) and the second an element of ©(s(g)). Recall also that, by
the proof of Theorem 5.4.1, we know that [(X¢ + X', 0 4+ s*a),0"] € I'(Dg N ker Ts) for
all 0 € T'(I*(Dg)). Finally, since Dg is integrable, we know that [o],0%] € T'(Dg) for all
01,09 € I'(Dg Nker Ts). Thus, by the Leibniz identity for the restriction to I'(D) of the
Courant bracket on P¢, we have shown that (G, D) is integrable. O

As a corollary of the Theorems 6.2.2, 6.2.3, 6.3.1, and 6.3.3 we get our main result,
that generalizes the correspondence theorems in Drinfel’d (1993), Liu et al. (1998) and
Theorem 4.2.13.

Theorem 6.3.4 Let (G=P,Dg) be a Dirac groupoid. Let H be a wide Lie subgroupoid of
G such that the quotient G/H is a smooth manifold and the map q : G — G/H a smooth
surjective submersion. There is a one-one correspondence between Dg-homogeneous Dirac
structures on G/H and Dirac subspaces ® of Pg|p such that AH x {0} + I°*(Dg) C® C
A(Dg) @ (ker Tt)|p and ® := D/I5(D¢) is a B(H)-invariant Dirac subspace of B(Dg).
If (G=P,Dg) is integrable, then integrable Dg-homogeneous Dirac structures on G/H
correspond in this way to Lagrangian subalgebroids ® of B(Dg).

Remark 6.3.5 Assume that (G=P,D¢) is an integrable Dirac groupoid, ® C Pg|p
a Dirac subspace satisfying (6.2) and AH x {0} C ® for some t-connected wide Lie
subgroupoid H of G=2P, and such that ©/I°(Dg) C B(D¢) is closed under the bracket
on B(D¢g). It is easy to check (as in the proof of Theorem 6.3.3) that we have then
[(X',0),(X,a)] € T(Dg - D) for all (X,a) € I'(Dg - D) and X € I'(AH). Since H
is t-connected, we get then the fact that (R X, Rji«a) € I'(Dg - ©) for all bisections
K € B(H) and the Dirac structure D¢ - ® projects to a Dirac structure on G/H, that
is Dg-homogeneous. The quotient ©/71°(D¢) is then automatically invariant under the
induced action of the bisections B(H) on B(D¢) and this shows that the condition 2 of
Theorem 6.3.1 is always satisfied if Dg is integrable, ® /I°(D¢) is closed under the Courant
bracket on sections of *B(D¢) and H is t-connected. A

Example 6.3.6 In Liu et al. (1998), it is shown that for a Poisson groupoid (G=P, 7g),
there is a one to one correspondence between mg-homogeneous Poisson structures on
smooth homogeneous spaces G/ H and regular integrable Dirac structures L of the Courant
algebroid AG xp A*G, such that H is the t-connected subgroupoid of G corresponding
to the subalgebroid L N (AG X 04+¢). Since pullbacks to G of Poisson structures on
G /H correspond to integrable Dirac structures on G with characteristic distribution X,
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we recover this result as a special case of Theorem 6.3.4, using Remark 6.3.5 and the
isomorphism in Example 5.4.2.

Note that in this particular situation of a Poisson Lie groupoid, Theorem 6.3.4 classi-
fies not only the Poisson homogeneous spaces of (G=3P, ng), but all its (not necessarily
integrable) Dirac homogeneous spaces. O

Example 6.3.7 Let (G=2P, mg) be a Poisson groupoid and H a wide subgroupoid of G.
Assume that the Poisson structure descends to the quotient G/H, i.e., that 7 is invariant
under the action of the bisections of H. Let m be the induced structure on G/H. We
show that (G, ¢*D,) is a Dirac homogeneous space of (G=P, 7g). This is equivalent to
the fact that (G/H, ) is a Poisson homogeneous space of (G=P, 7¢).

The Dirac structure ¢*D, is equal to (H Xg Or«g) @ Graph (ﬂ'G ‘ cHY — TG) Since
H C T*G, the inclusion Tt (¢*D,) C A(Dy,
and a;, € TyG such that Ts (WﬁG(ah) ah> = Tt(vy, ). Then we have (v, ) =

) is obvious. Choose (vg,ag) € (¢*Dx) (9)

(ug + 75 (ay), ag> with some u, € H(g) and the product (ﬂG(ah) ozh> * (vg, o) is equal
to

(rtsan). an) « (g + ). tg) = (mhin) = s(ag) + 0n g, )

= (WﬁG(ag *xap) + TyLpug, ay * ah)

since mg is multiplicative. The vector T;Lju, is an element of } by definition and
consequently, (75 (), an) * (ug + Th(ay), a,) is an element of ¢*(D,), which is shown
to be mg-homogeneous. It corresponds to the Lagrangian subalgebroid (AH x Or«p) @

Graph <7rG ‘ : AH® — TP) + I5(Dy,,) of B(Dy.), or more simply, to the Lagrangian

subalgebroid AH x p AH® in the Courant algebroid AG xp A*G.

Thus, Theorem 6.3.4 together with the isomorphism in Example 5.4.2 shows that the
multiplicative Poisson structure on G descends to G/H if and only if the Lagrangian
subspace AH xp AH® is a subalgebroid of the Courant algebroid AG xp A*G.

The Poisson homogeneous space that corresponds in this way to the Lagrangian subal-
gebroid AG xp 04+¢ is the Poisson manifold (P, 7p), where mp is the Poisson structure
induced on P by 7¢, see Weinstein (1988) and also Theorem 5.1.11. Note that the other
trivial Dirac structure 046 X p A*G corresponds to (G, m¢) seen as a Poisson homogeneous
space of (G2P,7¢) (see Example 1.1.24).

In the same manner, we can show that if a Dirac groupoid (G=P, D) is invariant under
the action of a wide subgroupoid H, and the Dirac structure descends to the quotient
G/H, then (G/H,q(Dg)) is (G=P,Dg)-homogeneous. For that, we use the formula
¢*(q(D¢)) = Kz +DeNXK3;. In particular, the Dirac structure on P obtained under some
regularity conditions in Theorem 5.1.11 is Dg-homogeneous. As in the Poisson case, we
find hence that the Dirac structure descends to G/H if and only if

AH xp Opp @ A(Dg) N (TP xp AH®) C B(Dg)

is invariant under the induced action of B(H). O
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6 Dirac homogeneous spaces and the classification

Example 6.3.8 Let (M, D)) be a smooth Dirac manifold and (M x M = M,D; ©Dyy)
the pair Dirac groupoid associated to it.

The wide Lie subgroupoids of M x M = M are the equivalence relations R C M x M,
and the corresponding homogeneous spaces are the products M x M/R. For instance,
if ® : Gx M — M is an action of a Lie group G (with Lie algebra g) on M, the
subset R = {(m,®,(m)) | m € M,g € G} is a wide subgroupoid of M x M, and
(M x M)/Rg is easily seen to equal M x M/G. Hence, if the action is free and proper,
the homogeneous space (M x M)/Rg has a smooth manifold structure such that the
projection ¢ : M x M — M x M/G is a smooth surjective submersion.

In this case, the bisections of Ry are the diffeomorphisms of M that leave the orbits
of G invariant. For instance, for every g € G, the map K, : Ayy > M — M x M,
m — (m, ®,(m)) is a bisection of Rg.

Choose (m,m) € Ay A vector (v, W) € Timm) (M x M) is an element of T, . Re if
and only if v, = 0, and (O, wy,) € Timm) Ra, that is if and only if v, = 0,, and w,, €
T,,(G-m). Thus, if V is the vertical space of the action, we find that ARg = ({0} ®V)|a,,-
By Theorem 6.3.1, Dy © Dj;-homogeneous Dirac structures on M x M /G are in one-one
correspondence with Lagrangian subspaces © of Pg|p such that I3(Dys © D) + (AR X
{0}) € © and such that ®/I°(D,;©D,y) is invariant under the induced action of B(R¢) on
B(Dy©Du). Butsince I¢, | (Dy©Dy)+Awnm) Be = {(vm, Eu(m), i, ) | (Vm, o) €
Dys(m), € € g}, we find, using the isomorphism in Example 5.4.4 and the considerations
in Example 5.5.6, that (Dy; © Dy) - © is a product of Dirac structures Dy, @ D such
that V xg Op«¢ € D and (®; X, ®;a) € ['(D) for all g € G and (X, «) € I'(D). But Dirac
structures D satisfying these conditions are exactly the pullbacks to M of Dirac structures
on M/G and we find that the Dy; © Dj-homogeneous Dirac structures on M x M/G are
of the form Dy; ® D := Dy @ qo(D), where g : M — M/G is the canonical projection.
With Example 5.4.4 and Theorem 6.3.3, we get hence that D is integrable if and only if
D is integrable. O

Example 6.3.9 Recall from Example 4.2.16 that the left invariant Dirac structures on
a Lie group G are the homogeneous structures relative to the trivial Poisson bracket on
G. Hence, if we consider this example in the groupoid situation, we should recover the
“right” definition for left invariant Dirac structures on a Lie groupoid. We say that a Dirac
structure D on a Lie groupoid G=P is left-invariant if the action T® of TG xg T*G on
Tt: TG xqT*G — TP xp A*G restricts to an action of Opg X T*G on D, i.e.,

(OTG Xa T*G) -D=D.

In Liu et al. (1998), a Dirac structure on a Lie groupoid G=2P is said to be left-invariant
if it is the pullback under the map

O:T'G xg TG — AG xp A*G
(vg, ag) = (TyLg-1vg,5(ay)) € As(g)G X A:(g)G

of a Dirac structure in AG xp A*G. These two definitions are easily seen to be equivalent,
the inclusion Opg X¢ (T°G)° C D is immediate and it is easy to check that D is invariant
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6.3 The Theorem of Drinfel' d

under the lifted right actions of the bisections if and only if the corresponding Dirac
structure in B(7T*G) is invariant under the induced action of B(G) on B(T*G) (compare
with Proposition 6.2 in Liu et al. (1998)).

The result in Theorem 6.3.3 implies that a left-invariant Dirac structure D is integrable if
and only if the corresponding Dirac structure ®(D|p) C AG xp A*G is a subalgebroid. ¢
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Conclusion and open problem

In this thesis, we have classified the (integrable) Dirac homogeneous spaces of an (inte-
grable) Dirac Lie group via Lagrangian subbundles (subalgebras) of the double of its Lie
bialgebra in a first step, and then generalized this result to a classification of the Dirac
homogeneous spaces of Dirac groupoids.

Doing this, we have studied properties of multiplicative structures on Lie groupoids that
were necessary for the classification, but are also of independent interest.

We also have shown how the leaf space of a multiplicative, involutive subbundle of the
tangent space of a Lie groupoid inherits under certain regularity conditions a groupoid
structure such that the projection is a groupoid morphism. This is a fact that can easily
be seen in the case of a simply-connected Lie group, since a multiplicative distribution is
then automatically the left- and right-invariant image of an ideal in the Lie algebra of the
Lie group.

We have observed that an (integrable) Dirac groupoid gives rise to infinitesimal objects
(Sections 5.2, 5.3, 5.4). A natural question is in what sense such infinitesimal objects
determine infinitesimal invariants of a multiplicative Dirac structure.

The infinitesimal data of Dirac Lie groupoids has been identified in Ortiz (2009) in the
following manner. Since a multiplicative Dirac structure Dg on G=P is by definition
a subgroupoid of (TG xg T*G) = (TP xp A*G), its Lie algebroid is a subalgebroid of
A(TG x¢ T*G) ~ T(AG) xa¢ T*(AG). Ortiz shows that A(Ds) is a Dirac structure on
AG, that is integrable (as a Dirac structure) if and only if D¢ is. The Dirac structures
on AG are thus identified as the infinitesimal objects in one-to-one correspondence with
the multiplicative Dirac structures on G=P. Yet, in the case of a Poisson groupoid, this
doesn’t correspond to the Lie bialgebroids (AG, A*G) that are in one-one correspondence
with the Poisson groupoids (G=2P, ms) and hence known as their infinitesimal data, but
to an intermediate step in the reconstruction of the multiplicative Poisson structure from
the compatible Lie algebroids in duality (see Mackenzie and Xu (2000)).

In Chapter 5, we have shown that if Dg is a multiplicative Dirac structure on a Lie
groupoid G=2 P, then is restriction to the submanifold of units P splits as the direct sum
of two vector bundles 2A(D¢) and I°(D¢) over P (the units and the core of Dg), that
inherit Lie algebroid structures from D¢ if Dg is integrable. The Lie algebroid structure
that we find on the units 2(D¢g) was predicted by Ortiz (2009) and generalizes the fact
that the dual bundle A*G — P of the Lie algebroid associated to a Lie groupoid endowed
with a multiplicative Poisson structure inherits the structure of a Lie algebroid over P.
Indeed, the data that we find in the Poisson case is the Lie bialgebroid of the Poisson
groupoid; A(D,.) = graph(a, : A*G — TP). If (G=2P,D¢) is an integrable Dirac Lie
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Conclusion

groupoid, the integrability of the Dirac structure is completely encoded in the square of
morphisms of Lie algebroids over P that we have found:

IS(Dg) m(DG’)

%
N

AG - TP

A

(see Section 5.3). In the Poisson and presymplectic groupoid cases, we know by the
results in Mackenzie and Xu (2000) and Bursztyn et al. (2004) that the whole data of the
multiplicative structures is encoded in this square, together with some properties.

It would be interesting to study to what extend a more general Dirac groupoid can be
recovered from this square of lie algebroids, and, if possible, to prove a general classification
theorem for Dirac groupoids in terms of these Lie algebroids, that would have the results
in the Poisson and presymplectic cases as corollaries. The deeper understanding of the
Courant algebroid B(D¢), which is still rather mysterious although it plays a crucial role
as the ambient object for the classification theorem in Chapter 6, should be helpful in
doing this.
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