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Aschwanden et al.[20] developed at the ETHZ an EAP device to apply uniaxial strain to cells inside a cell culture liquid 
chamber, a compact system which was used by Thomasson et al. to study myoblasts[21]. The devices allow wide variation 
in strain and frequency while keeping the cells in a fixed focal plane during operation, but actuator size was of the cm 
scale. 

The above was the motivation to make devices capable of applying mechanical strain to single cells. We therefore 
needed to make devices of the size of a cell (of order 100 µm), that can apply uniaxial strain of order 5% at speed of at 
least 1 Hz, and that are bio-compatible. 

The devices, shown schematically in Figure 22 and as realized in Figure 23, are fabricated by patterning compliant gold 
electrodes by ion-implantation on both sides of a 30 µm thick PDMS film, which is bonded onto a Pyrex frame 
containing trenches. The top of the membrane is a continuous implanted electrode, while the bottom of the membrane 
has only narrow (100 µm wide) implanted electrodes. The active part of the device is where the implanted lines are 
suspended over a trench: at these intersections, the elastomer can be electrostatically compressed, leading to in-plane 
strain. The devices are electrically grouped to allow different strain levels or frequencies to be run simultaneously. The 
cells will be attached to each actuator following a surface treatment, and then cultured in an incubator.  

Strain levels of 2% have been observed to date for voltages of 2 kV, and we are actively working to increase this to 10% 
by using other silicone materials and optimized electrodes. The cells are shielded from the high electric field in the 
actuated PDMS by using a grounded top electrode, and by grounding the conductive growth medium.  

 

Figure 22: Simplified schematic of the cell-stretching chip. Red 
vertical lines are 100 µm wide ion-implanted electrodes on the 
bottom side of a 30 µm thick PDMS membrane. Horizontal lines 
are 100 µm deep, 200 µm wide trenches in the Pyrex chip. The 
membrane is bonded to the Pyrex, except over the trenches. 
There is a continuous (not visible here) implanted electrode on 
top of the membrane. The intersection of implanted lines and 
trenches form individual EAP actuators, 100x200 µm2. 

Figure 23: Chip containing an array of 72 100x200 
µm2 polymer actuators, each of which can apply 
uniaxial strain to a single muscle cell which will 
be attached to it. 

 

4. CONCLUSION 
Low-energy metal-ion implantation into PDMS can lead to highly compliant 20 nm thick electrodes, patternable on the 
µm-scale, conducting at strains of over 150%, that enable the microfabrication of arrays of miniaturized EAP actuators. 
The low stiffness and large maximum strain of the implanted electrodes allows for efficient operation of the chip-scale 
EAP devices. A variety of EAPs have been demonstrated using ion-implanted electrodes, including bi-directional 
buckling mode actuators, mm-scale tunable lens arrays, 2-axis beam steering mirrors, as well as arrays of 72 cell-size 
(100x200 µm2) actuators to apply mechanical strain to single cells. Current research includes complex arrays of 
micropumps and valves for lab-on-chip applications.  

1 cm 
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