
New Hamiltonian Eigensolvers with Applications in Control

Peter Benner and Daniel Kressner

Abstract— A new MATLAB toolbox for computing eigenvalues
and invariant subspaces of Hamiltonian and skew-Hamiltonian
matrices is described. Based on orthogonal symplectic decompo-
sitions, the implemented algorithms are both numerically back-
ward stable and structure-preserving. It will be demonstrated
how this toolbox can be used to address a number of tasks
in systems and control theory, including some model reduction
methods and the computation of the H∞ norm.

I. INTRODUCTION

The need for solving Hamiltonian eigenvalue problems
arises from a variety of applications in systems and control,
including linear-quadratic optimal control, stability radius
and H∞-norm computations, robust control design, as well
as model reduction, see, e.g., [1] and the references therein.
A real 2n × 2n matrix H is called Hamiltonian if it takes
the form

H =

[

A G
Q −AT

]

, G = GT , Q = QT , (1)

where A, G and Q are n×n matrices. Hamiltonian matrices
have several important properties that distinguish them from
general, unstructured matrices. For example, if λ is an
eigenvalue of H then also −λ, λ̄,−λ̄ are eigenvalues of H .
In other words, the spectrum of H is symmetric with respect
to the real and imaginary axes.

If one attempts to compute the eigenvalues of a Hamil-
tonian matrix H by a standard method, such as the QR or
Arnoldi algorithm [2] (which correspond to the MATLAB
commands eig and eigs), then the computed eigenvalues
will lose this symmetry property due to the influence of
roundoff errors. This also makes it difficult to identify eigen-
values of H that have zero or negative real part. However,
a proper identification of those eigenvalues is often crucial
in applications. For example, deciding whether a certain
Hamiltonian matrix has purely imaginary eigenvalues is the
most critical step in many algorithms for computing the H∞-
norm and in H∞ design [3], [4]. Also, checking the stability
of a gyroscopic system depends on such a decision [5].

These observations have been the major source of moti-
vation for developing Hamiltonian eigenvalue solvers that
are both numerically sound (i.e., backward stable) and
capable to preserve the eigenvalue symmetries in finite-
precision arithmetic. An algorithm that satisfies these criteria
was presented in [6], [7]. This algorithm has been the

This work was partially supported by the DFG Research Center “Math-
ematics for Key technolgies” (FZT86) in Berlin.

P. Benner is with the Fakultät für Mathematik, TU Chemnitz, 09107
Chemnitz, Germany. benner@mathematik.tu-chemnitz.de

D. Kressner is with the Department of Mathematics, University of Zagreb,
Bijenička 30, 10000 Zagreb, Croatia. kressner@math.hr

basis for HAPACK [8], a comprehensive Fortran 77 library
for solving Hamiltonian and skew-Hamiltonian eigenvalue
problems. However, HAPACK contains further algorithmic
improvements, including symplectic balancing [9] and block
algorithms [10], making it competitive to the general-purpose
eigenvalue solvers implemented in state-of-the-art software
libraries, such as LAPACK [11].

The software toolbox presented in this paper is mainly
built on MEX interfaces, which provide the complete func-
tionality of HAPACK in a convenient way to MATLAB users.
Section II summarizes the contents of this toolbox as well as
its usage for solving Hamiltonian eigenvalue problems and
related tasks. In Section III, the following applications will
be addressed: solution of linear-quadratic optimal control
problems, stability radius and H∞-norm computations, as
well as the solution of gyroscopic eigenvalue problems.

II. THE HAPACK MATLAB TOOLBOX

Its MATLAB functions for solving Hamiltonian eigenvalue
problems constitute the core of the presented toolbox. They
are built on the MEX gateway hapack haeig.f, which
bundles all the relevant functionality of HAPACK, see also
Fig. 1. Among these functions, haeig is used for comput-
ing the eigenvalues and hastab for computing the stable
invariant subspace of a Hamiltonian matrix.

HAPACK
BLAS

LAPACK

DHABAL.f

DHAESU.f

DHAORD.f

DHAPVB.f

DHASUB.f

DOSGPV.f

DOSGSU.f

hapack_haeig.f

habalance.m

haeig.m

hapvl.m

haschord.m

hastab.m

hasub.m

haurv.m

haurvps.m

Fig. 1. Dependencies between HAPACK Fortran routines, MATLAB
functions and the MEX gateway hapack haeig.f.

A. haeig

The MATLAB command e = haeig(H) returns the
eigenvalues of a 2n × 2n Hamiltonian matrix H =
[

A
Q

G
−AT

]

. The eigenvalues are contained in a vector e of
length 2n, ordered such that ei = −en+i and the leading n
elements of e have nonpositive real part.

The numerical method behind haeig is based on trans-
formations with matrices that are both orthogonal (QTQ =
I2n with the 2n × 2n identity matrix I2n) and symplectic
(QTJQ = J with J =

[

0

−In

In

0

]

). The symplectic URV

decomposition introduced in [7] states that there exist two
such orthogonal symplectic matrices U and V so that

UTHV =

[

R11 R12

R21 R22

]

=

@

@@

, (2)

i.e., the matrix R21 ∈ R
n×n is zero, R11 ∈ R

n×n is upper
triangular and R22 ∈ R

n×n is lower Hessenberg. A simple
calculation reveals

UTH2U =

[

−R11R
T
22 R11R

T
12 −R12R

T
11

0 −R22R
T
11

]

,

showing that the eigenvalues of H are the square roots of the
eigenvalues of the upper Hessenberg matrix −R11R

T
22. In a

second step, the periodic QR algorithm [12], [13], [14] is
applied to compute the eigenvalues of this matrix product in
a numerically backward stable manner. Both steps can also
be called individually via the MATLAB functions haurv and
haurvps.

Symplectic balancing [9] often positively influences the
accuracy of the computed eigenvalues and is consequently
used by default in haeig. In exceptional cases, how-
ever, it may have a negative influence on the accuracy, in
which case it can be beneficial to turn balancing off: e =
haeig(H,’nobalance’).

A 2n × 2n Hamiltonian matrix of the form (1) can be
completely represented by the n × n matrix A and the
lower/upper triangular parts of the symmetric matrices Q
and G. To account for this fact, we offer users the option to
employ the packed storage layout proposed in [15]. While
A is stored in a separate variable, the symmetric matrices G
and Q are stored in an n× (n+ 1) array QG as follows:

QG =

q11 g11 g12 g13 · · ·
q21 q22 g22 g23 · · ·
q31 q32 q33 g33 · · ·

...
...

...
...

. . .

.

The function haconv can be used to convert between
different storage layouts. To employ the packed storage
layout in eigenvalue computations, one simply calls e =
haeig(A,QG) or e = haeig(A,QG,’nobalance’).

B. hastab

Assuming that the 2n × 2n Hamiltonian matrix H has
no eigenvalues on the imaginary axis, there are precisely n
eigenvalues with negative real part. The invariant subspace X
belonging to these eigenvalues is called stable. An important
property of this subspace is its isotropy, i.e., xTJy = 0 for
all x, y ∈ X with, as above, J =

[

0

−In

In

0

]

.
The function X = hastab(H) returns an orthonormal

basis X ∈ R
2n×n for X . It is based on the method described

in [6], which extracts X from a symplectic URV decompo-
sition (2). Occasionally, the results returned by hastab can
be unsatisfactorily inaccurate, in the sense that one of the
relations XTJX = 0 (corresponding to the isoptropy of
X) or XTJHX = 0 (corresponding to the fact that X is

an invariant subspace) is severely violated. In such cases, it
can be beneficial to call X = hastab(H,3), which uses a
slightly improved but more expensive method also described
in [6]. Using this option, hastab is capable to compute X
in a satisfactory and numerically backward stable manner for
all Hamiltonian matrices from the benchmark collection [16],
see also the numerical results in [8].
[X,Y,e] = hastab(H) also computes an orthonor-

mal basis Y for the unstable invariant subspace, i.e., the
invariant subspace belonging to the eigenvalues with positive
real part. Moreover, the eigenvalues of H are contained in a
vector e, in the same order as returned by haeig. Invariant
subspaces belonging to other eigenvalues can be computed
with the MATLAB function hasub.

Again, the packed storage layout can be employed for in-
variant subspace computations by using two input arguments
A,QG instead of H.

C. sheig

Skew-Hamiltonian matrices are closely related to Hamil-
tonian matrices and take the form

W =

[

A G
Q AT

]

, G = −GT , Q = −QT , (3)

where A, G and Q are n×n matrices. The eigenvalues of W
have even algebraic multiplicity; an algorithm that preserves
this property has been developed by Van Loan [17] and is
implemented in the MATLAB function sheig built on the
MEX gateway hapack sheig.f to HAPACK. The calling
syntax of sheig is identical to the syntax of haeig.

We now briefly explain how sheig can be used to ad-
dress complex Hamiltonian eigenvalue problems. A complex
Hamiltonian matrix H ∈ C

2n×2n is defined by the property
(JH)? = JH , with the matrix J as above. Similar to the real
case, the eigenvalues of H come in pairs {λ,−λ̄}; sheig
enables us to preserve these eigenvalue pairings in finite-
precision arithmetic.

To see this, let us decompose H = HR + ıHI such that
HR, HI ∈ R

2n×2n. Then the relationship (JH)? = JH
implies that the two matrices HR and HI have the following
structure:

HR =

[

AR GR
QR −ATR

]

, HI =

[

AI GI
QI ATI

]

,

where GR = GTR, QR = QTR, GI = −GTI , QI = −QTI , i.e.,
the matrix HR is Hamiltonian and the matrix HI is skew-
Hamiltonian. The 4n× 4n skew-Hamiltonian matrix

W =

AI AR GI GR
−AR AI −GR GI
QI QR ATI −ATR
−QR QI ATR ATI

(4)

is permutationally similar to the matrix
[

HI

−HR

HR

HI

]

, which
implies that λ is an eigenvalue of H if and only if {ıλ,−ıλ̄}
is an eigenvalue pair of W . Since sheig preserves the even
eigenvalue multiplicities of W , it is sufficient to consider the

2n (generically different) eigenvalues of W . These eigenval-
ues come in pairs {µ, µ̄}, each of which corresponds to an
eigenvalue pair {ıµ, ıµ̄} of H .

An embedding of the form (4) can also be used to
obtain invariant subspaces of complex Hamiltonian matrices,
see [18].

D. sympqr

A decomposition closely related to Hamiltonian eigen-
value problems is the symplectic QR decomposition, defined
as follows. Let X ∈ R

2n×k with n ≥ k, then there exists an
orthogonal symplectic matrix Q so that X = QR and

R =

[

R11

R21

]

, R11 =

[

@
0

]

, R21 =

[

...

@

0

]

, (5)

i.e., the matrix R11 ∈ R
m×n is upper triangular and

R21 ∈ R
m×n is strictly upper triangular [19]. The MATLAB

function sympqr, which computes such a decomposition,
can be called via [Q,R] = sympqr(X) or [Q,R] =
sympqr(X,0). The latter call results in an “economy size”
decomposition, i.e., only columns 1, . . . , k and n+1, . . . , n+
k of Q are computed.

The symplectic QR decomposition can be used for the
computation of nearby isotropic subspaces [1] or for the
symplectic integration of Hamiltonian systems [20].

III. APPLICATIONS AND NUMERICAL EXAMPLES

In the following, we consider a linear continuous-time
system with constant coefficients in state-space form,

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (6)
y(t) = Cx(t) +Du(t), (7)

where x(t) ∈ R
n is the vector of states, u(t) ∈ R

m the vector
of inputs (or controls) and y(t) ∈ R

r the vector of outputs at
time t ∈ [0,∞). The system is described by the state matrix
A ∈ R

n×n, the input (control) matrix B ∈ R
n×m, the output

matrix C ∈ R
r×n, and the feedthrough matrix D ∈ R

r×m.
To simplify the presentation we restrict ourselves in Sections
A and C to D = 0; all results can be extended to the case
D 6= 0 without any greater difficulties.

A. Linear-quadratic optimal control problems

First, we consider the linear-quadratic L2 optimal control
problem (LQR) for a linear continuous-time system, which
is to minimize an energy functional

S(x, u) =
∫

∞

t0

(

x(t)TQx(t) + u(t)TRu(t)
)

dt (8)

subject to the control equation (6), where Q ∈ R
n×n is

symmetric positive semi-definite matrix, R ∈ R
m×m is a

symmetric positive definite matrix; and it is required that the
solution associated with the optimal control is asymptotically
stable.

The Hamiltonian matrix

H =

[

A −BR−1BT

−Q −AT
]

,

is closely related to (8). If the columns of X =
[

X1

X2

]

with
X1, X2 ∈ R

n×n span the stable invariant subspace of X ,
then, under some mild assumptions, F = −X2X

−1
1 is the

stabilizing solution of the algebraic Riccati equation

0 = −Q+ATF + FA+ FBR−1BTF,

see, e.g., [21], [22], [23]. In turn, the linear state feedback

u(t) = BTFu(t)

solves (8). The following piece of MATLAB code computes
the matrix F based on hastab:

RR = chol(R); B = B / RR;
H = [A -B*B’; -Q -A’];
X = hastab(H);
F = X(n+1:2*n,:) / X(1:n,:);

For numerical examples and a comparison to other methods
for computing F , we refer to [8].

B. Stability Radius Computation

A linear system of the form (6) is called (asymptotically)
stable if all eigenvalues λ(A) of the state matrix A are in
C
−, the open left half complex plane. It is often important to

know how near the system is to an unstable one, i.e., what is
the smallest perturbation E ∈ C

n×n so that λ(A+E) 6⊂ C
−.

This corresponds to the computation of the stability radius
of A, which is defined as

γ(A) := min{‖E‖2 : λ(A+ E) ∩ ıR 6= ∅}.
A bisection method for measuring γ(A) can be based on

the following observation [24], [25]: if α ≥ 0, then the
Hamiltonian matrix

H(α) =

[

A −αIn
αIn −AT

]

has an eigenvalue on the imaginary axis if and only if α ≥
γ(A). This suggests the following simple algorithm. Start
with a lower bound β ≥ 0 and an upper bound δ > γ(A) (an
easy-to-compute upper bound is ‖A+ AT ‖F /2 [26]). Then
in each step, set α := (β + δ)/2 and compute λ(H(α)). If
there is an eigenvalue on the imaginary axis, choose δ = α,
otherwise, set β = α. A MATLAB implementation of this
method based on the function haeig could be as follows:

nA = norm(A+A’,’fro’) / 2;
beta = 0;
delta = nA;
e = ones(n,1);
QG = full(spdiags([e -e], 0:1, n, n+1));
while (delta-beta) > 100*eps*nA,

e = haeig(A,(beta + delta)/2 * QG);
if isempty(find(real(e)==0)),

beta = (beta + delta)/2;
else

delta = (beta + delta)/2;
end

end

−30 −20 −10 0 10 20 30
10

−5

10
−4

10
−3

10
−2

10
−1

k

m
im

im
al

 re
al

 p
ar

t o
f H

(α
)

Fig. 2. Minimum absolute values for the real parts of the eigenvalues of
H(α) computed by eig (’+’) and haeig (’◦’) with the matrix A as in (9)
and α = 1.005k × γ(A), k ∈ [−30, 30]. For k > 0, haeig computes
exact zeroes which are not shown in the figure.

The correct decision whether H(α) has eigenvalues on
the imaginary axis is crucial for the success of the bisection
method. Byers [24] showed that if the eigenvalues of H(α)
are computed by a strongly backward stable method, then the
computed γ(A) will be within a distance of O(u)×‖A‖2 to
the exact stability radius, where u is the machine precision.

As an example, let us consider a variation of Demmel’s
matrix [27]:

A = QT

λ −10 −102 −103 −104

0 λ −10 −102 −103

0 0 λ −10 −102

0 0 0 λ −10
0 0 0 0 λ

Q, (9)

where λ = −0.05 and Q is a randomly generated orthogonal
matrix. The stability radius of this matrix is much smaller
than the minimal distance of the eigenvalues to the imaginary
axis, γ(A) ≈ 3.6 × 10−11. Figure 2 shows that haeig
correctly identifies the purely imaginary eigenvalues of H(α)
for α > γ(A). On the other hand, the eigenvalues computed
by MATLAB’s eig all have non-negligible real parts no
matter whether α > γ(A) or α ≤ γ(A). Hence, for this
case, haeig leads to much more reliable decisions within
the bisection method, which in turn improves the reliability
of the method itself.

C. H∞ Norm Computation

A problem very similar to the stability radius calculation
is the computation of the H∞ norm of a stable system.
Consider the transfer function G(s) of a stable system of
the form (6)–(7),

G(s) = C(sI −A)−1B +D,

then
‖G‖H∞ = esssup{‖G(ıω)‖2 : ω ∈ R}.

is the H∞ norm of G.
Let α be a positive real number and consider the

parameter-dependent Hamiltonian matrix

H(α) =

[

A − 1

α2BB
T

CTC −AT
]

,

The following result can be used to approximate ‖G‖H∞ ,
see, e.g., [23]:

‖G‖H∞ < α ⇔ λ(H(α)) ∩ ıR = ∅.
Using this fact, a bisection algorithm analogous to the
stability radius computation can be formulated, starting with
a lower bound β > 0 and an upper bound δ > ‖G‖H∞ ,
see [28] for details. Again, the bisection algorithm benefits if
the decisions are based on a symmetry-preserving eigenvalue
solver as implemented in haeig.

Faster convergent versions of this algorithm, which may
also involve the eigenvectors of H(α), can be found in [29],
[30], [31].

D. Gyroscopic Eigenvalue Problems

The quadratic eigenvalue problem (QEP) is to find scalars
λ and nonzero vectors x satisfying

(λ2M + λG+K)x = 0, (10)

where M,G,K ∈ R
n×n. It arises, for example, from

linear systems that are governed by second order differential
equations, see [5]. Gyroscopic systems yield QEPs with
symmetric positive definite M , skew-symmetric G and sym-
metric K. In this case, the eigenvalues of (10) have the same
symmetries as in the Hamiltonian eigenvalue problem, i.e., if
λ is an eigenvalue then −λ, λ̄ and −λ̄ are also eigenvalues.

Assuming we have a such a gyroscopic eigenvalue prob-
lem, let R be the Cholesky factor of M , i.e., R is an upper
triangular matrix and M = RTR. Then the matrix

H =

[

− 1

2
R−TGR−1 1

4
(R−TGR)2 −K

I − 1

2
R−TGR−1

]

is Hamiltonian and has the same eigenvalues as the QEP (10).
Hence, haeig applied to H preserves the eigenvalue pair-
ings of (10). This is particularly important for testing the
stability of the underlying gyroscopic system, which amounts
to checking whether all eigenvalues of (10) are on the
imaginary axis, see e.g. [5, Sec.5.3]. The corresponding
MATLAB code reads as follows:

R = chol(M);
G = - (R’ \ G) / R / 2;
K = (R’ \ K) / R;
K = [zeros(n,1), triu(Gˆ2)-triu(K)];
K(1:n+1:n*n) = 1;
e = haeig(G,K);

Let us consider the following QEP [5], which stems from the
model of a shaft rotating with angular velocity Ω, containing
a mass m and four springs with stiffness kx, ky:

λ2I + λ

[

0 −2Ω
2Ω 0

]

+

[

kx

m
− Ω2 0

0
ky

m
− Ω2

]

. (11)

For kx = 1, ky = 3,m = 5,Ω = 1/
√
5 − 10−14, the

underlying gyroscopic system is known to be stable implying
that all eigenvalues of (11) are on the imaginary axis. The
following table shows the eigenvalues of (11) computed by
MATLAB’s polynomial eigenvalue solver polyeig and by
the above approach based on haeig.

polyeig haeig
−2.44× 10−17 − 1.10ı −1.10ı
−2.48× 10−17 + 1.10ı +1.10ı

−4.27× 10−14 − 5.47× 10−8ı −5.47× 10−8ı
+4.26× 10−14 + 5.47× 10−8ı +5.47× 10−8ı

It can be seen that haeig correctly identifies all eigenvalues
to be purely imaginary while the use of polyeig results in
non-zero (although almost negligible) real parts.

It should be noted that the described approach is only
feasible if M is sufficiently well-conditioned. Otherwise, it
is advisable to use linearizations to structured generalized
eigenvalue problems as proposed in [32], [5].

E. Model Reduction

Several balancing-related methods for model reduction of
linear continuous-time systems as in (6)–(7) with m = r
and D nonsingular require the solution of algebraic Riccati
equations [33], [34]. Thus, similar to the LQR problem, the
function hastab can be employed here.

Model reduction methods based on balanced truncation
in a first step require the computation of two Gramians
of the system. These are positive (semi-)definite matrices
P,Q which carry certain system information. In the classical
balanced truncation method, P,Q are the controllability and
observabilty Gramians of the system which can be obtained
as solutions to a pair of dual Lyapunov equations. Algebraic
Riccati equations show up, for instance, in balanced stochas-
tic truncation (BST) and positive real balanced truncation
(PRBT). For BST, we have to solve the algebraic Riccati
equation

0 = ÂTQ+QÂ+QB̂R̂−1B̂TQ+ CT R̂−1C, (12)

where

R̂ = DDT ,

B̂ = BDT + PCT ,

Â = A− B̂R̂−1C,

and P is the controllability Gramian of (6). One way to solve
(12) in MATLAB is as follows:

[Q,R] = qr(D’);
B = (B*D’ + P*C’) \ R;
C = R’ \ C;
A = A - B*C;
H = [A -B*B’; C*C’ -A’];
X = hastab(H);
Q = X(n+1:2*n,:) / X(1:n,:);

The dual algebraic Riccati equations arising in positive
real balancing,

0 = ÂP + PÂT + PCTR−1CP +BR−1BT ,

0 = ÂTQ+QÂ+QBR−1BTQ+ CTR−1C,

where

R̂ = D +DT ,

Â = A− B̂R̂−1C,

can be solved in an analogous way employing hastab.
The duality of the two algebraic Riccati equations can be
employed by noting that the Hamiltonian matrix H corre-
sponding to the “Q”-equation is the transpose of that of the
“P”-equation and that the unstable invariant subspace Y of
H yields the stable one of HT via −JY . By observing that
for positive real balancing D +DT must be assumed to be
positive definite, we get the following code fragment to solve
the positive real algebraic Riccati equations:

R = chol(D+D’);
B = B / R;
C = R’ \ C;
A = A - B*C;
H = [A -B*B’; C*C’ -A’];
[X,Y,e] = hastab(H);
P = -Y(1:n,:) / Y(n+1:2*n,:);
Q = -X(n+1:2*n,:) / X(1:n,:);

Here we employ the feature of hastab to also return
unstable invariant subspaces.

IV. CONCLUSIONS

We have presented a MATLAB toolbox for solving Hamil-
tonian eigenvalue problems and demonstrated its advan-
tages for solving eigenvalue problems arising from several
applications in systems and control theory. This toolbox
as well as MATLAB files for addressing the applications
considered in this paper are available from http://
www.tu-chemnitz.de/mathematik/hapack/. Fu-
ture work will aim at providing similar functionality for
generalized Hamiltonian eigenvalue problems based on the
algorithms presented in [7], [35], which will further enhance
the reliability and accuracy of HAPACK.

REFERENCES

[1] P. Benner, D. Kressner, and V. Mehrmann, “Skew-Hamiltonian and
Hamiltonian eigenvalue problems: Theory, algorithms and applica-
tions,” in Proceedings of the Conference on Applied Mathematics and
Scientific Computing, Brijuni (Croatia), June 23-27, 2003, Z. Drmač,
M. Marušić, and Z. Tutek, Eds. Springer-Verlag, 2005.

[2] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed.
Baltimore, MD: Johns Hopkins University Press, 1996.

[3] P. Benner, R. Byers, V. Mehrmann, and H. Xu, “Robust numerical
methods for robust control,” Institut für Mathematik, TU Berlin,”
Preprint 06-2004, 2004.

[4] N. J. Higham, M. Konstantinov, V. Mehrmann, and P. Petkov, “The
sensitivity of computational control problems,” IEEE Control Syst.
Mag., vol. 24, no. 1, pp. 28–43, 2004.

[5] F. Tisseur and K. Meerbergen, “The quadratic eigenvalue problem,”
SIAM Rev., vol. 43, no. 2, pp. 235–286, 2001.

[6] P. Benner, V. Mehrmann, and H. Xu, “A new method for computing
the stable invariant subspace of a real Hamiltonian matrix,” J. Comput.
Appl. Math., vol. 86, pp. 17–43, 1997.

[7] ——, “A numerically stable, structure preserving method for com-
puting the eigenvalues of real Hamiltonian or symplectic pencils,”
Numerische Mathematik, vol. 78, no. 3, pp. 329–358, 1998.

[8] P. Benner and D. Kressner, “Fortran 77 subroutines for com-
puting the eigenvalues of Hamiltonian matrices II,” ACM Trans.
Math. Software, to appear, available from http://www.tu-chemnitz.de/
mathematik/hapack/.

[9] P. Benner, “Symplectic balancing of Hamiltonian matrices,” SIAM J.
Sci. Comput., vol. 22, no. 5, pp. 1885–1904, 2000.

[10] D. Kressner, “Block algorithms for orthogonal symplectic factoriza-
tions,” BIT, vol. 43, no. 4, pp. 775–790, 2003.

[11] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. W. Demmel, J. J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. C. Sorensen, LAPACK Users’ Guide, 3rd ed. Philadelphia,
PA: SIAM, 1999.

[12] A. Bojanczyk, G. H. Golub, and P. Van Dooren, “The periodic Schur
decomposition; algorithm and applications,” in Proc. SPIE Conference,
vol. 1770, 1992, pp. 31–42.

[13] J. J. Hench and A. J. Laub, “Numerical solution of the discrete-time
periodic Riccati equation,” IEEE Trans. Automat. Control, vol. 39,
no. 6, pp. 1197–1210, 1994.

[14] C. F. Van Loan, “A general matrix eigenvalue algorithm,” SIAM J.
Numer. Anal., vol. 12, no. 6, pp. 819–834, 1975.

[15] P. Benner, R. Byers, and E. Barth, “Algorithm 800: Fortran 77
subroutines for computing the eigenvalues of Hamiltonian matrices
I: The square-reduced method,” ACM Trans. Math. Software, vol. 26,
pp. 49–77, 2000.

[16] J. Abels and P. Benner, “CAREX - a collection of benchmark examples
for continuous-time algebraic Riccati equations (version 2.0),” WGS,”
SLICOT Working Note 1999-14, 1999, available online from http:
//www.win.tue.nl/niconet/.

[17] C. F. Van Loan, “A symplectic method for approximating all the
eigenvalues of a Hamiltonian matrix,” Linear Algebra Appl., vol. 61,
pp. 233–251, 1984.

[18] P. Benner, V. Mehrmann, and H. Xu, “A note on the numerical solution
of complex Hamiltonian and skew-Hamiltonian eigenvalue problems,”
Electron. Trans. Numer. Anal., vol. 8, pp. 115–126, 1999.

[19] A. Bunse-Gerstner, “Matrix factorizations for symplectic QR-like
methods,” Linear Algebra Appl., vol. 83, pp. 49–77, 1986.

[20] B. J. Leimkuhler and E. S. Van Vleck, “Orthosymplectic integration

of linear Hamiltonian systems,” Numer. Math., vol. 77, no. 2, pp. 269–
282, 1997.

[21] B. Anderson and J. Moore, Optimal Control – Linear Quadratic
Methods. Englewood Cliffs, NJ: Prentice-Hall, 1990.

[22] M. Green and D. J. N. Limebeer, Linear Robust Control. Englewood
Cliffs, NJ: Prentice-Hall, 1995.

[23] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control.
Upper Saddle River, NJ: Prentice-Hall, 1996.

[24] R. Byers, “A bisection method for measuring the distance of a stable to
unstable matrices,” SIAM J. Sci. Statist. Comput., vol. 9, pp. 875–881,
1988.

[25] D. Hinrichsen and A. J. Pritchard, “Stability radii of linear systems,”
Systems Control Lett., vol. 7, no. 1, pp. 1–10, 1986.

[26] C. F. Van Loan, “How near is a matrix to an unstable matrix?” Lin.
Alg. and its Role in Systems Theory, vol. 47, pp. 465–479, 1984.

[27] J. W. Demmel, “A counterexample for two conjectures about stability,”
IEEE Trans. Automat. Control, vol. 32, pp. 340–342, 1987.

[28] S. Boyd, V. Balakrishnan, and P. Kabamba, “A bisection method for
computing the H∞ norm of a transfer matrix and related problems,”
Math. Control, Signals, Sys., vol. 2, pp. 207–219, 1989.

[29] S. Boyd and V. Balakrishnan, “A regularity result for the singular
values of a transfer matrix and a quadratically convergent algorithm
for computing its L∞-norm,” Systems Control Lett., vol. 15, no. 1,
pp. 1–7, 1990.

[30] N. Bruinsma and M. Steinbuch, “A fast algorithm to compute the H∞-
norm of a transfer function matrix,” Sys. Control Lett., vol. 14, no. 4,
pp. 287–293, 1990.

[31] Y. Genin, P. Van Dooren, and V. Vermaut, “Convergence of the
calculation of H∞ norms and related questions,” in Proceedings of
the Conference on the Mathematical Theory of Networks and Systems,
MTNS ’98, A. Beghi, L. Finesso, and G. Picci, Eds., 1998, pp. 429–
432.

[32] V. Mehrmann and D. S. Watkins, “Structure-preserving methods for
computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian
pencils,” SIAM J. Sci. Comput., vol. 22, no. 6, pp. 1905–1925, 2000.

[33] A. Antoulas, Lectures on the Approximation of Large-Scale Dynamical
Systems. Philadelphia, PA: SIAM Publications, 2005.

[34] G. Obinata and B. Anderson, Model Reduction for Control System De-
sign, ser. Communications and Control Engineering Series. London,
UK: Springer-Verlag, 2001.

[35] P. Benner, R. Byers, V. Mehrmann, and H. Xu, “Numerical computa-
tion of deflating subspaces of skew-Hamiltonian/Hamiltonian pencils,”
SIAM J. Matrix Anal. Appl., vol. 24, no. 1, 2002.

