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SUMMARY

We investigate the performance of the routines in LAPACK and the Successive Band

Reduction (SBR) toolbox for the reduction of a dense matrix to tridiagonal form, a crucial
preprocessing stage in the solution of the symmetric eigenvalue problem, on general-
purpose multi-core processors. In response to the advances of hardware accelerators, we
also modify the code in the SBR toolbox to accelerate the computation by off-loading
a significant part of the operations to a graphics processor (GPU). Performance results
illustrate the parallelism and scalability of these algorithms on current high-performance
multi-core and many-core architectures.

1. Introduction

We consider the solution of the symmetric eigenvalue problem AX = XΛ, where A ∈ R
n×n is a

dense symmetric matrix, Λ = diag(λ1, λ2, . . . , λn) ∈ R
n×n is a diagonal matrix containing the

eigenvalues of A, and the j-th column of the orthogonal matrix X ∈ R
n×n is an eigenvector

associated with λj [9]. Given the matrix A, the objective is to compute its eigenvalues or
a subset thereof and, if requested, the associated eigenvectors as well. Many scientific and
engineering applications lead to large eigenvalue problems. Examples come from computational
quantum chemistry, finite element modeling, multivariate statistics, and density functional
theory. There, problems become particularly challenging when a significant fraction of the
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eigenvalues and eigenvectors needs to be computed [12]. From here on we will concentrate on
the case that all the eigenvalues and eigenvectors are desired.

Efficient algorithms for the solution of symmetric eigenvalue problems usually consist of
three stages. Matrix A is first reduced to a symmetric tridiagonal matrix T ∈ R

n×n by a
sequence of orthogonal similarity transforms: QT AQ = T , where Q ∈ R

n×n is the matrix
representing the accumulation of these orthogonal transforms. A tridiagonal eigensolver as,
e.g., the MR

3 algorithm [7, 4] is then applied to matrix T to accurately compute its eigenvalues
and, optionally, the associated eigenvectors. Finally, when the eigenvectors of A are desired, a
back-transform has to be applied to the eigenvectors of T . In particular, if TXT = XT Λ, with
XT ∈ R

n×n representing the eigenvectors of T , then X = QXT . Both the first and last stage
cost O(n3) floating-point arithmetic operations (flops) while the second stage based on the
MR

3 algorithm only requires O(n2) flops. (Other algorithms for solving tridiagonal eigenvalue
problems, such as the QR algorithm, the Divide & Conquer method, etc. [9] require O(n3)
flops in the worst case.)

In this paper we re-evaluate the performance of the codes in LAPACK [1] and the
Successive Band Reduction (SBR) toolbox [5] for the reduction of a symmetric matrix A to
tridiagonal form. LAPACK routine sytrd employs Householder reflectors, enhanced with WY
representations [8], to reduce A directly to tridiagonal form. Only half of its operations can be
performed in terms of calls to Level-3 BLAS kernels, resulting in a poor use of the memory
hierarchy. To overcome this drawback, the SBR toolbox first reduces A to an intermediate
banded matrix B, and subsequently transforms B to tridiagonal form. The advantage of this
two-step procedure is that the first step can be carried out using BLAS-3 kernels, while the
cost of the second step is negligible provided a moderate band width is chosen for B.

A similar study was performed by B. Lang in [11]. The conclusions from that work were that
the SBR toolbox could significantly accelerate the computations of the reduction to tridiagonal
form compared to the approach in LAPACK. However, if the orthogonal transforms have to
be accumulated, then the SBR routines were not competitive. Our interest in this analysis
is motivated by the increase in the number of cores in general-purpose processors in the last
years and the recent advances in hardware accelerators like graphics processors (GPUs). In
particular, we aim at evaluating how the use of multiple cores in these architectures affects
the performance of the codes in LAPACK and the SBR toolbox for tridiagonal reduction and
back-transform. Note that, because of the efficient formulation and practical implementation
of the MR

3 algorithm, the reduction to tridiagonal form and the back-transform are currently
the most time-consuming stages in the solution of large symmetric eigenvalue problems.

The main contribution of this paper is a practical demonstration that the use of GPUs
turns SBR into a competitive approach for both the reduction to tridiagonal form and the
accumulation of transforms. This changes the main message that was presented in [11].

The rest of the paper is organized as follows. In Sections 2 and 3 we review, respectively,
the routines in LAPACK and SBR for the reduction of a dense matrix to tridiagonal form. We
also propose a modification of the code in the SBR toolbox to accelerate the initial reduction
to banded form using a GPU. Section 4 offers experimental results of the LAPACK and SBR
codes on two Intel-based workstations and an NVIDIA Tesla C1060 GPU. Finally, Section 5
summarizes the conclusions of our study.



2. The LAPACK Routine sytrd

Routine sytrd† is based on the classical approach of reducing A to tridiagonal form by a
series of Householder reflectors H1, H2, . . ., Hn−2. Each Householder reflector is an orthogonal
matrix of the form Hj = I − βjuju

T
j , where βj ∈ R, uj ∈ R

n with the first j entries zero,
and I denotes here and in the following the identity matrix of appropriate order. The purpose
of each reflector Hj is to annihilate the entries below the subdiagonal in the j-th column of
Aj−1 = HT

j−1 · · ·H
T
2 HT

1 AH1H2 · · ·Hj−1.
The routine proceeds as follows. Let b denote the algorithmic block size and assume that we

have already computed the first j − 1 columns/rows of T . Consider

HT
j−1 · · ·H

T
2 HT

1 AH1H2 · · ·Hj−1 =







T00 TT
10 0

T10 A11 AT
21

0 A21 A22






,

where T00 ∈ R
j−1×j−1 is in tridiagonal form and A11 ∈ R

b×b. With this partitioning, all entries
of T10 are zero except for the one in its top right corner. Then, the following operations are
computed during the current iteration of sytrd:

1. The current panel

(

A11

A21

)

is reduced to tridiagonal form by a sequence of b orthogonal

transforms Hj ,Hj+1, . . . ,Hj+b−1. Simultaneously, two matrices U,W ∈ R
(n−j−b+1)×b

are built such that

HT
j+b−1 · · ·H

T
j+1H

T
j







T00 TT
10 0

T10 A11 AT
21

0 A21 A22






HjHj+1 · · ·Hj+b−1

=







T00 TT
10 0

T10 T11 TT
21

0 T21 A22 − UWT − WUT






,

where T11 is tridiagonal and all entries of T21 are zero except for its top right corner.
2. The submatrix A22 is updated as A22 := A22 −UWT −WUT where, in order to exploit

the symmetry, only the lower (or the upper) triangular part of this matrix is updated.

The simultaneous computation of U and W along with the reduction in Operation 1 is
needed to determine the first column of the unreduced part, which defines the Householder
reflector. While U simply contains the vectors uj , uj+1, . . . , uj+b−1 of the Householder reflectors
Hj ,Hj+1, . . . ,Hj+b−1, more work is needed to determine W . In fact, the bulk of the
computation in Operation 1 lays in the formation of this matrix. For each reduced column
in the panel, a new column of W is generated. This requires four panel-vector multiplications

†We omit the first letter, denoting the precision. For example, SYTRD refers to the LAPACK routines
DSYTRD (double precision) and SSYTRD (single precision)
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Figure 1. Partitioning of the matrix during one iteration of syrdb for the reduction to banded form.

and one symmetric matrix-vector multiplication with the submatrix A22 as operand. The
latter operation, computed with the BLAS-2 kernel symv, is the most expensive one, requiring
roughly 2(n − j)2b flops. Operation 2 also requires 2(n − j)2b flops, but is entirely performed
by the BLAS-3 kernel syr2k for the symmetric rank-2b update. The overall cost of performing
the reduction A → T using routine sytrd is therefore 4n3/3 flops provided that b ≪ n.

Note that there is no need to construct the orthogonal factor Q = H1H2 · · ·Hn−2 explicitly.
Instead, the vectors uj defining the Householder reflectors Hj are stored in the annihilated
entries of A. Additional work-space is needed to store the scalars βj , but this requires only
n− 2 entries and is thus negligible. If the eigenvectors are requested, the back-transform QXT

is computed by the LAPACK routine ormtr in 2n3 flops without ever forming Q. Using the
compact WY representation [6], this operation can be performed almost entirely in terms of
calls to BLAS-3 kernels.

3. The SBR Toolbox

The SBR toolbox is a software package for symmetric band reduction via orthogonal
transforms. The package includes routines for the reduction of dense symmetric matrices to
banded form (syrdb), and the reduction of banded matrices to narrower banded (sbrdb) or
tridiagonal form (sbrdt). Accumulation of the orthogonal transforms and repacking routines
for storage rearrangement are also provided in the toolbox.

In this section we describe the routines syrdb and sbrdt which, invoked in that order,
produce the same effect as the reduction of a dense matrix to tridiagonal form via LAPACK
routine sytrd. For the SBR routine syrdb, we also describe how to off-load the bulk of the
computations to the GPU.



3.1. Reduction to banded form

Assume that the first j − 1 columns of the matrix A have already been reduced to banded
form with bandwidth w. Let b denote the algorithmic block size, and assume for simplicity
that j + w + b − 1 ≤ n and b ≤ w; see Figure 1. Then, during the current iteration of routine
syrdb, the next b columns of the banded matrix are obtained with the following sequence of
operations:

1. Compute the QR factorization of A0 ∈ R
k×b, k = n − (j + w) + 1:

A0 = Q0R0, (1)

where R0 ∈ R
b×b is upper triangular and the orthogonal factor Q0 is implicitly stored

as a sequence of b Householder vectors using the annihilated entries of A0 plus b entries
of a vector of length n − 2. The cost of this first operation is 2b2(k − b/3) flops.

2. Construct the factors of the compact WY representation of the orthogonal matrix
Q0 = I + WSWT , with W ∈ R

k×b and S ∈ R
k×k upper triangular. The cost of this

operation is about kb2 flops.
3. Apply the orthogonal matrix to A1 ∈ R

k×w−b from the left:

A1 := QT
0 A1 = (I + WSWT )T A1 = A1 + W (ST (WT A1)). (2)

By computing this operation in the order specified in the rightmost expression of (2),
the cost becomes 4kb(w − b) flops. In case the bandwidth equals the block size (w = b),
A1 comprises no columns and, therefore, no computation is performed.

4. Apply the orthogonal matrix to A2 ∈ R
k×k from both the left and the right sides with

Y = WST :

A2 := QT
0 A2Q0 = (I + WY T )T A2(I + WY T ) (3)

= A2 + Y WT A2 + A2WY T + Y WT A2WY T . (4)

In particular, during this computation only the lower (or the upper) triangular part of
A2 is updated. In order to do so, (4) is computed as the following sequence of calls to
BLAS-3 kernels:

(symm) X1 := A2W, (5)

(gemm) X2 :=
1

2
XT

1 W, (6)

(gemm) X3 := X1 + Y X2, (7)

(syr2k) A2 := A2 + X3Y
T + Y XT

3 . (8)

The major cost of Operation 4 is in the computation of the symmetric matrix product (5) and
the symmetric rank-2b update (8), each with a cost of 2k2b flops. On the other hand, the matrix
products (6) and (7) only require 2kb2 flops each. Therefore, the overall cost of this operation
is approximately 4k2b + 4kb2. This is higher than the cost of the preceding Operations 1, 2,
and 3, which require O(kb2), O(kb2), and O(max(kb2, kbw)) flops, respectively. In summary,
provided that b and w are both small compared to n, the global cost of the reduction of a full



matrix to banded form is 4n3/3 flops. Furthermore, the bulk of the computation is performed
in terms of the BLAS-3 kernels symm and syr2k in (5) and (8), so that high performance can
be expected in case a tuned BLAS is used.

The orthogonal matrix QB ∈ R
n×n for the reduction QT

BAQB = B, where B ∈ R
n×n is

the (symmetric) banded matrix, can be explicitly constructed by accumulating the involved
Householder reflectors at a cost of 4n3/3 flops. Once again, the compact WY representation
helps in casting this computation almost entirely in terms of calls to BLAS-3. The SBR toolbox
implements this functionality in routine sygtr.

3.2. Reduction to banded form on the GPU

Recent work on the implementation of BLAS and the major factorization routines for the
solution of linear systems [2, 3, 13] has demonstrated the potential of GPUs to yield high
performance on dense linear algebra operations which can be cast in terms of matrix-matrix
products. In this subsection we describe how to exploit the GPU in the reduction of a matrix to
banded form, orchestrating the computations carefully to reduce the number of data transfers
between the host and the GPU.

During the reduction to banded form, Operation 4 is a natural candidate for being computed
on the GPU, while, due to the kernels involved in Operations 1 and 2 (mainly narrow matrix-
vector products), these computations are better suited for the CPU. Operation 3 can be
performed either on the CPU or the GPU but, in general, w − b will be small so that this
computation is likely better suited for the CPU. Now, assume that the entire matrix resides
in the GPU memory initially. We can then proceed to compute the reduced form by repeating
the following three steps for each column block:

1. Transfer A0 and A1 back from GPU memory to main memory. Perform Operations 1, 2,
and 3 on the CPU.

2. Transfer W and Y from main memory to the GPU.
3. Compute Operation 4 on the GPU.

Proceeding in this manner, upon completion of the algorithm most of the banded matrix and
the Householder reflectors are available in the main memory. Specifically, only the diagonal
b × b blocks in A remain to be transferred to the main memory.

The construction of QB that produces the reduction to banded form can also be easily done
in the GPU, as this computation is basically composed of calls to BLAS-3 kernels.

3.3. Reduction to tridiagonal form

Routine sbrdt in the SBR toolbox is responsible for reducing the banded matrix B to
tridiagonal form by means of Householder reflectors. Let QT denote the orthogonal transforms
which yield this reduction, that is QT

T BQT = T . On exit, the routine returns the tridiagonal
matrix T and, upon request, accumulates these transforms, forming the matrix Q = QBQT ∈

R
n×n so that QT AQ = QT

T (QT
BAQB)QT = QT

T BQT = T .
The matrix T is constructed in routine sbrdt one column at the time: at each iteration the

elements below the first subdiagonal of the current column are annihilated using a Householder



reflector; the reflector is then applied to both sides of the matrix, resulting in a bulge which
has to be chased down along the band. The computation is cast in terms of BLAS-2 operations
at best (symv and syr2 for two-sided updates, and gemv and ger for one-sided updates)
and the total cost is 6n2w + 8nw2 flops.

If the eigenvectors are desired, then the orthogonal matrix QB produced in the first step
(reduction from full to banded form) needs to be updated with the orthogonal transforms
computed during the reduction from banded to tridiagonal form building QBQT . This
accumulation requires O(n3) flops and can be reformulated almost entirely in terms of calls
to BLAS-3 kernels, even though this reformulation is less trivial than for the first step [5].
Furthermore, the matrix Q = QBQT still needs to be applied as part of the back-transform
stage, to obtain X := QXT , adding 2n3 flops to the cost of building the matrix containing the
eigenvectors of A.

We do not propose to off-load the reduction of the banded matrix to tridiagonal form on the
GPU as this is a fine-grained computation which does not lend itself to an easy implementation
on this architecture. However, the accumulation of the orthogonal factor produced by this step
and the back-transform merely require operations alike the matrix-matrix product, which can
be efficiently computed on the GPU.

4. Experimental Results

The experimental results are reported for two target platforms representative of recent
multithreaded architectures:

– Neha: A workstation with two Intel Xeon QuadCore CPUs (E5520, Nehalem) at 2.27
GHz, with 8 MB L3 cache, 24 GB DDR3 RAM and theoretical peak performance of
145.3 GFLOPS in single precision using the 8 cores (1 GFLOPS = 109 flops/second).
Attached to a PCI-Express Gen2 interface is a NVIDIA Tesla C1060 GPU, with 240
single-precision processor cores running at 1.3 GHz, 4 GB GDDR3 RAM, and featuring
a theoretical peak performance of 933 GFLOPS in single precision.

– Dunn: A workstation with four Intel Xeon six-core CPUs (7460, Dunnington) at 2.66
GHz, 16 MB L3 cache, 256 GB DDR2 RAM, and theoretical peak performance of 510.7
GFLOPS in single precision using the 24 cores.

GotoBLAS2 version 1.10 and 1.13 were employed for all computations performed on
Neha and Dunn, respectively. NVIDIA CUBLAS 2.3 built on top of the CUDA application
programming interface 2.3 together with NVIDIA driver 190.18 were used in our tests on the
GPU. Single-precision arithmetic was employed in all experiments, though double precision is
the standard in eigenvalue computations. An experimental analysis of the analogous double
precision routines offered a similar balance between the benefits of the LAPACK routine(s)
versus the SBR two-step alternative on the CPU. On the other hand, current GPUs from
NVIDIA are not competitive in double precision, partly due to the much smaller number of
double-precision cores and to the lack of an optimized implementation of CUBLAS.

Evaluating the performance of the routines for the reduction to tridiagonal form is an
elaborate task, due to the large number of factors that have an influence on it. Among them,



we will focus on block size, bandwidth for the SBR toolbox, and number of cores. In the
experiments we aim at determining the optimal configuration of these parameters, before
proceeding to show a full comparison of the two approaches. For simplicity, we report results
for four problem sizes: 2048, 6144, 10240 and 24576, and the best bandwidths w and block
sizes b detected in each case; a complete experiment was carried out for many other values.

4.1. Building BLAS-2 and BLAS-3 kernels

We start by analyzing the performance of the kernels involved in the reduction to condensed
forms (tridiagonal and banded for the LAPACK and SBR approaches, respectively). For
the LAPACK routine sytrd, these are the symmetric matrix-vector product (symv) and
the symmetric rank-2k update (syr2k). For the SBR routine syrdb, the kernels comprise
the symmetric matrix-matrix product (symm) and syr2k. Table I reports results on 1,
4 and 8 cores of the Intel Xeon Nehalem processors in Neha. For the BLAS-3 kernels
(symm and syr2k), we also report their performance on the single GPU in this platform
using the implementation in CUBLAS as well as our own implementations, which cast most
computations in terms of the general matrix-matrix product [10] (column labeled as “Our
BLAS”). Table II collects the results of the analogous experiment using 1, 4, 8, 16 and 24
cores of the Intel Xeon Dunnington processors in Dunn. The matrix dimensions of syr2k and
symm are chosen so that they match the shape of the blocks encountered during the reduction
to condensed forms (n is the problem size, while k plays the role of the block size b for sytrd

and that of the bandwidth w for syrdb). For reference, we also include the performance of
the general matrix-vector product (gemv) and matrix-matrix product (gemm) kernels.

The performance of symv increases with the number of cores and is significantly higher
than that of gemv. When the problem size is n = 2048, the matrix fits into the L3 caches of
Neha (8 MB) and Dunn (16 MB), which explains the much higher GFLOPS rate of symv.
The same does not hold for gemv as all the matrix needs to be stored and not just half of it
(lower or upper triangle).

The two BLAS-3 kernels present different performance behavior depending on the system:
both routines increase their GFLOPS rates with the number of cores on Neha. On Dunn,
kernel syr2k exhibits a performance line much similar to that of Neha. On the other hand,
the performance of kernel symm scales with the number of cores on Dunn when the problem
size is large relative to it; otherwise, GotoBLAS2 simply reverts to using a single thread in the
execution (a clear example of this is the GFLOPS rates attained by this routine for n=10240
and k=32 or 64 on 24 cores, which are identical to those attained using a single core.) This
behavior plays a key role in the global performance of the whole reduction process.

The results also illustrate the performance delivered by the GPU for most BLAS-3 kernels,
higher than that offered by any of the CPUs evaluated. Although our own implementations of
the symmetric BLAS-3 kernels for the GPU deliver a higher GFLOPS rate than those from
CUBLAS, they are still quite below the performance of the matrix-matrix product kernel in
CUBLAS. The improvement in the performance of the symm kernel is of particular relevance
for the reduction to tridiagonal form using the SBR routines.



symv. y := Ax + y gemv. y := Ax + y

A ∈ R
n×n symmetric, x, y ∈ R

n A ∈ R
n×n, x, y ∈ R

n

n 1 core 4 cores 8 cores 1 core 4 cores 8 cores

2048 8.26 34.5 60.0 5.15 8.47 8.31
6144 7.80 17.7 21.6 5.07 9.13 10.7

10240 6.69 18.3 22.1 4.70 9.26 11.2
24576 5.75 16.0 21.0 3.16 8.45 10.8

syr2k. C:= ABT + BAT + C gemm. C := ABT + C

A, B ∈ R
n×k, C ∈ R

n×n symmetric A, B ∈ R
n×k, C ∈ R

n×n

n k 1 core 4 cores 8 cores CUBLAS Our BLAS 1 core 4 cores 8 cores CUBLAS

2048
32 14.0 55.4 91.0 53.2 53.2 15.0 58.6 116.4 157.2
64 15.5 62.5 116.3 74.4 159.2 16.7 65.9 129.3 185.5
96 16.5 65.3 122.2 78.0 162.9 17.3 68.4 135.9 192.2

6144
32 13.6 50.3 89.6 55.9 56.0 15.0 59.6 106.9 161.0
64 15.7 59.8 112.3 78.4 124.2 16.7 66.6 123.1 185.0
96 16.8 64.4 122.6 81.8 126.3 17.4 69.2 137.8 195.1

10240
32 13.8 51.2 83.9 56.4 56.4 15.0 59.6 116.5 159.3
64 15.8 60.9 113.8 79.2 114.2 16.7 66.7 130.6 182.2
96 16.9 65.3 123.7 78.1 116.7 17.5 69.4 137.7 187.3

24576
32 13.9 51.0 89.9 57.4 53.4 14.7 58.3 108.9 156.0
64 16.0 60.9 113.6 79.1 116.9 16.6 64.6 129.9 186.2
96 16.5 65.1 123.9 83.4 112.2 17.3 68.8 137.5 189.9

symm. C := AB + C gemm. C := AB + C

A ∈ R
n×n symmetric, B, C ∈ R

n×k A ∈ R
n×n, B, C ∈ R

n×k

n k 1 core 4 cores 8 cores CUBLAS Our BLAS 1 core 4 cores 8 cores CUBLAS

2048
32 12.2 29.7 46.9 89.7 106.5 15.0 59.9 99.2 177.5
64 14.7 45.2 75.4 97.1 183.4 16.7 66.2 105.3 279.0
96 15.7 49.3 80.4 97.9 189.4 17.4 68.7 133.5 290.1

6144
32 11.9 28.5 42.9 94.1 129.6 15.1 59.5 116.7 327.5
64 14.5 43.9 71.8 99.1 188.4 16.8 66.5 132.2 339.3
96 15.6 48.5 77.5 100.4 198.1 17.5 69.3 132.2 338.2

10240
32 11.1 25.3 39.4 76.0 113.5 15.0 59.5 116.7 321.9
64 13.9 40.5 66.6 76.5 175.8 16.8 66.6 132.4 346.9
96 15.2 45.3 73.4 77.5 180.0 17.4 69.4 135.8 348.0

20480
32 10.8 24.8 37.9 77.8 110.0 14.7 58.3 108.4 328.0
64 13.5 39.3 63.3 66.8 176.7 16.6 66.0 131.3 344.9
96 15.0 44.6 65.7 65.9 179.0 17.3 68.9 135.3 346.0

Table I. Performance (in GFLOPS) of the BLAS kernels symv (top), syr2k (middle) and symm

(bottom) and the corresponding matrix-vector and matrix-matrix products (for reference) on Neha.
Peak performance for 1, 4 and 8 cores of this platform are 18.2, 72.6 and 145.3 GFLOPS, respectively.



symv. y := Ax + y gemv. y := Ax + y

A ∈ R
n×n symmetric, x, y ∈ R

n A ∈ R
n×n, x, y ∈ R

n

n 1 core 4 cores 8 cores 16 cores 24 cores 1 core 4 cores 8 cores 16 cores 24 cores

2048 6.33 30.7 54.6 70.1 63.8 0.93 10.3 5.88 10.4 11.1
6144 2.07 8.98 4.04 7.35 15.2 0.76 2.86 2.00 3.26 4.97

10240 2.09 7.60 3.93 6.34 8.98 0.74 2.72 2.00 3.24 4.30
24576 2.07 7.72 3.89 6.18 8.84 0.63 2.41 2.00 3.24 4.64

syr2k. C:= ABT + BAT + C gemm. C := ABT + C

A, B ∈ R
n×k, C ∈ R

n×n symmetric A, B ∈ R
n×k, C ∈ R

n×n

n k 1 core 4 cores 8 cores 16 cores 24 cores 1 core 4 cores 8 cores 16 cores 24 cores

2048
32 13.3 59.4 111.6 199.9 267.7 14.5 55.3 84.5 130.8 142.6
64 16.4 67.7 126.5 224.9 310.0 17.9 68.0 129.0 215.4 231.1
96 17.5 71.0 131.4 234.6 325.9 18.8 72.4 139.0 254.8 272.3

6144
32 10.4 45.5 31.09 56.6 117.2 12.7 48.3 42.2 65.1 78.4
64 14.8 61.3 59.10 105.4 188.4 17.1 66.7 80.9 125.6 135.4
96 16.4 66.8 83.25 145.6 243.9 18.2 71.8 113.8 182.7 192.5

10240
32 10.1 37.2 29.00 45.8 54.1 12.1 45.7 41.9 64.2 71.4
64 14.6 56.7 55.92 89.0 102.4 16.7 65.5 80.7 125.7 134.7
96 16.3 63.9 79.76 128.8 149.8 18.0 71.0 113.7 181.8 202.1

24576
32 9.49 34.9 28.73 43.7 52.2 11.2 42.8 42.0 64.2 76.1
64 14.6 56.0 55.72 85.5 101.7 16.7 65.5 81.6 126.4 150.3
96 16.3 63.7 79.39 125.1 147.9 18.1 71.5 115.6 185.0 220.8

symm. C := AB + C gemm. C := AB + C

A ∈ R
n×n symmetric, B, C ∈ R

n×k A ∈ R
n×n, B, C ∈ R

n×k

n k 1 core 4 cores 8 cores 16 cores 24 cores 1 core 4 cores 8 cores 16 cores 24 cores

2048
32 12.5 44.5 67.5 12.2 12.2 14.4 55.1 84.9 130.0 138.6
64 15.3 55.3 100.8 160.3 15.1 17.8 67.3 128.0 215.9 210.1
96 16.6 60.3 106.4 147.4 220.8 18.8 71.4 137.2 253.7 269.3

6144
32 8.45 28.9 37.3 8.42 8.42 12.8 48.4 42.2 65.9 82.2
64 11.8 42.4 64.2 89.8 11.8 17.2 66.8 81.0 126.2 157.0
96 13.7 50.1 75.9 97.1 179.0 18.3 72.0 114.2 183.9 218.9

10240
32 8.23 28.7 37.0 8.20 8.20 12.1 45.9 41.9 64.3 71.7
64 11.6 42.3 64.0 102.9 11.6 16.8 65.6 80.8 125.9 140.4
96 13.5 50.2 76.9 114.8 194.3 18.1 71.1 113.7 182.1 203.6

24576
32 8.07 28.5 36.4 8.02 8.02 11.2 42.9 42.0 64.2 76.1
64 11.5 42.1 63.3 93.4 11.4 16.8 65.6 81.6 126.2 149.8
96 13.4 50.1 75.5 100.2 168.6 18.1 71.6 115.2 185.0 220.9

Table II. Performance (in GFLOPS) of the BLAS kernels symv (top), syr2k (middle) and symm

(bottom) and the corresponding matrix-vector and matrix-matrix products (for reference) on Dunn.
Peak performance for 1, 4, 8, 16 and 24 cores of this platform are 21.3, 85.2, 170.4, 340.8 and 510.7

GFLOPS, respectively.



sytrd: ormtr:
Full→Tridiagonal Compute QXT

n b 1 core 4 cores 8 cores b 1 core 4 cores 8 cores

2048
32 1.11 0.34 0.23 128 1.22 0.41 0.27
64 1.11 0.35 0.23 192 1.23 0.41 0.28
96 1.11 0.36 0.25 256 1.27 0.41 0.27

6144
32 40.4 11.4 9.2 128 28.8 8.60 5.20
64 39.9 11.3 8.4 192 28.2 8.32 5.09
96 40.1 11.3 10.4 256 29.0 8.46 5.08

10240
32 156.3 52.4 40.6 128 128.5 36.6 21.1
64 152.5 51.9 40.5 192 127.4 35.9 21.1
96 152.6 52.1 40.9 256 126.4 35.3 21.9

24576
32 2522 812.5 590.3 128 1767 488.1 275.2
64 2453 796.8 600.9 192 1732 471.5 272.0
96 2444 795.0 582.4 256 1720 466.0 262.7

Table III. Execution time (in seconds) for the LAPACK routine on Neha.

4.2. The LAPACK approach

We next analyze the gains of a multi-core execution of the LAPACK routines sytrd and, in
case QXT is required, ormtr. Tables III and IV report the execution time (in seconds) for
different values of problem size, block size b and number of cores, on the two platforms.

Consider first the routine that performs the reduction from full to tridiagonal form, sytrd.
Obviously, the block size does not play a role in the performance of it. Increasing the number
of cores for the execution yields a reduction in the execution time on Neha but with moderate
speed-up; for example, 3x and 4.2x speed-ups are attained for the largest problem sizes using
respectively 4 and 8 cores. The behavior in Dunn is quite inconsistent: the use of 4 cores
delivers superlinear gains in some cases (n=6144 yields a 5.81x factor) but, compared with
these, 8 cores increase the execution time, and 16 cores roughly match it. 24 cores result in
the best timings, though speed-ups are poor; e.g., 2.2x, 3.8x and only 5.7x for 8, 16 and 24
cores, respectively, with n=10240.

Applying the orthogonal transformations by the routine ormtr requires less time and is,
in general, more efficient than the reduction stage. This is to be expected, as most of the
computations in ormtr are performed by BLAS-3 kernels (gemm), while only half of those in
sytrd are BLAS-3. Representative speed-ups of routine ormtr in Neha are 3.7x and 6.6x,
attained respectively using 4 and 8 cores for the largest problem size. Efficiency in Dunn is
still reasonable for 4 cores, but rapidly drops for 8 and more cores. Note also that this routine
benefits from using larger block sizes (e.g., 192 and 256) than the optimal for sytrd.

4.3. The SBR approach

We next study the parallelism of the two-step SBR approach: reduction of a general matrix
to banded form (syrdb) and subsequent reduction to tridiagonal form (sbrdt). Also, we
include in the analysis the routines that construct the orthogonal factor Q (sygtr to build



sytrd: ormtr:
Full→Tridiagonal Compute QXT

n b 1 core 4 cores 8 cores 16 cores 24 cores b 1 core 4 cores 8 cores 16 cores 24 cores

2048
32 1.68 0.51 0.37 0.40 0.50 128 1.28 0.56 0.41 0.33 0.32
64 1.73 0.53 0.38 0.40 0.50 192 1.28 0.53 0.39 0.33 0.31
96 1.81 0.55 0.39 0.42 0.51 256 1.30 0.53 0.39 0.33 0.31

6144
32 89.5 15.3 33.2 14.6 8.63 128 32.5 12.0 9.05 7.05 6.41
64 88.9 15.6 33.0 14.8 7.44 192 30.8 11.2 8.27 6.54 5.70
96 90.6 16.3 33.7 15.3 8.23 256 31.0 11.2 8.22 6.47 5.87

10240
32 429.6 107.0 190.4 111.5 74.2 128 144.4 47.8 35.0 25.7 23.4
64 419.6 105.8 185.9 109.5 73.5 192 137.0 45.2 32.2 23.9 21.3
96 423.5 107.6 186.4 110.1 74.1 256 133.4 43.7 30.6 22.6 20.1

24576
32 6037 1591 2780 1742 1255 128 1933 561.5 375.9 255.1 230.3
64 5779 1529 2683 1681 1202 192 1798 518.3 336.4 229.0 182.4
96 5790 1534 2665 1668 1194 256 1752 498.5 320.2 211.8 178.7

Table IV. Execution time (in seconds) for the LAPACK routine on Dunn.

QB and sbrdt to accumulate Q = QBQT ) and compute QXT (gemm) in the back-transform.
Remember that while the computational cost of the first step is inversely proportional to the
bandwidth w, the cost of the second step is directly proportional to it. In other words, a larger
bandwidth requires a smaller amount of computation for the first step, transferring more flops
to the second step.

Tables V and VI display results for these experiments on the two platforms. For the
discussion, consider the following five cases:

1. Reduction of a dense matrix to banded form (Step 1). On both platforms, the usage of
a larger number of cores or the increase of the bandwidth results in a smaller execution
time. The execution time on the GPU, on the other hand, is quite independent of w and
outperforms the Intel-based architectures for all problem sizes except n=2048.

2. Reduction of banded matrix to tridiagonal form (Step 2). Using more than a single core
yields no gain. As expected, a larger value of w results into a longer execution time of
this step when using one core. For multi-threaded implementations, there is a reduction
in the execution time as the bandwidth is increased. However, the execution time is still
smaller for the sequential execution even for those values of w.

3. Building the orthogonal factor resulting from Case 1 (Step 1). On the Intel cores, the
execution time and parallelism of routine sygtr is quite similar to those of syrdb

discussed in Case 1. Compared with the results obtained on 8 cores of Neha, the GPU
in this platform accelerates the execution by a considerable factor, between 2.5x–3x.

4. Accumulating the orthogonal transforms corresponding to Case 2 (Step 2). By far, this
is the most expensive operation of the five cases in the Intel cores, though it exhibits a
certain degree of parallelism, which helps in reducing its weight on the overall process.
The speed-up attained by the GPU for the larger problem dimensions is impressive.

5. Back-transform. The cost of this operation is comparable to that in Case 3. The best
result is always attained on 8 cores and the GPU yields a notable acceleration.



1st step (syrdb): 2nd step (sbrdt):
Full→Band Band→Tridiagonal

n w 1 core 4 cores 8 cores GPU 1 core 4 cores 8 cores

2048
32 0.89 0.34 0.23 0.21 0.37 1.64 1.72
64 0.81 0.28 0.19 0.20 0.45 1.08 1.03
96 0.80 0.27 0.19 0.22 0.57 0.90 0.91

6144
32 23.6 8.3 5.2 2.78 3.48 14.93 17.1
64 20.8 6.2 3.7 2.27 4.88 9.92 10.1
96 19.9 5.9 3.6 2.29 5.42 8.23 8.91

10240
32 112.6 41.1 26.7 10.81 9.51 41.1 43.3
64 95.9 29.6 18.7 9.72 11.7 27.5 26.3
96 90.9 27.3 16.1 10.39 15.1 23.1 25.3

24576
32 1589 569.0 354.3 112.6 54.2 237.3 258.0
64 1330 404.3 235.5 99.3 72.9 159.2 157.7
96 1251 370.7 220.5 105.3 96.8 133.3 140.3

1st step (sygtr): 2nd step (sbrdt):
Build QB Accum. Q = QBQT

n w 1 core 4 cores 8 cores GPU 1 core 4 cores 8 cores GPU

2048
32 0.81 0.33 0.25 0.07 2.31 1.28 1.38 0.76
64 0.73 0.26 0.20 0.04 1.86 0.83 0.55 0.42
96 0.70 0.25 0.19 0.03 1.61 0.54 0.36 0.26

6144
32 21.2 7.35 7.04 1.68 65.4 33.0 35.7 6.24
64 19.0 5.83 3.86 1.77 51.8 22.1 14.5 3.09
96 18.3 5.62 3.67 1.75 44.3 14.5 9.5 1.74

10240
32 97.5 32.5 22.7 6.81 291.0 150.8 163.4 32.4
64 87.5 25.6 17.2 6.44 235.1 102.3 66.6 12.6
96 84.1 24.7 16.5 5.61 203.1 67.2 43.9 6.27

24576
32 1399 456.8 310.7 94.6 4149 2166 2403 101.8
64 1232 353.0 217.3 88.0 3390 1465 956.6 55.3
96 1177 377.7 207.6 81.0 2898 969.9 638.8 30.9

Back-transform (gemm):
Comp. QXT

n 2048 6144 10240 24576

8 cores 0.12 3.36 15.0 209.5
GPU 0.07 1.50 6.46 89.3

Table V. Execution time (in seconds) for the SBR routines on Neha.

Note that a study needs to take into account that the choice of bandwidth cannot be done
independently for different cases. Therefore, we delay further comments on the data in the
previous tables to the next subsection. There, we elaborate on the optimal combination of the
factors that determine the overall performance of this approach.

4.4. Comparing the two approaches

Even though the routines that tackle the symmetric eigenvalue problem are nicely structured
as a sequence of steps, these are not independent. As a consequence, the tuning of parameters



1st step (syrdb): 2nd step (sbrdt):
Full→Band Band→Tridiagonal

n w 1 core 4 cores 8 cores 16 cores 24 cores 1 core 4 cores 8 cores

2048
32 0.89 0.52 0.36 0.74 0.77 0.43 3.73 3.84
64 0.80 0.41 0.29 0.28 0.65 0.54 2.66 2.62
96 0.79 0.38 0.27 0.27 0.28 0.78 2.28 2.30

6144
32 30.1 10.7 8.75 20.2 19.7 3.98 33.7 34.8
64 22.8 7.74 5.60 3.97 15.1 5.48 24.3 23.9
96 21.2 6.85 4.80 3.57 27.8 8.85 21.1 21.2

10240
32 145.6 44.7 39.4 98.7 97.2 10.7 94.0 96.9
64 106.5 31.5 23.3 15.8 68.9 18.5 67.8 66.6
96 97.5 28.0 19.2 13.6 10.2 29.6 59.3 59.1

24576
32 2137 592.2 525.5 1400 1379 85.1 541.5 559.4
64 1483 401.5 296.5 198.2 950.5 136.0 391.9 384.6
96 1342 354.3 236.5 166.4 119.2 202.3 345.8 342.0

1st step (sygtr): 2nd step (sbrdt):
Build QB Accum. Q = QBQT

n w 1 core 4 cores 8 cores 16 cores 24 cores 1 core 4 cores 8 cores 16 cores

2048
32 0.96 0.54 0.41 0.77 0.79 3.08 8.36 4.07 8.95
64 0.81 0.41 0.31 0.28 0.60 2.23 3.36 2.49 6.53
96 0.76 0.37 0.28 0.27 0.27 1.73 2.34 0.72 5.13

6144
32 29.8 11.0 10.3 20.9 20.9 96.5 155.1 100.8 149.9
64 22.6 8.21 6.64 5.06 15.1 67.2 43.0 61.5 97.5
96 20.8 7.33 5.65 4.49 3.89 53.3 28.9 14.4 75.8

10240
32 145.1 45.3 44.5 98.2 97.0 468.0 665.9 463.1 616.6
64 106.6 33.8 27.8 20.4 69.3 323.3 155.2 284.5 382.5
96 97.1 30.6 23.5 17.9 15.2 254.8 103.0 60.3 296.1

24576
32 2268 619.7 552.9 1469 1446 7194 8471 6724 7469
64 1531 423.6 323.4 230.9 988.7 4826 1403 4113 4133
96 1363 376.3 262.8 196.3 151.2 1160 988.2 793.0 3145

Back-transform (gemm):
Comp. QXT

n 2048 6144 10240 24576

24 cores 0.09 1.48 6.56 80.8

Table VI. Execution time (in seconds) for the SBR routines on Dunn.

for each step in general cannot be done separately. For example, the bandwidth has to be kept
constant through all the routines involved in the reduction. The block size, instead, can be
adjusted for each routine. Additionally, on the multi-core processors, one may choose the degree
of parallelism for each routine by fixing the number of threads employed for its execution. As
an example, consider the reduction to tridiagonal form of a problem of size n = 10240 when
performed on Dunn using the SBR routines. For bandwidths w = 32, 64 and 96, the best
timings for the reduction to banded form using the corresponding SBR routine are 39.4, 15.8,
and 10.2 seconds, using 8, 16 and 24 cores, respectively. The cost for the next stage, reduction
from banded to tridiagonal form, is minimized when a single core is used, resulting in 10.7, 18.5
and 29.6 seconds for bandwidths 32, 64 and 96, respectively. Overall, the best combination,



Reduction to tridiagonal form
LAPACK SBR

n Neha Dunn Neha Neha+GPU Dunn

2048 0.23 0.37 0.6 0.58 0.79
6144 8.4 7.44 8.58 6.26 9.45

10240 40.5 73.5 30.4 20.32 34.3
24576 582.4 1194 308.4 166.8 321.5

Reduction to tridiagonal form and back-transform
LAPACK SBR

n Neha Dunn Neha Neha+GPU Dunn

2048 0.50 0.68 1.77 1.12 3.14
6144 13.5 13.1 29.0 12.7 44.5

10240 61.6 93.6 116.8 43.8 151.3
24576 845.1 1371.7 1416.7 403.3 1486.3

Table VII. Comparison of the execution time (in seconds) for the the LAPACK and SBR routines on
Neha and Dunn.

totaling 33.9 seconds, corresponds to bandwidth 64, using 16 cores for the first step and a
single core for the second.

In Table VII, we collect results for an experimental comparison of the two approaches on
the three architectures: Neha, the GPU in this platform for all steps except the reduction
from banded to tridiagonal form using the SBR routines (labeled as “Neha+GPU”), and
Dunn. For small and middle problem sizes, LAPACK is the fastest approach. For the largest
dimensions, the SBR approach greatly benefits from the acceleration enabled by the GPU,
and outperforms LAPACK both in the reduction and back-transform stages.

In the reduction stage, the GPU delivers speed-ups of 1.49x and 1.85x for the two largest
problem sizes compared with the best options (SBR or LAPACK) on any of the two Intel-based
architectures. When the back-transform is also required, the speedups for these problem sizes
become 1.29x and 2.69x.

5. Concluding Remarks

We have evaluated the performance of existing codes for the reduction of a dense matrix to
tridiagonal form and back-transform in the context of the symmetric eigenvalue problem. Two
modern Intel 8-core and 24-core platforms were employed in this evaluation, representative of
current high-end processors.

Our experimental results confirm that the two-stage approach proposed in the SBR toolbox
(reduction from full to banded form in the first stage followed by a reduction from banded to
tridiagonal form in a second stage) delivers a higher parallel scalability than the LAPACK-
based alternative on general-purpose multi-core architectures. However, when the orthogonal
factors that define the back-transform have to be constructed and applied in the last stage,
this results in a computation time considerably larger than that for LAPACK.



The use of a hardware accelerator like a GPU changes the message: By off-loading the level-3
BLAS operations in the SBR codes to an NVIDIA 240-core GPU, remarkable speed-ups are
attained to the point that the SBR toolbox becomes a competitive alternative to the standard
LAPACK-based one. The reward did not come effortless, though. Specifically, the gains came
from two improvements: 1) a reformulation of the CUBLAS symmetric rank-2k update and the
symmetric matrix-matrix product, and 2) a careful modification of the SBR routines to exploit
the hardware elements of the hybrid CPU-GPU architecture and to minimize the number of
data transfers between the host and the device memory spaces.
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