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Abstract

The sensitivity of a multiple eigenvalue of a matrix under perturbations can be mea-
sured by its Hölder condition number. Various extensions of this concept are considered.
A meaningful notion of structured Hölder condition numbers is introduced and it is shown
that many existing results on structured condition numbers for simple eigenvalues carry
over to multiple eigenvalues. The structures investigated in more detail include real,
Toeplitz, Hankel, symmetric, skew-symmetric, Hamiltonian, and skew-Hamiltonian ma-
trices. Furthermore, unstructured and structured Hölder condition numbers for multiple
eigenvalues of matrix pencils are introduced. Particular attention is given to symmet-
ric/skew-symmetric, Hermitian and palindromic pencils. It is also shown how matrix
polynomial eigenvalue problems can be covered within this framework.

1 Introduction

Eigenvalue condition numbers asymptotically measure the sensitivity of an eigenvalue with
respect to perturbations. If λ is a simple eigenvalue of a matrix A ∈ Cn×n then it is well
known that λ is differentiable with respect to perturbations in A and that the eigenvalue λ̂(ε)
of the perturbed matrix A+ εE admits the expansion

λ̂ = λ+ (yHEx)ε+O(ε2), ε→ 0, (1)

where x and y are, respectively, a right and a left eigenvector of A (normalized so that
|yHx| = 1) corresponding to λ. Then the absolute condition number for λ, defined as

κ(A, λ) = lim
ε→0

sup
‖E‖≤1

E∈Cn×n

|λ̂− λ|
ε

, (2)

is given by κ(A, λ) = ‖x‖2 ‖y‖2 for any unitarily invariant norm ‖ · ‖. One way to show this
is to consider E = yxH/(‖x‖2 ‖y‖2), which – by inserting in (1) – can be seen to attain the
supremum in (2).
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Much of the recent research on eigenvalue condition numbers has been devoted to the case
when the perturbation E is known to be in a set S ⊂ Cn×n of structured matrices. In this case,
it is more appropriate to restrict the supremum in (2) to E ∈ S, giving rise to the structured
eigenvalue condition number κ(A, λ; S). In [9, 40], computable expressions of κ(A, λ; S) for
general linear structures S have been developed. This has been extended to smooth nonlinear
structures in [16]. A simplified expression for zero-structured matrices can be found in [28].
Trivially, κ(A, λ; S) ≤ κ(A, λ). It naturally gives rise to the question whether κ(A, λ; S) can
be much smaller than κ(A, λ), or, in other words, whether λ can be much less sensitive
to structured perturbations than to unstructured ones. For surprisingly many structures S
the answer to this question is negative in the sense that κ(A, λ; S) is always at most within
a small factor of κ(A, λ). This has been shown for S = Rn×n in [3], as well as for real
skew-symmetric, skew-Hermitian, Hankel, Toeplitz, Hamiltonian, persymmetric, circulant,
orthogonal, unitary, and related structures in [16, 32]. Practically relevant examples for which
κ(A, λ; S) � κ(A, λ) is possible include complex skew-symmetric [32], zero-structured [28],
and symplectic matrices [16].

If λ is a multiple eigenvalue of algebraic multiplicity m, there is generally not an expansion
of the form (1). Instead, λ bifurcates into m perturbed eigenvalues λ̂k(ε), each admitting a
fractional expansion

λ̂k = λ+ αγk
k ε

γk + o(ε), ε→ 0, k = 1, . . . ,m, (3)

with αk > 0 and 0 < γk ≤ 1 [20, 42, 27]. Under generically satisfied conditions on E, Lidskii’s
theory [20] states that each Jordan block Jnj (λ) of size nj × nj gives rise to nj perturbed
eigenvalues satisfying the expansion (3) with γk = 1/nj . Motivated by these results, the
Hölder condition number for λ is defined in [27] as the pair

κ(A, λ) = (n1, α), (4)

where 1/n1 is the smallest possible power γk of ε in (3) for any perturbation E. The scalar
α1/n1 > 0 is the largest possible magnitude of the coefficient of ε1/n1 for all E with ‖E‖ ≤ 1.
While n1 happens to be the size of the largest Jordan block belonging to λ, we have

α1/n1 = lim
ε→0

sup
‖E‖≤1

E∈Cn×n

max
k=1,...,m

|λ̂k − λ|
ε1/n1

. (5)

(see also [5, p. 156] for a similar definition of condition number for multiple eigenvalues, and
[4] for its relationship with κ(A, λ)). An explicit formula for α can be found in [27], see also
Section 2. Let us emphasize that for certain nongeneric perturbations E, the value of γk can
be larger than 1/n1 for all λ̂k. This is demonstrated by the following example [43, 27]. The
characteristic polynomial of

A+ εE =


0 1 0

0 1
0 ε

0 1
ε 0

 (6)

is ε2 − λ5. Thus, γk = 2/5 for all λ̂k in (3) while 1/n1 = 1/3.
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The purpose of this paper is to investigate various extensions of the condition number (4).
In particular, we are interested in the case when E is restricted to a set S of structured
matrices, leading to the notion of a structured Hölder condition number κ(A, λ; S) = (nS, αS).
We begin by noting that there exist structures S for which nS can be smaller than n1. Consider,
for instance, the following example, taken from [29]: S is the set of complex skew-symmetric
matrices,

A =


0 1 0 1
−1 0 −i 0
0 i 0 i
−1 0 −i 0

 ∈ S, (7)

and λ = 0 with geometric multiplicity two and largest Jordan block of size 3, i.e., n1 = 3.
However, any complex skew-symmetric perturbation E ∈ S gives rise to O(ε1/2) perturbed
eigenvalues so, according to Definition 3.1 below, nS = 2 < n1.

However, for most structures under consideration we have nS = n1. In this case, it makes
sense to compare αS with its unstructured counterpart α. As will be shown in Section 3, many
of the results from [3, 16, 32] on structured condition numbers for simple eigenvalues carry
over to multiple eigenvalues. A notable exception to nS = n1 are complex skew-symmetric
matrices, whose zero eigenvalues may exhibit nS < n1; this is exemplified by (7). The relation
nS = n1 holds for nonzero eigenvalues of a complex skew-symmetric matrix, but αS can be
significantly smaller than α, a fact that has been already observed in [32, 16]. In this paper,
we not only provide additional insight by deriving explicit expressions for αS, but also cover
the more general class of matrices that are skew-symmetric with respect to an orthosymmetric
bilinear form.

Hölder condition numbers for the generalized eigenvalues of a regular matrix pencil A−λB
can be defined similarly employing the perturbation expansions of Langer and Najman [17,
18, 19], see also [6]. Structured Hölder condition numbers for eigenvalues of pencils can be
defined analogously, and have received lately some attention: results for simple eigenvalues
of linearly structured pencils can be found in [9], and for multiple eigenvalues of definite
Hermitian matrix pencils in [35, 36]. The problem of estimating the (multiple) eigenvalue
sensitivities for parameter-dependent matrix pencils is closely related, see [1, 37, 45] and
references therein. To our knowledge, the results provided in this paper on structured Hölder
condition numbers for real, symmetric/skew-symmetric, Hermitian, as well as palindromic
matrix pencils are new, even for simple eigenvalues. Furthermore, this framework also allows
to cover matrix polynomial eigenvalue problems by imposing block companion structure.

The rest of this paper is organized as follows. In Section 2 we recall definitions and provide
some basic results on unstructured and structured Hölder condition numbers for multiple
eigenvalues of matrices. Section 3 is devoted to structured Hölder condition numbers for real,
Toeplitz, and Hankel matrices, as well as for matrix classes that form Jordan or Lie algebras
associated with an orthosymmetric bilinear or sesquilinear form. Section 4 is concerned with
Hölder condition numbers for multiple eigenvalues of generalized eigenvalue problems, first
for (structured) matrix pencils and then for matrix polynomials via companion form. Finally,
some conclusions and open issues not addressed in this paper can be found in Section 5.

3



2 Preliminaries

In the following, we summarize the part of the discussion of Lidskii’s results in [27] that leads
to the condition number (4). Let λ be an eigenvalue of A ∈ Cn×n and let n1 be the size of the
largest Jordan block corresponding to λ. The Jordan canonical form of A, can be written as[

J 0
0 J̃

]
=

[
Q‹Q ]

A
î
P ‹P ó , (8)

where [
Q‹Q ] î

P ‹P ó = I (9)

and J consists of all n1 × n1 Jordan blocks corresponding to λ. Specifically, we have

J = diag(Γ1
1, . . . ,Γ

r1
1 ), Γ1

1 = · · · = Γr11 =


λ 1

. . . . . .
. . . 1

λ

 ∈ Cn1×n1 . (10)

The block J̃ contains all Jordan blocks corresponding to λ with dimension smaller than n1,
as well as all Jordan blocks corresponding to eigenvalues different from λ.

The columns of P form r1 linearly independent Jordan chains of length n1, each of which
starts with an eigenvector of A. Collecting these starting vectors in an n×r1 matrix X yields

X =
î
Pe1, P en1+1, . . . , P e(r1−1)n1+1

ó
, (11)

where ei denotes the ith unit vector of length n. Similarly we collect in

Y =
î
QHen1 , Q

He2n1 , . . . , Q
Her1n1

ó
(12)

the left eigenvectors chosen from the r1 independent Jordan chains of length n1 appearing
as rows of Q. Note that each column of Y represents a left eigenvector of A belonging to λ.
Notice also that the relation (9) implies Y HX = I if n1 = 1, and Y HX = 0 otherwise. With
these preparations we can state a highly abridged version of Lidskii’s result.

Theorem 2.1 ([20, 27]) Let E ∈ Cn×n such that Y HEX is invertible, where X and Y are
defined as above. Then there are n1r1 eigenvalues of the perturbed matrix A + εE admitting
a perturbation expansion

λ̂k = λ+ (ξk)1/n1ε1/n1 + o(ε1/n1), k = 1, . . . , r1, (13)

where ξ1, . . . , ξr1 are the eigenvalues of Y HEX.

SinceX and Y have linearly independent columns, the invertibility of Y HEX is generically
satisfied for a general perturbation E in Cn×n. Within a set S of structured perturbations
E, however, it may happen that Y HEX is not generically invertible. Fortunately, the result
of Theorem 2.1 remains valid even if Y HEX is singular. This follows from a very general
theory by Moro, Burke, and Overton [27] on the connection between Newton diagrams and
eigenvalue perturbation expansions.
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Remark 2.2 (see [27, Pg. 809]) Let E ∈ Cn×n such that Y HEX is singular. Then each
of the β < r1 nonzero eigenvalues ξ1, . . . , ξβ of Y HEX gives rise to n1 perturbation expansions
of the form (13). The remaining r1 − β zero eigenvalues correspond to expansions where the
exponent of the leading nonzero perturbation term is strictly larger than 1/n1.

Theorem 2.1 implies that, for sufficiently small ε, the worst-case change in λ is caused by an
eigenvalue of Y HEX that is as large as possible in magnitude. This motivates the following
definition.

Definition 2.3 ([27]) Let λ be an eigenvalue of A ∈ Cn×n, and let the Jordan canonical form
of A be given by (8). The (absolute) Hölder condition number of λ is given by κ(A, λ) =
(n1, α), where n1 is the size of the largest Jordan block associated with λ in (8) and

α = sup
‖E‖≤1

E∈Cn×n

ρ(Y HEX), (14)

where ρ(·) denotes the spectral radius of a matrix.

We have ρ(Y HEX) = ρ(EXY H) ≤ ‖EXY H‖2 ≤ ‖XY H‖2 for the matrix 2-norm ‖ · ‖2.
To show equality, we have to construct a perturbation E so that ρ(Y HEX) = ‖XY H‖2 is
attained. The following basic lemma helps identify such perturbations.

Lemma 2.4 Let
XY H = UΣV H

be a singular value decomposition, such that U ∈ Cn×r1, V ∈ Cn×r1 have orthonormal
columns and Σ = diag(σ1, . . . , σr1) with σ1 ≥ · · ·σr1 ≥ 0. Consider E = V DUH with
D = diag(1, δ2, . . . , δr1) such that δj ≤ 1. Then ρ(Y HEX) = ‖XY H‖2.

Proof. The result follows from

ρ(Y HEX) = ρ(EXY H) = ρ(V DΣV H) = ρ(DΣ) = ‖DΣ‖2 = ‖Σ‖2 = ‖XY H‖2.

Note that the definition of α in (14) depends on the norm ‖ · ‖ used in the constraint
‖E‖ ≤ 1. For unitarily invariant norms, we have the following result.

Theorem 2.5 ([27]) The Hölder condition number (n1, α) of an eigenvalue λ satisfies α =
‖XY H‖2 for any unitarily invariant norm ‖ · ‖ in (14).

Proof. Setting D = diag(1, 0, . . . , 0) and E = V DUH in Lemma 2.4 gives ‖E‖ = 1 and
thus proves α = ‖XY H‖2.

It is important to note that for a specific norm, other choices of D than the one used in
the above proof are possible. E.g., for ‖ · ‖ ≡ ‖ · ‖2, any E in the sense of Lemma 2.4 gives
‖E‖2 = 1. In particular, setting D = Σ/σ1 yields

E =
Y XH

‖XY H‖2
, (15)

which resembles the classical perturbation matrix for simple eigenvalues [43]. This type
of perturbation will be often used when proving that the structured and the unstructured
condition numbers coincide for the 2-norm. Another class of perturbations which turns out
to be very useful is given by the following lemma.
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Lemma 2.6 Let u1, v1 ∈ Cn×n with ‖u1‖2 = ‖v1‖2 = 1 be left/right singular vectors belonging
to the largest singular value of XY H . Choose E ∈ Cn×n such that Eu1 = βv1 with |β| = 1.
Then ρ(EXY H) ≥ ‖XY H‖2.

Proof. Let XY H = UΣV H be a singular value decomposition with U = [u1, . . . , un],
V = [v1, . . . , vn]. Then

ρ(EXY H) = ρ(EUΣV H) = ρ(V HEUΣ) = ρ(V H [βv1, Ev2, . . . , Evn]Σ)

= ρ

Çñ
β‖XY H‖2 ?

0 ?

ôå
≥ ‖XY H‖2.

3 Structured Hölder condition numbers

Throughout the whole section, λ denotes an eigenvalue of A with Hölder condition number
κ(A, λ) = (n1, α). The matrices X and Y are defined as in (11) and (12), respectively.

Restricting the range of admissible perturbations E from Cn×n to a subset S ⊂ Cn×n

leads to a corresponding structured condition number κ(A, λ; S) = (nS, αS).

Definition 3.1 Let λ be an eigenvalue of A ∈ Cn×n, and let S be a subset of Cn×n. The (ab-
solute) structured Hölder condition number of λ is given by κ(A, λ; S) = (nS, αS), where 1/nS
is the smallest possible power γk of ε in the eigenvalue expansion (3) among all perturbations
E ∈ S, while αS > 0 is the largest possible magnitude of αk in (3) for all E ∈ S with ‖E‖ ≤ 1.

As shown by example (7), it may happen that nS < n1, but in this paper we focus on the
cases when nS = n1. If so, then by Theorem 2.1 and Remark 2.2 we can write

αS = sup
‖E‖≤1

E∈S

ρ(Y HEX). (16)

Note that the right-hand side in this expression becomes zero if and only if nS < n1.
It turns out that the presence of the spectral radius in (16) considerably complicates the

task of finding explicit formulas or reasonable bounds for αS. However, we will see that it is
often possible to identify structures with αS ≈ α by constructing a perturbation E ∈ S for
which ρ(Y HEX) is close to α.

3.1 Real matrices

As a first example, we point out that restricting the perturbation to be real can, at best,
mildly improve the sensitivity of λ. This has been shown for a simple eigenvalue λ in [3]. The
following lemma is a generalization to multiple eigenvalues.

Lemma 3.2 Let A ∈ Cn×n. We have κ(A, λ; Rn×n) = (n1, αR) with

(i). α/2 ≤ αR ≤ α in any unitarily invariant norm ‖ · ‖;

(ii). and αR = α in the matrix 2-norm, ‖ · ‖ ≡ ‖ · ‖2, provided that A is a normal matrix.
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Proof. Decomposing XY H = MR + ıMI with MR,MI ∈ Rn×n gives ‖MR‖2 ≥ ‖XY H‖2/2
or ‖MI‖2 ≥ ‖XY H‖2/2. W.l.o.g., we may assume ‖MR‖2 ≥ ‖XY H‖2/2. Let us consider
the perturbation E = v1u

T
1 ∈ Rn×n, where u1 and v1 are normalized left and right singular

vectors belonging to the largest singular value of MR. Then ‖E‖ = 1 and

ρ(EXY H) = ρ(v1u
T
1 (MR + ıMI)) = |uT1 (MR + ıMI)v1|

≥ |uT1 MRv1| = ‖MR‖2 ≥ ‖XY H‖2/2,

which proves αR ≥ α/2. To show the second part, note that we can choose Y = X if A is
normal and thus E = I ∈ Rn×n gives ρ(EXXH) = α = αR.

Remark 3.3 In the case r1 = 1 (one single Jordan block of largest size n1), we can use the
same arguments as in [3] to improve the lower bound of Lemma 3.2 (i) to α/

√
2 ≤ αR. It is

not clear to us whether this slightly stronger result holds for r1 > 1.

Suppose that S is a structure such that for any E ∈ S the real and imaginary parts of
E are both in S ∩ Rn×n. For a simple eigenvalue λ, Rump [32] has extended the bounds of
Lemma 3.2 to structured condition numbers in the sense that restricting the perturbations
from S to S∩Rn×n improves the condition number by at most a factor of 1/

√
2. By a trivial

extension of [32, Lemma 3.1], this result holds for the case r1 = 1 but it is difficult to show
that a similarly general result holds for an eigenvalue having multiple Jordan blocks of largest
size. The following lemma is only a first step in this direction.

Lemma 3.4 Let SR be a subset of Rn×n and let S = SR + ıSR be the set of all matrices with
real and imaginary part in SR. If there is a rank one matrix E ∈ S with ‖E‖ = 1 such that
αS = ρ(Y HEX) then

αS/4 ≤ αSR ≤ αS

in the Frobenius and the matrix 2-norm, ‖ · ‖ ∈ {‖ · ‖F , ‖ · ‖2}.

Proof. We can write E = vuH for u, v ∈ Cn×n with ‖u‖2 = ‖v‖2 = 1. Decomposing
u = uR + ıuI and v = vR + ıvI with uR, uI , vR, vI ∈ Rn gives

αS = |uHXY Hv| = |(uTRXY HvR + uTI XY
HvI)− ı(uTI XY HvR − uTRXY HvI)|.

At least one of the two bracketed terms in this sum is not smaller than αS/2 in magni-
tude. Suppose |uTRXY HvR + uTI XY

HvI | ≥ αS/2 and set U = [uR, uI ], V = [vR, vI ]. Then
|trace(UTXY HV )| ≥ αS/2 implying ρ(UTXY HV ) ≥ αS/4. Thus, the real perturbation
ER = V UT (which is the real part of E) yields αSR ≥ ρ(ERXY H) ≥ αS/4 while ‖ER‖2 ≤ 1
and ‖ER‖F ≤ 1, which completes the proof. The case |uTI XY HvR − uTRXY HvI | ≥ αS/2 is
treated analogously.

3.2 General linear structures

Let us briefly investigate the rather general case that S is a linear matrix space in Fn×n
with F ∈ {R,C}. Using an approach developed by Higham and Higham [9], we consider a
fixed basis {M1, . . . ,Ml} of S that is orthonormal with respect to the matrix inner product.
Then for each perturbation E ∈ S there is a unique vector p = [p1, . . . , pl]T ∈ Fl so that
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E = p1M1 + · · · + plMl and ‖E‖F = ‖p‖2. If nS = n1, the structured condition number
κ(A, λ; S) = (n1, αS) satisfies

αS = sup
‖p‖2≤1

p∈Fl

ρ
Ä
p1Y

HM1X + · · ·+ plY
HMlX

ä
(17)

for the Frobenius norm ‖ · ‖ ≡ ‖ · ‖F . Maximizing a nonsymmetric spectral function is known
to be a nontrivial optimization problem, see, e.g., [2]. We therefore see little hope to find an
explicit expression for αS in general. There are two special cases for which αS can be (nearly)
determined.

1. The case r1 = 1 (X and Y are vectors) can be treated the same way as the case of
simple eigenvalues [9, 40]. Defining the pattern matrix

M = [vec(M1), . . . , vec(Ml)], (18)

where vec stacks the columns of a matrix into a long vector, we can write vec(E) =Mp,
and therefore

αS = sup
‖p‖2≤1

p∈Fl

|p1Y
HM1X + · · ·+ plY

HMlX| = ‖(XT ⊗ Y H)M‖2

when F = C, or when F = R and X,Y ∈ Rn. For F = R and X,Y 6∈ Rn, we can show
as in [16, Section 2] that ‖(XT ⊗ Y H)M‖2/

√
2 ≤ αS ≤ ‖(XT ⊗ Y H)M‖2.

2. If F = C and all matrices Nj = Y HMjX are Hermitian then

αS = sup
‖p‖2≤1

p∈Cl

‖p1N1 + · · ·+ plNl‖2

= sup
‖x‖2=1
x∈Cn

‖[xHN1x, . . . , x
HNlx]‖2.

It follows that
max
i
‖Ni‖2 ≤ αS ≤

√
lmax

i
‖Ni‖2.

3.3 Toeplitz and Hankel matrices

In [32], it is proven that the structured pseudospectrum of a matrix A ∈ S coincides with the
unstructured pseudospectrum for the following complex structures S: symmetric, persymmet-
ric, Toeplitz, symmetric Toeplitz, Hankel, persymmetric Hankel, and circulant. This implies,
in particular, that κ(A, λ; S) = κ(A, λ) for all these structures. Hence, some of the results that
follow could be stated without proof. However, the proofs provided here explicitly construct
structured perturbations that attain κ(A, λ), which might lead to additional insight.

A Toeplitz matrix takes the form

T =


t0 t−1 . . . t−n+1

t1 t0
. . .

...
...

. . . . . . t−1

tn−1 . . . t1 t0

 ∈ Cn×n

and H ∈ Cn×n is a Hankel matrix if FnH is Toeplitz, where Fn is the n× n flip matrix with
ones on the anti-diagonal and zeros everywhere else.
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Theorem 3.5 Let T and SY denote the sets of Toeplitz and complex symmetric matrices,
respectively. Then the following statements hold in the matrix 2-norm:

(i). κ(A, λ; T) = κ(A, λ) = (n1, ‖XXT ‖2) for A ∈ T;

(ii). κ(A, λ; T ∩ SY) = κ(A, λ) = (n1, ‖XXT ‖2) for A ∈ T ∩ SY;

(iii). κ(A, λ; T ∩ Rn×n) = κ(A, λ) = (n1, ‖XXT ‖2) for A ∈ T ∩ Rn×n and λ ∈ R;

(iv). κ(A, λ; T ∩ SY ∩ Rn×n) = κ(A, λ) = (1, 1) for A ∈ T ∩ SY ∩ Rn×n.

Proof. A Toeplitz matrix is complex persymmetric, meaning that FnT is complex sym-
metric. We can therefore apply Corollary A.2 (i) to conclude Y = FnX. A Takagi factoriza-
tion [13, §4.4] of the complex symmetric matrix XXT is a special singular value decomposition
XXT = UΣUT , where U ∈ Cn×r1 has orthonormal columns and Σ = diag(σ1, . . . , σr1) with
σ1 ≥ · · · ≥ σr1 > 0. By [31, Lemma 10.1], there is a Hankel matrix H with ‖H‖2 = 1 and
Hu1 = ū1, where u1 denotes the first column of U . Setting E = FnH ∈ T gives ‖E‖2 = 1
with Eu1 = Fnū1, which completes the proof of (i) by Lemma 2.6.

A symmetric Toeplitz matrix is persymmetric and symmetric; it can thus be block diag-
onalized by a simple orthogonal transformation:

GTAG =
ñ
A11 0
0 A22

ô
,

where A11 ∈ Rbn/2c×bn/2c, A22 ∈ Rdn/2e×dn/2e are complex symmetric and

G =
1√
2

ñ
I Fn/2

−Fn/2 I

ô
(even n), G =

1√
2

 I 0 F(n−1)/2

0
√

2 0
−F(n−1)/2 0 I

 (odd n).

This folklore result, which can be found for example in [44], shows that X = [X1, X2] with
X1 = −FnX1 and X2 = FnX2. The eigenvectors contained in X1 and X2 stem from Jordan
blocks in A11 and A22, respectively. Moreover, Y = Fn[X1, X2] and

αT∩SY = sup
‖E‖2=1
E∈T∩SY

max
Ä
ρ(EX1X

T
1 Fn), ρ(EX2X

T
2 Fn)

ä
= sup

‖E‖2=1
E∈T∩SY

max
Ä
ρ(EX1X

T
1 ), ρ(EX2X

T
2 )
ä
.

From XH
2 X1 = XH

2 FnFnX1 = −XH
2 X1 it follows that XH

2 X1 = 0 and hence

‖XXT ‖2 = ‖[X1, X2][X1, X2]T ‖2 = max(‖X1X
T
1 ‖2, ‖X2X

T
2 ‖2).

Let us assume ‖X1X
T
1 ‖2 ≥ ‖X2X

T
2 ‖2 (the other case is treated analogously) and let X1X

T
1 =

UΣUT be a Takagi factorization. Then U = −FnU and by [32, Lemma 2.4] there is a
symmetric Toeplitz matrix E such that ‖E‖2 = 1 and Eu1 = u1. The proof of (ii) is
completed by applying Lemma 2.6.

Parts (iii) and (iv) are shown by noting that λ ∈ R implies X ∈ Rn×r1 and hence the
perturbations constructed above can be chosen to be real [32].

Theorem 3.5 can be easily extended to Hankel matrices.
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Corollary 3.6 Let HA and PS denote the sets of Hankel and persymmetric matrices, respec-
tively. Then the following statements hold in the matrix 2-norm:

(i). κ(A, λ; HA) = κ(A, λ) = (n1, ‖XXT ‖2) for A ∈ HA;

(ii). κ(A, λ; HA ∩ PS) = κ(A, λ) = (n1, ‖XXT ‖2) for A ∈ HA ∩ PS;

(iii). κ(A, λ; HA ∩ Rn×n) = κ(A, λ) = (1, 1) for A ∈ HA ∩ Rn×n;

(iv). κ(A, λ; HA ∩ PS ∩ Rn×n) = κ(A, λ) = (1, 1) for A ∈ HA ∩ PS ∩ Rn×n.

Proof. A Hankel matrix is complex symmetric, which implies Y = X by Corollary A.2 (i).
The rest of the proof is along the lines of the proof of Theorem 3.5 and is therefore omitted.

3.4 Symmetric, skew-symmetric and Hermitian matrices

The construction used in the proof of Theorem 3.5 only exploits the persymmetry of Toeplitz
matrices and it can thus also be used to show κ(A, λ; PS) = κ(A, λ) for A ∈ PS. More general,
we have the following result, which besides per-symmetric (M = Fn), also includes symmetric
(M = I) and pseudo-symmetric (M = diag(I,−I)) matrices.

Theorem 3.7 Let M ∈ Rn×n be an orthogonal symmetric matrix and define S = {A ∈ Cn×n :
ATM = MA}. Then the following statements hold for A ∈ S in any unitarily invariant norm:

(i). κ(A, λ; S) = κ(A, λ) = (n1, ‖XXT ‖2);

(ii). κ(A, λ; S ∩ Rn×n) = (n1, αS∩Rn×n) with ‖XXT ‖2/2 ≤ αS∩Rn×n ≤ ‖XXT ‖2.

Proof. Corollary A.2 (i) gives Y = MX. Let XXT = UΣUT be a Takagi factorization,
then we set u1 = Ue1 and E = Mu1u

H
1 to obtain ‖E‖ = 1 and

αS ≥ ρ(EXXTM) = ρ(Mu1u
H
1 XX

TM) = ρ(uH1 XX
Tu1) = ‖XXT ‖2 = α,

This completes the proof of the first part. The proof of the second part is virtually identical
with the proof of Lemma 3.2 (i).

Using the terminology of [16], Theorem 3.7 is concerned with Jordan algebras associated
with the symmetric bilinear form 〈x, y〉 = xTMy. For the corresponding Lie algebras, which
are given by S = {A ∈ Cn×n : ATM = −MA}, it is known that the structured and
unstructured condition numbers for simple eigenvalues may widely differ [16, 32]. We have
already shown in the introduction a skew-symmetric matrix (7) (corresponding to M = I)
such that nS < n1. This shows that multiple eigenvalues can have a qualitatively better
behavior under structured perturbations. The following theorem identifies one such situation,
and proves that, in this setting, it can only happen under very specific conditions (namely, for
zero eigenvalues with one single Jordan block of largest odd size). Additionally, Theorem 3.8
provides some insight on the expected difference between αS and α whenever nS = n1.

Theorem 3.8 Let M ∈ Rn×n be an orthogonal symmetric matrix and define S = {A ∈
Cn×n : ATM = −MA}. Then the following statements on κ(A, λ; S) = (nS, αS) hold for
A ∈ S in the matrix 2-norm.

(i). If λ = 0, n1 is odd, and r1 = 1, then nS < n1;
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(ii). if λ = 0, n1 is odd, and r1 > 1, then nS = n1 and αS =
√
σ1σ2, where σ1, σ2 are the two

largest singular values of XXT (whereas α = σ1);

(iii). if λ = 0 and n1 is even, then r1 is even, nS = n1 and αS = α =
∥∥∥∥X [

0
Ir1/2

−Ir1/2

0

]
XT

∥∥∥∥
2
;

(iv). if λ 6= 0 and r1 = 1, then nS = n1 and αS =
»
‖X‖22‖Y ‖22 − |Y TMX|2.

(v). if λ 6= 0 and r1 > 1, then nS = n1.

Proof. For λ = 0 with n1 odd, Corollary A.4 (ia) implies Y = MX. Now, if nS was equal to
n1 then there would exist some E ∈ S with ρ(Y HEX) = ρ(XTMEX) > 0. This is impossible
for r1 = 1, since X is a vector and ME is skew-symmetric, so ρ(XTMEX) = |XTMEX| = 0.
This shows (i).

To show nS = n1 for λ = 0, odd n1 and r1 > 1, it is sufficient to construct a perturbation
E ∈ S such that ρ(XTMEX) > 0. For this purpose, consider a Takagi factorization XXT =
UΣUT , where U = [u1, . . . , ur1 ] has orthonormal columns and Σ = diag(σ1, . . . , σr1) with
σ1 ≥ · · · ≥ σr1 > 0. Setting E = M [u1, u2]

î
0
1
−1
0

ó
[u1, u2]H gives E ∈ S, ‖E‖2 = 1, and

αS ≥ ρ(XTMEX) = ρ

Çñ
0 σ2

−σ1 0

ôå
=
√
σ1σ2 > 0.

On the other hand, letting SK denote the set of complex skew-symmetric matrices, we have

αS = sup
‖Ẽ‖2≤1

Ẽ∈SK

ρ(‹EXXT ) = sup
‖G‖2≤1

G∈SK

ρ(GΣ) = sup
‖G‖2≤1

G∈SK

ρ(Σ1/2GΣ1/2)

≤ sup
‖G‖2≤1

G∈SK

‖Σ1/2GΣ1/2‖2 = sup
‖G‖2≤1

G∈SK

‖Σ̃ ◦G‖2,

where Σ̃ = [√σiσj ]r1i,j=1 and ◦ denotes the Hadamard product. A result by Mathias [24,
Corrollary 2.6] implies ‖Σ̃ ◦G‖2 ≤

√
σ1σ2‖G‖2, which concludes the proof of (ii).

For λ = 0 with n1 odd, Corollary A.4 (ib) implies Y = MX
[

0
−Ir1/2

Ir1/2

0

]
. To attain

ρ(Y HEX) = α =
∥∥∥∥X [

0
Ir1/2

−Ir1/2

0

]
XT

∥∥∥∥
2

we may just use a perturbation of the form (15),

which in this case turns out to be E = 1
αMX

[
0

Ir1/2

−Ir1/2

0

]
XH ∈ S. This proves (iii).

If λ 6= 0 then −λ is also an eigenvalue with the same Jordan structure as λ. If we let ‹X,‹Y denote the matrices of right/left eigenvectors stemming from the n1 × n1 Jordan blocks
belonging to −λ then Corollary A.4 (ic) yields ‹X = −MY and ‹Y = MX. This not only
implies κ(A,−λ) = κ(A, λ) as well as κ(A,−λ; S) = κ(A, λ; S), but also that [X,MY ] has full
column rank. If r1 = 1 then X,Y are vectors and we have

|Y HEX| = ρ
Ä
[MY ,X]TME[MY ,X]

ä
= ρ
Ä
ME[MY ,X][MY ,X]T

ä
for any E ∈ S. Hence, using the arguments from the proof of (ii), we have αS =

√
σ1σ2, where

σ1 and σ2 are the two largest singular values of the symmetric matrix [MY ,X][MY ,X]T .

11



This shows (iv) since

σ1σ2 =
√

det
Ä
[MY ,X][MY ,X]T [MY,X][MY,X]T

ä
=

√
det
Ä
[MY,X]T [MY ,X][MY ,X]T [MY,X]

ä
=

∣∣∣det
Ä
[MY,X]T [MY ,X]

ä∣∣∣
= ‖X‖22‖Y ‖22 − |Y TMX|2.

Unfortunately, the technique of this proof does not extend to the case r1 > 1. Still, we
can show αS > 0 but it is not clear how to obtain a good lower or upper bound on αS. The
full column rank of [X,MY ] implies the existence of an invertible matrix L such that

L−1[X,MY ] =

 Ir1 ?
0 Ir1
0 0


Setting

E = ML−T

 0 Ir1 0
−Ir1 0 0

0 0 0

L−1 ∈ S

yields ρ(Y HEX) = ρ(Ir) = 1 and thus αS > 0, completing the proof of (v).

Remark 3.9 Note that Theorem 3.8 (iv) also improves the results in [16, Theorem 4.3] and
[32, Theorem 3.2], which only state bounds, but no explicit formula for the structured condition
number of a simple nonzero eigenvalue. Recently, Karow [15] described the limit sets of the
structured pseudospectra for complex skew-symmetric matrices, from which Theorem 3.8 (iv)
could also be derived.

Fortunately, the matter of structured condition numbers is much less complicated for
Jordan and Lie algebras associated with a sesquilinear form 〈x, y〉 = xHMy.

Lemma 3.10 Let M ∈ Rn×n be an orthogonal symmetric or orthogonal skew-symmetric
matrix and define S = {A ∈ Cn×n : AHM = γMA} for a fixed γ ∈ {1,−1}. Then for any
A ∈ Cn×n, κ(A, λ; S) = κ(A, λ) holds in the matrix 2-norm.

Proof. Let XY H = UΣV H be a singular value decomposition and set u1 = Ue1, v1 = V e1.
Then ‖u1‖2 = ‖v1‖2 = 1 and by [22, Theorem 8.6] we can find a Hermitian matrix H such
that ‖H‖2 = 1 and Hu1 = µMv1 for some µ ∈ C with |µ| = 1. Set E =

√
γMH if M = MT ,

and E =
√
−γMH if M = −MT . Then E ∈ S satisfies ‖E‖2 = 1 and Eu1 = βv1 for some

|β| = 1, which implies the result by Lemma 2.6.

3.5 J-symmetric and J-skew-symmetric matrices

For M = J2n =
î

0
−In

In
0

ó
, the structure S = {A ∈ C2n×2n : AHM = γMA} considered in

Lemma 3.10 coincides with the set of complex skew-Hamiltonian matrices if γ = 1, and with
the set of complex Hamiltonian matrices if γ = −1. The following two theorems provide results
for the closely related structures S = {A ∈ C2n×2n : ATJ2n = γJ2nA}, including bounds on
structured condition numbers for real skew-Hamiltonian and Hamiltonian matrices.

12



Theorem 3.11 Let M ∈ R2n×2n be an orthogonal skew-symmetric matrix and define S =
{A ∈ C2n×2n : ATM = MA}. Then the following statements hold for A ∈ S in the matrix
2-norm:

(i). κ(A, λ; S) = κ(A, λ) = (n1, ‖XJr1XT ‖2);

(ii). κ(A, λ; S ∩ R2n×2n) = (n1, αS∩R2n×2n) with ‖XJr1XT ‖2/4 ≤ αS∩R2n×2n ≤ ‖XJr1XT ‖2.

Proof. Corollary A.6 reveals the relation Y = −MXJr1 . Using a perturbation as in (15),
namely E = (MTXJr1X

H)/‖XJr1XT ‖2, yields E ∈ S with ‖E‖2 = 1 and

αS ≥ ρ(JTr1X
TMEX)/‖XJr1XT ‖2 = ‖XJr1XT ‖2 = α.

To prove the second part, let u = uR + ıuI and v = vR + ıvI , with uR, uI , vR, vI ∈ Rn and
‖u‖2 = ‖v‖2 = 1, be left/right singular vectors corresponding to the largest singular value of
K = XJr1X

T . Then

αS = ‖K‖2 = uHKv = (uTRKvR + uTI KvI) + ı(uTRKvI − uTI KvR).

At least one of the four terms in this sum is not smaller in magnitude than αS/4. Choose this
term and let the columns of W = [w1, w2] ∈ R2n×2 contain the two vectors corresponding to
it. For example, if |uTRKvR| ≥ αS/4 then W = [uR, vR]. By the skew-symmetry of K, we may
assume that u and v satisfy vTu = 0, which implies ‖W‖2 ≤ 1. Setting E = MTWJ2W

T ∈
S ∩ R2n×2n yields ‖E‖2 ≤ 1 and

αS∩R2n×2n ≥ ρ(JTr1X
TMEX) = ρ(JTr1X

TWJ2W
TX)

= ρ(KWJ2W
T ) = ρ(J2W

TKW )
= ρ(diag(wT2 Kw1,−wT1 Kw2)) ≥ αS/4,

where we used the fact that wT1 Kw1 = wT2 Kw2 = 0 due to the skew-symmetry of K.

Theorem 3.12 Let M ∈ R2n×2n be an orthogonal skew-symmetric matrix and define S =
{A ∈ C2n×2n : ATM = −MA}. Then the following statements hold for any A ∈ Cn×n:

(i). κ(A, λ; S) = (n1, αS) with α/
√

2 ≤ αS ≤ α in the Frobenius norm and αS = α in the
matrix 2-norm;

(ii). κ(A, λ; S∩R2n×2n) = (n1, αS∩R2n×2n) with α/8 ≤ αS∩R2n×2n ≤ αS in the matrix 2-norm.

Proof. Let u1, v1 with ‖u1‖2 = ‖v1‖2 = 1 be the left/right singular vectors belonging to
the largest singular value of XY HM and define ‹E = [v1, u1]

[
0
1

1
−vT

1 u1

]
[v1, u1]T . Then ‹E is

symmetric and one can show that ‖‹E‖F =
»

2− |uT1 v1|2 ≤
√

2, see also [23, Theorem 5.6].
Setting E = M ‹E/√2, we obtain E ∈ S and

αS ≥ ρ(Y HEX) = ρ(‹EXY HM)/
√

2 ≥ ‖XY H‖2/
√

2,

where we applied Lemma 2.6, using the fact that ‹E maps u1 to v1. In the matrix 2-norm,
Theorem 5.7 in [23] implies the existence of a symmetric matrix ‹E which maps u1 to v1 and
satisfies ‖‹E‖2 = 1. Thus, setting E = M ‹E shows the second part of (i).

To show (ii), let us decompose XY HM = S + W , where S = (XY H + Y XT )/2 and
W = (XY H − Y XT )/2. Then α = ‖XY H‖2 ≤ ‖S‖2 + ‖W‖2. We distinguish two cases,
depending on whether the skew-symmetric part W dominates the symmetric part S.
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1. ‖S‖2 ≥ ‖W‖2/3: Decompose S = SR + ıSI with real symmetric matrices SR, SI . Then
‖SR‖2 ≥ ‖S‖2/2 or ‖SI‖2 ≥ ‖S‖2/2. In the first case, let u1 be a normalized eigenvector
belonging to an eigenvalue of SR that has magnitude ‖SR‖2. Then E = Mu1u

T
1 ∈

S ∩ R2n×2n with ‖E‖2 = 1 and

αS∩Rn×n ≥ ρ(EXY H) = |uT1 XY HMu1| = |uT1 Su1| ≥ |uT1 SRu1|

≥ ‖S‖2
2

=
‖S‖2 + 3‖S‖2

8
≥ ‖S‖2 + ‖W‖2

8
≥ α

8
.

The case ‖SI‖2 ≥ ‖S‖2/2 can be shown analogously.

2. ‖S‖2 ≤ ‖W‖2/3: Decompose W = WR + ıWI with real skew-symmetric matrices
WR,WI . Suppose that ‖WR‖2 ≥ ‖W‖2/2 (once again, the case ‖WI‖2 ≥ ‖W‖2/2 is
treated in an analogous manner). Let u1, v1 with ‖u1‖2 = ‖v1‖2 = 1 be left/right singu-
lar vectors belonging to the largest singular value of WR. Since WR is skew-symmetric,
we have vT1 u1 = 0. Setting

E = M [u1, v1]
ñ

0 1
1 0

ô
[u1, v1]T ∈ S ∩ R2n×2n

yields ‖E‖2 = 1 and

αS∩R2n×2n ≥ ρ(EXY H) = ρ

Çñ
0 1
1 0

ô
[u1, v1]T (S +W )[u1, v1]

å
= ρ(Φ),

where

Φ =
ñ
−β 0
0 β

ô
+
ñ
uT1 Sv1 vT1 Sv1

uT1 Su1 uT1 Sv1

ô
with β = ‖WR‖2 + ıuT1 WIv1. We have det(Φ) = −(β + γ)(β − γ) with

γ =
»

(uT1 Su1)(vT1 Sv1)− (uT1 Sv1)2

satisfying |γ| ≤ ‖S‖2. This shows

ρ(Φ) ≥ |β| − |γ| ≥ ‖WR‖2 − ‖S‖2 ≥
‖W‖2

2
− ‖S‖2

=
‖W‖2

2
− 9

8
‖S‖2 +

1
8
‖S‖2 ≥

‖S‖2 + ‖W‖2
8

≥ α

8
,

which concludes the proof.

Theorem 3.12 (ii) reveals that forcing the perturbations in a real Hamiltonian matrix
to respect the structure will generally only have a mild positive effect on the accuracy of
multiple eigenvalues. However, it should be emphasized that condition numbers provide little
insight on the direction in which perturbed eigenvalues are likely to move, an issue which is
crucial to decide whether a purely imaginary eigenvalue of a Hamiltonian matrix stays on the
imaginary axis or not under (structured) perturbations, something which is often important
in applications. For results in this direction, see [1, 26] and references therein.
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4 Generalized eigenvalue problems

4.1 Matrix pencils

Langer and Najman [17, 18, 19] extended Lidskii’s perturbation theory, obtaining eigenvalue
perturbation expansions for analytic matrix functions L(λ). They used the local Smith form of
L(λ) much in the same way as the Jordan canonical form was used by Lidskii for matrices. In a
recent paper, de Terán, Dopico and Moro [6] have investigated the special case L(λ) = A−λB,
relating the results by Langer and Najman to the Kronecker-Weierstraß form, which is a
more natural canonical form when L(λ) is a matrix pencil. Let us briefly recall these results,
restricting our attention to regular matrix pencils (A and B are square, det(L(λ)) 6≡ 0).

In the following, we denote the regular matrix pencil A − λB by (A,B) . For a finite
eigenvalue λ of (A,B), the Kronecker-Weierstraß form implies[

J 0
0 J̃A

]
=

[
Q‹Q ]

A
î
P ‹P ó , [

I 0
0 J̃B

]
=

[
Q‹Q ]

B
î
P ‹P ó , (19)

where [P, ‹P ],
[
Q

Q̃

]
are invertible and J contains all r1 Jordan blocks of largest size n1, see

also (10). Similarly for an infinite eigenvalue of (A,B), we have[
I 0
0 J̃A

]
=

[
Q‹Q ]

A
î
P ‹P ó , [

N 0
0 J̃B

]
=

[
Q‹Q ]

B
î
P ‹P ó , (20)

where N contains all r1 nilpotent blocks of largest nilpotency index n1. As for the standard
eigenvalue problem, we collect the (generalized) right and left eigenvectors contained in P
and Q:

X =
î
Pe1, P en1+1, . . . , P e(r1−1)n1+1

ó
,

Y =
î
QHen1 , Q

He2n1 , . . . , Q
Her1n1

ó
.

(21)

As in the standard eigenvalue problem, this relationship between X,Y and P,Q imposes some
normalization on X,Y . For n1 = 1, we have Y HBX = I if λ is finite and Y HAX = I if λ is
infinite. For n1 > 1, we have Y HAX = Y HBX = 0.

The following theorem summarizes results from [6].

Theorem 4.1 Let λ be a finite eigenvalue of a regular matrix pencil (A,B) and let (E,F ) ∈
Cn×n × Cn×n be such that Y H(E − λF )X is invertible, where X and Y are defined as in
(21). Then there are n1r1 eigenvalues λ̂k of the perturbed pencil (A+ εE,B + εF ) admitting
a perturbation expansion

λ̂k = λ+ (ξk)1/n1ε1/n1 + o(ε1/n1), k = 1, . . . , r1, (22)

where ξ1, . . . , ξr1 are the eigenvalues of Y H(E − λF )X. For an infinite eigenvalue of (A,B),
let F ∈ Cn×n be such that Y HFX is invertible. Then there are n1r1 eigenvalues λ̂k of the
perturbed pencil (A+ εE,B + εF ) admitting a perturbation expansion

1
λ̂k

= (ξk)1/n1ε1/n1 + o(ε1/n1), k = 1, . . . , r1, (23)

where ξk are the eigenvalues of Y HFX.
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4.1.1 Hölder condition numbers for multiple eigenvalues of matrix pencils

Throughout the rest of this section, λ denotes a finite or infinite eigenvalue of a regular matrix
pencil (A,B) with the matrices X and Y defined as in (21).

Based on Theorem 4.1, we can define a condition number for a multiple eigenvalue of a
matrix pencil as follows.

Definition 4.2 The (absolute) Hölder condition number for a finite eigenvalue λ is given by
κ(A,B, λ) = (n1, α), where n1 is the dimension of the largest Jordan block associated with λ
and

α = sup
||E||≤wA,||F ||≤wB

E,F∈Cn×n

ρ(Y H(E − λF )X).

The (absolute) Hölder condition number for λ = ∞ is given by κ(A,B,∞) = (n1, α), where
n1 is the nilpotency index of (A,B) and

α = sup
||F ||≤wB

F∈Cn×n

ρ(Y HFX).

Remark 4.3 Note that Definition 4.2 not only depends on the employed matrix norm ‖ · ‖
but also on the choice of nonnegative weights wA and wB. It is implicitly assumed that wA or
wB are strictly larger than zero, otherwise κ(A,B, λ) = (0, 0). More specifically, we require
wA > 0 for λ = 0, wB > 0 for λ =∞, and max{wA, wB} > 0 for any other eigenvalue.

The role of the weights wA and wB is to balance the influence of perturbations on A and B.
For example, if each of the perturbations E and F is known to be small compared to the
norm of A and B, respectively, then it is reasonable to set wA = ‖A‖/

»
‖A‖2 + ‖B‖2 and

wB = ‖B‖/
»
‖A‖2 + ‖B‖2.

The following lemma represents a direct extension of [27, Theorem 4.2].

Lemma 4.4 For any unitarily invariant norm, we have

κ(A,B, λ) = (n1, (wA + wB|λ|)‖XY H‖2)

if λ is a finite eigenvalue, and κ(A,B, λ) = (n1, wB‖XY H‖) if λ =∞.

Proof. On the one hand

ρ(Y H(E − λF )X) = ρ((E − λF )XY H) ≤ ‖(E − λF )XY H‖2
≤ ‖(E − λF )XY H‖ ≤ (wA + wB|λ|)‖XY H‖2

holds for any E,F satisfying ‖E‖ ≤ wA, ‖F‖ ≤ wB. Hence, α ≤ (wA + wB|λ|)‖XY H‖2. On
the other hand, let u1, v1 with ‖u1‖2 = ‖v1‖2 = 1 be the left/right singular vectors belonging
to the largest singular value of XY H . Setting E = wAv1u

H
1 and F = − λ̄

|λ|wBv1u
H
1 (F = 0 if

λ = 0) yields ‖E‖ ≤ wA, ‖F‖ ≤ wB, and

α ≥ ρ((wA + wB|λ|)v1u
H
1 XY

H) = (wA + wB|λ|)ρ(uH1 XY
Hv1) = (wA + wB|λ|)‖XY H‖2.

The proof for κ(A,B,∞) is analogous.
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Definition 4.2 is based on the distance |λ̂ − λ| between an eigenvalue λ and a perturbed
eigenvalue λ̂. This distance lacks mathematical elegance for generalized eigenvalue problems,
since infinite eigenvalues must be treated separately and |λ̂ − λ| is not invariant under an
interchange of A and B, i.e., |λ̂−λ| 6= |1/λ̂−1/λ|. A more elegant distance concept is offered
by the chordal metric

χ(λ̂, λ) =
|λ̂− λ|»

|λ̂|2 + 1
»
|λ|2 + 1

,

which naturally includes infinite eigenvalues

χ(λ̂,∞) = lim
|µ|→∞

χ(λ̂, µ) =
1»
|λ̂|2 + 1

,

see [34] for more details. Inserting the perturbation expansions (22) and (23) yields

χ(λ̂k, λ) =
|ξkε|1/n1

|λ|2 + 1
+ o(ε1/n1)

and
χ(λ̂k,∞) = |ξkε|1/n1 + o(ε1/n1),

respectively. This shows that when working in the chordal metric, the α-part in the Hölder
condition number for a finite eigenvalue needs to be divided by |λ|2 + 1 while the Hölder
condition number for an infinite eigenvalue remains the same. It is simple to see that this
modified condition number has the pleasant property to be continuous at |λ| =∞.

Whether |λ̂−λ| or χ(λ̂, λ) is more appropriate depends on the application. If the ultimate
goal of an computation is a finite eigenvalue λ, it can be suspected that |λ̂− λ| is practically
more relevant. All the following results employ |λ̂− λ| but the discussion above reveals that
it is rather easy to translate them into the chordal metric setting.

4.1.2 Structured Hölder condition numbers for eigenvalues of matrix pencils

The structured Hölder condition number κ(A,B, λ; S) = (nS, αS) for some subset S ⊂ Cn×n×
Cn×n can be defined in the same way as for the standard eigenvalue problem. In particular,
if nS = n1 then

αS = sup
||E||≤wA,||F ||≤wB

(E,F )∈S

ρ(Y H(E − λF )X).

Some proofs from Section 3 can be rather directly extended to yield results on generalized
eigenvalue problems if the structure is separable, i.e., S = S1 × S2 with S1, S2 ⊂ Cn×n. The
following theorem collects such results.

Theorem 4.5 Let κ(A,B, λ) = (n1, α) and κ(A,B, λ; S1 × S2) = (nS1×S2 , αS1×S2).

(i). Real matrix pencils: If S1 = S2 = Rn×n, then nS1×S2 = n1 and α/4 ≤ αS1×S2 ≤ α hold
for A,B ∈ Cn×n in any unitarily invariant norm.

(ii). Symmetric matrix pencils: If S1 = S2 = {A ∈ Cn×n : AT = A}, then nS1×S2 = n1 and
αS1×S2 = α hold for A,B ∈ S1 in any unitarily invariant norm.
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(iii). Real symmetric matrix pencils: If S1 = S2 = {A ∈ Rn×n : AT = A} then nS1×S2 = n1

and α/4 ≤ αS1×S2 ≤ α hold for A,B ∈ Cn×n with AT = A, BT = B in any unitarily
invariant norm.

(iv). Symmetric/skew-symmetric matrix pencils: If S1 = {A ∈ Cn×n : AT = A} and
S2 = {B ∈ Cn×n : BT = −B} then the following statements hold for (A,B) ∈ S1 × S2

in the matrix 2-norm:

(a) If λ =∞, n1 is odd, and r1 = 1, then nS < n1;

(b) if λ = ∞, n1 is odd, and r1 > 1, then nS = n1 and αS = wB
√
σ1σ2, where σ1, σ2

are the two largest singular values of XXT (whereas α = wBσ1);

(c) if λ =∞ and n1 is even, then r1 is even, nS = n1 and

αS = α = wB

∥∥∥∥∥X
ñ

0

Ir1/2

−Ir1/2

0

ô
XT

∥∥∥∥∥
2

;

(d) if λ = 0 and n1 is even, then nS = n1 and αS = α = wA‖XXT ‖2.

(e) if λ = 0 and n1 is odd, then r1 is even, nS = n1 and

αS = α = wA

∥∥∥∥∥X
ñ

0

Ir1/2

−Ir1/2

0

ô
XT

∥∥∥∥∥
2

.

(f) if λ 6= ∞, λ 6= 0 and r1 = 1, then nS = n1 and αS = wAα1 + wB|λ|α2, where
α1 = ‖X‖2‖Y ‖2 and α2 =

»
‖X‖22‖Y ‖22 − |Y TX|2.

(g) if λ 6=∞, λ 6= 0 and r1 > 1, then nS = n1 and αS ≥ wA‖XY H‖2.

(v). Skew-symmetric matrix pencils:If S1 = S2 = {A ∈ Cn×n : AT = −A} then nS1×S2 =
n1, r1 is even, and αS1×S2 = α for any A,B ∈ S1 in the matrix 2-norm.

(vi). Hermitian matrix pencils: Let Sj = {A ∈ Cn×n : AH = γjA} for j ∈ {1, 2} and fixed
γ1, γ2 ∈ {1,−1}. Then nS1×S2 = n1 and α/

√
2 ≤ αS1×S2 ≤ α hold for any A,B ∈ Cn×n

in the matrix 2-norm. If, additionally, γ1 = γ2 and λ ∈ R then αS1×S2 = α.

Proof. If not stated otherwise, it is tacitly assumed that λ is finite (the proofs can be
easily modified to cover λ =∞).

(i) As in the proof of Lemma 3.2, we can find a real matrix ‹E with ‖‹E‖ ≤ 1 such that
ρ(Y H ‹EX) ≥ ‖XY H‖2/2. We set E = wA‹E,F = 0 if wA ≥ wB|λ|, and E = 0, F = wB‹E
otherwise. Then

ρ(Y H(E − λF )X) ≥ wA + wB|λ|
2

ρ(Y H ‹EX) ≥ wA + wB|λ|
4

‖XY H‖2,

which proves (i).

(ii) and (iii) Corollary A.2 (ii) implies Y = X and hence assertions (ii) and (iii) can be
shown along the lines of the proof of Theorem 3.7.
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(iv) For λ = ∞, the structured canonical form of a symmetric/skew-symmetric pencil
imposes the same structure on X and Y as for the zero eigenvalue of a skew-symmetric
matrix, see Corollary A.4. This implies that α/wB coincides with the structured condition
number for the zero eigenvalue of B and hence (a)–(c) follow from Theorem 3.8 (i)–(iii).

For λ = 0 and n1 even, Corollary A.4 (d) yields Y = X, so taking E = wAXX
H/‖XXT ‖2,

F = 0 shows (d). If λ = 0 and n1 is odd, then r1 is even and Y = X
[

0
−Ir1/2

Ir1/2

0

]
, see

Corollary A.4 (c). Let u1, v1 be, respectively, left and right singular vectors corresponding
to the largest singular value σ1 of the skew-symmetric matrix XY H = X

[
0

Ir1/2

−Ir1/2

0

]
XT .

Then, the pencil E − λF with E = wA[u1, v1]
î

0
1

1
0

ó
[u1, v1]T and F = 0 is such that E ∈

S1, F ∈ S2, ‖E‖2 = wA and

αS ≥ ρ
Ç
EX

ñ
0

Ir1/2

−Ir1/2

0

ô
XT

å
= ρ(V HEUΣ) = ρ

Åï
wAσ1

0

0

∗

òã
≥ wAσ1 = α,

where UΣV H stands for a singular value decomposition of X
[

0
Ir1/2

−Ir1/2

0

]
XT , ∗ denotes a

nonzero (r1−1)× (r1−1) matrix, and we have used that vT1 u1 = 0, since X
[

0
Ir1/2

−Ir1/2

0

]
XT

is skew-symmetric. This proves (e).
For finite nonzero λ and r1 = 1, we have ρ(Y H(E − λF )X) = |Y H(E − λF )X|, so

αS = sup
||E||≤wA,||F ||≤wB

(E,F )∈S

ρ(Y H(E − λF )X) ≤ wA sup
||E||≤1
E∈S1

ρ(Y HEX) + wB|λ| sup
||F ||≤1
F∈S2

ρ(Y HFX).

The supremum over E ∈ S1 is clearly bounded by α1, while the supremum over F ∈ S2 is
equal to α2 by Theorem 3.8 (iv). Thus αS ≤ wAα1 + wB|λ|α2. By [23, Theorem 5.7] there
exists a matrix Ẽ ∈ S1 with ‖Ẽ‖2 = ‖Y ‖2/‖X‖2 such that ẼX = Y . Hence, the symmetric
matrix E1 = ‖X‖2

‖Y ‖2 Ẽ has unit 2-norm and attains the upper bound α1. Let F2 ∈ S2 be a
matrix with unit 2-norm attaining the maximal value α2. Then we may choose γ1, γ2 ∈
C, |γ1| = |γ2| = 1 in such a way that the pair (E,F ) = (γ1wAE1, γ2wBF2) ∈ S1 × S2 satisfies
ρ(Y H(E − λF )X) = wAα1 + wB|λ|α2. This proves (f).

For finite nonzero λ and r1 > 1, recall that, according to the proof of Theorem 3.12,
there is a symmetric matrix E1 with ‖E1‖2 = 1 and ρ(Y HE1X) ≥ ‖XY H‖2. Thus, taking
E = wAE1 and F = 0 leads to (g).

(v) For skew-symmetric/skew-symmetric pencils, Theorem A.5 shows that every eigen-
value has r1 even. Furthermore, Corollary A.6 (ii) reveals the relationship Y = X

[
0

−Ir1/2

Ir1/2

0

]
.

Hence, if we set ‹E = X
[

0
−Ir1/2

Ir1/2

0

]
XH , the perturbation matrices E = wA

‖Ẽ‖2
‹E, F =

− wB

‖Ẽ‖2
λ
|λ|
‹E are such that ‖E‖2 = wA, ‖F‖2 = wB, and

ρ(Y H(E − λF )X) = (wA + |λ|wB)

∥∥∥∥∥XT

ñ
0

Ir1/2

−Ir1/2

0

ô
X

∥∥∥∥∥
2

= α.

(vi) As in the proof of Lemma 3.10, we can construct a Hermitian matrix ‹E such that
‖‹E‖2 = 1 and ρ(‹EXY H) = ‖XY H‖2. Let us choose δ ∈ {1,−1} such that δ matches the
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sign of λR if γ1 = γ2 and the sign of −λI otherwise. Then E = wA
√
γ1
‹E ∈ S1 and F =

−δwB
√
γ2
‹E ∈ S2 yield

αS1×S2 ≥ ρ((E − λF )XY H) = |wA
√
γ1 + δwB

√
γ2λ| ‖XY H‖2 ≥

wA + wB|λ|√
2

‖XY H‖2.

Note that the last inequality follows from the fact that

2|wA
√
γ1 + δwB

√
γ2λ|2 − (wA + wB|λ|)2 ≥ w2

A − 2wAwB|λ|+ w2
B|λ|2

= (wA − wB|λ|)2 ≥ 0.

If γ1 = γ2 = 1 and λ ∈ R then |wA + δwBλ| = wA + wB|λ| and the factor 1/
√

2 can be
removed.

Remark 4.6 For definite Hermitian matrix pencils, the result of Theorem 4.5 (vi) can be
found in [35, 37] for semisimple λ and in [9] for simple λ.

Palindromic matrix pencils, which are addressed by the following theorem, provide a
practically relevant example for a structure that is not separable, see [12, 21] for more details
and applications. With no loss of generality we may assume wA = wB = 1 in this case, since
B = AT .

Theorem 4.7 Let S = {(A,AT ) : A ∈ Cn×n} denote the set of palindromic matrix pencils,
and assume wA = wB = 1. Then the following statements on κ(A,AT , λ; S) = (nS, αS) hold
for A ∈ Cn×n in the matrix 2-norm.

(i). If λ = 1, n1 is odd, and r1 = 1, then nS < n1;

(ii). if λ = 1, n1 is odd, and r1 > 1, then nS = n1 and αS = 2
√
σ1σ2, where σ1, σ2 are the

two largest singular values of XXT (whereas α = 2σ1);

(iii). if λ = 1 and n1 is even, then r1 is even, nS = n1 and

αS = α = 2

∥∥∥∥∥X
ñ

0

Ir1/2

−Ir1/2

0

ô
XT

∥∥∥∥∥
2

;

(iv). if λ = −1 and n1 is odd, then r1 is even, nS = n1 and

αS = α = 2

∥∥∥∥∥X
ñ

0

Ir1/2

−Ir1/2

0

ô
XT

∥∥∥∥∥
2

;

(v). if λ = −1 and n1 is even, then nS = n1 and αS = α = 2‖XXT ‖2;

(vi). if λ 6= ±1 is finite and r1 = 1, then nS = n1 and

1
2

(|1− λ|α1 + |1 + λ|α2) ≤ αS ≤ |1− λ|α1 + |1 + λ|α2,

where α1 = ‖X‖2‖Y ‖2 and α2 =
»
‖X‖22‖Y ‖22 − |Y TX|2.

(vii). if λ 6= ±1 is finite and r1 > 1, then nS = n1 and |1−λ|1+|λ|α ≤ αS ≤ α;
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(viii). if λ =∞, then nS = n1 and αS = α.

Proof. If λ is finite and nS = n1 then

αS = sup
‖E‖2≤1

E∈Cn×n

ρ(Y H(E − λET )X)

=
1
2

sup
‖E‖2≤1

E∈Cn×n

ρ
Ä
(1− λ)Y H(E + ET )X + (1 + λ)Y H(E − ET )X

ä
. (24)

This relation indicates that the analysis of palindromic matrix pencils is closely tied to the
analysis of symmetric/skew-symmetric pencils. In fact, it has been shown [14, 30, 33] that
the structured canonical form of a palindromic matrix pencil (A,AT ) can be extracted from
the structured canonical form [38] of the symmetric/skew-symmetric pencil (A+AT , A−AT ).
In particular, the relation between X and Y for an eigenvalue λ of (A,AT ) coincides with the
relation between X and Y for the eigenvalue −(1 + λ)/(1− λ) of (A+AT , A−AT ).

Consequently, if λ = 1 and n1 is odd then Corollary A.4 (iia) implies Y = X. If λ = 1
and n1 is even, then r1 is even and Y = X

[
0

−Ir1/2

Ir1/2

0

]
. It follows from (24) that

αS = sup
‖E‖2≤1

E∈Cn×n

ρ(Y H(E − ET )X) ≤ sup
‖E−ET ‖2≤2

E∈Cn×n

ρ(Y H(E − ET )X) = 2 sup
‖G‖2≤1

G skew-symmetric

ρ(Y HGX).

On the other hand,

2 sup
‖G‖2≤1

G skew-symmetric

ρ(Y HGX) = sup
‖G‖2≤1

G skew-symmetric

ρ(Y H(G−GT )X) ≤ sup
‖E‖2≤1

E∈Cn×n

ρ(Y H(E − ET )X) ≤ αS.

This shows that the structured Hölder condition number for λ = 1 of (A,AT ) essentially
coincides with the structured Hölder condition number for the eigenvalue λ = 0 of the skew-
symmetric matrix A−AT . In particular, Theorem 3.8 (i), (ii), and (iii) yield assertions (i), (ii),
and (iii) of this theorem.

If λ = −1 and n1 is odd, then Corollary A.4 (iic) implies that r1 is even and Y =
X
[

0
−Ir1/2

Ir1/2

0

]
. If λ = −1 and n1 is even then Y = X. As above, it follows from (24) that

the situation in assertions (iv) and (v) is completely parallel to the one in items (e) and (d),
respectively, of Theorem 4.5 (iv). Thus, an analogous choice of symmetric E proves (iv) and
(v).

For finite λ with r1 = 1 (X and Y are vectors), relation (24) implies

αS ≤ |1− λ| sup
‖E1‖2≤1

E1 is symmetric

|Y HE1X|+ |1 + λ| sup
‖E2‖2≤1

E2 is skew-symmetric

|Y HE2X|.

As shown in the proof of Theorem 4.5 (iv) (f), the supremum over symmetric E1 is equal to
α1 and, according to Theorem 3.8 (iv), the one over skew-symmetric E2 is equal to α2. This
shows αS ≤ |1 − λ|α1 + |1 + λ|α2. Now, let E1 be a symmetric matrix with ‖E1‖2 ≤ 1 and
|Y HE1X| = α1, and let E2 be a skew-symmetric matrix with ‖E2‖2 ≤ 1 and |Y HE2X| = α2.
Then, the matrix E = γ1E1 + γ2E2 with suitable scalars γ1, γ2 satisfying |γ1| = |γ2| = 1 gives
|Y H(E − λE)X| = |1− λ|α1 + |1 + λ|α2 with ‖E‖2 ≤ 2, which yields

αS ≥
1
2

(|1− λ|α1 + |1 + λ|α2)
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and concludes the proof of (vi).
For Assertion (vii) we recall that there is a symmetric matrix E such that ‖E‖2 = 1 and

ρ(Y HEX) ≥ ‖XY H‖2, see proof of Theorem 3.12. Thus

αS ≥ ρ(Y H(E − λET )X) = |1− λ| ρ(Y HEX) ≥ |1− λ| ‖XY H‖2.

This proves the assertion since α = (1 + |λ|) ‖XY H‖2.
Finally, (viii) is verified by observing that imposing palindromic structure does not change

the definition of α for an infinite eigenvalue.
Summarizing the statements of Theorem 4.7, one may conclude that the structured and

unstructured (Hölder) condition numbers of a palindromic matrix pencil may differ signifi-
cantly only for eigenvalues close to 1.

4.2 Matrix polynomials

Some seemingly more general variants of the generalized eigenvalue problem, such as polyno-
mial and product eigenvalue problems, can be addressed with the concepts introduced above.
We illustrate this point for a a matrix polynomial

P (λ) = λmAm + λm−1Am−1 + . . .+ λA1 +A0, Ai ∈ Cn×n.

Nonzero vectors x, y ∈ Cn×n are called, respectively, right and left eigenvectors belonging to
an eigenvalue λ if P (λ)x = 0 and yHP (λ)x = 0, respectively. In the following, we assume
that P is regular, i.e., detP (·) 6≡ 0. The mn×mn matrix pencil

A− λB =


−Am−1 −Am−2 · · · −A1 −A0

I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

− λ

Am 0 · · · 0 0
0 I · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 I

 (25)

is called the companion form of P and represents one of its most common linearizations. It
is well known [7] that the eigenvalues of (A,B) coincide with those of P .

Because of this one-to-one relation between the eigenvalues, condition numbers for the
eigenvalues of P can be derived from structured eigenvalue condition numbers for (A,B) if
the structure only admits perturbations in the blocks A0, . . . , Am of A− λB. A consequence
of this restriction on the perturbations, the resulting eigenvalue condition numbers for the
polynomial do not depend on the particular type of linearization chosen. The described
approach has the advantage that we can make use of Theorem 4.5 and do not require more
general concepts for matrix polynomials.

Following this approach, let us consider the perturbed matrix polynomial P + ε4P with

4P (λ) = λmEm + λm−1Em−1 + · · ·+ λE1 + E0.

Equivalently, we can consider the correspondingly perturbed linearization (A+ εE,B + εF ),
where

E = −V
î
Em−1 Em−2 · · · E1 E0

ó
, F = V EmV

T , (26)

and V = [In, 0, . . . , 0]T . To measure the perturbations, we allow n nonnegative weights
w1, . . . , wn, each corresponding to a coefficient of the matrix polynomial. As in Remark 4.3,
to avoid degenerate situations we require w0 > 0 for λ = 0, wm > 0 for λ = ∞, and
max{w0, . . . , wm} > 0 for any other eigenvalue.

22



Definition 4.8 Let λ be a finite eigenvalue of a matrix polynomial P with the companion form
(A,B) as in (25). Moreover, let X and Y be the corresponding eigenvector matrices (21) of
(A,B). Consider perturbations (E,F ) of the form (26), which preserve the companion form.
Then the (absolute) Hölder condition number for λ is given by κ(P, λ) = (n1, α), where n1 is
the size of the largest Jordan block of (A,B) associated with λ and

α = sup
‖Ei‖≤wi
Ei∈Cn×n

ρ(Y H(E − λF )X).

The (absolute) Hölder condition number for ∞ is given by κ(P,∞) = (n1, α), where n1 is the
nilpotency index of (A,B) and

α = sup
‖Ei‖≤wi
Ei∈Cn×n

ρ(Y HFX).

The results in [11, Lemma 7.2] and [10, Lemma 3.7] show that x1 and y1 are right and
left eigenvectors belonging to a finite eigenvalue λ of P if and only if

x =


λm−1x1

...
λx1

x1

 , y =


y1

(λAm +Am−1)Hy1
...

(λm−1Am + λm−2Am−1 + · · ·+A1)Hy1

 (27)

are right and left eigenvector of (A,B), respectively. For λ = ∞, the eigenvectors of (A,B)
are given by x = [xH1 , 0, . . . , 0]H and y = [yH1 , 0, . . . , 0]H . This shows that the matrices X
and Y defined in (21), containing right and left eigenvectors belonging to a finite (multiple)
eigenvalue λ of (A,B), take the form

X =


λm−1X1

...
λX1

X1

 , Y =


Y1

(λAm +Am−1)HY1
...

(λm−1Am + λm−2Am−1 + · · ·+A1)HY1

 , (28)

where X1 and Y1 are matrices of right and left eigenvectors of P . For an infinite eigenvalue
only the first blocks of X and Y are nonzero and equal to X1 and Y1, respectively.

The following lemma provides an explicit formula for the Hölder condition number and
also shows α > 0 (under the mentioned conditions on the weights), which – strictly speaking
– is needed to justify Definition 4.8.

Lemma 4.9 For a finite eigenvalue λ, we have

κ(P, λ) = (n1, (wm|λ|m + wm−1|λ|m−1 + · · ·+ w0)‖X1Y
H

1 ‖2)

in any unitarily invariant norm ‖ · ‖, where X1 and Y1 are the eigenvector matrices of P
related to the eigenvector matrices X and Y of (A,B) as shown in (28). For an infinite
eigenvalue, κ(P, λ) = (n1, wm‖X1Y

H
1 ‖2).

Proof. The structure of the matrices E, F , X and Y shown in (26) and (28) implies

Y H(E − λF )X = −Y H
1 (λmEm + λm−1Em−1 + · · ·+ E0)X1
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As in the proof of Lemma 4.4, this shows

ρ(Y H(E − λF )X) ≤ (wm|λ|m + wm−1|λ|m−1 + · · ·+ w0)‖X1Y
H

1 ‖2 (29)

Let u, v with ‖u‖2 = ‖v‖2 = 1 be the left/right singular vectors belonging to the largest
singular value of X1Y

H
1 . Then equality in (29) is attained for the perturbation coefficients

E0 = w0vu
H , E1 = w1

λ̄

|λ|
vuH , . . . , Em = wm

λ̄m

|λ|m
vuH ,

with E1 = · · · = Em = 0 for λ = 0. This proves the result for finite λ. For an infinite
eigenvalue, the result follows analogously after observing Y HFX = Y H

1 EmX1.
It should be emphasized that X1 and Y1 cannot be chosen arbitrarily in Lemma 4.9; the

result depends on the normalization of the matrices X and Y imposed by (21). To illustrate
the effect of this normalization, let λ be a semisimple finite eigenvalue of P and suppose that‹X1 and ‹Y1 contain arbitrary bases of right and left eigenvectors belonging to λ. If we let ‹X
and ‹Y denote the corresponding bases for eigenvectors of (A,B) then (28) implies‹Y HB ‹X = ‹Y H

1 P ′(λ)‹X1.

Since λ is semi-simple and finite, the matrix ‹Y H
1 P ′(λ)‹X1 is invertible and

X1 = ‹X1(‹Y H
1 P ′(λ)‹X1)−1, Y1 = ‹Y1

satisfy Y H
1 P ′(λ)X1 = I, which amounts to the condition imposed by (21) for a semi-simple

eigenvalue. By Lemma 4.9,

κ(P, λ) =
(
1, (wm|λ|m + wm−1|λ|m−1 + · · ·+ w0)

∥∥∥‹X1(‹Y H
1 P ′(λ)‹X1)−1‹Y H

1

∥∥∥
2

)
.

For r1 = 1, this formula coincides with a result by Tisseur [39, Theorem 5] on the condition
number for a simple eigenvalue of a matrix polynomial.

Finally, let us emphasize again that the companion form linearization serves a purely the-
oretical purpose here. If one admits general, unstructured perturbations to the linearization
then the corresponding condition numbers do depend on the linearization, see the discussion
in [10, 11]. In particular, [11] shows how to minimize the unstructured condition number
for a simple eigenvalue of the linearization. This is useful when applying an unstructured
method, as the QZ algorithm, to compute the eigenvalue via the linearization. The extension
of these results to multiple eigenvalues would require comparing the result of Lemma 4.9 with
the unstructured Hölder condition numbers of a linearization. Also, it could be of interest
to study the effect on the Hölder condition numbers if further structure is imposed on the
coefficients of the matrix polynomial and this structure is preserved by the linearization [21].
Some results in this direction concerning structured pseudospectra can be found in [8, 41].

5 Conclusions

A definition of structured Hölder condition number for multiple eigenvalues, both of matrices
and of regular matrix pencils, has been introduced with the purpose of comparing structured
and unstructured condition numbers for several classes of structured matrices and pencils.
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Moreover, eigenvalues of matrix polynomials can be treated within this framework via lin-
earization through companion form. Like previous Hölder condition numbers in the literature,
the structured condition number κ(A, λ; S) = (nS, αS) has two entries, the first one related to
the leading exponent, the second one to the leading coefficient in the asymptotic expansions
of perturbed eigenvalues. Although the present paper focuses on the case when the first entry
nS coincides with the one in the unstructured condition number, some examples are given
when this does not happen (see, e.g., (6) and (7)).

According to the results in this paper, the behavior of multiple eigenvalues under struc-
tured perturbations does not differ much from the one for simple eigenvalues described in
[3, 16, 32], in the sense that the influence of structure on the condition number is usually mild,
except in a few, quite specific situations. All these situations seem to be related to a combi-
nation of symmetry with skew-symmetry, either for matrices which are skew-symmetric with
respect to a symmetric bilinear form (Theorem 3.8, items (ii) and (iv)) or for symmetric/skew-
symmetric pencils (Theorem 4.5 (iv)). Palindromic pencils (Theorem 4.7) represent another
instance of the interplay between symmetry and skew-symmetry, see equation (24). Under-
standing why this happens is one of the open questions raised by such results. Also, there
are a few cases where all we can say is that nS = n1, with no further information to compare
αS and α. Such cases remain as objects of future study.

Another open problem is a more complete picture of what happens in those cases where
nS < n1, i.e., whenever structured perturbations induce a behavior qualitatively different
from the one induced by unstructured ones.
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A Structured canonical forms

This section collects known results on canonical forms for structured matrices and matrix
pencils used in this paper. The forms are constructed as direct sums of the following m×m
matrices:

Jordan block Flip matrix

Jm(λ) =


λ 1

. . . . . .
. . . 1

λ

 , Fm =


1

. ..

. ..

1

,

Signature matrix (m even) Signature matrix (m odd)

Σm =
ñ
Im/2

−Im/2

ô
, Σm =

 0 I(m−1)/2

0 −I(m−1)/2

0 0 0

 .
Proofs of the following theorems can be found in Thompson’s overview paper [38], and in the
more recent and more general work [25].

Theorem A.1 (Complex symmetric matrix pencils) Consider the regular matrix pen-
cil A − λB with A and B complex symmetric matrices. There exists an invertible matrix S
such that

ST (A− λB)S = (A1 − λB1)⊕ · · · ⊕ (Ap − λBp),

where the diagonal blocks take the form

(i). Aj − λBj = Fnj − λFnjJnj (0) for an infinite eigenvalue;

(ii). Aj − λBj = FnjJnj (λj)− λFnj for a finite eigenvalue λj.

Corollary A.2

(i). Let λj be an eigenvalue of the a matrix A satisfying ATM = MA for some real orthog-
onal symmetric matrix M . Then the matrices X and Y defined in (11)–(12) satisfy the
relation Y = MX.

28



(ii). Let λj be a (finite or infinite) eigenvalue of the regular matrix pencil A−λB with A and
B complex symmetric. Then the matrices X and Y defined in (21) satisfy the relation
Y = X.

Proof. The first part is proven by applying Theorem A.1 to the pencil MA − λM . This
yields a matrix S with S−1 = (Fn1 ⊕ · · · ⊕Fnp)STM such that S−1AS is in Jordan canonical
form. The result follows by inspection of (11)–(12). The second part follows directly from
combining Theorem A.1 with (21).

Theorem A.3 (Complex skew-symmetric/symmetric matrix pencils) Consider the
regular matrix pencil A − λB with a complex skew-symmetric A and a complex symmetric
B. There exists an invertible matrix S such that

ST (A− λB)S = (A1 − λB1)⊕ · · · ⊕ (Ap − λBp),

where the diagonal blocks take the form

(i). Aj − λBj = Fnj Σnj − λFnjJnj (0) for an infinite eigenvalue with nj even;

(ii). Aj − λBj =
ï

0
−Fnj−λFnjJnj (0)

Fnj−λFnjJnj (0)

0

ò
for an infinite eigenvalue with nj odd;

(iii). Aj − λBj = Fnj Σnj − λFnj for a zero eigenvalue with nj odd;

(iv). Aj −λBj =
ï

0
−FnjJnj (λj)−λFnj

FnjJnj (λj)−λFnj

0

ò
for a finite nonzero eigenvalue pair ±λj

or a zero eigenvalue λj with nj even.

Corollary A.4

(i). Let λj be an eigenvalue of a matrix A satisfying ATM = −MA for some real orthogonal
symmetric matrix M . Then the following holds for the matrices X and Y defined
in (11)–(12):

(a) if λj = 0 and nj is odd then Y = MX;

(b) if λj = 0 and nj is even then Y = MX
î

0
−I

I
0

ó
;

(c) if λj 6= 0 then the analogously defined matrices ‹X and ‹Y for −λj satisfy ‹X =
−Y, ‹Y = X.

(ii). Let λj be an eigenvalue of the regular matrix pencil A − λB with complex symmetric
A and complex skew-symmetric B. Then the following holds for the matrices X and Y
defined in (21).

(a) if λj =∞ and nj is odd then Y = X;

(b) if λj =∞ and nj is even then Y = X
î

0
−I

I
0

ó
;

(c) if λj = 0 and nj is odd then Y = X
î

0
−I

I
0

ó
;

(d) if λj = 0 and nj is even then Y = X;

(e) if λj 6= 0 then the analogously defined matrices ‹X and ‹Y for −λj satisfy ‹X =
−Y, ‹Y = X.
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Proof. The first part is proven by applying Theorem A.3 to A− λM . If λj = 0 and nj is
odd then Theorem A.3 (iii) yields the relation Q = MP (Fnj ⊕ · · · ⊕ Fnj ) for the matrices P
and Q defined in (8). An inspection of (11)–(12) verifies (a). If λj = 0 and nj is even then
Theorem A.3 (iv) yields

Q = MP

Çñ
0 Fnj

−Fnj 0

ô
⊕ · · · ⊕

ñ
0 Fnj

−Fnj 0

ôå
.

and thus Y = MX
Äî

0
−1

1
0

ó
⊗ · · · ⊗

î
0
−1

1
0

óä
. A perfect shuffle of the columns of X and Y

yields (b). A similar argument leads to (c).
The second part is proven by applying Theorem A.3 to B − λA.

Theorem A.5 (Complex skew-symmetric matrix pencils) Consider the regular matrix
pencil A − λB with A and B complex skew-symmetric matrices. There exists an invertible
matrix S such that

ST (A− λB)S = (A1 − λB1)⊕ · · · ⊕ (Ap − λBp),

where the diagonal blocks take the form

(i). Aj − λBj =
ï

0
−Fnj +λFnjJnj (0)

Fnj−λFnjJnj (0)

0

ò
for an infinite eigenvalue;

(ii). Aj − λBj =
ï

0
−FnjJnj (λj)+λFnj

FnjJnj (λj)−λFnj

0

ò
for a finite eigenvalue.

Corollary A.6

(i). Let λj be an eigenvalue of a matrix A satisfying ATM = MA for some real orthogonal
skew-symmetric matrix M . Then the matrices X and Y defined in (11)–(12) satisfy
Y = −MX

î
0
−I

I
0

ó
.

(ii). Let λj be a (finite or infinite) eigenvalue of the regular matrix pencil A−λB with A and
B complex symmetric. Then the matrices X and Y defined in (21) satisfy the relation
Y = −X

î
0
−I

I
0

ó
Proof. Using Theorem A.5, the proof is analogous to the proof of Corollary A.4 (ib).
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