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Abstract

This paper is concerned with the efficient numerical solution of the Lyapunov equation
AT X 4+ X A = —C with a stable matrix A and a symmetric positive semidefinite matrix C
of possibly small rank. We discuss the efficient implementation of Hammarling’s method
and propose among other algorithmic improvements a block variant, which is demon-
strated to perform significantly better than existing implementations. An extension to
the discrete-time Lyapunov equation AT XA — X = —C is also described.

1 Introduction

The matrix equation
ATX + XA=-C, C=C"7, (1)

with the coefficients A, C' € R™*™ and the desired solution X € R™*™ is called the (continuous-
time) Lyapunov equation. In the following, we assume that A is stable, i.e., all its eigenvalues
have negative real part. This condition implies the unique existence and symmetry of X. Solv-
ing (1) is an important part of some numerical methods in control, most notably balanced
truncation model reduction [2, 6].

Often, C is positive semidefinite and has the representation C' = BT B with B € R™*™ and
m < n. In this case, it is well known that X is also positive semidefinite and can be written in
factorized form X = UTU as well. Hammarling’s method [15] for solving (1) is an extension
of the Bartels-Stewart method [4] and obtains the Cholesky factor U directly, without com-
puting X first. This has several advantages, in particular increased numerical stability. Also,
when (1) appears within a Krylov subspace or ADI method for solving Lyapunov equations
then typically U and not X is needed, see, e.g., [22].

Hammarling’s method consists of three steps. First, using orthogonal transformations,
A is reduced to real Schur form. Then the reduced equation is solved. Finally, a Cholesky
factor of X is obtained by a back transformation, applying the orthogonal transformations
from the first step. In this paper, we mainly consider the second step and therefore focus on
the solution of the reduced equation

AT(UTU) + (UTU)A = —BTB, (2)
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where A is a block upper triangular matrix with 1 x 1 and 2 x 2 blocks on the diagonal.
Hammarling’s method essentially solves (2) by a forward substitution process, very similar to
the forward substitution for solving lower triangular systems of equations [14]. Two modifica-
tions of this method were proposed by Sorensen and Zhou in [28]. First, a reformulation for
Sylvester equations involving 2 x 2 diagonal blocks of A, corresponding to complex conjugate
pairs of eigenvalues, is given. It is pointed out that this reformulation leads to a more efficient
implementation, but it could also adversely affect the numerical stability properties. Second,
a new technique for updating the right-hand side of (2) during the forward substitution is
given. This reduces the number of floating point operations (flops) for m < n. Extensions of
Hammarling’s method to generalized Lyapunov equations can be found in [23, 29].

The purpose of this paper is to present a block variant of Hammarling’s method, which
— depending on the matrix size and computer architecture — can be much faster than the
state-of-the-art implementation contained in SLICOT [5]. A general approach to derive block
algorithms for linear algebra algorithms is to partition all coefficients into 2 x 2 blocks and
solve the corresponding subsystems recursively. The coupling relation between these subsys-
tems can often be represented by matrix-matrix multiplications, giving rise to highly efficient
implementations almost entirely based on level 3 BLAS [13]. This methodology has been suc-
cessfully used in [17, 25] to derive recursive algorithms for Lyapunov equations of the form (1)
and other matrix equations. However, it will be seen that the direct application of such an
approach to the factorized form (2) results in a numerically extremely unstable algorithm.
We propose an alternative approach, which is still rich in level 3 BLAS operations but avoids
the modification of numerically critical parts in Hammarling’s method.

The rest of this paper is organized as follows. In Section 2, we present Hammarling’s
method in a slightly modified form, making it more suitable for m < n. Moreover, it is
demonstrated that a straightforward recursive formulation has dissatisfying numerical prop-
erties, to put it mildly. In Section 3, the new block variant is described. Section 4 is an
extension of these ideas to discrete-time Lyapunov equations. Section 5 is devoted to nu-
merical experiments. In particular, it is shown how the combination of our block variant
with recent improvements of the QR algorithm results in a more efficient solver for general,
unreduced Lyapunov equations.

2 Hammarling’s Method

To describe Hammarling’s method, let us consider the reduced Lyapunov equation (2) and
partition
AH A12 Ull U12
[0 A |’ u 0 Ux |’ [ B B2 ], )
where Ay € R™*™ [J3; € R™*™ By € R™*™ with n, = 1 or ny = 2, depending on whether
the (2,1) entry of A is zero. First, a QR decomposition is applied to the first n; columns of
B, yielding an m x m orthogonal matrix ()1 such that

Bi1 Bia ]

Qf [ B Bg}z{ o By (4)
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Algorithm 1 Hammarling’s method for continuous-time Lyapunov equations

Input: An n x n upper triangular matrix A and an m x n matrix B.
Output: An n x n upper triangular matrix U solving (2).

for j — 1,2,...,ndo
Let @; be a Householder reflector that maps the jth column of B to a multiple of e;.
B(jin) = QiB(,jin),  UGj) — B(Lj)/-24G.)),  f;— BLIH/UGI
Determine right-hand side 7 < —B(1,j + 1: n)T f; — A(j,j +1: n)TU(j, j).
Compute U(j,j+1:n)T — (AG+1:n,5+1:n)T + A(4,5).—;) " r by solving a linear system.
Update B(1,j+1:n) «— B(1,j+1:n)— f;U(j,j+1:n).

end for

with Byy € R™{mmlxm - Then it can be shown that (2) is equivalent to

A (UfUn) + (UL Un) Ay = —B{, B, (5)
AL UL, + UL (UnALULY) = —]-?1T2fjl — ALUT, (6)
Ay (UgUn2) + (UgpUz2) Azy = —BiaBao, (7)
where
~ By — LU _
By = [ 12 B221 12 ] ., P =BnU.

This yields the following forward substitution process. For n, = 1, the scalar equation (5)
is trivially solved by setting U;; = B11/v/—2A411. For ny = 2, the solution of (5) can be
reduced to the 1 x 1 case using the complex Schur decomposition of Ajj, see [15] for more
details. Having U;; determined, equation (6) becomes a Sylvester equation in Uja, which can
be reformulated as an ny(n —ny) X ny(n —np) upper triangular linear system using Kronecker
products [14]. Note that (6) is not well-defined if Uy is singular. This issue poses no difficulty
for ny, =1 (U1 = 0 implies U1z = 0) and can also be addressed for n, = 2, see [15, Sec. 6].
With Uy being determined, (7) becomes an (n—ny) X (n—nyp) Lyapunov equation in factorized
form, which can be solved by recursively applying the above procedure.

Algorithm 1 provides a MATLAB-like description of Hammarling’s method, restricted to
the case of an upper triangular matrix A for simplicity. It requires approximately %nS +2mn?
flops, making its cost for m < n comparable to the multiplication of two triangular n x n
matrices. In the case m < n, the bulk of the computational work in each loop consists of
solving a (n — j) x (n — j) upper triangular linear system by backward substitution, which
requires (n— j)? flops and access to O((n—j)?) words of memory. This results in a rather high
communication/computation ratio for the overall algorithm, leading to poor performance on
computer architectures with a memory hierarchy, see also [12]. Another point to mention is
that the matrices U and B are accessed row-wise which is disadvantageous when the matrices
are stored column-wise, as it is usually done.

Remark 1 Note that Algorithm 1 differs from the original description of Hammarling’s
method. In [15], it was proposed to reduce B to upper trapezoidal form prior to any other
computation. The upper trapezoidal form of B is maintained throughout all subsequent compu-
tations using QR updating techniques as described, e.g., in [14]. This requires 3n*>m+O(m?n)
flops for the orthogonal transformations of B alone. In contrast, the corresponding part in
Algorithm 1 requires only 2n?m + O(m?2n) flops. Also for m = O(n), it can be shown that
Algorithm 1 requires less flops. If, however, m is significantly larger than n, say m > 3n/2,
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then the initial QR decomposition becomes the dominating part of the computation in the
ortginal description. Since this part can be addressed by a block algorithm based on compact
WY representations [14], we may expect better performance.

A direct way to enhance the poor performance of Algorithm 1 is to increase the value of
ny, in the equations (5)—(7) from 1 or 2 to ny, = [n/2]. Note that the value of n, might need
to be slightly adjusted to avoid cutting 2 x 2 blocks in A. Now, both Lyapunov equations (5)
and (7) are roughly of order n/2 and can be solved recursively. Moreover, the size of the two
matrix coefficients in the Sylvester equation (6) is balanced, which means that RECSY [17]
can be invoked to solve this equation very efficiently. This idea eventually yields a recursive
Hammarling method with most of the computational work consisting of large matrix-matrix
multiplications. We can therefore expect performance improvements that are quite similar to
the dramatic improvements reported in [17] for the recursive solution of Lyapunov equations
in non-factorized form. However, the presence of U;;" in (6) and (7) raises doubts about the
finite-precision behavior of such an approach. The singular values of solutions of Lyapunov
equations often decay rapidly, in particular for right-hand sides of low rank [3, 24]. This
implies that Uy; may become very ill-conditioned as n; increases and represents a potential
source for numerical instability. To clarify this issue, we have applied a straightforward
MATLAB implementation, denoted by reclyapchol below, to the matrices

A = diag(—1,-2,-3,...,—n), B:[l 1}’

For Lyapunov equations of order at most 2 arising during the recursion, the SLICOT-based
MATLAB control toolbox function lyapchol was used. In the following table, we report the
Frobenius norms of the residuals,

|1AT(WUTU) + (UTU)A + BT B||F,

for 1yapchol (applied to the n x n Lyapunov equation) and reclyapchol.

n| 4 8 16 32 64 128
lyapchol | 10-16 10=16 1015 10-% 10~ 10°™
reclyapchol | 1071¢ 10715 1071 10=° 10%¢ 10'%®

It can be seen that reclyapchol becomes extremely inaccurate as n increases. This demon-
strates that a naive recursive formulation of Hammarling’s method is an infeasible means to
increase performance.

3 A Block Variant

In the following, we derive a block variant that enables the use of level 3 BLAS operations
without abandoning numerical stability. For this purpose, let us assume that A is upper
triangular and partition the matrices A, B and U in (2) as follows:

A A, * 3 U U, *
A= 0 Az * |, B:[B B, *], U=1|10 U; * |, (8)
0 0 «x 0 0 %

where A,U e R, Ap,Up € R%k A, Uy € RF¥F B e R™*! and B, € R™*k, see also
Figure 1. Assume that U has been determined, e.g., by applying Algorithm 1 to A and
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XXX XK XXX XXXXXXX XX
XXX XXX KXXXXXXXX XX
XXX XXX KKXXXKXXXXX XX
XXX XXX KKXXXKXXXXX XX
XAHKAXXKXAKAXXAKAXXKXXXXX
N AN DDA NN NN NN

/X

XX
XXX
XXX X
XXX XX

Figure 1: Illustration of the partitioning of U in (8). The arrows indicate data dependencies
between rows within the block column panel and determine the order in which the rows must
be processed.

B. Moreover, the quantities Q1,...,Q; and f1,..., f; produced during the algorithm are
supposed to be kept in storage. Let us now investigate the arithmetic operations that have to
be performed in order to obtain w1, the first row of the next block column panel U,. First,

we need to update B):
By, «— Q1Bp.

To set up the linear system that determines wuy,, we note that

(L a ][ )=
AZ; Az; H u{p - b{pf]- ’

where @1 denotes the solution that has been obtained in the first loop of Algorithm 1 applied
to A and B, and by, denotes the first row of B,. This implies

(A7 + a1 Dui, =, — Alal =bl f1 — (e]UA,)".
Finally, b1, needs to be updated again,
bip < bip — frup.
Similarly, to compute the second row ug, we first update
By, — Q2Bp,

solve the linear system }
(A + aza Iug, = bl fo — (e UA,)".
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Algorithm 2 Block algorithm for continuous-time Lyapunov equations

Input: An n x n upper triangular matrix A, an m x n matrix B, and a block size k.
Output: An n x n upper triangular matrix U solving (2).
i — 1

while 1 <n do
I — min{n,i+k — 1}.
Compute diagonal block U (i : 1,4 : I) by applying Algorithm 1 to A(i:1,7:1) and B(:,i: ).
% The reflectors Q1, . . .,Q; and scalars f1,. .., fi resulting from Algorithm 1 are kept in workspace.
% Update next block column panel l +1:1+ k.
pr—1+1, pr — min{n,l + k}.
Ul:lps:op) < UQ:1,1:D)AQ: L pr:p)
for j — 1,2,...,1do
B(:,psipi) < Q;B(:,py i pr)-
Determine right-hand side r, < —B(1,ps : pi)T f; — U(4,ps : 1
Compute U(j,ps : p))T — (Alps : pi,ps = )T + A(j4, 5)I) "', by solving a linear system.
Update B(1,py : pi) < B(L,pr : pi) — f;U(,pr : p1)-
end for
i1+ 1.
end while

).

and update again
bip « b1p — fouagp.

More general, the determination of the jth row u;, requires the update of B, and the solution
of a linear system

(AG +aj; Dul, = bl f; — (el UA,)T. 9)

Because of the complicated dependencies in the updates of b1, we see little hope to block the
complete process. Note that for m,k < [ the computationally most expensive part is the
determination of the jth row of U A, in (9), which does not depend on previously computed
data within the panel. Our block variant attains its efficiency by precomputing U A, with a
single matrix-matrix multiplication (by calling the level 3 BLAS DTRMM).

Once all u1p, ...,y have been determined, we can compute Uy by applying Algorithm 1
to Aq and the updated B),. Then we choose the columns [ +k+1,...,14 2k as the next block
column panel and repeat the process described above. This is summarized in Algorithm 2.

If m < n, the algorithm has the pleasing property to be approximately entirely based
on level 3 BLAS, i.e, as n/k — oo the portion of flops spent in calls to DTRMM approaches
100%. Still, good performance can only be attained if the block size k is chosen in a suitable
manner. This point is emphasized, e.g., in [17, 18], where it is demonstrated that recursion
automatically leads to nearly optimal block partitionings. Also, the numerical experiments
in [17] clearly show the large impact of kernel solvers for tiny Lyapunov and Sylvester equa-
tions on the performance of the overall algorithm. Our implementation of Algorithm 2 is
currently based on the very reliable kernel solvers provided in SLICOT. We expect further
improvements from optimized super-scalar kernels that use explicit loop unrolling and other
techniques assisting compiler optimization.

Note that during the execution of Algorithm 2, the orthogonal matrices @1, ..., Q, need
to be stored. Fortunately, each @; can be represented by a Householder vector of length m
and therefore fits precisely in the subsequently unused jth column of B. The scalars f1,..., fn
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and the diagonal elements of A (to maintain data locality) are stored in a separate work space
array of length O(n).

As m increases, the orthogonal transformations of B become a non-negligible portion of
the overall computational work. Although not based on level 3 BLAS the updates of B are
only performed locally within stripes of k columns; we can therefore expect that performance
will not be severely affected as m increases. However, in preliminary computational exper-
iments we observed for m > 2k that it is beneficial to initially reduce columns 7,...,[ of
B to upper triangular form in each outer loop of Algorithm 2. This allows to rewrite the
orthogonal transformation of B(:,ps : p;) in the inner loop mainly in terms of compact WY
representations of order k.

Finally, let us remark that Algorithm 2 can be extended without any difficulties to a
matrix A having 2 x 2 blocks on the diagonal. The main difference is that two rows of the
block column panel corresponding to such a 2 x 2 block are processed simultaneously requiring
the solution of a Sylvester equation instead of the linear system (9).

4 Extension to the Discrete-Time Lyapunov Equation

Hammarling’s method for computing the factorized solution of the reduced discrete-time
Lyapunov equation (also called Stein equation)

AT(UTu)A - (UTU)=-B'B (10)

is rather similar to the continuous-time case. Here, the d-stability of A (all eigenvalues
are inside the unit disk) implies the existence of U. Again we consider a partitioning of the
form (3) with n; € {1,2} and perform the QR decomposition (4) of B. Then (10) is equivalent
to

Al (U}U) A — (ULUW) = —B{, B, (11)
ALUL(UnALWULY) — Uy = —BLF — ALUL (U AnULY), (12)
Ay (UsyUsz2)Agz — (UgyU2) = —DBjyBas, (13)
where . .
By = { Cillnda + Uudi) + Hi B ] . Fi=BuUp}, (14)
22

and (1, Hy are chosen such that

UnAnUyt Gy
Fy Hy

is an orthogonal matrix. Note that (11) implies the orthogonality of the first n; columns of
this matrix and that for ny = 1 we can simply set G; = Fy, Hy = —Ay1. For n, = 2, this and
related update formulas for By are discussed in [16, 30]; its implementation in the SLICOT
routine SBO30T is based on a 4x2 QR decomposition. Similarly as (5)—(7), the equations (11)-
(13) can be solved recursively. This yields Algorithm 3, which is, again for simplicity only,
restricted to an upper triangular matrix A and requires approximately %ng + 2mn? flops.
Note the increase of flops in comparison to Algorithm 1. This increase is due to the need for
computing U(j,7 : n)A(j : n,j + 1 : n) in the update of B and is actually avoidable; this
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Algorithm 3 Hammarling’s method for discrete-time Lyapunov equations

Input: An n x n upper triangular matrix A and an m x n matrix B.
Output: An n x n upper triangular matrix U solving (10).

for j — 1,2,...,ndo
Let @; be a Householder reflector that maps the jth column of B to a multiple of e;.
B(.jin) —QBGjin), UG — BLH)NI—TAGAE  f— BLH/TG,)).
Determine right-hand side 7 < —B(1,j + 1: n)T f; — A(j,j + 1 : n)TU(4,5) A, ).
Compute U(j,7+1:n)T «— (A(j,))AG +1:n,5+1:n)T —I,_;)~!r by solving a linear system.
Update B(1,j+1:n) «— f;U(j,j :n)A({ :n,j+1:n)—A(j,7)B(1,j +1:n).

end for

Algorithm 4 Block algorithm for discrete-time Lyapunov equations

Input: An n x n upper triangular matrix A, an m x n matrix B, and a block size k.
Output:  An n X n upper triangular matrix U solving (10).

i — 1
while 7 <n do
I — min{n,i+ k — 1}.
Compute diagonal block U(i : 1,4 : 1) by applying Algorithm 3 to A(i: 1,7 :1) and B(:,i: ).
% The reflectors Q1, ..., Qq and scalars f1, ..., fi resulting from Algorithm 3 are kept in workspace.
% Update next block column panel I +1:1+ k.
pr—1+1, pr < min{n,l + k}.
Ul:lpr:p) <= UQ:1,1:DAQ:Lps:p)
for j —1,2,...,ldo
B(:,ps:pi) < Q;B(:,py i p1)-
Save w — U(j,ps : ;1)
Determine right-hand side r, < —B(1,ps : p)* f; — wT A(j, §).
Compute U(j, pr : pi)* «— (A(4, j)A(pys = pi,ps = )T — I)~'r, by solving a linear system.
Update B(1,py : pi) < fiw+ frU(5,pr : p)A(ps = pi, 05 = p1) — A4, 5)B(L,ps 2 pi1)-
end for
i [+ 1.
end while

computation can be combined with the forward substitution process when solving the linear
system. This technique, which is naturally included in our block variant, reduces the number
of flops back to %n?’ + 2mn?.

A block variant of Algorithm 3 can be derived along the lines of Section 3. We omit the
details and only present the resulting algorithm. The remarks concerning the properties and
implementation of Algorithm 2 apply likewise to Algorithm 4.

5 Numerical Experiments

To test the proposed block variants, we have implemented Algorithms 2 and 4 in a Fortran
77 routine called LRLYAP! and performed various numerical experiments on two machine
platforms with different characteristics:

e Athlon MP2000+ with 64 kB instruction and 64 kB data L1 Cache, 256 kB of integrated

!The Fortran routine along with an example program and MATLAB interfaces are available from http:
//www.cs.umu.se/~kressner/lyapunov.php.
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Figure 2: Ratios of execution times between new routine LRLYAP and SLICOT routine SBO30U
for solving reduced, continuous-time (x) and discrete-time Lyapunov (+) equations with
m = 100.

L2 cache. Software used: Debian GNU/Linux 3.0, Portland F90 6.0, ATLAS BLAS
3.5.9.

e AMD Opteron 248 with 64 kB instruction and 64 kB data L1 Cache (2-way associative),
1024 kB unified L2 Cache (16-way associative). Software used: Debian GNU/Linux 3.1,
Portland F90 6.0, Goto BLAS 0.94.

Several subroutines from LAPACK 3.0 [1] and SLICOT 4.0 [5] are called by LRLYAP. We have
compared our routine with the SLICOT routine SB030U for solving reduced Lyapunov equa-
tions, which is — to the best of our knowledge — the current state-of-the-art implementation
of Hammarling’s method. We refer to [27] for an evaluation of the matrix equation solvers
contained in SLICOT.

All results reported are run on one processor in double precision real arithmetic (€,,4cn =
2.2 x 10716),

5.1 Performance comparison to SB030U

First, random upper triangular matrices A € R™*" and random matrices B € R™*" have
been generated for m = 100 and n € {100, 200, 300, ...,4000}. Note that some care needs to
be applied when generating A in order to avoid gradual under- or overflow in the solution,
which would severely degrade the performance [21]. The block size k is chosen optimally from
the set {8,16,24,...,120}. On both platforms it was observed that the performance was not
very sensitive with respect to the choice of k; any choice between 48 and 100 resulted in an
execution time that was at most 10% larger than the minimum. Figure 2 displays the ratio
between the measured execution times of SBO30U and LRLYAP. The speedups range between
a factor of 6 and 22 for n > 1500. It can be observed that the speedups are higher for the
discrete-time Lyapunov equation, which was to be expected from the discussion in Section 4.
Also, the speedups are more impressive on the Athlon MP20004, which we attribute to the
small L2 cache size. To provide a concrete example, let us consider the case n = 4000. On
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Figure 3: Execution times of SLICOT routine SBO30U and new routine LRLYAP for solving
reduced, 2000 x 2000 continuous-time Lyapunov equations. Note that the numbers for SBO30U

have been divided by 9 and 6, respectively.

Athlon, SB030U requires 310 seconds (continuous-time case) and 452 seconds (discrete-time
case); LRLYAP reduces these times to 18.5 and 19.8 seconds, respectively. On AMD Opteron,
the corresponding figures are 82 and 126 seconds for SB030U, but only 10.1 and 10.9 seconds

for LRLYAP.
Next, we investigated the effect of increasing m on the performance. For this purpose, we

kept n = 2000 fixed and varied m in {1,2,4,8,...,2048}. The measured execution times are
displayed in Figure 3. The speedup factor increases from 9.5 to 17 on Athlon and from 4.7 to
11.5 on AMD Opteron. Pleasantly, the sensitivity with respect to the choice of block size k
remains modest as m increases; any choice between 48 and 88 resulted in an execution time

that was at most 20% larger than the minimum.

5.2 Impact on the solution of unreduced Lyapunov equations
A solver for general, unreduced Lyapunov equations in factorized form consists of the following
steps:

(i) Hessenberg reduction of A;

(ii) application of QR algorithm to reduce A further to real Schur form;

(iii) application of orthogonal matrix () accumulated in Steps (i)+(ii) to right-hand side

B «— BQ;
(iv) solution of reduced Lyapunov equation;

(v) back transformation of solution: U « UQT.

In this paper, we have only considered improvements to Step (iv). Recently, drastic improve-
ments have been attained for the QR algorithm employed in Step (ii), using multishift and
aggressive early deflation techniques [7, 8]. Also, Step (i) benefits from the changes proposed
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Figure 4: Total execution times for solving unreduced, 3000 x 3000 continuous-time (ct) and
discrete-time (dt) Lyapunov equations with m = 100.

in [26]. Both improvements are included in LAPACK 3.1. Figure 4 reports the total execution
time of existing software (LAPACK 3.0 and SLICOT) compared to newly developed software
(LAPACK 3.1 and the routine LRLYAP described in this paper). It is interesting to note
that without using LRLYAP the portion spent for solving the reduced equations would raise
from 3%...8% to 18%...32%. The use of LRLYAP brings these figures back to insignificant
2% ...3%. On the other hand, Figure 4 also quite clearly shows that the impovements of Step
(ii) have a much larger impact on the overall performance than those of Step (iv). Of course,
the impact of Step (iv) increases when multiple solutions of the same Lyapunov equation with
different right-hand sides are required as, e.g., in balanced truncation model reduction [2, 6]
or condition estimation [9].

5.3 Accuracy

To verify that the proposed block variants do not affect the numerical stability of Ham-
marling’s method, we considered the benchmark collections CTDSX [19] and DTDSX [20],
which contain various examples of linear time-invariant systems (A, B, C, D) with A € R"*",
B e R™™ C e RP*™ D € RP*™. Each of these systems gives rise to a pair of Lyapunov
equations

AUTU,) + WUl AT = —-BBT, AT(UTU,) + (UTU,)A = -CTC, (15)
in the continuous-time case (CTDSX) and
A(UrU)AT — (UlU.) = -BBT, AT(ULU,)A - (UIU,) =-CTC, (16)

in the discrete-time case (DTDSX). We have applied SB030U as well as LRLYAP to the solution
of (15) and (16), after A has been balanced and reduced to Schur form, and B, C have been
transformed accordingly. For the back transformed solutions, we have measured the Frobenius
norms of the residuals

re = [AULUe) + (USU)AT + BB ||p, 1o = AT (U Uo) + (Ug Uo)A+ CTCllp,  (17)
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SB030U LRLYAP
Ex. n m P Te To Te To k
1.3 4 2 4 5x1071% 2x10713 8x10~'® 2x1071® 2
1.4 8 2 8 4x1071® 1x107™ 5x107'® 9x1071® 4
1.5 9 3 9 2x107 7x107'* 2x107 6x107'* 4
1.6 30 3 5 8x10797 3x107% 8x10797 3x107%® 8
1.8 9 3 2 2x1079% 2x107% 2x1079% 1x107% 4
3.4 421 211 211 1x107'1° 6x10t™ 1x10719 3x10t!* 32
4.1 100 1 1 1x107" 1x10715 1x10~' 1x107'5 16
42 60 2 60 2x10792 2x107T9? 1x1079" 8x10t9' 16
Table 1: Obtained residuals (17) for CTDSX examples.
SB030U LRLYAP
Ex. nom P Te To Te To k
1.7 4 2 4 1x107™™ 3x1071 1x107™ 7x1071* 2
1.8 4 4 4 3x10719 8x10713 4x10719 1x10712 2
1.9 5 2 5 1x10716 2x10713 1x10716 2x10713 2
1.10 6 2 2 0 2x1071° 0 0 2
1.11 9 3 2 2x107'7 8x107'* 2x107'" 8x107% 3
2.1 4 1 1 3x10~24 0 2x10~24 0 2
3.1 100 1 100 0 8x 10714 0 9x10~ ™ 16

Table 2: Obtained residuals (18) for DTDSX examples.

and
re = |AUTU)AT — (UTU,) + BBY | r, = |AT(UTU)A - (UTU,) +CTC||p, (18)

respectively. We have only selected these examples from CTDSX and DTDSX for which the
system matrix is stable and n > 4. The block size k has been chosen low enough to enable
the block algorithm.

From Tables 1 and 2, it can be seen that the use of LRLYAP does not lead to significant
changes in the residuals. Further tests with various types of random matrices confirm this
observation. Moreover, it has been observed that the most notable differences in the residuals
stem from the different ways of updating the right-hand side as explained in Remark 1.

6 Conclusions and Open Questions

Algorithmically improved, block variants of Hammarling’s method have been developed, lead-
ing to implementations that significantly outperform existing software for solving Lyapunov
equations without abandoning numerical stability.

We expect that the performance can be increased even further by developing highly effi-
cient kernel solvers and numerically reliable ways of performing recursion. However, in view
of the results in Section 5.2 such further improvements may only have a limited impact on
the overall execution time required for solving an unreduced Lyapunov equation. Another
direction of future research is to investigate whether the ideas from this paper lead to parallel
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distributed memory algorithms competitive with existing parallel variants of Hammarling’s
method, see, e.g., [10, 11].
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