
BIT Numerical Mathematics (2007) 47: 763–791

Published online: 11 September 2007 – c© Springer 2007
DOI: 10.1007/s10543-007-0143-y

COMPUTING PERIODIC DEFLATING SUBSPACES
ASSOCIATED WITH A SPECIFIED SET

OF EIGENVALUES�,��
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Abstract.

We present a direct method for reordering eigenvalues in the generalized periodic
real Schur form of a regular K-cyclic matrix pair sequence (Ak, Ek). Following and
generalizing existing approaches, reordering consists of consecutively computing the
solution to an associated Sylvester-like equation and constructingK pairs of orthogonal
matrices. These pairs define an orthogonal K-cyclic equivalence transformation that
swaps adjacent diagonal blocks in the Schur form. An error analysis of this swapping
procedure is presented, which extends existing results for reordering eigenvalues in the
generalized real Schur form of a regular pair (A,E). Our direct reordering method is
used to compute periodic deflating subspace pairs corresponding to a specified set of
eigenvalues. This computational task arises in various applications related to discrete-
time periodic descriptor systems. Computational experiments confirm the stability and
reliability of the presented eigenvalue reordering method.
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1 Introduction.

Discrete-time periodic descriptor systems of the form

Ekxk+1 = Akxk +Bkuk,

yk = Ckxk +Dkuk,
(1.1)
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with Ak = Ak+K , Ek = Ek+K ∈ Rn×n, Bk = Bk+K ∈ Rn×m, Ck = Ck+K
∈ Rr×n and Dk = Dk+K ∈ Rr×m for some period K ≥ 1 arise naturally from
processes that exhibit seasonal or periodic behavior [6]. Design and analysis
problems of such systems (see, e.g., [31, 32, 39]) are conceptually studied in terms
of state transition matrices [39] ΦE−1A(j, i) = E

−1
j−1Aj−1E

−1
j−2Aj−2 . . . E

−1
i Ai

∈ Rn×n, with the convention ΦE−1A(i, i) = In. A state transition matrix over
a complete period ΦE−1A(j +K, j) is the monodromy matrix of (1.1) at time j.
Its eigenvalues are called the characteristic multipliers and are independent of
the time j. Specifically, the monodromy matrix at time j = 0 corresponds to the
matrix product

E−1K−1AK−1E
−1
K−2AK−2 · · ·E

−1
1 A1E

−1
0 A0.(1.2)

Matrix products of the general form (1.2) are studied, e.g., in [3, 5, 26, 40].

We study the K-cyclic matrix pair sequence (Ak, Ek) with Ak, Ek ∈ Rn×n

from (1.1) via the generalized periodic Schur decomposition [8, 18]: there exists
a K-cyclic orthogonal matrix pair sequence (Qk, Zk) with Qk, Zk ∈ Rn×n such
that, given k ⊕ 1 = (k + 1) mod K, we have

{
Sk = Q

T
kAkZk,

Tk = Q
T
kEkZk⊕1,

(1.3)

where all matrices Sk, except for some fixed index j with 0 ≤ j ≤ K − 1, and
all matrices Tk are upper triangular. The matrix Sj is upper quasi-triangular;
typically j is chosen to be 0 or K − 1. The sequence (Sk, Tk) is the general-
ized periodic real Schur form (GPRSF) of (Ak, Ek), k = 0, 1, . . . ,K − 1. The
decomposition (1.3) is a K-cyclic equivalence transformation of the matrix pair
sequence (Ak, Ek).

Computing the GPRSF is the standard method for solving the generalized
periodic (product) eigenvalue problem (GPEVP)

E−1K−1AK−1E
−1
K−2AK−2 · · ·E

−1
1 A1E

−1
0 A0x = λx,(1.4)

where all matrices in the pairs (Ak, Ek) are general and dense. For K = 1, (1.4)
corresponds to a generalized eigenvalue problem Ax = λEx with (A,E) regular
(see, e.g., [12]). Using the GPRSF to solve a GPEVP for K ≥ 1 means that we
do not need to compute any matrix products in (1.4) explicitly, which avoids
numerical instabilities and allows to handle singular factors Ek.

The 1× 1 and 2× 2 blocks on the diagonal of a GPRSF define t ≤ n K-cyclic

diagonal block pairs (S
(k)
ii , T

(k)
ii ), corresponding to real eigenvalues and complex

conjugate pairs of eigenvalues, respectively.

A real eigenvalue is simply given by

λi =
S
(K−1)
ii

T
(K−1)
ii

S
(K−2)
ii

T
(K−2)
ii

· · ·
S
(0)
ii

T
(0)
ii

.
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This eigenvalue is called infinite if
∏K−1
k=0 T

(k)
ii = 0 but

∏K−1
k=0 S

(k)
ii �= 0. If there

are 1 × 1 blocks for which both
∏K−1
k=0 S

(k)
ii = 0 and

∏K−1
k=0 T

(k)
ii = 0 then the

K-cyclic matrix pair sequence (Ak, Ek) is called singular, otherwise the sequence
(Ak, Ek) is called regular. In the degenerate singular case, the eigenvalues become
ill-defined and other tools [28, 37] need to be used to study the periodic eigen-
value problem. For the rest of the paper, it is therefore assumed that (Ak, Ek)
is regular.
For two complex conjugate eigenvalues λi, λ̄i, all matrices T

(k)
ii are nonsingular

and

λi, λ̄i ∈ λ
(
T
(K−1)
ii

−1
S
(K−1)
ii T

(K−2)
ii

−1
S
(K−2)
ii · · ·T (0)ii

−1
S
(0)
ii

)
,

where λ(M ) denotes the set of eigenvalues of a matrix M . In finite preci-
sion arithmetic, great care has to be exercised to avoid underflow and over-
flow in the explicit eigenvalue computation, especially when it involves 2 × 2
blocks [35].
For every l with 1≤ l ≤ n such that no 2×2 block resides in Sj(l : l+1, l : l+1),
the first l pairs of columns of (Q0, Z0) span a deflating subspace pair correspond-
ing to the first l eigenvalues of the matrix product (1.2). More generally, the
first l pairs of columns of (Qk, Zk) span a left and right periodic (or cyclic) de-
flating subspace pair sequence associated with the first l eigenvalues of the matrix
product (1.2) [5].
The decomposition (1.3) is computed via the periodic QZ algorithm (see,
e.g., [8, 18, 24, 25]), which consists of an initial reduction to generalized pe-
riodic Hessenberg form and a subsequent iterative process to generalized pe-
riodic Schur form. In [38], the generalized periodic Schur form is extended to
periodic matrix pairs with time-varying and possibly rectangular dimensions.
This includes a preprocessing step that truncates parts corresponding to spuri-
ous characteristic values, which then yields square system matrices of constant
dimensions.

1.1 Ordered GPRSF and periodic deflating subspaces.

In many applications, it is desirable to have the eigenvalues along the diagonal
of the GPRSF in a certain order. If the generalized periodic Schur form has its
eigenvalues ordered in a certain way as in (1.5), it is called an ordered GPRSF.
For example, if we have

Sk =

[
S
(k)
11 S

(k)
12

0 S
(k)
22

]
, Tk =

[
T
(k)
11 T

(k)
12

0 T
(k)
22

]
,(1.5)

with S
(k)
11 , T

(k)
11 ∈ Rl×l such that the upper left part sequence (S(k)11 , T

(k)
11 )

contains all eigenvalues in the open unit disc, then (Sk, Tk) is an ordered GPRSF
and the first l columns of the sequence Zk span stable right periodic deflat-
ing subspaces. For initial states x0 ∈ span(Z0e1, . . . , Z0el) with ei being the
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ith unit vector, the states of the homogeneous system Ekxk+1 = Akxk satisfy
xk ∈ span(Zke1, . . . , Zkel) and 0 is an asymptotically stable equilibrium.
Other important applications relating to periodic discrete-time systems include
the stable-unstable spectral separation for computing the numerical solution of
the discrete-time periodic Riccati equation [38] in LQ-optimal control, which
we illustrate in Section 2, and pole placement where the goal is to move some
or all of the poles to desired locations in the complex plane [29, 15]. In [4],
ordered Schur forms are used for solving generalized Hamiltonian eigenvalue
problems.

In this paper, we extend the work in [2, 14, 21, 25, 15] to perform eigenvalue
reordering in a regular periodic matrix pair sequence in GPRSF.

The rest of the paper is organized as follows. In Section 2, we illustrate how
an ordered GPRSF can be used to solve the discrete-time periodic Riccati equa-
tion that arises in an LQ-optimal control problem. Section 3 presents our direct
method for reordering eigenvalues of a periodic (cyclic) matrix pair sequence
(Ak, Ek) in GPRSF. To compute an ordered GPRSF, a method for reordering
adjacentK-cyclic diagonal block pairs is combined with a bubble-sort like proce-
dure in an LAPACK-style [1, 2, 23] fashion. The proposed method for swapping
adjacent diagonal block pair sequences relies on orthogonal K-cyclic equivalence
transformations and the core step consists of computing the solution to an as-
sociated periodic generalized coupled Sylvester equation, which is discussed in
Section 3.4. An error analysis of the direct reordering method is presented in
Section 5, which extends and generalizes results from [21, 14]. In Section 6, we
discuss some implementation issues regarding the solution of small-sized periodic
generalized coupled Sylvester equations and how we control and guarantee sta-
bility of the reordering. Some examples and computational results are presented
and discussed in Section 7. Finally, in Section 8 we discuss some extensions of
the reordering method.

2 LQ-optimal control and periodic deflating subspaces.

Given the system (1.1), the aim of linear quadratic (LQ) optimal control is
to find a feedback sequence uk which stabilizes the system and minimizes the
functional

1

2

∞∑
k=0

(
xTkHkxk + u

T
kNkuk

)
,

with Hk ∈ Rn×n symmetric positive semidefinite and Nk ∈ Rm×m symmet-
ric positive definite. Moreover, we suppose that the weighting matrices are
K-periodic, i.e., Hk+K = Hk and Nk+K = Nk. Under mild assumptions [7],
the optimal feedback is linear and unique. For each k, it can be expressed as

u�k = −
(
Nk +B

T
k Xk+1Bk

)−1
BTk Xk+1Akxk,
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where Xk = Xk+K is the unique symmetric positive semidefinite solution of the
discrete-time periodic Riccati equation (DPRE) [18]

0 = CTk HkCk −E
T
k−1XkEk−1 +A

T
kXk+1Ak

−ATkXk+1Bk
(
Nk +B

T
k Xk+1Bk

)−1
BTkXk+1Ak,

(2.1)

provided that all Ek are invertible. The 2n× 2n periodic matrix pair

(Lk,Mk) =

([
Ak 0

−CTk HkCk ETk−1

]
,

[
Ek−1 BkN

−1
k B

T
k

0 ATk

])

is closely associated with (2.1). Similarly as for the case Ek = In [18], it can
be shown that this pair has exactly n eigenvalues inside the unit disk under
the assumption that (1.1) is d-stabilizable and d-detectable. By reordering the
GPRSF of (Lk,Mk) we can compute a periodic deflating subspace defined by
the orthogonal matrices Uk, Vk ∈ R2n×2n with Uk+K = Uk, Vk+K = Vk such
that

UTk LkVk =

[
S
(k)
11 S

(k)
12

0 S
(k)
22

]
, UTk MkVk+1 =

[
T
(k)
11 T

(k)
12

0 T
(k)
22

]
,

where the n× n periodic matrix pair (S(k)11 , T
(k)
11 ) contains all eigenvalues inside

the unit disk. If we partition

Uk =

[
U
(k)
11 U

(k)
12

U
(k)
21 U

(k)
22

]

with U
(k)
ij ∈ R

n×n, then

U
(k)
21

[
U
(k)
11

]−1
= XkEk−1,

from which Xk can be computed. The proof of this relation is similar as for the
case K = 1, see, e.g., [27]. We note that if Nk is not well-conditioned then it is
better to work with (2n+m)× (2n+m) matrix pairs, as described in [27].

3 Direct method for eigenvalue reordering in GPRSF.

Given a regular K-cyclic matrix pair sequence (Ak, Ek) in GPRSF, our method
to compute an ordered GPRSF (1.5) with respect to a set of specified eigenvalues
reorders 1×1 and 2×2 diagonal blocks in the GPRSF such that the selected set of

eigenvalues appears in the matrix pair sequence (S
(k)
11 , T

(k)
11 ). Following LAPACK,

we assume that the set of specified eigenvalues are provided as an index vector

for the blocks of eigenvalue pairs that should appear in (S
(k)
11 , T

(k)
11 ). The proce-

dure is now to swap adjacent diagonal blocks in the GPRSF in a bubble-sort
fashion such that the specified eigenvalue ordering is satisfied [1, 2, 23]. In the
following, we focus on the K-cyclic swapping of diagonal blocks using orthogonal
transformations.
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3.1 Swapping of K-cyclic diagonal block matrix pairs.

Consider a regular K-cyclic matrix pair sequence (Ak, Ek) in GPRSF

(Ak, Ek) =

([
A
(k)
11 A

(k)
12

0 A
(k)
22

]
,

[
E
(k)
11 E

(k)
12

0 E
(k)
22

])
(3.1)

with A
(k)
11 , E

(k)
11 ∈ R

p1×p1 and A
(k)
22 , E

(k)
22 ∈ R

p2×p2 , for k = 0, 1, . . . ,K − 1.

Swapping consists of computing orthogonal matrices Uk, Vk such that

[
Â
(k)
11 Â

(k)
12

0 Â
(k)
22

]
= UTk

[
A
(k)
11 A

(k)
12

0 A
(k)
22

]
Vk,(3.2)

[
Ê
(k)
11 Ê

(k)
12

0 Ê
(k)
22

]
= UTk

[
E
(k)
11 E

(k)
12

0 E
(k)
22

]
Vk⊕1,(3.3)

for k = 0, . . . ,K − 1, and

λ(Π̂11) = λ(Π22), λ(Π̂22) = λ(Π11),(3.4)

where

Πii =
[
E
(K−1)
ii

]−1
A
(K−1)
ii · · ·

[
E
(0)
ii

]−1
A
(0)
ii ,(3.5)

Π̂ii =
[
Ê
(K−1)
ii

]−1
Â
(K−1)
ii · · ·

[
Ê
(0)
ii

]−1
Â
(0)
ii .(3.6)

If some of the E
(k)
ii are singular then the products (3.5) and (3.6) should only be

understood in a formal sense, with their finite and infinite eigenvalues defined via
the GPRSF. The relation (3.4) means that all eigenvalues of Π22 are transferred

to Π̂11 and all eigenvalues of Π11 to Π̂22. For our purpose, A
(k)
ii , E

(k)
ii ∈ R

pi×pi

are the diagonal blocks of a GPRSF and it can thus be assumed that pi ∈ {1, 2}.

The K-cyclic swapping is performed in two main steps. First, the sequence
(Ak, Ek) in (3.1) is block diagonalized by a nonorthogonal K-cyclic equivalence
transformation. Second, orthogonal transformation matrices are computed from
this matrix pair sequence that perform the required K-cyclic swapping.

3.2 Swapping by block diagonalization and permutation.

Let us consider aK-cyclic matrix pair sequence (Lk, Rk), with Lk, Rk ∈Rp1×p2 ,
which solves the periodic generalized coupled Sylvester equation (PGCSY)

{
A
(k)
11 Rk − LkA

(k)
22 = −A

(k)
12 ,

E
(k)
11 Rk⊕1 − LkE

(k)
22 = −E

(k)
12 .

(3.7)
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Then (Lk, Rk) defines an equivalence transformation that block diagonalizes the
K-cyclic matrix pair sequence (Ak, Ek) in (3.1):[

A
(k)
11 A

(k)
12

0 A
(k)
22

]
=

[
Ip1 Lk

0 Ip2

][
A
(k)
11 0

0 A
(k)
22

][
Ip1 −Rk

0 Ip2

]
,

[
E
(k)
11 E

(k)
12

0 E
(k)
22

]
=

[
Ip1 Lk

0 Ip2

][
E
(k)
11 0

0 E
(k)
22

][
Ip1 −Rk⊕1

0 Ip2

]
,

(3.8)

for k = 0, 1, . . . ,K − 1.
The diagonal blocks of the block diagonal matrices in (3.8) are swapped by
a simple equivalence permutation:[

0 Ip2

Ip1 0

]([
A
(k)
11 0

0 A
(k)
22

]
,

[
E
(k)
11 0

0 E
(k)
22

])[
0 Ip1

Ip2 0

]

=

([
A
(k)
22 0

0 A
(k)
11

]
,

[
E
(k)
22 0

0 E
(k)
11

])
.

(3.9)

Altogether, by defining the matrices

Xk =

[
Lk Ip1

Ip2 0

]
, Yk =

[
0 Ip2

Ip1 −Rk

]
, k = 0, . . . ,K − 1,(3.10)

we obtain a non-orthogonal K-cyclic equivalence transformation such that[
A
(k)
11 A

(k)
12

0 A
(k)
22

]
=Xk

[
A
(k)
22 0

0 A
(k)
11

]
Yk,

[
E
(k)
11 E

(k)
12

0 E
(k)
22

]
=Xk

[
E
(k)
22 0

0 E
(k)
11

]
Yk⊕1.

(3.11)

It remains to show the existence of a solution to (3.7).

Lemma 3.1. Let the K-cyclic matrix sequences (A
(k)
11 , B

(k)
11 ) and (A

(k)
22 , B

(k)
22 )

be regular. Then the PGCSY (3.7) has a unique solution if and only if

λ(Π11) ∩ λ(Π22) = ∅,(3.12)

where Πii is the formal matrix product defined in (3.5).

Proof. Since (3.7) is a system of 2p1p2K linear equations in 2p1p2K vari-
ables, it suffices to show that the corresponding linear operatorL : (Rp1×p2)2K →
(Rp1×p2)2K , defined by

L : (Lk, Rk)
K−1
k=0 	→

(
A
(k)
11 Rk − LkA

(k)
22 , E

(k)
11 Rk⊕1 − LkE

(k)
22

)K−1
k=0

(3.13)

has a trivial kernel if and only if (3.12) is satisfied.
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1. Let λ ∈ λ(Π11) ∩ λ(Π22) and assume λ �= ∞ (the case λ = ∞ can be
treated analogously by switching the roles of E and A, and reversing the in-
dex k). By the complex periodic Schur decomposition, there are sequences of
nonzero, right and left eigenvectors x0, . . . , xK−1 ∈ Cp1 , y0, . . . , yK−1 ∈ Cp2

satisfying

λkE
(k)
11 xk⊕1 = A

(k)
11 xk, µky

H
k E

(k�1)
22 = yHk⊕1A

(k)
22 ,(3.14)

for k = 0, . . . ,K − 1, where

λ = λ0 · · ·λK−1 = µ0 · · ·µK−1(3.15)

and E
(k)
11 xk⊕1 �= 0, y

H
k E

(k�1)
22 �= 0. Here, k � 1 denotes (k − 1) mod K. The

relation (3.15) implies the existence of a sequence γ0, . . . , γK−1 ∈ C such
that

γkλk = γk⊕1µk, k = 0, . . . ,K − 1,(3.16)

with at least one γk being nonzero. Defining

Rk = γkxky
H
k E

(k�1)
22 , Lk = γk⊕1E

(k)
11 xk⊕1y

H
k⊕1,

this guarantees that at least one of the matrices Rk and Lk is nonzero.
Moreover, (3.14) and (3.16) yield

A
(k)
11 Rk − LkA

(k)
22 = γkA

(k)
11 xky

H
k E

(k�1)
22 − γk⊕1E

(k)
11 xk⊕1y

H
k⊕1A

(k)
22

= (γkλk − γk⊕1µk)E
(k)
11 xk⊕1y

H
k E

(k�1)
22 = 0,

E
(k)
11 Rk⊕1 − LkE

(k)
22 = γk⊕1E

(k)
11 xk⊕1y

H
k⊕1E

(k)
22 − γk⊕1E

(k)
11 xk⊕1y

H
k⊕1E

(k)
22

= 0.

Hence, the kernel of L is nonzero if (3.12) is not satisfied.
2. For the other direction of the proof, assume that (3.12) is satisfied. We first
treat the case when all coefficient matrices are of order 1, i.e., we consider{

α
(k)
1 rk − lkα

(k)
2 = 0,

β
(k)
1 rk⊕1 − lkβ

(k)
2 = 0,

(3.17)

with scalars α
(k)
j and β

(k)
j . Because of (3.12), one of the products

β
(0)
1 · · ·β

(K−1)
1 or β

(0)
2 · · ·β

(K−1)
2 must be nonzero. Without loss of general-

ity, we may assume that β
(0)
2 · · ·β

(K−1)
2 �= 0. Then (3.17) implies

α
(k)
1 rk =

α
(k)
2 β

(k)
1

β
(k)
2

rk⊕1, k = 0, . . . ,K − 1.(3.18)
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Recursively substituting rk and rk⊕1 yields

(
α
(0)
1 · · ·α

(K−1)
1

)
r0 =

(
α
(0)
2 · · ·α

(K−1)
2

)(
β
(0)
1 · · ·β

(K−1)
1

)
(
β
(0)
2 · · ·β

(K−1)
2

) r0.

The regularity assumption implies that one of α
(0)
1 · · ·α

(K−1)
1 or

β
(0)
1 · · ·β

(K−1)
1 is nonzero. Together with (3.12), this implies r0 = 0, and

in combination with (3.18) we get rk = 0 for all k = 0, . . . ,K − 1. In
addition, from (3.17) we have

lk =
β
(k)
1

β
(k)
2

rk⊕1, k = 0, . . . ,K − 1,

which in turn results in lk = 0.
For coefficient matrices of larger order, we proceed by induction. By the

complex Schur decomposition, we may assume that A
(k)
jj and E

(k)
jj are upper

triangular. Conformably partition

L(k) =

[
L
(k)
11 L

(k)
12

L
(k)
21 L

(k)
22

]
, R(k) =

[
R
(k)
11 R

(k)
12

R
(k)
21 R

(k)
22

]
,

A
(k)
11 =

[
Ā
(k)
11 Ā

(k)
12

0 Ā
(k)
22

]
, A

(k)
22 =

[
Ā
(k)
33 Ā

(k)
34

0 Ā
(k)
44

]
,

and in an analogous manner E
(k)
jj . Then (3.7) with the right hand sides

replaced by zero yields

Ā
(k)
22 R

(k)
21 − L

(k)
21 Ā

(k)
33 = 0, Ē

(k)
22 R

(k⊕1)
21 − L(k)21 Ē

(k)
33 = 0.

By the induction assumption, we have L
(k)
21 = R

(k)
21 = 0 for all k. Sub-

sequently, analogous periodic PGCSYs of smaller order can be found for

(L
(k)
11 , R

(k)
11 ), (L

(k)
22 , R

(k)
22 ), and (L

(k)
12 , R

(k)
12 ), see also [13], eventually showing

that L(k) = R(k) = 0. This completes the proof.

Related periodic Sylvester equations were also studied in, e.g., [30, 36] and an
overview was given in [39]. For a recursive solution method based on the last
part of the proof of Lemma 3.1, see [13].

3.3 Swapping by orthogonal transformation matrices.

From the definition (3.10), it can be observed that the first block column ofXk
and the last block row of Yk have full column and row ranks, respectively. Hence,
if we choose orthogonal matrices Qk and Zk from QR and RQ factorizations such
that [

Lk

Ip2

]
= Qk

[
T
(k)
L

0

]
,
[
Ip1 −Rk

]
=
[
0 T

(k)
R

]
ZTk ,(3.19)
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then T
(k)
L ∈ Rp2×p2 , T (k)R ∈ Rp1×p1 are not only upper triangular but also non-

singular for k = 0, 1, . . . ,K − 1.
Partitioning Qk and Zk in conformity with Xk and Yk as

Qk =

[
Q
(k)
11 Q

(k)
12

Q
(k)
21 Q

(k)
22

]
, Zk =

[
Z
(k)
11 Z

(k)
12

Z
(k)
21 Z

(k)
22

]
,

we obtain

QTkXk =

⎡
⎣T (k)L Q

(k)
12

T

0 Q
(k)
22

T

⎤
⎦, YkZk =

[
Z
(k)
21 Z

(k)
22

0 T
(k)
R

]
.(3.20)

By applying (Qk, Zk) as an orthogonal K-cyclic equivalence transformation to
(Ak, Ek) we obtain(
QTkAkZk,Q

T
kEkZk⊕1

)
=

(
QTk

[
A
(k)
11 A

(k)
12

0 A
(k)
22

]
Zk, Q

T
k

[
E
(k)
11 E

(k)
12

0 E
(k)
22

]
Zk⊕1

)

=

(
QTkXk

[
A
(k)
22 0

0 A
(k)
11

]
YkZk, Q

T
kXk

[
E
(k)
22 0

0 E
(k)
11

]
Yk⊕1Zk⊕1

)

≡

([
Â
(k)
11 Â

(k)
12

0 Â
(k)
22

]
,

[
Ê
(k)
11 Ê

(k)
12

0 Ê
(k)
22

])
,

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Â
(k)
11 = T

(k)
L A

(k)
22 Z

(k)
21 ,

Â
(k)
12 = T

(k)
L A

(k)
22 Z

(k)
22 +Q

(k)
11

T
A
(k)
11 T

(k)
R ,

Â
(k)
22 = Q

(k)
12

T
A
(k)
11 T

(k)
R ,

(3.21)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ê
(k)
11 = T

(k)
L E

(k)
22 Z

(k⊕1)
21 ,

Ê
(k)
12 = T

(k)
L E

(k)
22 Z

(k⊕1)
22 +Q

(k)
11

T
E
(k)
11 T

(k⊕1)
R ,

Ê
(k)
22 = Q

(k)
12

T
E
(k)
11 T

(k⊕1)
R .

(3.22)

Note that (3.19) implies the nonsingularity of Q
(k)
12 and Z

(k)
21 . Hence, from the

equations above, we see that (A
(k)
11 , E

(k)
11 ) and (A

(k)
22 , E

(k)
22 ) areK-cyclic equivalent

to (Â
(k)
22 , Ê

(k)
22 ) and (Â

(k)
11 , Ê

(k)
11 ), respectively. In other words, the eigenvalues of

the K-cyclic matrix pair sequence (Ak, Ek) have been reordered as desired.

We remark that (Â
(k)
11 , Ê

(k)
11 ) and (Â

(k)
22 , Ê

(k)
22 ) are generally not in GPRSF

after the K-cyclic swapping and have to be further transformed by orthogonal
transformations to restore the GPRSF of the matrix pair sequence (Ak, Ek) (see
Section 5.2).
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3.4 Matrix representation of the PGCSY.

The key step of the reordering method is to solve the associated PGCSY (3.7).
Using Kronecker products this problem can be rewritten as a linear system of
equations

ZPGCSYx = c,(3.23)

where ZPGCSY is a 2Kp1p2 × 2Kp1p2 matrix representation of the associated
linear operator (3.13):

ZPGCSY

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−A(0)22
T
⊗ Ip1 Ip2 ⊗A

(0)
11

−E
(0)
22

T
⊗ Ip1 Ip2 ⊗ E

(0)
11

Ip2 ⊗ A
(1)
11 −A(1)22

T
⊗ Ip1

−E(1)22
T
⊗ Ip1

. . .

. . .

−A
(K−1)
22

T
⊗ Ip1

−E(K−1)22

T
⊗ Ip1 Ip2 ⊗ E

(K−1)
11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and x and c are 2Kp1p2 × 1 vector representations of the assembled unknowns
and right hand sides, respectively:

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(L0)

vec(R1)

vec(L1)

vec(R2)

...

vec(RK−1)

vec(LK−1)

vec(R0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec
(
−A(0)12

)
vec
(
−E(0)12

)
vec
(
−A(1)12

)
vec
(
−E(1)12

)
...

vec
(
− A(K−1)12

)
vec
(
−E(K−1)12

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here, the operator vec(M ) stacks the columns of a matrix M on top each other
into one long vector. Note also that only the nonzero blocks of ZPGCSY are dis-
played explicitly above. The sparsity structure of ZPGCSY can be exploited when
using Gaussian elimination with partial pivoting (GEPP) or a QR factorization
to solve (3.23), see Section 5 for more details.
By Lemma 3.1, the matrix ZPGCSY is invertible if and only if the eigenvalue
condition (3.12) is fulfilled. Throughout the rest of this paper we assume that this
condition holds. If the condition is violated then, since (Ak, Ek) is in GPRSF,
the eigenvalues of Π11 and Π22 are actually equal and there is in principle no
need for swapping.
The invertibility of ZPGCSY is equivalent to

sep[PGCSY] = σmin(ZPGCSY) �= 0.(3.24)
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As for deflating subspaces of regular matrix pairs (see, e.g., [33, 23]), the quantity
sep[PGCSY] measures the sensitivity of the periodic deflating subspace pair of
the GPRSF [5, 26, 34]. IfK, p1 or p2 become large this quantity is very expensive
to compute explicitly. By using the well-known estimation technique described
in [17, 19, 22, 23], reliable sep[PGCSY]-estimates can be computed at the cost
of solving a few PGCSYs.

4 Error analysis of K-cyclic equivalence swapping of diagonal blocks.

In this section, we present an error analysis of the direct method described in
Section 3 by extending the results in [21] to the case of periodic matrix pairs.
We sometimes omit the index range k = 0, 1, . . . ,K − 1, assuming that it is
implicitly understood.
In finite precision arithmetic, the transformed matrix pair sequence will be af-
fected by roundoff errors, resulting in a computed sequence (Ãk, Ẽk). We express
the computed transformed matrix pairs as

(Ãk, Ẽk) = (Âk +∆Ak, Êk +∆Ek),

where (Âk, Êk) for k = 0, . . .K − 1 correspond to the exact matrix pairs in the
reordered GPRSF of (Ak, Bk). Our task is to derive explicit expressions and
upper bounds for the error matrices ∆Ak and ∆Ek. Most critical are of course
the subdiagonal blocks of a 2× 2 block partioned sequence (∆Ak,∆Ek). These
must be negligible in order to guarantee numerical backward stability for the
swapping of diagonal blocks.
Let (L̃k, R̃k) = (Lk + ∆Lk, Rk + ∆Rk) denote the computed solution to the
associated PGCSY. The residual pair sequence of the computed solution is then

given by (Y
(k)
1 , Y

(k)
2 ), where{

Y
(k)
1 ≡ A(k)11 R̃k − L̃kA

(k)
22 + A

(k)
12 ,

Y
(k)
2 ≡ E(k)11 R̃k⊕1 − L̃kE

(k)
22 +E

(k)
12 .

(4.1)

In addition, let Q̃k, T̃
(k)
L denote the computed factors of the kth QR factorization

G̃
(k)
L ≡

[
L̃k

Ip2

]
= Q̃k

[
T̃
(k)
L

0

]
,(4.2)

where Q̃k = Qk+∆Qk, T̃
(k)
L = T

(k)
L +∆T

(k)
L and Qk, T

(k)
L are the exact factors.

Similarly, let Z̃k, T̃
(k)
R denote the computed factors of the kth RQ factorization

G̃
(k)
R ≡

[
Ip1 −R̃k

]
=
[
0 T̃

(k)
R

]
Z̃Tk ,(4.3)

where Z̃k = Zk+∆Zk, T̃
(k)
R = T

(k)
R +∆T

(k)
R and Zk, T

(k)
R are the exact factors. If

Householder transformations are used to compute the factorizations (4.2)–(4.3),
Q̃k and Z̃k are orthogonal to machine precision [41]. The error matrices ∆Qk
and ∆Zk are essentially bounded by the condition numbers of G̃

(k)
L and G̃

(k)
R ,

respectively, times the relative errors in these matrices (e.g., see [33, 20]).
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We transform (Ak, Ek) using the computed (Q̃k, Z̃k) in a K-cyclic equivalence
transformation giving

Q̃T (Ak, Ek)Z̃k = (Âk +∆Ak, Êk +∆Ek),(4.4)

where (Âk, Êk) is the exact reordered GPRSF of the periodic (Ak, Bk) se-
quence. Our aim is to derive explicit expressions and norm bounds for blocks of
(∆Ak,∆Ek). First,

Q̃TAkZ̃k = (Qk +∆Qk)
TAk(Zk +∆Zk)

= QTkAkZk +∆Q
T
kAkZk +Q

T
kAk∆Zk +∆Q

T
kAk∆Zk,

(4.5)

and by dropping the second order term and using Âk = Q
T
kAkZk and ∆Q

T
kQk =

−Qk∆QTk up to first order we get

Q̃TAkZ̃k = Âk + Âk
(
ZTk ∆Zk

)
+
(
−Qk∆Q

T
k

)
Âk = Âk +∆Ak,

with ∆Ak ≡ ÂkUk +WkÂk, where Uk = Z
T
k ∆Zk and Wk = −Qk∆Q

T
k .

(4.6)

Similarly, we get

Q̃TBkZ̃k⊕1 = Êk +∆Ek with ∆Ek ≡ ÊkUk⊕1 +WkÊk.(4.7)

After partitioning Uk, Uk⊕1, Wk and (∆Ak,∆Ek) in conformity with (Âk, Êk)
and doing straightforward block matrix multiplications we get

∆A
(k)
11 = Â11U

(k)
11 +W

(k)
11 Â

(k)
11 + Â

(k)
12 U

(k)
21 ,

∆A
(k)
12 = Â

(k)
11 U

(k)
12 + Â

(k)
12 U

(k)
22 +W

(k)
11 Â

(k)
12 +W

(k)
12 Â

(k)
22 ,

∆A
(k)
21 = Â

(k)
22 U

(k)
21 +W

(k)
21 Â

(k)
11 ,

∆A
(k)
22 = Â

(k)
22 U

(k)
22 +W

(k)
22 Â

(k)
22 +W

(k)
21 Â

(k)
12 ,

and

∆E
(k)
11 = Ê11U

(k⊕1)
11 +W

(k)
11 Ê

(k)
11 + Ê

(k)
12 U

(k⊕1)
21 ,

∆E
(k)
12 = Ê

(k)
11 U

(k⊕1)
12 + Ê

(k)
12 U

(k⊕1)
22 +W

(k)
11 Ê

(k)
12 +W

(k)
12 Ê

(k)
22 ,

∆E
(k)
21 = Ê

(k)
22 U

(k⊕1)
21 +W

(k)
21 Ê

(k)
11 ,

∆E
(k)
22 = Ê

(k)
22 U

(k⊕1)
22 +W

(k)
22 Ê

(k)
22 +W

(k)
21 Ê

(k)
12 .

Observe that ∆A
(k)
11 , ∆A

(k)
22 , ∆E

(k)
11 , ∆E

(k)
22 affect the reordered K-cyclic diag-

onal block pairs and possibly the eigenvalues, while ∆A
(k)
21 and ∆E

(k)
21 are even

more critical since they affect the eigenvalues as well as the stability of the re-
ordering; these are the perturbations of interest that we investigate further. The
analysis in [21] applied to (4.2)–(4.3), results in the following expressions for
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blocks of Uk and Wk:

U
(k)
11 = −Z

(k)
21

−1
Z
(k)
22 T

(k)
R

−1
∆RkZ

(k)
21 ,

U
(k)
21 = T

(k)
R

−1
∆RkZ

(k)
21 ,

U
(k)
22 = T

(k)
R

−1
∆RkZ

(k)
22 ,

and

W
(k)
11 = −Q

(k)
11

T
∆LkT

(k)
L

−1
,

W
(k)
21 = −Q

(k)
12

T
∆LkT

(k)
L

−1
,

W
(k)
22 = Q

(k)
12

T
T
(k)
L

−1
Q
(k)
11

T
Q
(k)
12

−T
,

up to first order perturbations. By substituting the expressions for U
(k)
ij and

W
(k)
ij in ∆A

(k)
ij ,∆E

(k)
ij we obtain

∆A
(k)
11 = Q

(k)
11

T
Y
(k)
1 Z

(k)
21 ,(4.8)

∆A
(k)
21 = Q

(k)
12

T
Y
(k)
1 Z

(k)
21 ,(4.9)

∆A
(k)
22 = Q

(k)
12

T
Y
(k)
1 Z

(k)
22 ,(4.10)

and

∆E
(k)
11 = Q

(k)
11

T
Y
(k)
2 Z

(k⊕1)
21 ,(4.11)

∆E
(k)
21 = Q

(k)
12

T
Y
(k)
2 Z

(k⊕1)
21 ,(4.12)

∆E
(k)
22 = Q

(k)
12

T
Y
(k)
2 Z

(k⊕1)
22 ,(4.13)

with the residuals (Y
(k)
1 , Y

(k)
2 ) as in (4.1). From the QR and RQ factorizations

(3.19) we have

Q
(k)
21 = T

(k)
L

−1
, T

(k)
L

T
T
(k)
L = Ip2 + L

T
kLk,(4.14)

and

Z
(k)
12

T
= T

(k)
R

−1
, T

(k)
R T

(k)
R

T
= Ip1 +RkR

T
k .(4.15)

From (4.14)–(4.15) we obtain the following relations between the singular values

of T
(k)
L , T

(k)
R , Lk and Rk:

σ2
(
T
(k)
L

)
= 1 + σ2(Lk), σ

2
(
T
(k)
R

)
= 1 + σ2(Rk).(4.16)

Further, from the CS decomposition (see, e.g., [12]) of Qk and Zk, respectively,
we obtain the relations∥∥Q(k)12 T∥∥2 = ∥∥Q(k)21 ∥∥2, ∥∥Q(k)22 ∥∥2 = ∥∥Q(k)11 ∥∥2,∥∥Z(k)12 T∥∥2 = ∥∥Z(k)21 ∥∥2, ∥∥Z(k)22 ∥∥2 = ∥∥Z(k)11 ∥∥2.
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Combining these results, we get∥∥Q(k)12 T∥∥2 = ∥∥T (k)L −1∥∥
2
=

1

σmin
(
T
(k)
L

) = 1(
1 + σ2min(Lk)

)1/2 ,
∥∥Q(k)11 ∥∥2 = σmax(Lk)(

1 + σ2max(Lk)
)1/2 ,

and ∥∥Z(k)21 ∥∥2 = ∥∥T (k)R −1∥∥
2
=

1

σmin
(
T
(k)
R

) = 1(
1 + σ2min(Rk)

)1/2 ,
∥∥Z(k)22 ∥∥2 = σmax(Rk)(

1 + σ2max(Rk)
)1/2 ,

and we have proved the following theorem by applying the submultiplicativity
of matrix norms to (4.8)–(4.13).

Theorem 4.1. After applying the computed transformation matrices Q̃k, Z̃k
from (4.2)–(4.3) in a K-cyclic equivalence transformation of (Ak, Ek) defined
in (3.1), we get

Q̃TkAkZ̃k = Ãk, where Ãk ≡ Âk +∆Ak =

[
Â
(k)
11 Â

(k)
12

0 Â
(k)
22

]
+

[
∆A

(k)
11 ∆A

(k)
12

∆A
(k)
21 ∆A

(k)
22

]
,

Q̃TkEkZ̃k⊕1 = Ẽk, where Ẽk ≡ Êk +∆Ek =

[
Ê
(k)
11 Ê

(k)
12

0 Ê
(k)
22

]
+

[
∆E

(k)
11 ∆E

(k)
12

∆E
(k)
21 ∆E

(k)
22

]
.

The critical blocks of the error matrix pair (∆Ak,∆Ek) satisfy the following
error bounds, up to first order perturbations:

∥∥∆A(k)11 ∥∥2 ≤ σmax(Lk)(
1 + σ2max(Lk)

)1/2 · 1(
1 + σ2min(Rk)

)1/2 · ∥∥Y (k)1 ∥∥F ,
∥∥∆A(k)21 ∥∥2 ≤ 1(

1 + σ2min(Lk)
)1/2 · 1(

1 + σ2min(Rk)
)1/2 · ∥∥Y (k)1 ∥∥F ,

∥∥∆A(k)22 ∥∥2 ≤ 1(
1 + σ2min(Lk)

)1/2 · σmax(Rk)(
1 + σ2max(Rk)

)1/2 · ∥∥Y (k)1 ∥∥F ,
and ∥∥∆E(k)11 ∥∥2 ≤ σmax(Lk)(

1 + σ2max(Lk)
)1/2 · 1(

1 + σ2min(Rk⊕1)
)1/2 · ∥∥Y (k)2 ∥∥F ,

∥∥∆E(k)21 ∥∥2 ≤ 1(
1 + σ2min(Lk)

)1/2 · 1(
1 + σ2min(Rk⊕1)

)1/2 · ∥∥Y (k)2 ∥∥F ,
∥∥∆E(k)22 ∥∥2 ≤ 1(

1 + σ2min(Lk)
)1/2 · σmax(Rk⊕1)(

1 + σ2max(Rk⊕1)
)1/2 · ∥∥Y (k)2 ∥∥F ,
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for k = 0, 1, . . . ,K − 1. Moreover, the matrix pair sequences (Â(k)11 , Ê
(k)
11 ),

(A
(k)
22 , E

(k)
22 ) and (A

(k)
11 , E

(k)
11 ), (Â

(k)
22 , Ê

(k)
22 ) are K-cyclic equivalent and have the

same generalized eigenvalues, respectively.

Remark 4.1. Theorem 4.1 shows that the stability and accuracy of the
reordering method is governed mainly by the conditioning and accuracy of the

solution to the associated PGCSY. The errors ‖∆A(k)ij ‖2 and ‖∆E
(k)
ij ‖2 can be

as large as the norm of the residuals ‖Y (k)1 ‖F and ‖Y
(k)
2 ‖F , respectively. Indeed,

this happens when the smallest singular values of the exact sequences Lk and Rk
are tiny, indicating an ill-conditioned underlying PGCSY equation. We have

experimental evidence that ‖Y (k)1 ‖F and ‖Y
(k)
2 ‖F can be large for large-normed

(ill-conditioned) solutions of the associated PGCSY. In the next section, we show
how we handle such situations and guarantee backward stability of the periodic
reordering method.

Remark 4.2. For period K = 1, Theorem 4.1 reduces to the main the-
orem of [21] on the perturbation of the generalized eigenvalues under eigenvalue
reordering in the generalized real Schur form of a regular matrix pencil.

5 Algorithms and implementation aspects.

In this section, we address some implementation issues of the direct method
for reordering eigenvalues in a generalized periodic real Schur form described
and analyzed in the previous sections.

5.1 Algorithms for solving the PGCSY.

The linear system (3.23) that arises from the PGCSY (3.7) has a particular
structure that needs to be exploited in order to keep the cost of the overall algo-
rithm linear in K. The matrix ZPGCSY in (3.23) belongs to the class of bordered
almost block diagonal (BABD) matrices, which takes the more general form

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z0,0 Z0,2K−1
Z1,0 Z1,1

Z2,1 Z2,2
Z3,2 Z3,3

Z4,3
. . .

. . .

Z2K−2,2K−2
Z2K−1,2K−2 Z2K−1,2K−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(5.1)

where each nonzero block Zi,j is m × m (note that m = p1p2 for the matrix
ZPGCSY of size 2Km× 2Km). An overview of numerical methods that address
linear systems with such BABD structure is given in [10]. Gaussian elimination
with partial pivoting, for example, preserves much of the structure of Z and can
be implemented very efficiently. Unfortunately, matrices with BABD structure
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happen to be among the rare examples of practical relevance which may lead to
numerical instabilities because of excessive pivot growth [43]. Gaussian elimina-
tion with complete pivoting avoids this phenomenom but is too expensive both
in terms of cost and storage space. In contrast, structured variants of the QR
factorization are both numerically stable and efficient [11, 42]. In the following,
we describe such a structured QR factorization in more detail.
To solve a linear system Zx = y, we first reduce the matrix Z in (5.1) to upper
triangular form. For this purpose, we successively apply Householder transfor-

mations to reduce each block [ZTk,k, Z
T
k+1,k]

T
, k = 0, 1, . . . , 2K − 2, to upper

trapezoidal form, and the block Z2K−1,2K−1 to upper triangular form. Each
computed Householder transformation is applied to the corresponding block row
(as well as the right hand side y of the equation, which is blocked in conformity
with Z) before the next transformation is computed. The factorization procedure
is outlined in Algorithm 5.1, where for simplicity of presentation the Householder
transformations are accumulated into orthogonal transformation matrices Q̄k.

Algorithm 5.1 Overlapping QR factorization of the BABD-system Zx = y

Input: Matrix Z ∈ R2Km×2Km, right hand side vector y ∈ R2Km.
Output: Orthogonal transformations Q̄k ∈ R

2m×2m, k = 0, 1, . . . , 2K − 2,
Q̄2K−1 ∈ Rm×m, triangular factor R̄ ∈ R2Km×2Km with
structure as in Equation (5.2), vector ȳ ∈ R2Km such that R̄x = ȳ.

for k = 0 up to 2K − 2 do

QR factorize: Q̄kR̄k =
[
ZTk,k, Z

T
k+1,k

]T

Update:
[
ZTk,k+1, Z

T
k+1,k+1

]T
= Q̄Tk

[
ZTk,k+1, Z

T
k+1,k+1

]T

Update:
[
ZTk,K−1, Z

T
k+1,K−1

]T
= Q̄Tk

[
ZTk,K−1, Z

T
k+1,K−1

]T

Update right hand side: ȳk = Q̄
T
k yk

end for
QR factorize: Q̄2K−1R̄2K−1 = Z2K−1,2K−1
Update right hand side: ȳ2K−1 = Q̄

T
2K−1y2K−1

It is straightforward to see that this procedure of computing overlapping or-
thogonal factorizations produces the same amount of fill-in elements in the right-
most block columns of Z as would GEPP produce in the worst case, see also
Figure 5.1. More formally, the QR factorization reduces the matrix Z into the
following form:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R̄0 G0 F0
R̄1 L̄0 F1

R̄2 G1 F2
R̄3 L̄1 F3

. . .
...

. . .
...

R̄2K−4 GK−2 F2K−4
R̄2K−3 L̄K−2 F2K−3

R̄2K−2 GK−1
R̄2K−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,(5.2)



780 R. GRANAT ET AL.

Figure 5.1: The resulting R-factor from applying overlapping QR factorizations to the
matrix ZPGCSY for K = 10, p1 = p2 = 2, visualized by the Matlab spy command.
The “sawtooth” above the main block diagonal is typical for the PGCSY and does not
occur in the case of periodic matrix reordering [14].

with R̄k, L̄k, Fk, Gk ∈ Rm×m: R̄k (k = 0, 1, . . . , 2K − 1) are upper triangu-
lar, whereas L̄k (k = 0, 1, . . . ,K − 2), Gk, (k = 0, 1, . . . ,K − 1), and Fk
(k = 0, 1, . . . , 2K− 3) are dense matrices. Moreover, the blocks L̄k are lower tri-
angular provided that Z2,2, Z4,4, . . . , Z2K−2,2K−2 and Z2,1, Z4,3, . . . , Z2K−2,2K−1
in (5.1) are lower and upper triangular, respectively, which is the case for if the
quasi-triangular factor is placed at position k = K. To compute x we employ
backward substitution on this structure, as outlined in Algorithm 5.2. All up-
dates of the right hand side vector ȳ in Algorithm 5.2 are general matrix-vector

Algorithm 5.2 Backward substitution for solving R̄x = ȳ

Input: Matrix R̄ ∈ R2Km×2Km, with the upper triangular BABD
structure of (5.2), right hand side vector ȳε ∈ R2Km partitioned
in conformity with the structure of R̄.

Output: Solution vector x ∈ R2Km such that R̄x = ȳ.

Solve: R̄2K−1x2K−1 = ȳ2K−1
Update and solve: R̄2K−2x2K−2 = ȳ2K−2 −GK−1x2K−1
for i = 0 to 2K − 3 do
Update: ȳi = ȳi − Fix2K−1

end for
for i = K − 2 down to 0 do
Update and solve: R̄2i+1x2i+1 = ȳ2i+1 − L̄ix2i+2
Update and solve: R̄2ix2i = ȳ2i −Gix2i+1

end for
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multiply and add (GEMV) operations, except the updates involving L̄i, which
are triangular matrix-vector multipy (TRMV) operations. All triangular solves
are level 2 TRMSV operations.

We remark that the new algorithms described here for solving small block-
sized PGCSY equations can be used as kernel solvers in recursive blocked algo-
rithms [13] for solving large-scale problems.

Remark 5.1. Solving a linear system with QR factorization yields a small
norm-wise backward error [20], i.e., the computed solution x̂ is the exact solu-
tion of a slightly perturbed system (Z+�Z)x̂ = y, where ‖�Z‖F = O(u‖Z‖F )
with u denoting the unit roundoff. However, the standard implementation of the
QR factorization is not row-wise backward stable, i.e., the norm of a row in �Z
may not be negligible compared to the norm of the corresponding row in Z.
This may cause instabilities if the norms of the coefficient matrices Ak, Ek differ
significantly. To avoid this effect, we scale each Ak and Ek to Frobenius norm 1
before solving (3.7). Then each block row in ZPGCSY has Frobenius norm at
most

√
2 and ‖ZPGCSY‖F ≤ 2

√
K. The resulting swapping transformation is ap-

plied to the original unscaled K-cyclic matrix pair sequence. The corresponding
residuals satisfy

∥∥Y (k)1 ∥∥F = O(u‖Ak‖F‖(Lk, Rk)‖F ), ∥∥Y (k)2 ∥∥F = O(u‖Ek‖F ‖(Lk, Rk⊕1)‖F ).
Combined with Theorem 4.1, this shows that the backward error of the developed
reordering method is norm-wise small for each coefficient Ak and Ek, unless (3.7)
is too ill-conditioned.

5.2 K-cyclic equivalence swapping algorithm with stability tests.

Considering the error analysis in Section 4 and in the spirit of [23, 14], we
formulate stability test criteria for deciding whether a K-cyclic equivalence swap
should be accepted or not.

From Equation (3.19) and the following partition of the transformation matrix
sequences Qk and Zk, we obtain the relations

LkQ
(k)
21 −Q

(k)
11 = 0, Z

(k)
12

T
Rk + Z

(k)
22

T
= 0,(5.3)

which can be computed before the swapping is performed. We use computed
quantities of these relations to define the weak stability criterion:

Rweak = max
0≤k≤K−1

max

⎛
⎝∥∥L̃kQ̃(k)21 − Q̃(k)11 ∥∥F

‖L̃k‖F
,

∥∥Z̃(k)12 T R̃k + Z̃(k)22 T∥∥F
‖R̃k‖F

⎞
⎠.(5.4)

We remark that the relative criterion Rweak should be small even for ill-
conditioned PGSCY equations with large normed solutions Lk and Rk (see also
Remarks 5.1 and 6.1). After the swap has been performed, the maximum residual
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over the whole K-period defines a strong stability criterion:

Rstrong = max
0≤k≤K−1

max

(∥∥Ak − Q̃kÃkZ̃Tk ∥∥F
‖Ak‖F

,

∥∥Ek − Q̃kẼkZ̃Tk⊕1∥∥F
‖Ek‖F

)
.(5.5)

If both Rweak and Rstrong are less than a specified tolerance εu (a small constant
times the machine precision), the swap is accepted, otherwise it is rejected. In
this way, backward stability is guaranteed for the K-cyclic equivalence swapping.
In summary, we have the following algorithm for swapping two matrix pair
sequences of diagonal blocks in the GPRSF of a regular K-cyclic matrix pair
(Ak, Bk) of size (p1 + p2)× (p1 + p2):

1. Compute K-cyclic matrix pair sequence (L̃k, R̃k) by solving the scaled
PGCSY (3.7) using Algorithm 5.1 and Algorithm 5.2.

2. Compute K-cyclic orthogonal matrix sequence Q̃k using QR factorizations:[
L̃k
Ip2

]
= Q̃k

[
T̃
(k)
L

0

]
, k = 0, 1, . . . ,K − 1.

3. Compute K-cyclic orthogonal matrix sequence Z̃k using RQ factorizations:

[Ip1 −R̃k] =
[
0 T̃

(k)
R

]
Z̃Tk , k = 0, 1, . . . ,K − 1.

4. Compute (Ã, Ẽ) = (Q̃TkAkZ̃k, Q̃
T
kEkZ̃k⊕1) for k = 0, 1, . . . ,K − 1, i.e., an

orthogonal K-cyclic equivalence transformation of (Ak, Ek):

Ã ≡

[
Ã
(k)
11 Ã

(k)
12

Ã
(k)
21 Ã

(k)
22

]
= Q̃Tk

[
A
(k)
11 A

(k)
12

0 A
(k)
22

]
Z̃k,

Ẽ ≡

[
Ẽ
(k)
11 Ẽ

(k)
12

Ẽ
(k)
21 Ẽ

(k)
22

]
= Q̃Tk

[
E
(k)
11 E

(k)
12

0 E
(k)
22

]
Z̃k⊕1.

5. If Rweak < εu ∧Rstrong < εu, accept swap and

5a. set Ã
(k)
21 = Ẽ

(k)
21 = 0,

5b. restore GPRSF of (Ã
(k)
11 , Ẽ

(k)
11 ) and (Ã

(k)
22 , Ẽ

(k)
22 ) by applying the periodic

QZ algorithm to the two diagonal block matrix pair sequences;

otherwise reject swap.

The stability tests in step 5 for accepting a K-cyclic swap guarantee that the

subdiagonal blocks Ã
(k)
21 and Ẽ

(k)
21 are negligible compared to the rest of the

matrices. Step 5b can be performed by a fixed number of operations for adjacent
diagonal blocks in the GPRSF, i.e., for pi ∈ {1, 2} (see [14] for the standard
periodic matrix case).
Properly implemented, this algorithm requires O(K) floating point operations
(flops), where K is the period. When it is used to reorder two adjacent diagonal
blocks in a larger n × n periodic matrix pair in GPRSF then the off-diagonal
parts are updated by the transformation matrices Q̃k and Z̃k, which additionally
requires O(Kn) flops.
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There are several other important implementation issues to be considered for
a completely reliable implementation. For example, iterative refinement in ex-
tended precision arithmetic can be used to improve the accuracy of the PGCSY
solution and avoid the possibility of rejection (see, e.g., [20]). Our experiences
so far concern iterative refinement in standard precision arithmetic and (as ex-
pected) the results show no substantial improvements.

6 Computational experiments.

The direct reordering algorithm described in the previous sections has been
implemented in MATLAB. A more robust and efficient Fortran implementa-
tion will be included in a forthcoming software toolbox for periodic eigenvalue
problems [16]. In this section, we present some numerical results using our pro-
totype implementation. All experiments were carried out in double precision
(εmach ≈ 2.2× 10−16).
The test examples range from well-conditioned to ill-conditioned problems,
including matrix pair sequences of small and large period. In Table 6.1, we display
some problem characteristics1: problem dimension n (2, 3 or 4 corresponding to
swapping a mix of 1 × 1 and 2 × 2 blocks), period K, the computed value of
sep[PGCSY] = σmin(ZPGCSY) (see Section 3.4) and

s = 1/
√
1 + ‖(L0, R0)‖2F ,

where (L0, R0) are the first solution components of the associated PGCSY (3.7).
The quantities s and sep[PGCSY] partly govern the sensitivity of the selected
eigenvalues and associated periodic deflating subspaces, see [5, 26, 34].

Table 6.1: Problem characteristics.

Example n K sep[PGCSY] s

I 2 2 1.1E−8 1.4E−4
II 4 10 3.3E−2 4.9E−1
III 4 100 1.4E−3 1.9E−1
IV 4 100 1.4E−14 6.1E−7
V 3 5 7.1E−2 6.2E−1
VI 2 50 1.6E−2 5.8E−1

The results from the periodic reordering are presented in Table 6.2. These
include the weak (Rweak) and strong (Rstrong) stability tests, the residual norms
for the GPRSF before (Rgprsf) and after (Rreord) the reordering computed as in
Equation (5.5), a relative orthogonality check of the accumulated transforma-
tions after (Rorth) the reordering computed as

Rorth =
maxk

(∥∥Ink − W̃Tk W̃k∥∥F ,∥∥Ink − W̃kW̃Tk ∥∥F )
εmach

,

1 The test examples used are available at http://www.cs.umu.se/~granat/gpreord/
examples.m.
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Table 6.2: Reordering results using QR factorization to solve the associated PGCSY.

Example Rweak Rstrong Rgprsf Rreord Rorth Reig

I 6.3E−17 5.0E−16 0 5.0E−16 2.0 3.2E−9
II 1.6E−16 9.0E−16 4.8E−15 5.6E−15 7.5 4.6E−15
III 1.8E−16 1.3E−15 2.2E−16 3.2E−15 8.3 3.3E−14
IV 8.3E−17 1.0E−15 2.2E−16 2.4E−15 7.6 3.8E−14
V 1.3E−16 7.0E−16 8.3E−17 9.1E−16 2.8 1.8E−15
VI 3.8E−16 8.2E−16 0 9.8E−16 2.0 1.1E−16

where the maximum is taken over the period K for all transformation matri-
ces Q̃k and Z̃k. The last column displays the maximum relative change of the
eigenvalues after the periodic reordering

Reig = max
k

|λk − λ̃k|

|λk|
, λk ∈ λ(ΦE−1A(K, 0)).

Notice that we normally do not compute λi explicitly but keep it as an eigen-
value pair (αi, βi) to avoid losing information because of roundoff errors. This is
especially important for tiny and large values of αi and/or βi.
The eigenvalues before and after reordering are shown in full precision under
each example. For 2×2 matrix sequences, we compute the generalized eigenvalues
via unitary transformations in the GPRSF as is done in LAPACK’s DTGSEN [1].

Example I. Consider the following sequence with n = 2,K = 2:

A1 =

[
2ε1/2 −1
0 −2ε1/2

]
, A2 = E1 = E2 =

[
ε1/2 1
0 ε1/2

]
.

This product has the (α, β)-pairs

(α1, β1) = (4.4408920985006, 2.2204460492503)× 10
−16,

(α2, β2) = (−4.4408920985006,−2.2204460492503)× 10
−16,

which correspond to well-defined eigenvalues λ1 = 2.0 and λ2 = −2.0. But all
αi and βi are at the machine precision level and this fact signals an obvious risk
for losing accuracy after the reordering:

(α̃1, β̃1) = (9.5161972853921,−4.7580986273341)× 10
−16,

(α̃2, β̃2) = (−2.0724163126336,−1.0362081563168)× 10
−16,

which define the eigenvalues

λ̃1 = −2.00000000645717 and λ̃2 = 2.00000000000000.

Example II. Consider reordering the eigenvalues λ1,2 = 2±2i and λ3,4 = 1±i
in a matrix pair sequence with dimension n = 4 and period K = 10. The
computed eigenvalues from the GPRSF are correct to full machine precision.
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After reordering we get the following (α, β)-pairs:

(α̃1, β̃1) = (−6.69743899940721− 6.69743899940718i,−6.69743899940718),

(α̃2, β̃2) = (1.03550511685258− 1.03550511685258i, 1.03550511685258),

(α̃3, β̃3) = (1.93142454580911+ 1.93142454580911i, 0.96571227290455),

(α̃4, β̃4) = (0.29862160747967− 0.29862160747967i, 0.14931080373983).

A quick check reveals that these pairs correspond to a reordering at almost full
machine precision.

Example III. The eigenvalue pair cos π4 ± sin
π
4 i is located on the unit circle.

In LQ-optimal control (see Section 2) we want to compute a periodic deflating
subspace corresponding to the stable eigenvalues, i.e., the eigenvalues inside the
unit disc.
For illustration, consider reordering the eigenvalues λ1,2 = (cos

π
4 + δ) ±

(sin π4 + δ)i and λ3,4 = (cos
π
4 − δ) ± (sin

π
4 − δ)i, where δ ∈ [0, 1], in a matrix

pair sequence of period K = 100 arising, for example, from performing multi-
rate sampling of a continuous-time system. At first, let δ = 10−1. The matrix
product has the computed (α, β)-pairs

(α1, β1) = (0.80710678118654+ 0.80710678118654i, 1.00000000000002),

(α2, β2) = (0.80710678118654− 0.80710678118654i, 1.00000000000002),

(α3, β3) = (−0.60710678118655− 0.60710678118655i,−0.99999999999999),

(α4, β4) = (−0.60710678118655+ 0.60710678118655i,−1.00000000000000),

which correspond to the eigenvalues

λ1,2 = 0.80710678118652± 0.80710678118652i,

λ3,4 = 0.60710678118655± 0.60710678118655i.

After reordering we have

(α̃1, β̃1) = (−1.53524924293502− 1.53524924293503i,−2.52879607098851),

(α̃2, β̃2) = (−6.49961741950939+ 6.49961741950943i,−10.70588835592705),

(α̃3, β̃3) = (−0.07538905267396− 0.07538905267396i,−0.09340654103182),

(α̃4, β̃4) = (0.31916641695471− 0.31916641695471i, 0.39544509400044),

which define the eigenvalues λ̃1,2 = 0.60710678118654± 0.60710678118655i and

λ̃3,4 = 0.80710678118654± 0.80710678118654i.

Example IV. We consider Example III again, now with δ = 10−12 and
K = 100 as before. The matrix product has the computed (α, β)-pairs

(α1, β1) = (−0.70710678118754− 0.70710678118754i,−1.00000000000002),

(α2, β2) = (−0.70710678118755+ 0.70710678118755i,−0.99999999999999),
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(α3, β3) = (0.70710678118555+ 0.70710678118555i, 1.00000000000000),

(α4, β4) = (−0.70710678118555+ 0.70710678118555i,−1.00000000000000),

which define the eigenvalues λ1,2 = 0.70710678118755± 0.70710678118754i and
λ3,4 = 0.70710678118555± 0.70710678118555i. After reordering we have

(α̃1, β̃1) = (−0.70710678121274− 0.70710678121274i,−1.00000000003845),

(α̃2, β̃2) = (0.70710678121274− 0.70710678121274i, 1.00000000003845),

(α̃3, β̃3) = (−0.70710678116035− 0.70710678116036i,−0.99999999996155),

(α̃4, β̃4) = (−0.70710678116036+ 0.70710678116036i,−0.99999999996155),

which correspond to the eigenvalues

λ̃1,2 = 0.70710678118555± 0.70710678118555i,

λ̃3,4 = 0.70710678118754± 0.70710678118755i.

The eigenvalues outside and inside the unit disc come closer and closer with
a decreasing δ and the problem gets more ill-conditioned but we are still able to
reorder the eigenvalues with satisfying accuracy. We illustrate the situation in
Figure 6.1.

Figure 6.1: Results from reordering the eigenvalues of Examples III and IV with
δ ∈ [0, 1]. The displayed quantities are the same as in Tables 6.1–6.2. The horizon-
tal axis shows the logarithm of the parameter δ and the vertical axis displays the
logarithm of the computed quantities.

Example V. Consider reordering the following single eigenvalue λ1 =
√
3 with

the eigenvalue pair λ2,3 =
√
3
2 ±

1√
7
i and period K = 5. The original (α, β)-pairs
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are

(α1, β1) = (1.73205080756888, 1.00000000000000),

(α2, β2) = (−0.86602540378444− 0.37796447300923i,−1.00000000000000),

(α3, β3) = (0.86602540378444− 0.37796447300923i, 1.00000000000000).

After reordering we have

(α̃1, β̃1) = (2.97791477286351+ 1.29966855807374i, 3.43859979147302),

(α̃2, β̃2) = (−1.43573050214952+ 0.62660416225306i,−1.65783878379957),

(α̃3, β̃3) = (0.30383422966230, 0.17541877428455),

which define eigenvalues λ̃1,2 = 0.86602540378444 ± 0.37796447300923i and

λ̃3 = 1.73205080756888.

Example VI. Consider reordering the eigenvalues λ1 = 1 and λ2 = ∞ and
period K = 6. The original (α, β)-pairs are

(α1, β1) = (−0.9999999999999986, 1.000000000000000),

(α2, β2) = (1.000000000000000, 0.000000000000000).

After reordering we have

(α̃1, β̃1) = (−1.564941642946474E−5, 0.000000000000000),

(α̃2, β̃2) = (6.390014634138052E+4, 6.390014634138062E+4),

which correspond to the eigenvalues λ̃1 = −∞ and λ̃2 = 0.9999999999999985.

7 Remarks.

In this section, we give some closing remarks on the developed reordering
method by presenting a comparison with existing methods and describing an
extension to more general matrix products.

7.1 Comparison with existing methods.

Hench and Laub [18, Sec. II.F] proposed to swap the diagonal blocks in (3.1)
by first explicitely computing the (n1 + n2)× (n1 + n2) matrix product

E−1K−1AK−1 · · ·E
−1
0 A0.

Then, in exact arithmetic, the standard swapping technique [2] applied to this
product yields the outer orthogonal transformation matrix Z0. The inner orthog-
onal matrices Q0, . . . , QK , Z1, . . . , ZK are obtained by propagating Z0 through
the triangular factors, using QR and RQ factorizations. In finite-precision arith-
metic, however, such an approach can be expected to perform poorly if any of



788 R. GRANAT ET AL.

the matrices Ek is nearly singular, see [21] for the case K = 1. Also for very
well-conditioned Ek (e.g., identity matrices), there are serious numerical diffi-
culties to be expected for long products as the computed entries become prone
to under- and overflow. Further numerical instabilities arise from the fact that
triangular matrix-matrix multiplication is in general not a numerically backward
stable operation, unless n1 = n2 = 1 [12].
Benner et al. [3] developed collapsing techniques that can be used to improve
the above approach by avoiding all explicit inversions of Ek. Instead of a single
product, two n × n matrices Ē and Ā are computed such that Ē−1Ā has the
same eigenvalues. The generalized swapping technique [21, 23] applied to the
pair (Ē, Ā) yields Z0. Again, the other orthogonal matrices are successively com-
puted from QR and RQ factorizations. Although this approach avoids difficulties
associated with (nearly) singular matrices Ek, it may still become numerically
unstable, see [15] for an example.
Bojanczyk and Van Dooren [9] carefully modified the approach by Hench and
Laub for the case n1 = n2 = 1 to avoid underflow, overflow, and numerical
instabilities. This variant has been observed to perform remarkably well in finite-
precision arithmetic. Unfortunately, its extension to n1 = 2 and/or n2 = 2 is not
clear. Thus, only real matrix products having real eigenvalues can be addressed.
For complex eigenvalues one could in principle work with the complex periodic
Schur decomposition, which has no 2× 2 blocks. Both, the swapping technique
described in [9] and the one proposed in this paper, extend to the complex case
in a straightforward manner. The obvious drawback of using complex arithmetic
for real input data is the increased computational complexity. Moreover, real
eigenvalues and complex conjugate eigenvalue pairs will not be preserved in
finite-precision arithmetic. For example, if we apply [9] to Example I we obtain
the following swapped eigenvalues:

λ̃1 = −1.87282049572853+ 0.58861866785157i,

λ̃2 = 1.74709648107590+ 0.47770138864644i.

The realness of the original eigenvalues is completely lost. Somewhat unexpect-
edly, our algorithm also achieves significantly higher accuracy for this particular
example.

7.2 Reordering in even more general matrix products.

Reordering can also be considered in matrix products of the form

A
sK−1
K−1A

sK−2
K−2 · · ·A

s0
0 , s0, . . . , sK−1 ∈ {1,−1},(7.1)

which is needed, e.g., in [4]. This could be accomplished by the method described
in this paper after inserting identity matrices into the matrix sequence such that
the exponent structure has the same structure as in Equation (1.2), i.e., every
second matrix is an inverse. It turns out that this trick is actually not needed. All
techniques developed in this paper can be extended to work directly with (7.1).
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For example, the associated periodic Sylvester-like matrix equation takes the
form {

A
(k)
11 Xk −Xk+1A

(k)
22 = −A

(k)
12 , for sk = 1,

A
(k)
11 Xk+1 −XkA

(k)
22 = −A

(k)
12 , for sk = −1,

which can be addressed by the methods in Section 5. See [16] for more details.
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