000165570 001__ 165570
000165570 005__ 20180913060619.0
000165570 0247_ $$2doi$$a10.1016/j.laa.2003.06.014
000165570 022__ $$a0024-3795
000165570 037__ $$aARTICLE
000165570 245__ $$aThe periodic QR algorithm is a disguised QR algorithm
000165570 269__ $$a2006
000165570 260__ $$bElsevier$$c2006
000165570 336__ $$aJournal Articles
000165570 520__ $$aThe periodic QR algorithm is a strongly backward stable method for computing the eigenvalues of products of matrices, or equivalently for computing the eigenvalues of block cyclic matrices. The main purpose of this paper is to show that this algorithm is numerically equivalent to the standard QR algorithm. It will be demonstrated how this connection may be used to develop a better understanding of the periodic QR algorithm. (c) 2003 Elsevier Inc. All rights reserved.
000165570 6531_ $$aQR algorithm
000165570 6531_ $$ablock cyclic matrices
000165570 6531_ $$amatrix products
000165570 6531_ $$aMatrices
000165570 700__ $$0246441$$aKressner, Daniel$$g213191
000165570 773__ $$j417$$k2-3$$q423-433$$tLinear Algebra And Its Applications
000165570 8564_ $$s141240$$uhttps://infoscience.epfl.ch/record/165570/files/pqrequalqr.pdf$$yPreprint$$zn/a
000165570 909C0 $$0252494$$pANCHP$$xU12478
000165570 909CO $$ooai:infoscience.tind.io:165570$$pSB$$particle
000165570 917Z8 $$x213191
000165570 937__ $$aEPFL-ARTICLE-165570
000165570 973__ $$aEPFL$$rNON-REVIEWED$$sPUBLISHED
000165570 980__ $$aARTICLE