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Most eigenvalue problems arising in practice are known to be structured. Structure is often
introduced by discretization and linearization techniques but may also be a consequence of
properties induced by the original problem. Preserving this structure can help preserve phys-
ically relevant symmetries in the eigenvalues of the matrix and may improve the accuracy
and efficiency of an eigenvalue computation. The purpose of this brief survey is to highlight
these facts for some common matrix structures. This includes a treatment of rather general
concepts such as structured condition numbers and backward errors as well as an overview of
algorithms and applications for several matrix classes including symmetric, skew-symmetric,
persymmetric, block cyclic, Hamiltonian, symplectic and orthogonal matrices.
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1 Introduction

This survey is concerned with computing eigenvalues, eigenvectors and invariant subspaces
of a structured square matrix A. In the scope of this paper, an n x n matrix A is considered to
be structured if its n? entries depend on less than n? parameters.

It usually takes a long process of simplifications, linearizations and discretizations before
one comes up with the problem of computing the eigenvalues or invariant subspaces of a
matrix. These techniques typically lead to highly structured matrix representations, which,
for example, may contain redundancy or inherit some physical properties from the original
problem. As a simple example, let us consider a quadratic eigenvalue problem of the form

(NI, + \C + K)z = 0, 1)

where C' € R™ " is skew-symmetric (C = —C7T), K € R™*" is symmetric (K = K7),
and I,, denotes the n x n identity matrix. Eigenvalue problems of this type arise, e.g., from
gyroscopic systems [96, 117] or Maxwell equations [108]; they have the physically relevant
property that all eigenvalues appear in quadruples {\, —\, X, —\}, i.e., the spectrum is sym-
metric with respect to the real and imaginary axes. Linearization turns (1) into a matrix
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Fig. 1 Eigenvalues (’-’) and approximate eigenvalues (*x’) computed by a standard Arnoldi method
(left picture) and by a structure-preserving Arnoldi method (right picture).

eigenvalue problem, e.g., the eigenvalues of (1) can be obtained from the eigenvalues of the
matrix

-ic lC’QK}
A{ 2 1 : )
I, -iC

This 2n x 2n matrix is structured, its 4n? entries depend only on the n? entries necessary to
define C' and K. The matrix A has the particular property that it is a Hamiltonian matrix, i.e.,
A is a two-by-two block matrix of the form

[ B G

Q *BT :|7 GZGT, Q:QTa B7G7Q€Rnxn'

Considering A to be Hamiltonian does not capture all the structure presentin A but it captures
an essential part: The spectrum of any Hamiltonian matrix is symmetric with respect to the
real and and imaginary axes. Hence, numerical methods that take this structure into account
are capable to preserve the eigenvalue pairings of the original eigenvalue problem (1), despite
the presence of roundoff and other approximation errors.

Figure 1, which displays the eigenvalues of a quadratic eigenvalue problem (1) stemming
from a discretized Maxwell equation [108], illustrates this fact. The exact eigenvalues are rep-
resented by grey dots in each plot,; one can clearly see the eigenvalue pairing {\, —\, A, =},
for complex eigenvalues with nonzero real part and {\, —\} for real and purely imaginary
eigenvalues. Eigenvalue approximations (denoted by black crosses) have been computed with
two different types of Arnoldi methods (a standard approach for computing approximations to
some eigenvalues of large sparse matrices): in the plot on the left hand side the eigenvalue ap-
proximations were obtained from a few iterations of the standard Arnoldi method [51] while
the ones in the plot on the right hand side were obtained from the same number of iterations
of an Arnoldi method that takes Hamiltonian structures into account, see [96] and Section 3.7.
It is particularly remarkable that the latter method produces not only pairs of eigenvalue ap-
proximations, but also purely imaginary approximations to purely imaginary eigenvalues.

Besides the preservation of such eigenvalue symmetries, there are several other benefits to
be gained from using structure-preserving algorithms in place of general-purpose algorithms
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for computing eigenvalues. These benefits include reduced computational time and improved
eigenvalue/eigenvector accuracy.

This paper is organized as follows. In Section 2, we will present several general concepts
related to (structured) eigenvalue problems. To be more specific, Section 2.1 provides a sum-
mary of common algorithms for solving eigenvalue problems while Section 2.2 discusses the
efficiency gains to be expected from exploiting structure. Sections 2.3 and 2.4 are concerned
with (structured) backward stability and condition numbers; both concepts are closely related
to the accuracy of eigenvalues in finite-precision arithmetic. Section 3 treats several classes of
matrices individually: symmetric, skew-symmetric, persymmetric, block cyclic, Hamiltonian,
orthogonal, and others. This treatment includes a brief overview of existing algorithms and
applications for each of these structures.

1.1 Preliminaries

The eigenvaluesof a real or complex n x n matrix A are the roots of its characteristic polyno-
mial det(A — AI). Since the degree of the characteristic polynomial equals n, the dimension
of A, it has n roots, so A has n eigenvalues. The eigenvalues may be real or complex, even
if A is real (in that case, complex eigenvalues appear in pairs {\, A\}. The set of all eigen-
values will be denoted by A(A). A nonzero vector z € C™ is called an (right) eigenvector
of A if it satisfies Az = Az for some A € A(A). A nonzero vector y € C™ is called a
left eigenvector if it satisfies y7 A = \y™, where y denotes the Hermitian transpose of 4.
Spaces spanned by eigenvectors remain invariant under multiplication by A, in the sense that
span{ Az} = span{Azx} C span{x}. This concept generalizes to higher-dimensional spaces.
A linear subspace X C C™ with Az € X forall x € X is called an invariant subspace of A.

If n > 4 there is no general closed formula for the roots of a polynomial in terms of its
coefficients, and therefore one has to resort to a numerical technique in order to compute the
roots by successive approximation. A further difficulty is that the roots may be very sensitive
to small changes in the coefficients of the polynomial, and the effect of rounding errors in the
construction of the characteristic polynomial is usually catastrophic (see Section 2.1 for an
example). Numerically more reliable methods are obtained from the following observation.
Eigenvalues and invariant subspaces can be easily obtained from the Schur decomposition of
A: There is always a unitary matrix U (UFU = UUH = I such that

T =U"AU

is upper triangular, that is, ¢;; = 0 for i > j. As A(A) equals A(7T"), the eigenvalues of A can
be read off from the diagonal entries of T". Moreover, if we partition U = [X, X | ], where
X € C™** forsome 1 < k < n, then we may rewrite the relation AU = TU as

T Tho

AX, X1] = [X, X1] [ S,

:| , Ty € (Cka, Tyy € (C(nfk)x(nfk)' (3)
This shows that AX = X7, i.e., the columns of X form an orthonormal basis for the
invariant subspace X' belonging to A(731). Bases for invariant subspaces belonging to other
eigenvalues can be obtained by changing the order of the eigenvalues on the diagonal of
T [51].

In case the matrix A is real, one would like to restrict the equivalence transformation which
reveals the eigenvalues and corresponding invariant subspaces to a real transformation. As A
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may have complex eigenvalues, a reduction to the above introduced Schur form is no longer
possible. We must lower our expectations and be content with the calculation of an alternative
decomposition known as the real Schur decomposition: There always exists an orthogonal
matrix Q (QTQ = QQ™ = I) such that QT AQ = T is upper quasi-triangular, that is, T’ is
block upper triangular with either 1 x 1 or 2 x 2 diagonal blocks. Each 2 x 2 diagonal block
corresponds to a pair of complex conjugate eigenvalues.

2 General Concepts

In this section, we briefly summarize some general concepts related to general and structured
eigenvalue computations.

2.1 Algorithms

Algorithms for solving structured eigenvalue problems are often extensions or special cases
of existing algorithms for solving the general, unstructured eigenvalue problem. One can
roughly divide these algorithms into direct methods and iterative methods.

Direct methods aim at computing all eigenvalues and (optionally) eigenvectors/invariant
subspaces of a matrix A. The most widely used direct method for general nonsymmetric ma-
trices is the QR algorithm [51]. This algorithm, which is behind the MATLAB [93] command
ei g, computes a sequence of matrix decompositions converging to a complete Schur form of
A by implicitly applying a QR decomposition in each iteration. Jacobi-like methods [45, 112]
apply a sweep of elementary transformations, such as Givens rotations, in each iteration. They
are well-suited for parallel computation but their slow speed of convergence makes them often
inferior to the QR algorithm unless there is some special structure in A, e.g., A is symmetric
or close to being upper triangular. Moreover, Jacobi’s method can sometimes compute tiny
eigenvalues much more accurately than other methods [41].

Iterative methodsaim at computing a selected set of eigenvalues and (optionally) the eigen-
vectors/invariant subspaces belonging to these eigenvalues. The most widely known iterative
method is probably the power method [51]. Starting from some random vector v, one con-
structs a sequence v, Av, A%v, A3v, ... by repeated matrix-vector multiplication. This se-
quence converges to an eigenvector belonging to the dominant eigenvalue (i.e., the eigenvalue
of largest magnitude), provided that there is only one such eigenvalue. Besides being inca-
pable of obtaining several eigenvalues or eigenvectors, the power method may also suffer from
very slow convergence in the presence of several nearly dominant eigenvalues. To find other
eigenvalues and eigenvectors, the power method can be applied to (4 — o 1) ~! for some shift
o, an algorithm called inverseiteration. The largest eigenvalue of (4 — oI)~tis 1/(\; — o)
where )\; is the closest eigenvalue of A to o, so that one can choose which eigenvalues to find
by choosing o.

The Arnoldi method [5, 51] achieves faster convergence by considering not only the last
iterate of the power method but the whole space spanned by all previous iterates, the so called
Krylov subspace K (A, v) := span{v, Av, ..., A¥"1v}. Using Krylov subspaces also gives
the flexibility to approximate several eigenvalues and the associated invariant subspaces. The
increased memory requirements of the Arnoldi method can be limited by employing restarting
strategies, see, e.g., [110]. This leads to the implicitly restarted Arnoldi algorithm [85] (IRA),
which forms the basis of MATLAB’s ei gs.

Copyright linewill be provided by the publisher



gamm header will be provided by the publisher 5

« X
1.5
x X
l,
X
0.5 %
OF XXX XXXXXX I o o0 63X o oo sooose x
-0.5¢ X
X
1t
X x
-15
X x
_2 I I I 1 1
0 5 10 15 20 25

Fig. 2 Computed roots (" x’) of the polynomial (A — 1)(A —2)--- (A — 25), after its coefficients have
been stored in double-precision.

A different class of iterative methods is obtained by applying Newton’s method to a system
of nonlinear equations satisfied by an eigenvalue/eigenvector pair (A, z). One such system is
given by

wlr —1

rovo = oi | =0

where w is a suitably chosen vector. It turns out that Newton’s method applied to this system
is equivalent to inverse iteration, see also [95] for more details. The Jacobi-Davidson method
(see the review in the present volume of this journal or [5, 109]) is a closely related Newton-
like method, but so far little is known about adapting this method to structured eigenvalue
problems. There are other functions f that may be used, but not all of them lead to practically
useful methods for computing eigenvalues. For example, using p(\) = det(Al — A) by ex-
plicitely constructing the coefficients of the polynomial p()) is generally not advisable. Often,
already storing these coefficients in finite-precision arithmetic leads to an unacceptably high
error in the eigenvalues; leave alone any other roundoff error implied by the typically wildly
varying magnitudes. Figure 2, which goes back to an example by Wilkinson [134], illustrates
this effect. However, it should be mentioned that iterative methods based on p(\) are suitable
for some classes of matrices such as tridiagonal matrices, but great care in representing p(\)
must be taken, see [13] and the references therein.

2.2 Efficiency

Direct methods generally require O(n?) computational time to compute the eigenvalues of a
general n x n matrix. The fact that a structured matrix depends on less than n2 parameters
gives rise to the hope that an algorithm taking advantage of the structure may require less
effort than a general-purpose algorithm. For example, the QR algorithm applied to a symmet-
ric matrix requires roughly 10% of the floating point operations (flops) required by the same
algorithm applied to a general matrix [51]. For other structures, such as skew-Hamiltonian
and Hamiltonian matrices, this figure can be less dramatic [9]. Moreover, in view of recent
progress made in improving the performance of general-purpose algorithms [21, 22], it may
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6 H. Fassbender and D. Kressner: Structured Eigenvalue Problems

require considerable implementation efforts to turn this reduction of flops into an actual re-
duction of computational time.

The convergence of an iterative method strongly depends on the properties of the matrix A
and the subset of eigenvalues to be computed, which makes the needed computational effort
rather difficult to predict. For example, methods based on Krylov subspaces require in each
iteration a matrix-vector multiplication, which can take up to 2n? flops. This figure may
reduce significantly for a structured matrix A, e.g., to roughly twice the number of nonzero
entries for sparse matrices. Some structures, such as skew-Hamiltonian and persymmetric
matrices [96, 125], induce some additional structure in the Krylov subspace making it possible
to reduce the computational effort even further.

2.3 Backward error and backward stability

Any numerical method for computing eigenvalues is affected by round-off errors due to the
limitations of finite-precision arithmetic. Already representing the entries of a matrix A in
double-precision generally causes a relative error of about 1016, Unless some further in-
formation is available, the best we can therefore expect from our numerical method is that
it computes the exact eigenvalues of a slightly perturbed matrix A + E, where ||E|| ¢ (the
Frobenius norm of E) is not much greater than 1016 x || A|| . A numerical method satis-
fying this property is called (numerically) backward stable. Methods known to be backward
stable include the QR algorithm, most Jacobi-like methods, the power method, the Arnoldi
method, IRA, and many of the better Newton-like methods.

A simple way to check backward stability is to compute the residual » = A% — Az of a
computed eigenvalue/eigenvector pair (X, #) with || || = 1. Then (), &) is an exact eigenpair
of the perturbed matrix A — r& and the backward error is consequently given by |72 || r =
[|r||2. If only X is available then a suitable backward error is given by omin (A — AI), which
coincides with the 2-norm of the smallest perturbation E such that X is an eigenvalue of A+ E.
(Here, omin denotes the smallest singular value of a matrix.)

The notion of structured backward error not only requires (), #) to be an exact eigenpair
of A + E but also requires A + F to stay within the considered class of structured matrices.
For example, if A is symmetric then a suitable symmetric E is givenby F = —(r&7 + &rT —
(rT2)227). Since ||r||l2 < || E|l2 < |Ir||l2/+/2, this implies that the structured backward error
with respect to symmetric matrices is rather close to the standard backward error. This is not
for all structures the case, see [116] for more details. Depending on the point of view, the
problem of finding the structured backward error can also be regarded as a structured inverse
eigenvalue problem [36] or computing the smallest structured singular value [66, 73].

A numerical method is called strongly backward stable if the computed eigenpairs satisfy
small structured backward errors [24]. Strong backward stability implies backward stability,
but the converse is generally not true.

2.4 Condition numbers and pseudospectra

Knowing that a computed eigenvalue satisfies a small (structured) backward error does not
necessarily admit conclusions about the accuracy of this eigenvalue. This also depends on the
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Fig. 3 Unstructured pseudospectra of the matrix A in (6) for different perturbation levels e.

eigenval ue condition number «()\), which is formally defined as follows:
1 <
Kk(A) = lin}) - sup{|A = A|: E € C"" ||El2 < ¢}, 4)

where ) is the eigenvalue of the perturbed matrix A + E closest to A. In other words, ()
measures the worst-case first order influence of a perturbation E on the accuracy of \. If k()
is large, then X is said to be ill-conditioned. Eigenvalues with small condition number are said
to be well-conditioned.

The definition (4) readily implies |\ — A| < x()\)||E||2. Thus, a backward stable method
attains high accuracy for fairly well-conditioned eigenvalues. If X is a simple eigenvalue,
i.e., A is a simple root of det(\ — A), then k(\) = 1/|y*z| with = and y being right
and left eigenvectors belonging to A normalized such that ||z|2 = ||y|2 = 1 [51]. For
any normal matrix N (that is N¥ N = NNF) there exists a unitary matrix @ such that
Q"NQ = diag(Mi, ..., \,) is diagonal. Hence, Ng; = Ajg; and ¢ N = ¢I7);. Its every
right eigenvector is also a left eigenvector belonging to the same eigenvalue and x(\) = 1 for
all its eigenvalues. Hence, eigenvalues of normal matrices are well-conditioned.

Pseudospectra provide more detailed information on the behavior of eigenvalues under
perturbations [118]. For a given perturbation level ¢ > 0, the pseudospectrum A.(A) of A is
the union of the eigenvalues of all perturbed matrices A + E with ||E||; < e:

Ac(A) = J{AA+E): EcC™ ™ |[E|y <e}. (5)

Figure 3 displays pseudospectra for the matrix
2 1 2
A= -1 2 2 |. (6)
0 00

Provided that all eigenvalues are simple, the pseudospectrum approaches, as e tends to zero,
discs around the eigenvalues and the radii of these discs divided by e coincide with the corre-
sponding eigenvalue condition numbers, see, e.g., [73].
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Fig. 4 Real pseudospectra of the matrix A in (6) for different perturbation levels €.

This is no longer true if we only admit structured perturbations in (5), i.e., matrices E that
belong to a certain matrix class struct. The corresponding structured pseudospectrum Astrct
may approach completely different geometrical shapes [66, 73]. For example, if we allow for
real perturbations only, then struct = R™*". A]}f”" is known to approach ellipses. This is
demonstrated in Figure 4 (a line can be regarded as a degenerated ellipse). The larger half
diameters of these ellipses divided by ¢ yield the structured eigenvalue condition numbers,
formally defined as

1 o
KN = lim — sup{|A — A| : FE € struct, | E||2 < }. (7)
e—0 g

It turns out that <& () > k()\)/v/2, see [30]. Since £5t(\) < k() holds for any struct,
this implies that there is no significant difference between x%"™" () and (). Surprisingly,
the same statement holds for a variety of other structures [18, 55, 74, 107], see also Section 3.
Note that (7) implies |A — A| < &5t(\)||E|| for all E € struct. Explicit expressions for
kSTt (X) have been derived in [64], provided that struct is a linear matrix space.

Defining an appropriate condition number (X)) for an invariant subspace X of A is more
complicated due to the fact that we have to work with subspaces and rely on a meaning-
ful notion of distances between subspaces. Such a notion is provided by the canonical an-
gles [111, 113] and the resulting x(X) can be interpreted as follows. Let the columns of X
form an orthonormal basis for X'. Then there is a matrix X such that the columns of X form
a basis for an invariant subspace X’ of the slightly perturbed matrix A + E and

X = Xl[r 3 £(X)Elr

forall E € C™*"™. A (possibly smaller) xs™<*(x’) is similarly defined and yields the same
bound for all E restricted to struct. Structured condition numbers for eigenvectors and in-
variant subspaces have been studied in [31, 64, 68, 77, 79, 114]. The (structured) perturbation
analysis of quadratic matrix equations is a closely related area, which is comprehensively
treated in [76, 115].
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3 Moreon Some Structures

In this section, we aim to provide a brief discussion on selected aspects of some common
matrix structures.

3.1 Sparsity and related structures

Sparsity is probably the most ubiquitous structure in (numerical) linear algebra. While a
sparse matrix cannot be expected to have any particular eigenvalue or eigenvector properties,
it always admits the efficient calculation of its eigenvalues and eigenvectors [5], see also
Section 2.2.

In [101], it was shown that if struct denotes all matrices having an assigned sparsity pattern
then the corresponding structured eigenvalue condition number equals || (yz ™) |struct || 7/ |y 2|,
where (yz!)|suee Means the restriction of the rank-one matrix yz! to the sparsity structure
of struct. For example if the perturbation is upper triangular then (ya™)|sue is the upper
triangular part of y2 /.

No methods are known to be strongly backward stable for an arbitrary sparsity structure
struct. Hence, it is generally difficult to achieve accuracy gains promised by a small value of

H(nyﬂstructHF-

3.2 Symmetric matrices

Probably the two most fundamental properties of a symmetric matrix A € R"*", A = A” are
that every eigenvalue is real and every right eigenvector is also a left eigenvector belonging
to the same eigenvalue. Both facts immediately follow from the observation that a Schur
decomposition of A always takes the form Q7 AQ = diag(\1, ..., \n).

Itis simple to show that the structured eigenvalue and invariant subspace condition numbers
are equal to the corresponding unstructured condition numbers, i.e., kY™™ (X) = k(\) = 1
and

1
min{|p— Al A€ Ay, p € Ay}’

KYMM(X) = k(X) =

where X is a simple invariant subspace belonging to an eigenvalue subset A; C A(A), and
Ay = A(A)\A;. Moreover, many numerical methods, such as QR, Arnoldi and Jacobi-
Davidson, automatically preserve symmetric matrices and are strongly backward stable.

These facts should not lead to the wrong conclusion that the preservation of symmetric
matrices is not important. Algorithms tailored to symmetric matrices (e.g., divide and conquer
or Lanczos methods) take much less computational effort and sometimes achieve high relative
accuracy in the eigenvalues [41] and — having the right representation of A at hand — even in
the eigenvectors [43, 44]. To illustrate these accuracy gains, let us consider a 20 x 20 matrix
A = DHD with

1 01 --- 0.1

, D =diag(10%°,10',...,10"). (8)
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Fig.5 Relative errors |\—X|/\ for the eigenvalues of the matrix A = D H D as defined in (8) computed
by the QR algorithm and by the Jacobi algorithm.

From Figure 5 it can be concluded that the Jacobi algorithm computes all eigenvalues of A
with high relative accuracy while the QR algorithm fails to achieve this goal.

Besides the well-known algorithms for symmetric eigenproblems such as the QR algo-
rithm, the Lanczos algorithm (a Krylov subspace method tailored for symmetric matrices)
and the Jacobi method, which are discussed in most basic books on numerical methods (see,
e.g., [51, 131, 40]), there are a number of more recent developments. For example, a divide-
and-conquer algorithm was first introduced in 1981 [39]. Its quite subtle implementation was
only discovered ten years later [58]. The algorithm is one of the fastest now available for
computing all eigenvalues and all eigenvectors. Bisection can be used to find just a subset
of the eigenvalues of a symmetric tridiagonal matrix, e.g., those in the interval [a, b]. If only
k < n eigenvalues are required, bisection can be much faster then QR. Inverse iteration can
then be used to independently compute the corresponding eigenvectors. The numerical diffi-
culties associated with that approach have recently be resolved [42, 43, 44]. Of course, there
a symmetric version of the Jacobi-Davidson algorithm (see the review in the present volume
of this journal or [5, 109]).

An overview of all developments related to symmetric eigenvalue problems is far beyond
the scope of this survey; we refer to [37, 40, 103] for introductions to this flourishing branch
of eigenvalue computation.

3.3 Skew-symmetric matrices

Any eigenvalue of a skew-symmetric matrix A € R™"*", A = — AT is purely imaginary.
If n is odd then there is at least one zero eigenvalue. As for symmetric matrices, any right
eigenvector is also a left eigenvector belonging to the same eigenvalue (this is true for any
normal matrix). The real Schur form of A takes the form

QTAQ = [ 7?11 o ]@---@[Zk “ ]@O@W@O.

for some real scalars a1, . .., ax # 0.
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While the structured condition number for a nonzero eigenvalue always satisfies <" (\) =
x(X\) = 1, we have for a simple zero eigenvalue x¥ (0) = 0 but x(0) = 1 [107]. Again, there
is nothing to be gained for an invariant subspace X’; it is simple to show x<"(X) = x(X).

Skew-symmetric matrices have received much less attention than symmetric matrices,
probably due to the fact that skew-symmetry plays a less important role in applications. Again,
the QR and the Arnoldi algorithm automatically preserve skew-symmetric matrices. Variants
of the QR algorithm tailored to skew-symmetric matrices have been discussed in [72, 128].
Jacobi-like algorithms for skew-symmetric matrices and other Lie algebras have been devel-
oped and analyzed in [59, 60, 61, 75, 102, 106, 133].

3.4 Persymmetric matrices

A real 2n x 2n matrix A is called persymmetric if it is symmetric with respect to the anti-
diagonal. E.g., A takes the following form for n = 2:

a1l ai2 | a1z G4
A= Ga21 (22 | A23 (13
az1 ai2 | a2 @12
G41 @31 | 21  G11

If we additionally assume A to be symmetric, then we can write

A { A Aio }
AL, F,ALF, |’

where F,, denotes the n x n flip matrix, i.e., F}, has ones on the anti-diagonal and zeros every-
where else. Note that A is also a centrosymmetric matrix since A = Fy,, AF5,,. A practically
relevant example of such a matrix is the Gramian of a set of frequency exponentials {e=**+*},
which plays a role in the control of mechanical and electric vibrations [105]. Employing the

H _ 1 I Fy,
orthogonal matrix U = —= [an 7 } we have

V2

A — ApF, 0

T _
UTAU = [ 0 F,AnF, + F,A15 |’ ®)

where we used the symmetry of A;; and the persymmetry of A;5. This is a popular trick
when dealing with centrosymmetric matrices [132]. (A similar but technically slightly more
complicated trick can be used if A has odd dimension.) Thus,

MA) = MA11 — A12F,) UN(Ar1 + A Ey,).

Perhaps more importantly, if these two eigenvalue sets are disjoint then any eigenvector be-
longing to A(A11 — A12F,,) takes the form

o3[ ]

for some & € R™. This property of x is sometimes called center-skew-symmetry. Analo-
gously, any eigenvector belonging to A(A11 + A2 F,) is center-symmetric. While the struc-
tured and unstructured eigenvalue condition numbers for symmetric persymmetric matrices
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12 H. Fassbender and D. Kressner: Structured Eigenvalue Problems

are the same [74, 107], there can be a significant difference in the invariant subspace condition
numbers. With respect to structured perturbations, the separation between A\(A1; — A12F},)
and (A1 + A2 F,), which can be arbitrarily small, does not play any role for invariant
subspaces belonging to eigenvalues from one of the two eigenvalue sets [31]. It can thus be
important to retain the symmetry structure of the eigenvectors in finite-precision arithmetic.
Krylov subspace methods achieve this goal automatically if the starting vector is chosen to
be center-symmetric (or center-skew-symmetric). This property has been used in [125] to
construct a structure-preserving Lanczos process. Efficient algorithms for performing matrix-
vector products with centrosymmetric matrices have been investigated in [48, 97, 100].
We now briefly consider a persymmetric and skew-symmetric matrix A,

A= Ay Aqp
— | AL F,ATFE, |-

Again, the orthogonal matrix U can be used to reduce A:
T A77 0 A Fy, + Aro
UAU|:F77,A11_A?2 0 .

Hence, the eigenvalues of A are the positive and negative square roots of the eigenvalues of
the matrix product (Aq1 F, + A12)(F, A1 — AL,), see also [105].

Structure-preserving Jacobi algorithms for symmetric persymmetric and skew-symmetric
persymmetric matrices have been recently developed in [90].

3.5 Product eigenvalue problems and block cyclic matrices

The task of computing the eigenvalues of a matrix product arises from various applications in
systems and control theory, see, e.g., [7, 23, 89, 123]. Moreover, it has been recently shown
that many structured eigenvalue problems can be viewed as particular instances of the product
eigenvalue problem [130].

For simplicity, let us consider computing the eigenvalues of an n x n product of three
matrices only: II = ABC. At first sight, such an eigenvalue problem does not match the
definition of a structured eigenvalue problem stated in the beginning of this survey; II is an
n x n matrix but depends on the 3n? entries defining its factors A, B, C. However, any
product eigenvalue problem can be equivalently seen as an embedded block cyclic structured
eigenvalue problem:

0 0 C
A= B 0 0
0 A O

The fact that .43 is a block diagonal matrix with diagonal entries CAB, BCA, ABC' im-
plies that \ is an eigenvalue of A if and only if A3 is an eigenvalue of ABC (which has
the same eigenvalues as CAB and BC' A). Also, any invariant subspace of ABC can be
related to an invariant subspace of A [87]. This connection admits the application of struc-
tured perturbation results to obtain factor-wise perturbation results for the product eigenvalue
problem [11, 35, 81, 86].
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The essential key to develop numerically stable algorithms for solving a product eigen-
value problem is to avoid the explicit computation of the matrix product. The periodic QR
algorithm [17, 63, 119] is a strongly backward stable method for computing eigenvalues and
invariant subspaces of .4, which in turn implies factor-wise backward stability for computing
eigenvalues and invariant subspaces of I1. In [78], it has been shown numerically equivalent to
the standard QR algorithm applied to a permuted version of A. Methods for solving product
eigenvalue problems with large and (possibly) sparse factors can be found in [80, 88]. Using
these methods instead of applying a standard method to II often results in higher accuracy
for the computed eigenvalues, especially for those of small magnitude. This well-appreciated
advantage has driven the development of many reliable algorithms for solving instances of
the product eigenvalue problem, such as the Golub-Reinsch algorithm for the singular value
decomposition [50] or the QZ algorithm for the generalized eigenvalue problem [99].

3.6 Orthogonal matrices

All the eigenvalues of a real orthogonal matrix @ lie on the unit circle. Moreover, as orthogo-
nality implies normality, any right eigenvector is also a left eigenvector belonging to the same
eigenvalue. Orthogonal eigenvalue problems have a number of applications in digital signal
processing, see [1, 2] for an overview.

The set of orthogonal matrices orth = {A : AT A = I'} forms a smooth manifold, and the
tangent space of orth at A is givenby {AH : H € skew}. By the results in [74] this implies

KM\ = sup{|zTAHz|: H € skew, |AH||, = 1}
= SUP{|93HH$| : H € skew, ||H||2 = 1}.

Hence, if A = £1 then 2 can be chosen to be real which implies 27 Hz = 0 for all z and
consequently x°t"(\) = 0, provided that X is simple. Similarly, if X is complex, we have
KOM(\) = k(\) = 1 and hence ¢S (\) = 1. A more general perturbation analysis of
orthogonal and unitary eigenvalue problems, based on the Cayley transform, can be found
in [16].

Once again, the QR algorithm automatically preserves orthogonal matrices. To make it
work (efficiently), it is important to take the fact that the underlying matrix is orthogonal
into account. A careful choice of shifts can lead to cubic convergence or even ensure global
convergence [46, 126, 127]. Even better, an orthogonal (or unitary) Hessenberg matrix can be
represented by O(n) so called Schur parameters[52, 27]. This makes it possible to implement
the QR algorithm very efficiently [53]; for an extension to unitary and orthogonal matrix
pairs, see [25]. In [54], a divide and conquer approach for unitary Hessenberg matrices was
proposed, based on the methodology of Cuppen’s divide and conquer approach for symmetric
tridiagonal matrices [38]. Krylov subspace methods for orthogonal and unitary matrices have
been developed and analyzed in [15, 26, 62, 70, 71].

3.7 Hamiltonian matrices

As already mentioned in the introduction, one of the most remarkable properties of a Hamil-
tonian matrix
H_|:Q AT:|7 G_Ga Q_Qa
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is that its eigenvalues always occur in pairs {A,—A}, if A € R U R, or in quadruples
A =X\ A=A}, if A € C\(R U<R). Hamiltonian matrices arise in applications related to
linear control theory for continuous-time systems [6] and quadratic eigenvalue problems [96,
117], to name only a few. Deciding whether a certain Hamiltonian matrix has purely imagi-
nary eigenvalues is the most critical step in algorithms for computing the stability radius of a
matrix or the H., norm of a linear time-invariant system, see, e.g., [20, 29].

The described eigenvalue pairings often reflect important properties of the underlying ap-
plication and should thus be preserved in finite-precision arithmetic. QR-like algorithms that
achieve this goal have been developed in [10, 28, 120] while Krylov subspace methods tailored
to Hamiltonian matrices can be found in [8, 9, 49, 96, 129]. An efficient strongly backward
stable method for computing invariant subspaces of H has recently been proposed in [34].

Concerning structured perturbation results for Hamiltonian matrices, see [31, 74, 77, 116]
and the references therein. It turns out that there is no or little difference between x(\) and
xHamit(\), the (structured) eigenvalue condition numbers. Also, x(X') and xH2m!(X') are equal
for the important case that X' is the invariant subspace belonging to all eigenvalues in the open
left half plane.

There is much more to be said about Hamiltonian eigenvalue problems, see [9] for a recent
survey.

3.8 Symplectic matrices
A matrix M is called symplectic iff

MJMT = J,

or equivalently, M T JM = .J, where

0o I
J= [ ol } |

The symplectic matrices form a group under multiplication. The eigenvalues of symplectic
matrices occur in reciprocal pairs: If A is an eigenvalue of M with right eigenvector «, then
A1 is an eigenvalue of M with left eigenvector (Jz)T. The computation of eigenvalues
and eigenvectors of such matrices is an important task in applications like the discrete linear-
quadratic regulator problem, discrete Kalman filtering, the solution of discrete-time algebraic
Riccati equations and certain large, sparse quadratic eigenvalue problems. See, e.g., [82, 84,
94, 96] for applications and further references. Symplectic matrices also occur when solving
linear Hamiltonian difference systems [14].

Note that a Calyley transform turns a symplectic matrix into a Hamiltonian one and vice
versa. This explains the close resemblence of the spectra of Hamiltonian and symplectic ma-
trices. Moreover, every Hamiltonian matrix H satisfies HJ = (H.J)T. Unfortunately, the
Hamiltonian and the symplectic eigenproblems are (despite common believe) quite different.
The symplectic eigenproblem is much more difficult than the Hamiltonian one. The relation
between the two eigenproblems is best described by comparing it with the relation between
symmetric and orthogonal eigenproblems or the Hermitian and unitary eigenproblems. In all
these cases, the underlying algebraic structures are an algebra and a group acting on this alge-
bra. For the algebra (Hamiltonian, symmetric, Hermitian matrices), the structure is explicit,
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i.e., can be read off the matrix by viewing it. In contrast, the structure of a matrix contained in
a group (symplectic, orthogonal, unitary matrices) is given only implicitly. It is very difficult
to make this structure explicit. If the “group” eigenproblem is to be solved using a method that
exploits the given structure, than this is relatively easy for orthogonal or unitary matrices as
one works with the standard scalar product. Additional difficulties for the symplectic problem
arise from the fact that one has to work with an indefinite inner product.

The described eigenvalue pairings often reflect important properties of the underlying ap-
plication and should thus be preserved in finite-precision arithmetic. QR-like algorithms that
achieve this goal have been developed as well as Krylov subspace methods tailored to sym-
plectic matrices. An efficient strongly backward stable method for computing invariant sub-
spaces of M is not known so far. More on the algorithms and theoretical results for symplectic
matrices are comprehensively summarized in [47].

Concerning structured perturbation results for symplectic matrices, see [74, 116] and the
references therein. If X is a simple eigenvalue for M, then so is 1/A. It turns out that there is
no difference between «(\) and «(1/)\), the unstructured eigenvalue condition numbers, but
the structured ones differ.

3.9 Other structures

Here, we shortly comment on other structured eigenvalue problems frequently encountered in
the literature. By no means should this list or the provided references be regarded as complete.

Hankel and Toeplitz matrices: Toeplitz matrices have constant entries on each diagonal
parallel to the main diagonal; they belong to the larger class of persymmetric matrices.
Toeplitz structure occur naturally in a variety of applications; tridiagonal Toeplitz ma-
trices are commonly the result of discretizing differential equation problems. £, T is a
Hankel matrix for each Toeplitz matrix 7" and F;, as the Section 3.4. Hankel matrices
arise naturally in problems involving power moments. The Hankel and Toeplitz struc-
ture is rich in special properties. Besides admitting the fast computation of matrix-vector
products [121], Hankel and Toeplitz matrices have a number of interesting eigenvalue
properties, see [19] and the references therein.

Multivariate eigenvalue problems: These are multiparameter eigenvalue problems of the
form W;(\)z; = 0, fori = 1,...,k, z; € C*\{0}, A = (\1,...,\) € CFand
Wi(A) = Vip — me A;jVi; where V;; € C™>™i A k-tuple A that satisfies the equa-
tion W;(\)z; = 0, fori = 1,...,k, is called an eigenvalue and the tensor product
r = x1®- - Q@ IS the corresponding right eigenvector. Such eigenvalue problems arise
in a variety of applications [4], particularly in mathematical physics when the method of
separation of variables is used to solve boundary value problems [124]. The result of
the separation is a multiparameter system of ordinary differential equations. The multi-
parameter eigenproblems can be considered as particularly structured generalized eigen-
value problems [3]; see [67, 68, 104] for algorithms and perturbation results based on
this connection.

Nonnegative matrices: A nonnegative matrix A is a matrix whos e entries are all nonneg-
ative, a;; > 0 for all ¢,j. These matrices provide a vast area of research because of
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strong links to Markov chains, graph clustering and other practically important applica-
tions [12]. See [83] and the references therein for structure-exploiting algorithms with
applications to computing Google’s PageRank. More on structured perturbation results
can be found, e.g., in [33, 69, 98].

Polynomial eigenvalue problems: In a matrix polynomial eigenvalue problem \ € C and
x € C™ is sought such that p(A\)z = (Mo + AM; + ... + A* M)z = 0 with coeffi-
cient matrices M; € C**™, j = 0,..., k. A standard approach in order to solve such
eigenvalue problems is the use of linearization. Any linearization of a matrix polynomial
gives rise to a structured eigenvalue problems [92]. See [95] for a survey of theoretical
and algorithmic work on how to exploit the structure of such linearizations and further
structure induced by the coefficients of the matrix polynomial.

Palindromic eigenvalue problems: A matrix polynomial p(\) = Mo+AM;+. ..+ ¥ M;,
with coefficient matrices M; € C**", j = 0,...,k is called palindromic if p(\) =
Ne(pATINT = MME + Ne=IMT + o4+ AME | + MT. This class of structured
generalized eigenvalue problems has recently been investigated [65, 91].

Hierarchical matrices: The sign function iteration preserves such matrices and can be
used to compute spectral projectors and invariant subspaces very efficiently [56, 57].

Semi-separable matrices: Developing efficient and structure-preserving algorithms for semi-
separable and related matrices has recently become an active field of research, see,
e.g., [32, 122]. Little is known on structured perturbation results.

4 Conclusions and Outlook

this paper, we have summarized some of the existing knowledge on structured eigenvalue

problems. It turns out that quite often the structure of a problem is reflected in the eigen-
values, e.g., eigenvalues appearing in pairs or quadruples. Using standard eigensolvers the
special structures of these problems are neglected, often leading to unstructured rounding

er

rors which destroy the eigenvalue pairings. Structure-preserving algorithms prohibit this

effect. Moreover, such methods can reduce computational time and improve upon eigenvalue
accuracy.

A number of matrix eigenvalue problems arise from the discretization and linearization of

nonlinear infinite-dimensional eigenvalue problems. Sometimes an unfortunate choice of the

di

scretization and/or linearization hides relevant structures of the problem. In such cases, it is

worthwhile to reconsider the original problem trying to capture these structures.

Recent improvements of the QR algorithm (e.g., aggressive early deflation [22]) may be

extended to structured algorithms, but little work has been done in this direction so far. A com-

m
tu

only underappreciated aspect is the development of publicly available software for struc-
red eigenvalue problems.
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