IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-4, NO. 3, JULY 1985

Jacob A. Abraham (S’71-M’74-SM’84) re-
ceived the B.Sc. degree in electrical engineering
from the University of Kerala, India, in 1970, and
the M.S. and Ph.D. degrees from Stanford Uni-
versity, Stanford, CA, in 1971 and 1974, respec-
tively.

He is a Professor in the Department of Electri-
cal Engineering and the Coordinatetd Science
Laboratory, University of Illinois, Urbana. His
research interests include VLSI systems, com-
puter-aided design, fault-tolerant computing, and

269

computer architecture. He is currently Coprincipal Investigator of the De-
partment of Defense Very High Speed Integrated Circuits (VHSIC) Phase
III Project in Reliable High Performance VHSIC Systems at the University
of Illinois. He is also a Consultant to industry in the areas of VLSI, testa-
bility, and fault tolerant computing.

Dr. Abraham is a member of ACM and Sigma Xi.

Optimal State Assignment for Finite State Machines

GIOVANNI DE MICHELI, MEMBER, IEEE, ROBERT K. BRAYTON, FELLOW, IEEE, AND
ALBERTO SANGIOVANNI-VINCENTELLI, FELLOW, IEEE

Abstract—Computer-Aided synthesis of sequential functions of VLSI
systems, such as microprocessor control units, must include design op-
timization procedures to yield area-effective circuits. We model se-
quential functions as deterministic synchronous Finite State Machines
(FSM’s), and we consider a regular and structured implementation by
means of Programmable Logic Arrays (PLA’s) and feedback registers.
State assignment, i.e., binary encoding of the internal states of the
finite state machine, affects substantially the silicon area taken by such
an implementation. Several state assignment techniques have been pro-
posed in the past. However, to the best of our knowledge, no Computer-
Aided Design tool is in use today for an efficient encoding of control
logic. We propose an algorithm for optimal state assignment. Optimal
state assignment is based on an innovative strategy: logic minimization
of the combinational component of the finite state machine is applied
before state encoding. Logic minimization is performed on a symbolic
(code independent) description of the finite state machine. The minimal
symbolic representation defines the constraints of a new encoding prob-
lem, whose solutions are the state assignments that allow the implemen-
tation of the PLA with at most as many product-terms as the cardi-
nality of the minimal symbolic representation. In this class, an optimal
encoding is one of minimal length satisfying these constraints. A heu-
ristic algorithm constructs a solution to the constrained encoding prob-
lem. The algorithm has been coded in a computer program, KISS, and
tested on several examples of finite state machines. Experimental re-
sults have shown that the method is an effective tool for designing finite
state machines.

I. INTRODUCTION
ERY LARGE Scale Integrated (VLSI) circuits re-
quire a structured and hierarchical design methodol-
ogy to cope with design complexity. Automated synthesis
of regular modules implementing functional components
allows a decrease in the design time while ensuring elec-

Manuscript received March 18, 1985.

G. De Micheli and R. K. Brayton are with IBM, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598.

A. Sangiovanni-Vincentelli is with the Department of Electrical Engi-
neering and Computer Sciences, University of California, Berkeley, CA
94720.

trical correctness. Unfortunately, computer-aided synthe-
sis techniques often yield integrated circuits requiring a
large amount of silicon area. Therefore, automated syn-
thesis of VLSI modules must include design optimization
procedures to be effective in industrial design.

Sequential circuits play a major role in the control part
of digital systems. Digital computers are very complex
examples of sequential systems and involve a combination
of sequential functions.

A sequential function can be represented by several
models [20]. The deterministic finite state machine
or deterministic automaton representation is used in the
sequel and is referred to as a finite state machine (FSM)
for the sake of simplicity.

Hardware implementations of finite state machines con-
sist of two major components: a combinational circuit and
a memory. The memory stores a representation of the state
of the machine at any given time and the combinational
circuit generates the machine primary outputs as a func-
tion of the machine state and/or the machine primary in-
puts (Fig. 1).

The implementation of sequential functions in VLSI
system design has to satisfy two major requirements:

i) regular and structured design that can be supported
by computer-aided tools;
ii) size and performance of the silicon implementation.

A PLA implementation of the FSM combinational com-
ponent can satisfy both requirements. Since FSM memory
components, as well as PLA’s, can be designed by means
of regular structures, the entire FSM implementation can
be regular and structured. This allows the automation of
FSM-based sequential-circuit design. Moreover, several
techniques, like logic minimization and topological com-

0278-0070/85/0700-0269$01.00 © 1985 IEEE

270

PRIMARY COMBINATIONAL <: PRIMARY
INPUTS CIRCUIT QUTPUTS
MEMORY

Fig. 1. Finite state machine.

| . 1

L
t
AND i OR
PLANE | PLANE
1
K
D- LATCHES

Fig. 2. Model of synchronous finite state machine using delay latches.

paction, allow the design of area-effective PLA implemen-
tations. Therefore, PLA-based FSM design can be opti-
mized with regard to silicon area requirement and subse-
quently to switching-time performance.

The memory component of a FSM consists of a set of
latches that store the machine state representation. Sev-
eral types of latches (Delay (D), Toggle (T), JK) can be
used [18]. Some functions can be implemented more ef-
ficiently with a particular type of latch: for example
counters are usually implemented by means of 7-latches
and generic sequential functions by D-latches. For the sake
of simplicity, we focus on FSM’s whose memory elements
are implemented by D-latches.

The operation of VLSI systems is often synchronized
to a system clock. The main goal is to keep a “‘race-free”
design even when the circuit size is large. For this reason
the model of a sequential function implementation used
here is a synchronous finite state machine, as shown in
Fig. 2.

The computer-aided synthesis of a sequential function
as a PLA-based finite state machine can be partitioned
into several tasks. We refer the interested reader to [29],
[10], [11], and [13] for further details. This paper ad-
dresses the optimal state assignment problem.

The state assignment problem has been the object of ex-
tensive theoretical research. Harmanis [16], Stearns [31],
Karp [22], and Kohavi [23] developed algebraic methods
based on partition theory. Their approach was based on a
reduced dependence criterion, which led to a good assign-
ment. However, no theoretical result was presented that
related reduced dependencies to optimal FSM implemen-
tations. Moreover, no systematic procedure was developed
that could be used to encode large machines. Armstrong
[1], [2] developed a method capable of coding large ma-
chines, based on a graph interpretation of the problem.
However, his approach was still ineffective, because i) he

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-4, NO. 3, JULY 1985

did not take into account the techniques of fast heuristic
logic minimizers (heuristic logic minimization was not
known at that time); ii) he transformed the state assign-
ment problem into a graph embedding problem, that only
partially represented the state encoding problem; and iii)
his graph embedding technique was ineffective. Arm-
strong’s technique was analyzed and enhanced in [9].
Dolotta and McCluskey [14] introduced the concept of
codable columns, used for finding near-optimal solutions.
Their algorithm was able to estimate the complexity of the
combinational component of a FSM, as a function of par-
tial-length state assignments. However their method was
computationally efficient for small machines only. Their
method was later improved by Weiner and Smith [36],
Torng [34], and Story [32]. Curtis [5], [6] considered the
problem of using different types of storage elements in re-
lation to the state assignment problem. Tracey [35] and
Saucier [30] addressed the state-assignment problem in
connection with race-free asynchronous machine design.
Despite all these efforts, to the best of our knowledge, no
computer-aided design tool for designing FSM’s is in use
today for a time-effective encoding of control logic.

We present here a new technique for state assignment,
based on an innovative strategy: logic minimization of the
FSM combinational component is applied before state as-
signment. In Section II we show how logic minimization
can be performed on a symbolic (code independent) rep-
resentation of the combinational component of the FSM.
In Section HI we introduce a constrained encoding prob-
lem, that relates the minimal symbolic representation to
the class of assignments that implement the combinational
component with at most as many product-terms as the car-
dinality of the minimal symbolic representation. In Sec-
tion IV we present a heuristic algorithm for constructing
a solution to the constrained encoding problem. We then
present in Section V the software implementation of the
algorithm and the experimental results achieved by this
technique.

II. SymBoLic COVER AND SYMBOLIC MINIMIZATION

We assume that the reader is familiar with the basic con-
cepts and definitions of switching theory. We refer the
reader to [18], [3], and [17] for details.

Formally a FSM can be defined as a 5-tuple (X, Y, Z,
0, N) where,

X = {x,x, ", Xx} set of primary input sym-
bols,

Y=Ay,y» .y} set of internal states,

Z=A{z,2, """,z set of primary output
symbols,

6: X XYY next state function,

NXXY—=>Z(NY—Z) output function for a
Mealy (Moore) ma-
chine.

A finite machine representation is said to be incom-
pletely specified if the next-state and/or output function
are not specified for some input and/or present-state.

DE MICHELI et al.: FINITE STATE MACHINES

The state assignment, or state encoding problem con-
sists of choosing a Boolean representation of the internal
states of the machine. State encoding affects substantially
the complexity of the FSM combinational component [17].
In particular, the PLA size depends heavily on the state
assignment. Therefore, the optimum state assignment
problem for PLA-based finite state machines can be stated
as follows:

Find a state assignment corresponding to a PLA im-
plementation of minimum area.

This task is formidable and some simplifying assump-
tions are needed. As a first step, topological compaction
techniques to reduce the PLA area, such as folding [15]
[7] and partitioning [8] are not considered in the following
analysis. Under this assumption, each PLA row imple-
ments a product-term (implicant) and each column is re-
lated to an I/0O of the PLA and in particular to the signals
representing an encoding of the primary input an output
symbols and of the present and next states. We assume D-
latches are used to store the state information. Therefore,
if n,, is the state encoding length (i.e., the number of bits
used to represent the states), then 3 X n; columns of the
PLA are related to the internal states. The PLA area is
proportional to the product of the number of rows times
the number of columns. Both row and column cardinality
depend on state encoding. The (minimum) number of rows
is the cardinality of the (minimum) cover of the FSM com-
binational component according to a given assignment.
The encoding-length is related to the number of PLA col-
umns. Therefore, the PLA area has a complex functional
dependence on state assignment. For this reason two sim-
pler optimal state assignment problems are defined:

i) Find the assignment of minimum code length among
the assignments that minimize the number of rows of
the PLA.

ii) Find the assignment that minimizes the number of

rows of the PLA among the assignments of a given
code length.

The optimum solution to the state assignment problem
which minimizes the PLA area can be seen as a tradeoff
between the solutions to problem i) and ii) [12]. Note that
the above problems are still computationally difficult and
to date no method (other than exhaustive search) is known
that solves them exactly. Therefore heuristic strategies are
used to approximate their solution.

A method that attempts a solution to problem i) is pre-
sented in the sequel, as an intermediate step toward the
solution of the complete problem. Problem i) is referred
to as the optimal state assignment problem throughout this
paper. Note that most of the previous state assignment
techniques [16], {1], [2] attempted to solve problem ii)
with minimum code length (i.e., log, |Y|). The relevance
of problem ii) was related to minimizing the number of

271

TABLE 1
STATE TABLE

Input = 0 Input = 1
Present State Next State Output Next State Output
START state__6 00 state__4 00
state__2 state__5 00 state__3 00
state__3 state__5 00 state__7 00
state__4 state__6 00 state__6 10
state__5 START 10 state__2 10
state__6 START 01 state__2 01
state__7 state__5 00 state__6 10

feedback latches in discrete component implementations
of finite state machines. Today, optimizing the total usage
of silicon area (related only weakly to the number of stor-
age elements) is the major goal in integrated circuit im-
plementations of PLA-based finite state machines.

The state encoding technique reported in the sequel is
based on an innovative strategy: instead of trying to es-
timate the possible simplification of the FSM combinationl
component after a state assignment is chosen, logic min-
imization is applied before state assignment. For this rea-
son, logic minimization is performed on a symbolic (code
independent) representation of the combinational compo-
nent of the FSM: the symbolic cover. The concept of sym-
bolic cover is a generalization of the logic cover represen-
tation of combinational-logic functions. Symbolic covers
specify combinational-logic functions by means of binary
and symbolic strings.

A symbolic cover is a set of primitive elements called
symbolic implicants. A symbolic implicant consists of
n = 2 fields; each field is a string of characters. For our
purposes, symbolic implicants have four fields (n = 4)
corresponding to the primary inputs, present states, next
states and primary outputs of the FSM respectively. We
denote a symbolic implicant by the 4-tuple i s 5’ 0. The
first two fields (i s) are the symbolic implicant input part,
the last two (s’ 0) are the symbolic implicant output part.
Since we consider here the encoding of the internal states,
the fields i/ and o are binary valued representations' of the
primary input and primary output symbols. The fields s
and s’ represent a symbolic representation of the present
and next states. Note that this representation can be gen-
eralized, by representing the primary inputs and outputs
by symbolic fields as well.

A symbolic implicant represents a state transition if
s' = 68(i, s) and o = A (i, 5). A symbolic cover consisting
of symbolic implicants representing all the state transitions
is equivalent to the formal mathematical representation of
a FSM.

Example 2.1: Consider the finite state machine de-
scribed by the state table in Table I. The following is a

'In the binary-valued representation, we denote an uncomplemented vari-
able by “1” and a complemented variable by ““0.”” A “**”’ in an input-part
denotes a don’t care condition, a **-” in an output-part means that the im-
plicant carries no information about that variable.

272

symbolic implicant:

0 START state-6 00

showing that a “0” primary-input value maps state
“START” into “‘state-6"" and asserts output 00. The sym-
bolic cover is the collection of the symbolic implicants rep-
resenting the state transitions:

0 START state-6 00
0 state-2 state-5 00
0 state-3 state-5 00
0 state-4 state-6 00
0 state-5 START 10
0 state-6 START 01
0 state-7 state-5 00
1 START state-4 01
1 state-2 state-3 10
1 state-3 state-7 10
1 state-4 state-6 10
1 state-5 state-2 00
1 state-6 state-2 00
1 state-7 state-6 00

In general, a symbolic implicant can represent a transition
from one or more states to a next-state under some input
conditions. Therefore, there exist several symbolic cover
representations that are equivalent among each other. A
minimum symbolic cover is one of minimum cardinality,
i.e., consisting of a minimum number of symbolic impli-
cants. Symbolic minimization consists of finding such a
minimum symbolic cover, i.e., is equivalent to determin-
ing a minimum sum-of-product representation indepen-
dent of the encoding of the symbolic strings.

The symbolic cover representation is related to a mul-
tiple-valued logic representation, where each symbolic
string takes a different logic value [33], [19]. Several no-
tations are used to represent multiple-valued logic covers.
For example, the different logic levels can be represented
by integer values: O, 1, 2, - - - , p — 1. This is an exten-
sion of the binary notation to a p-valued representation.
The positional cube notation is used here [33]. A p-valued
logical variable is represented by a string of p binary sym-
bols. Value r is represented by a *“1” in the rth position,
all others being ““0.”” Note that the positional cube nota-
tion allows the representation of a set of values with one
string. The disjunction (multiple-valued logical OR) of
several values is represented by a string having “1”’s in
the corresponding positions. Therefore the “don’t care”
value is represented by a string of ‘““1”’s and the empty
value by a string of “0”’s.

The transformation of a symbolic cover into a multiple-
valued cover with positional cube notation is straight-
forward, since the latter is itself a symbolic cover and the
transformation involves only symbol translations.

Example 2.2: The symbolic cover of Example 2.2 can
be translated into a multiple-valued positional-cube rep-
resentation by associating a positional cube to each state.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-4, NO. 3, JULY 1985

START is represented by 1000000, state-2 by 0100000,
etc.

0 1000000 0000010 00
0 0100000 0000100 00
0 0010000 0000100 00
0 0001000 0000010 00
0 0000100 1000000 10
0 0000010 1000000 01
0 0000001 0000100 00
1 0000010 0100000 01
1 0000100 0100000 10
1 0001000 0000010 10
1 0000001 0000010 10
1 1000000 0001000 00
1 0100000 0010000 00
1 0010000 0000001 00.

The multiple-valued logic algebra, in its most common
interpretation in the literature {21}, is based on the work
by Post [24] and on the assumption of an ordering relation
among the logic values: 0 < 1 < -+ < p — 1. The
minimization of a switching function with multiple-valued
outputs and represented as sum-of-products of multival-
ued literals depends on such an ordering [26]. Since no
ordering relation among the symbolic strings is assumed
in the symbolic representation of a combinational func-
tion, we perform symbolic minimization by considering
any positional cube in the implicant input-parts as a dif-
ferent logic value and any positional cube in the implicant
output-parts as a different logic function. In other words,
we perform symbolic minimization by minimizing simul-
taneously the multiple-valued-input functions related to
each next-state transition function 6;, i = 1,2, - - -, | Y]
and each output function \;, i = 1,2, - - -, |Z].

Finding a minimum multiple-valued-input cover is a
computationally expensive problem. Heuristic multiple-
valued-input logic minimizers, such as ESPRESSO-II [28]
and MINI [19] and be used to compute a minimal (local
minimum) cover. (Programs ESPRESSO-II and MINI are
used in particular for binary-valued logic minimization;
however in general they support multiple-valued-input
minimization [3].) Alternatively, the positional-cube rep-
resentation can be seen as a binary-valued encoding of a
multiple-valued function. This encoding is referred to as
I-hot coding, because each value of the multiple-valued
function corresponds to one and only one binary value “1”
(HIGH) in the coded representation.? By using this rep-
resentation, binary-valued minimizers, such as PRESTO
[4], POP, MINI, and ESPRESSO-II, can be used to obtain
minimal symbolic covers. Experimental results have
shown that ESPRESSO-II yields minimal (symbolic) cov-
ers that are quite close to the minimum (symbolic) cover,
for problems for which a lower bound on the minimum
cover can be determined [27], as shown in Table II.

*The I-hot representation has a different interpretation than the posi-
tional cube notation. An appropriate ‘“don’t care’ set must be specified for
the 1-hot representation, to specify that n-hot encoding do not represent
existing states. The interested reader is referred to [3] and [10] for details.

DE MICHELI et al.: FINITE STATE MACHINES

TABLE II
COMPARISON OF THE MINIMAL COVER CARDINALITIES USING POP, MINI
AND ESPRESSO-II AND A LOWER BOUND ON THE MINIMUM COVER
CARDINALITY

POP MINI ESPRESSO-II MINIMUM
FSM1 16 13 i3 13
FSM2 49 27 24 24
FSM3 23 17 16 16
FSM4 108 79 55 55
FSMS 30 21 18 18
FSM6 13 11 10 10
FSM7 28 23 23 22

Example 2.3: Consider the symbolic cover of Example
2.2. A minimal multiple-valued-input cover obtained by
ESPRESSO-II is the following:

0 0110001 0000100 00
1001000 0000010 00
0001001 0000010 10
0000010 1000000 01
0000100 0100000 10
0000100 1000000 10
1000000 0001000 00
0000010 0100000 01
0100000 0010000 00
0010000 0000001 00

— = = e D e O = O

Consider now the first symbolic implicant from the top:
0 0110001 0000100 00

This implicant shows that input “0” maps ‘“‘state-2”’,
“state-3"" and ‘‘state-7’’ into ‘‘state-5’’ and assert output
“00.” A similar condition is expressed by the second and
third implicants.

The example above shows that the effect of symbolic (mul-
tiple-valued-input) logic minimization is to group together
the states that are mapped by some input (or input com-
bination) into the same next-state and assert the same out-
put. In other words, while the original symbolic cover is
a set of implicants:

i 563, 8) N(i, 5)

where s represents a single state, the minimal multiple-
valued-input cover may contain symbolic implicants in
which s represents a set of states. Each state subset having
more than one element and represented by a s string is
termed state group. Given a state assignment and a state
group, the corresponding group face (or simply face) is the
minimal dimension subspace containing the encodings of
the states assigned to that group (or equivalently the bit-
wise disjunction of the encodings assigned to the states in
that group).

The goal of the state assignment technique presented

273

here is to group together the state encodings in binary-
valued logical implicants in the same way states are
grouped in the minimal symbolic (multiple-valued-input)
cover. In particular, a state encoding is sought, such that
each symbolic implicant can be coded by one binary-val-
ued implicant. For this assignment, there exists a binary-
valued cover of the FSM combinational component having
as many implicants as the minimal symbolic cover.

An encoding, such that each group face contains the
encodings of the states included in the corresponding
group and no other state encoding, satisfies the above re-
quirement. In fact, each encoded implicant represents ex-
actly the state-transitions related to the corresponding
symbolic implicant.For this reason, a constrained encod-
ing problem is considered:

Given a set of state groups, find an encoding such that
each group face does not intersect the code assigned to
any state not contained in the corresponding group.

In view of the previous considerations, any solution to the
constrained coding problem is a state assignment such that
the coded Boolean cover has the same cardinality as the
minimal symbolic cover.

Example 2.4: Consider the minimized symbolic cover
of Example 2.3. Let us suppose to know a solution to the
constrained encoding problem. If the states are coded as
follows:

START 010
state-2 110
state-3 101
state-4 000
state-5 001
state-6 011
state-7 100

then the following Boolean cover specifies the FSM com-
binational component:

0 1**
0*0
*00
011
001
001
010
011

001 00
011 00
011 10
010 01
110 10
010 10
000 00
110 01
110 101 00
101 100 00

The Boolean cover cardinality is the same as the mini-
mal symbolic cover cardinality.

S = O = O

Pk pd e

274

It is important to note that most state assignment tech-
niques are based on state grouping and an encoding
scheme based on the group information [1], [16], [9]. A
critical survey is presented in [10]. A solution to the con-
strained encoding problem based on symbolic minimiza-
tion provides the best possible assignment, when the num-
ber of product-terms of a two-level implementation is used
as a cost function.

Theorem 2.1: A state assignment that is a solution of
the constrained encoding problem related to a minimum
symbolic cover implements each next-state function §;,
i =1,2,-+-,|Y| and output-function \; i = 1, 2,- - -,
|Z| as a sum of a minimum number of product-terms.

Proof:

Let @ be the minimum symbolic cover of {, where { is
any next-state function §;, i = 1, 2, - -, |Y| or output-
function \;, i = 1,2, - -, |Z|]. Let @ be a state assignment
that is a solution of the related constrained encoding prob-
lem. Then there exists a sum-of-product representation of
£,®, such that each symbolic implicant of & is repre-
sented by one Boolean implicant of &. Therefore |®| =
|®|. For the sake of contradiction, suppose that there ex-
ists an assignment @', such that the corresponding sum-
of-product representation of §, B’ requires fewer product-
terms, i.e., |®'| < |®|. Since the assignment @' is a
symbolic representation of the states as well, there exists
a symbolic cover of §, ®’ such that |®’| < |®|. Then @
is not a minimum cover of §, and we have a con-
tradiction. |

There is still room to improve this technique. Since we
perform symbolic minimization with multiple-valued-in-
put minimization, the components of the next-state func-
tion §;, i = 1, 2,- - -, | Y| have disjoint on-sets [3]. How-
ever, in the encoded Boolean cover, some states codes have
a non-zero entry in the same position and therefore the
components of the next-state functions are not necessarily
disjoint. Therefore the final minimum Boolean cover of
the FSM combinational component may require fewer im-
plicants than the sum of the cardinality of each minimum
cover related to each next-state and output function. In
other words, state encoding transforms a minimum sym-
bolic cover into a nonnecessarily minimum Boolean cover,
because the next-states are encoded exactly as the present-
states.

Example 2.5: Consider the minimal symbolic cover of
Example 2.3 and in particular the following three impli-
cants:

1 0000100 0100000 10
0 0000100 1000000 10
1 0010000 0000001 00

Consider now the encoding of Example 2.4 and let us re-
place the encoding in the symbolic implicants.

1 001 110 10
0 001 010 10
1 101 100 00

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-4. NO. 3. JULY 1985

Note that the encoding of “state-2”" is the bit-wise dis-
Jjunction of the encoding of “START”” and “‘state-7"’. Then
the three state transitions can be represented by the fol-
lowing cover of cardinality two:

* 001
1 *0l1

-1- 1-
1-——

because input ““1”” and *‘state-5” imply 6; = 1 and §, =
1 and, therefore, a transition to “‘state-7.”” The following
is a minimal Boolean cover:

0 1** -1 —
0 0*0 -1t -
1 *00 -11 1-
1 110 -1 —
1 0%1 - —
* 011 -1- -1
* 001 -1- 1-
1 *01 - -

Note that the implicant representing a transition to “state-
4" (encoded by 000) and asserting the primary output 00
is not needed in a Boolean representation.

By performing symbolic minimization with a multiple-
valued-input minimizer, the present-state grouping does
not take into account the encoding of the next states. Sym-
bolic minimization and encoding strategies that take into
account next-states encoding are still under investigation.

An extensive use of 1-hot encoding for finite state ma-
chines is found in industrial designs. One reason is the
lack of algorithms and programs for state encoding of large
FSM’s. The penalty of using 1-hot coding is related to the
number of variables representing the states, which grows
linearly with the state set cardinality. Note that the mini-
mum number of state variables grows with the logarithm
of the state set cardinality. Moreover, 1-hot encoding does
not necessarily give a minimum sum-of-product represen-
tation

Theorem 2.2: Any state assignment that is a solution of
the constrained encoding problem implements the FSM
combinational component using at most as many product-
terms as a 1-hot encoded implementation.

Proof:

The on-sets of the next-state functions of a l-hot en-
coded cover are disjoint. Therefore, the cardinality of a
minimum 1-hot encoded cover is the same as the minimum
symbolic cover cardinality. A solution to the constrained
encoding problem allows us to define a Boolean cover with
as many product-terms as the minimum symbolic cover.
Moreover, this cover is not necessarily a minimum cover,
because the encoded next-state functions may overlap.
Thus a2 minimum encoded cover may be found, having
fewer product-terms than the minimum I-hot encoded
cover. n

DE MICHELI et al.: FINITE STATE MACHINES

Therefore, a solution to the constrained encoding prob-
lem allows the implementation of the combinational com-
ponent by a PLA having fewer (or at most equal number
of) columns and rows than a 1-hot encoding.

Remark 2.1: In general, symbolic minimization is af-
fected by the machine primary inputs and/or outputs. If a
minimal PLA implementation is sought, primary inputs
and outputs can be considered as machine input and out-
put states and encoded as well as the internal states. How-
ever interfacing a FSM to other circuit building blocks
often limits the possibility of finding an optimal encoding
for primary inputs and/or outputs.

III. CONSTRAINED STATE ENCODING

The minimal symbolic representation defines the con-
straints of an encoding problem, whose solutions are the
state assignments that allow the implementation of the
FSM combinational component with at most as many
product terms as the cardinality of the minimal symbolic
cover. According to the definitions given in Section II, the
constrained encoding problem consists of finding a state
assignment such that each group face does not intersect
the code assigned to any state not contained in the corre-
sponding group. An optimal state assignment is a minimal
code-length solution to the constrained encoding problem.

The geometric interpretation of the optimal encoding
problem is: finding the minimal dimension Boolean space
in which each group face is a subspace which does not
intersect the encoding assigned to any state not contained
in the corresponding group.

State assignment is restricted here to one-to-one map-
pings between the state set and a subset of the vertices of
the Boolean hypercube, i.e. each state encoding is a O-
dimensional subspace. This restriction is motivated as fol-
lows. A 0-dimensional state assignment that is a solution
to the constrained encoding problem, can be derived from
a n-dimensional (n > 0) solution by assigning to each state
a vertex contained in the corresponding n-dimensional as-
signment. Therefore, a 0-dimensional solution has code-
length less than or at most equal to the code-length of any
n-dimensional solution.

Some definitions are introduced now to allow a formal
statement of the problem. The encoding problem is stud-
ied using matrix notation. Let n; be the number of states,
n, the number of groups and n, the code length. The ma-
trices we consider have pseudo-Boolean entries from the
set {0, 1, *, ¢} where * represents the don’t care condi-
tion (i.e., either 1 or 0) and ¢ represents the empty value
(i.e. neither 1 nor 0). Conjunction and disjunction on
pseudo-Boolean variables is defined as follows:

A0 1 * ¢ VO 1 * ¢
00 6 0 ¢ (0] 0 * * 0
e 1 1 ¢ |1 *= 1 * 1
oo & ¢ ¢ (9] 01 * ¢

275

To be consistent with the positional-cube notation, state
groups are represented by a 1-0 matrix and in particular
by the subset of the columns of the minimal multiple-val-
ued cover corresponding to the present-states.

The constraint matrix A is a matrix: 4 € {0,1}" "™

a.

a;.
= [a.l I a.2| e |a.,,s]

ay,.

representing n,; state groups. State j belongs to group i if
a; = 1.

A row of the constraint matrix is said to be a meet if it
represents the conjunction of two or more state groups. A
row of the constraint matrix is said to be prime if it is not
a meet.

Example 3.1: The following constraint matrix is derived
from the minimal symbolic cover of Example 2.3 by con-
sidering the present-field and by dropping the rows cor-
responding to one state only. It represents the state groups:
{state-2, state-3, state-7}, {START, state-4} and {state-
4, state-7}

0110001
1001000
0001001

A=

All the rows of A are prime. If row a = 0001000 is ap-
pended to A, then a is a meet because it represents {state-
4}, which is the conjunction between the second and the
third group.

The state code matrix S is a matrix S € {0,1}™*"™

whose rows are state encodings. Our problem is to deter-
mine the state code matrix S, given a constraint matrix A.

Definition 3.1: Leta € {0, 1} and b € {0, 1, *, ¢}. The
selection of b according to a is

b,
a-b={
¢)

Selection can be extended to two dimensional arrays and
is similar to matrix multiplication. :

ifa=1
ifa=20

Definition 3.2: Let A € {0, 1}’*¢ and B € {0, 1, *,

39", Then
A-B=C={c'*

where ¢; = V{_ ay - by.

276

Selection is useful to determine group faces corre-
sponding to a group set and a given encoding.
The face matrix F € {0, 1, *, ¢}/ *™
fi

is the matrix whose rows are the group faces. Note that
the empty group corresponds to the empty face repre-
sented by n, ¢ entries. The face matrix can be obtained
by performing the selection of S according to a constraint
matrix A:

F=4-8.

Example 3.2: Consider the constraint matrix of Exam-
ple 3.1 and the state assignment represented by

[010]
110
101
000
001
011
100

—]

Then the face matrix is

Jx*

F=4-85=1]0%

*00

Note that f;. is the minimum subspace containing the state
encodings for group i. A geometrical representation of F
is shown in Fig. 3.

Let 4 be the complement of the constraint matrix A4, i.e.,
the matrix obtained from 4 by complementing its entries.
Then F' = a.; - s;. is a matrix whose rows are the encod-
ing of state i if state i does not belong to group j, else are
empty values. A state encoding matrix S is a solution of
a constrained encoding problem and is said to satisfy the

constraint relation for a given constraint matrix A if:
i Af.

_. fa Af.

FIAF= =9 w=

1’ 2,. Ce, N

Fru A fu,

where @ is the empty matrix, i.e., a matrix whose rows
have at least ¢ entry and, therefore, representing no point
in the Boolean space.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-4, NO. 3, JULY 1985

STATE 2
100

STAT /

6 ' 7/
o1 sh
AN /}/

R state 7L //
K 000 yd

fy STATE 3
101

START
KR}

~

N
f2 3

STATE 4 &
010

STATE 5
I

Fig. 3. Geometric representation of state encoding.

Example 3.3: The state matrix of Example 3.2 satisfies
the constraint relation. However, if the 6-th row is changed
to 111, the constraint relation is no longer satisfied, be-
cause the code of state-6 intersects the first face, or equiv-
alently:

1 111
a¢-se. =|1]-1111y=|111|AF
[1 111
111
=|ole | = &
| 169

Remark 3.1: In an implementable state assignment, all
state encodings must be pair-wise disjoint. This require-
ment can be embedded in the constraint relation when n,
groups, consisting of one different state each, are added
to the problem. In this case, n; 0-dimensional faces cor-
respond to the n, state codes, and any encoding satisfying
the constraint relation is such that codes are disjoint from
one another.

Now the optimal constrained encoding problem can be
formally stated as follows:

Find a state code matrix S with minimal number of col-
umns that satisfied the constraint relation.

It is important to point out that there always exist matrices
S satisfying the constraint relation.

Theorem 3.1: The identity state code matrix S = I €
{0, 1}™ ™™ satisfies the constraint relation for any given
matrix A.

Proof:

Without loss of generality, let us consider the rows of A
and F one at a time. Let us consider first the rows of A
having 1 (0) entries only. The corresponding rows of F
consist of * (¢) entries only, while the corresponding rows
of F' consists of ¢ (*) entries only Vi = 1,2, - -+, n,.
Let us consider now the remaining rows of A. For each
remaining row i in A4, let J; = {j such that a; = 0}. Then
Ji = 0 vj€J. Since:

_ Ski» if keld,
fi = { J

®, else,
V. =

=1,2,",m

vk =

DE MICHELLI er al.: FINITE STATE MACHINES

then: ;. Af¥ = & vk = 1,2, - - n,, and the constraint
relation is satisfied. |
Theorem 3.2: Given any constraint matrix 4, § = A7
satisfies the constraint relation.
Proof:

Let F=A-S=A-A . Thenf; = 1,vj=12,"",
n,. Since f; = a; * s; = a; * a;, then:
fi {‘p’ ifa; =1
Yo, ifa; =0,

Therefore, FAF' = & vi =1, 2, -+, n,, and the con-

straint relation is satisfied. |

Theorem 3.3: If S satisfies the constraint relation for a
given A then §’ satisfies the constraint relation when S’ is
obtained from § by column permutation or column com-
plementation.

Proof:

It is well known that permutation and complementation
yield equivalent state assignments. This applies to the
present formalism as well. A detailed proof is reported in
[10]. |

Theorems 3.1-3.3 show that there exist different assign-
ments satisfying any given constraint relation. However,
these assignment are seldom optimal, in the sense that en-
codings of shorter length can be found that satisfy the con-
straint relation. To construct length-efficient encodings
satisfying the constraint relation, it is useful to consider a
set of transformations on A and S. The constraint relation
is invariant under a set of transformations on matrices 4
and S. In particular, addition (deletion) of rows and/or col-
umns to (from) matrices A and S have been investigated
in [10]. This corresponds to modifying parameters n;, n;,
and n,, of the problem. We report here only the most rel-
evant results.

Lemma 3.1: If § satisfies the constraint relation for a
given A, then S satisfies the constraint relation for A’ =
[A } where a,,, is 2 meet of A.

a,,.
Proof:
Let F=A - Sand

e (a7 < Ta-ST_|[F
peaes= o)== 1)

For the sake of contradiction, suppose that there exist a
state, say k, such that

G,

sk A4S #E D

Ak
Since [a; - s5,.] A [A4 - S = &, then [ay * sl
Af.. # ®. Therefore, a,; = 0. Since a,,. is a meet, there
exists a;. such that a; = a,;, Vj = 1, 2,- -, n, and
a; = 0. Since f,,. is a subspace of f., then [ay - s;.]

Afl. # &, which implies [a.; - sx.] AA - S+ & and we
have a contradiction. |

277

Let

=L

M
be the partitioned constraint matrix, in which A4,(4,) rep-
resents the prime (meet) rows.

Theorem 3.4: S satisfies the constraint relation for A if
and only if S satisfies the constraint relation for A4,,.

Proof:

(if) By Lemma 3.1.

(only if) If S satisfies the constraint relation for A, then
S satisfies the constraint relation for any matrix obtained
from A by dropping any number of rows. |

Theorem 3.4 allows the construction of a solution of a
constrained encoding problem by considering an equiva-
lent problem of smaller size, obtained by removing all the
meet rows of A.

Lemma 3.2: If § satisfies the constraint relation for a
given A, then S’ = [S|7] satisfies the constraint relation,
where T is any {0, 1} matrix with n, rows.

Proof:

Lets/ = [s;.|t,] Vi = 1,2, - -, n, and suppose by con-

tradiction that 3k such that:

[a-si1A[A-S'] # &.

Then
(@i se |ax t]JA[A-S|A- T+ @
- fa, s]A[4-8]# @
and we have a contradiction. |

IV. AN ALGORITHM FOR OPTIMAL STATE ASSIGNMENT

Optimal constrained encoding is a complex problem of
combinatorial optimization. To date, it is not known
whether an optimal solution can be computed by an non-
enumerative procedure. A heuristic algorithm is presented
here, that constructs a state assignment satisfying the con-
straint relation. Experimental results show that the length
of the encoding generated by the algorithm is reasonably
short, and often equal to the minimum length solution
when this is known.

The encoding algorithm constructs the state code ma-
trix S by an iterative procedure. At each step a larger set
of states is considered, and a coding matrix S is computed
that satisfies the constraint relation for the corresponding
columns of A.

The structure of the algorithm is the following:

Step 1: Select an uncoded state (or a state subset).

Step 2: Determine the encodings for that state (states)
satisfying the constraint relation.

Step 3: If no encoding exists, increase the state code
dimension and go to Step 2.

Step 4: Assign an encoding to the selected state
(states).;

Step 5: If all states have been encoded, stop. Else go to
Step 1.

278

Before explaining the details of the algorithm, we show
how such a procedure constructs an encoding satisfying
the constraint relation. We investigate first some sufficient
conditions for constructing a state code matrix. We as-
sume that a state subset has already been coded, the en-
coding being represented by S, satisfying the constraint
relation for a given A. We would like to encode another
state, so that the constraint relation is satisfied for the con-
straint matrix A’ = [A|«]. The nonzero entries in column
« are related to the groups to which the new state belongs.
The problem consists of determining an augmented state
code matrix §’ that satisfies the augmented constraint re-
lation. The most desirable situation is to obtain §' = [3],
where o is the new state code. Unfortunately it is not al-
ways possible to determine such a matrix §’. However it
is always possible to determine a binary matrix 7, such
that §' = [SLT] satisfies the augmented constraint relations.
We show here that under certain conditions, we can de-
termine a code o, by increasing at most by one the code
space dimension.

Theorem 4.1: Let S satisfy the constraint relation for a
given A. Then there exists a matrix

5 = [Sﬂ, T e {0}~

that satisfies the constraint relation for A’ = [4|a] is
either:
i) « is a column of “0”’s;
ii) A has a column of “1°’s, where A is the set of non-
zero rows of A corresponding to the nonzero entries of a.
Proof:
The new face matrix is

F'=A4'"- S’ = [A|O£] . |:SJIT:|

=[A-S|A- TV [a- d].

Let us consider the following cases:

1) a is a column of “0”’s.

The new state does not belong to any group represented
by A4, and o can be any encoding not covered by the ex-
isting faces.

Let ¢ = [c|1], where c is any binary vector of length
ny. Note that o is disjoint from the other encodings rep-
resented by [S|T], because the trailing bit is different.
Since « * o is a matrix of empty values, then F' =
[A - S|4 - T]. Moreover, since S satisfies the constraint
relation for 4, by Lemma 3.2, [S| 7] satisfies the constraint

relation for 4 as well. Therefore, [a.; - 5;,] A F' = &
vi=1,2, : -, n,. We need then only verify that: [« -
o] A F' = &. By construction the rightmost column of

a - o has all entries equal to “1” while the rightmost
column of F', i.e. [A - T], has all entries equal to “0” or
¢. Since 1A0 = ¢, the last column of [« - o] consists of
all ¢ and the constraint relation is satisfied.

ii) A has a column of “1”’s.

Since A4 has a column of “1”’s, then the intersection of
the groups containing the new state contain another state

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-4, NO. 3, JULY 1985

as well. The new encoding o can constructed by append-
ing a ““1” to any state encoding in that intersection.

Let ¢ be the encoding of any state corresponding to a
column of “1”s in 4 and let 0 = [c|1].

For this choice of o, the new face matrix is; F' =
[FIB] = [A - S|4 - T]1V [« - o], where:

* ¥k such that o = 1 and a,. is not a row of Os

I

Bc = 1 Vk such that o, = 1 and a,. is a row of Os

0 vk such that o, = 0
Since § already satisfies the constraints given by 4, i.e.,

s;] A4 - S)

I

la.; - o, vi=1,2,--,n

then,
SiJAF =&, Vi =

lal; - 1,2, -, n,

Therefore, we need only consider the new state and in

particular the rightmost column, ¢, of @ * ¢. Since ¥, =
¢ Vk such that o, = 1 and ¥, = 1 vk such that o, = 0,
theny AB=®and [- 6] AF = &. |

Remark 4.1: In some cases it is not necessary to in-
crease the code-length when adding a state to the state set.
Consider, for example,

110 00
A4 =1101 S=101
111 10
If
1100
A" = 11010
1111
Then

o = 11 satisfies the augmented constraint relation.

Let us consider now the general case, in which no as-
sumption is made on the entries in column «. Since by
Theorem 3.4 a solution to a constrained encoding problem
can be computed by considering the prime rows of the
constraint matrix only, we assume A4 = A, without loss of
generality.

Theorem 4.2: If § satisfies the constraint relation for a
given A, then

as’ = [S“;'T}; Re {0, 1" Te {03!

that satisfies the constraint relation for A’ = [4]a], where
n, is the number of nonzero entries in «.

Proof:

Without loss of generality, let us permute the rows of

DE MICHELI ez al.: FINITE STATE MACHINES
A’ so that:

A1|ozl

PA' =
A%®

where P is a permutation matrix, the entries of o' are all
“1” and the entries of a° are all “0”. Let: R = A'". Let
o = [c|d|1], where c is a binary vector of length n, and
d e {1} *™. We show that S’ satisfies the constraint re-
lation for both [A'|'] and [A°|a”]. Consider [4'|a'] first.
Since [f] = [A1|al]T from Theorem 3.2, [¥] satisfies the
constraint relation for [A'|a1]. From Lemma 3.2
[fllfll,r] satisfies the constraint relation for [A4'la'] as
well. Consider now [4°|a°]. Since a® - o is a matrix of
empty values, the face submatrix corresponding to [A4°]a"]
is:

[4° - 8] = [4° - §]4° - R|A® - T

Since S satisfies the constraint relation for A°, by Lemma
3.2, [S|R|T] satisfies the constraint relation for A° as well.
Therefore,

[@° - s,]A[4° - S = @,

and hence the ‘‘old states’’ continue to satisfy the con-
straints. We need then only to verify that [a® - o] A
[4° - S = ®. We consider again the rightmost column
of [a® - o], which is a column of ‘“1’’s. Since the right-
most column of [A° - §7 is [4° - T) and [4° - T] is a
column of ““0’” or ¢ entries, then [a® - 6] A [4° - S'] =
d. |

Theorem 4.2 shows that a state code matrix satisfying
the constraint relation can be always constructed for any
sequence of states, at the price of increasing the state code
dimension n,. In general, an assignment satisfying the
constraint relation can always be constructed by encoding
successively arbitrary blocks of a partition of the state set.
Suppose a state subset has already been encoded, and we
would like to encode another subset of n states.

Corollary 4.1: Let § satisfy the constraint relation for
a given A. Then there exists a matrix

vi=1,2,--,n

s

s'=[s"§‘7} Re {0, 1}"*" Te {0}

that satisfies the constraint relation for
A" = [Aloylog| -+ - o]

where n, is the number of rows of A" with nonzero entries
in o, ay, **°, Q. [|

Theorems 4.1, 4.2, and Corollary 4.1 show that a state
code matrix satistying the constraint relation can be con-
structed by an iterative procedure. We present now the
encoding algorithm in more detail, and we show how an
appropriate ordering of the states and selection of the en-
codings is used to keep the code-length short. The input
to the algorithm is the constraint matrix A. The output is
the state code matrix § having n, columns. S is initialized
to the empty matrix. The selected state (or state subset)

279

to be encoded at the current iteration of the algorithm is
denoted by 8. The set of encoded and selected states is
denoted by & and a.g is the subset of the columns of A
corresponding to &. The algorithm is described in Pid-
gin C.

ENCODING ALGORITHM

S =¢;
& =9¢;
A = compress (A4);
do {
8 = state-select;
E=8US;
A" = a.g;
do {
C = candidates (S, A');
o = code-select (C);
if (o6 = ¢) § = adjoin (S5)
while (6 = ¢)
5= 15}
g

while (& is a proper subset of the state set)

Procedure compress (A) returns the prime rows of 4. Pro-
cedure state-select sorts the states according to a heuristic
strategy, and returns the current state (state subset) $ to
be encoded. The constraint matrix A’ represents a per-
mutation of the columns of A corresponding to the en-
coded and selected states in the given order.

Procedure candidates (S, A') returns the set of encod-
ings that can be assigned to 8 of the same length of those
represented by S. In particular: € = {c such that [3] sat-
isfies the constraint relation for A’}. Note that C may be
empty.

The code-select routine returns an element of € accord-
ing to a heuristic criterion. If C is empty, then code-select
(¢) returns ¢, and the dimension of the code space, ny,
has to be increased. Else, the rationale of the choice of a
code o is the following. Let u(c) be the number of vertices
covered by at least one face. Then u(c)/2™ represents the
“utilization” of the Boolean space of current size n,. The
higher the utilization of the Boolean space is, the higher
the probability is that € is empty at the next iteration of
the algorithm and that n, has to be increased. Since en-
codings are selected so that the final code length is as short
as possible, ¢ is chosen as: ¢ = arg min u(c).

Procedure adjoin (S) is invoked when the candidate set
is empty, and the code space dimension has to be in-
creased. Let T = {0}**!, i.e., T is a column of *“0”’s.
Let S be the subset of the columns of § different from T
and r be the number of columns of S equal to T. Let R =
A'T, where A' is the subset of prime rows of 4 having a
nonzero entry in columns a.s.

adjoin(S)
if (¢ < |8]) return ([S|T1]);

280

else {
R’ = set of the columns of R not already
adjoined to S;
r = column of R’ with minimal 1-count;
return ([S|7]);

|5

The rationale of procedure adjoin (S) is the following.
The code space dimension is increased by adding to S col-
umns of T and R. Columns are added one at a time, be-
cause it is desirable to find an encoding o while adding the
fewest columns to S, i.e., by the minimum increase of the
code space dimension. After a finite number of iterations
through adjoin(S), all the columns of R and as many T
columns as |8| are appended to S. Since the assumptions
of Theorem 4.2 and Corollary 4.1 are met, the candidate
set C is not empty. Procedure adjoin ($) appends columns
to S in particular sequence because of the following rea-
sons. When adjoin (§) appends T to §, the size of the faces
not related to state (states) 8 is not increased. Moreover
a state code ¢ is always found after one iteration through
procedure adjoin(S), when states are encoded one at a
time and the conditions of Theorem 4.1 are met. Adjoin-
ing to S the columns of R one at a time corresponds to
reshaping the prime faces related to 8, i.e., the faces cor-
responding to the prime rows in A having a nonzero entry
in a.s. Reshaping consists of adding one dimension to the
state code space: the new coordinate of the state codes in
a prime face is set to “1”°, while is set to “0> for the
remaining state codes. Reshaping is performed consider-
ing one prime face at a time, and by considering first the
faces involving fewest states. Since, in general, states are
related to many faces, reshaping a prime face leads to a
size increase of some other face. Therefore the heuristic
strategy tries to increase the least the face dimensions.

Example 4.2: Let us consider the constraint matrix:

101
A=1110
011
and suppose that two states have been encoded. Let:
10
0
A =111 S = .
1
01

Note that S satisfies the constraint relation. Let

Since n, = 1 and all one-dimensional codes have been
designed, the candidate set is empty. Then adjoin (S) re-
turns [?8]. The candidate set is still empty, because: [f],
c € {01, 11} does not satisfy the constraint relation for

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. CAD-4, NO. 3, JULY 1985

[A'|a.s]. Therefore, adjoin(S) is invoked a second time
with § = [%]. Then § = [?] and adjoin(S) returns [?(])].
Since the candidate set is still empty, adjoin (S) is invoked
again and returns [%9]. Now the candidate set is not empty
and ¢ = 001.

Theorem 4.1: The coding algorithm terminates in a fi-
nite number of steps and constructs a state code matrix
satisfying the constraint relation, regardless of the order-
ing of the states.

Proof:

The encoding algorithm iterates through the external
while loop as many times as the number of state subsets
S to be encoded, and therefore at most 1, times. For every
8 the algorithm loops through the internal while loop until
a valid code ¢ is found: i.e. until [5] satisfies the constraint
relation for matrix A’. Since adjoin(S) appends to § the
columns of R (or a permutation of the columns of R) and
as many T columns as |8, by Theorem 4.2 and Corollary
4.1 a valid encoding is always found in at most
n; + n, iterations. Therefore, the algorithm terminates a
finite number of steps. Since every state encoding o is
selected so that {f] satisfies the constraint relation for ma-
trix A, eventually matrix § satisfies the constraint relation
for matrix A. |

State ordering is critical to obtain an encoding with a
minimal number of bits. Procedure state-select returns the
current state (or state subset) to be encoded. As far as
state selection is concerned, we assume A to be irreduc-
ible: i.e., the rows of A cannot be partitioned into two or
more subsets having nonzero entries only in mutually dis-
joint column subsets.

Remark 4.2: If A is reducible, it can be rearranged into
a block diagonal matrix, whose blocks are irreducible.
Then state ordering can be achieved by considering each
block at a time.

In principle, all the states could be selected at the first
iteration, and a simultaneous encoding of the state set
could be attempted in increasingly larger Boolean spaces.
In this case an optimum solution would be constructed by
an exhaustive search. However, the computational com-
plexity of an exhaustive encoding makes it unattractive
even for medium-sized FSM’s. On the other hand, states
can be encoded one at a time, with a considerable saving
of computing time at the expense of a possible increase in
code-length. An intermediate approach takes advantage
of the structure of the constraint matrix.

Definition 4.1: State p dominates state q if a,, = a,
vi=12,---,n.

Definition 4.2: A dominating set is a maximal cardinal-
ity set of states, such that no state dominates any other
state in the set.

Note that a dominating set is not necessarily unique.

DE MICHELI et al.: FINITE STATE MACHINES

Example 4.3. Let:

11010
11101
00110,

A=

A dominating set consists of the states corresponding to
columns {1, 3, 4} or {2, 3, 4}.

Corollary 4.2. Let S be the state code matrix repre-
senting the state encoding of a state subset including (or
equivalent to) a dominating set. Let S satisfy the constraint
relation for the related A. Then, for any uncoded state,

there exists a matrix A’ = [37], T € {0}™" that satisfies
the constraint relation for A’ = [A4|«], where « is the cor-
responding constraint column.]

Corollary 4.3: If a state s belongs to every group, then
any sequence of state encodings starting with state s al-
lows the construction of § with n, < n,. |

Several strategies for state encoding have been ex-
plored, but two have shown to be practical for finite state
machine encoding. The first requires the encoding of a
dominating set at the first iteration of the algorithm. An
optimum encoding is computed for the dominating set.
Since in general a dominating set is much smaller than the
state set, such a computation can be done in reasonable
time. Thereafter states are encoded one at a time. The
criterion for state ordering is the following: the uncoded
state belonging to the largest number of prime groups
(highest column count in A) is selected first. The strategy
tries not to increase the state space dimension. The un-
coded state with highest column count in A is the one
whose encoding must be covered by the intersection of the
largest number of faces. Therefore the fewer states have
been encoded, the higher is the likelihood of finding such
an encoding without increasing n,. For this reason, the
uncoded state with highest column count in A4 is the “local
most critical state to code” and is encoded first. By Cor-
ollary 4.2, this strategy guarantees that an encoding sat-
isfying the constraint relation for a given A has n, < n,.

The second state ordering strategy is useful when the
computational burden of encoding a dominating set is too
high. This is obviously dependent of the finite state ma-
chine and the computation environment. According to this
strategy, states are encoded one at a time. The first state
that is selected is the one with highest column count in A.
Note that in general this state is the best approximation of
a dominating set (it is a dominating set if the correspond-
ing column in A has nonzero entries only). Then states
are ordered as follows. Let A (&) be the subset of the col-
umns of A corresponding to those states belonging to some
group including an encoded state, i.e. 4 (§) = {a.; such
that 3 a row j and an encoded state e such that a; = 1 and
a;, = 1}. The state corresponding to the column with the
highest count in A (&) is selected first. The rationale for
this choice is similar to the previous strategy, but we re-
strict our attention to the states “‘related” to the encoded

281

ones. No theoretical upper bound on the length of the en-
coding can be stated when this state selection strategy is
followed. However experimental results have shown only
slightly longer encodings than those obtained with the pre-
vious strategy.

Example 4.4: Consider the constraint matrix of Exam-
ple 3.1 related to the FSM described in Example 2.1:

0110001
1001000
0001001

A=

where the columns correspond to START, state-2, state-3,
state-4, state-5, state-6, and state-7, respectively. Note that
two columns have only “0” entries, i.e. the correspond-
ing states (state-5 and state-6) do not belong to any state
group. Let us consider now the first state selection strat-
egy.

ITERATION 1

A dominating set is: {state-4, state-7}. Then,

01
A =110

11
and S = [J] satisfies the constraint relation.
ITERATION 2
Now & = {state-4, state-7} and among the remaining
states {START, state-2, state-3} have all the same col-
umn count. Then 8 = START, and

010
101
110

A =

The candidate set is empty, because all possible 1-bit en-
codings have been assigned. The procedure adjoin is in-
voked, and returns: § = ’[(1)8]. The candidate set is now

00
€ ={01}and S = | 10

01
ITERATION 3
Now state-2 is selected:

0101
1010
1100
The candidate set € = {11} and
00
10
01
11

A/

282

ITERATION 4
Now state-3 is selected and:
01011
A" = | 10100
11000

The candidate set is empty and adjoin returns:

—

000
100
010
IIO_J

Now the candidate set is C = {101, 111}, ¢ = 101, and

000
100
010
110
| 101

192
I

ITERATIONS 5 AND 6

State-5 and state-6 can be assigned to any code not cov-
ered by any face. Hence € = {001, 011}. State-5 is coded
by 001 and state-6 by 011. The state matrix is:

000 |
100
010
110
101
001
011 _

that satisfies the constraint relation for:
0101100
1010000
1100000

A =

Since A’ is a column permutation of A, then the rows of S
must be permuted accordingly to represent the encodings
of the states in the original order. Moreover note that other
encodings satisfying the constraint relation can be ob-
tained by permuting and/or complementing the columns
of S.

Note that by using the second strategy for state order-
ing, the same encoding matrix would have been com-
puted. At the first iteration, state-4 would have been se-
lected and encoded by O; at the second iteration state-7
would have selected and encoded by 1. The other states
would have followed in the same sequence.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-4, NO. 3, JULY 1985

V. KISS

KISS (Keep Internal States Simple) is a computer pro-
gram for state assignment of finite state machines. The
FSM description is given as input to the program in the
form of a symbolic cover. Primary inputs can be described
by symbolic strings and coded as well as the internal
states. KISS generates an output file containing a minimal
Boolean cover of the FSM combinational component. In-
formation about state encoding is provided on request by
the user. The KISS output file can be processed by a to-
pological compaction program, such as PLEASURE [7]
or SMILE [8] and eventually by a silicon assembler which
generates the mask layout of a PLA with clocked feedback
registers [11}, [28] according to a given technology.

KISS performs the following tasks. First a symbolic
cover is read and a positional-cube representation of the
FSM combinational component is written to a temporary
file. Then multiple-valued-input minimizer ESPRESSO-II
[28] is invoked to minimize the cover. The minimized
representation defines the constraints of the encoding and
the encoding algorithm constructs a state code matrix.
Eventually the encoded states and state groups are re-
placed into the minimal multiple-valued cover and the en-
coded cover is minimized again to take advantage of the
possible merging of the output parts.

In the first version of KISS, we experimented with dif-
ferent binary-valued logic minimizers (including ES-
PRESSO-II) to minimize the symbolic cover. When KISS
is used in conjunction with a binary-valued minimizer, an
appropriate “‘don’t care set” is generated by the program
and fed to the minimizer along with the positional-cube
representation. (See [10] for details.) Any two-level logic
minimizer can be linked to KISS. However, note that the
logic minimizer performs a key role to obtain a good en-
coding. A partially minimized symbolic cover corre-
sponds to a partial information about state groups and
eventually to an encoding close to a binary enumeration
of the states. KISS has been tested in connection with
minimizers POP, MINI and ESPRESSO-1I. Experimental
results have shown that ESPRESSO-II outperforms the
other logic minimizers and enables KISS to obtain encod-
ings leading to the minimal-areca PLA implementing the
FSM combinational component (See Table II). For this
reason ESPRESSO-II has been linked to KISS.

As an example we report the encoding constructed by
KISS for the symbolic cover of Example 2.1:

state = START code = 010
state = state-2 code = 110
state = state-3 code = 101
state = state-4 code = 000
state = state-5 code = 001
state = state-6 code = 011
state = state-7 code = 100

There are two versions of program KISS. The former is
coded in RATFOR (that is preprocessed into Fortran-77)

DE MICHELI et al.: FINITE STATE MACHINES

TABLE III
PARAMETERS OF SOME FINITE STATE MACHINES ENCODED BY KISS

Parameters of Some Finite State Machines Coded by KISS
(Logic minimizer: ESPRESSO-II)

Time
FSM ni ns no cl 2 c3 nb (sec)
FSM 1 4 5 1 20 13 10 3 4
FSM 2 8 7 5 56 24 22 5 31
FSM 3 8 4 5 32 16 14 4 10
FSM 4 4 27 3 108 55 48 9 748
FSM 5 4 8 3 32 18 17 4 11
FSM 6 2 7 2 14 10 8 3 4
FSM 7 2 15 3 30 23 17 5 26

ni number of input symbols

ns number of internal states

no number of output symbols

cl initial cardinality of the symbolic cover
¢2 minimal symbolic cover cardinality

¢3 minimal boolean cover cardinality

nb encoding length

TABLE IV
COMPARISON OF STATE ENCODINGS USING DIFFERENT TECHNIQUES:
MiNIMAL COVER CARDINALITY AND ENCODING LENGTH

MIN-

KISS SAP 1-HOT LENGTH
FSM c3 nb c3 nb c3 nb 3 nb
FSM 1 10 3 10 3 13 5 13 3
FSM 2 22 5 33 6 24 7 44 3
FSM 3 14 4 18 2 16 4 24 2
FSM 4 48 9 80 22 55 27 87 5
FSM 5 17 4 25 5 18 8 26 3
FSM 6 8 3 9 3 10 7 8 3
FSM 7 17 5 26 14 23 15 23 4

¢3 minimal boolean cover cardinality
nb encoding length

and consists of about 2000 lines of code. The latter is
coded in APL and consists of twenty APL functions.

KISS has been tested on a set of industrial finite state
machines. Some results, obtained by the RATFOR version
KISS at University of California, Berkeley, are reported in
Table III along with the execution times in seconds on a
VAX-UNIX? computer. The state tables for these finite
state machines are not reported here for lack of space, but
are available from the authors on request.

Table IV compares the assignments generated by the
RATFOR version of KISS to those obtained using a pre-
vious approach (Program SAP [9]), 1-hot coding and a
random assignment of minimal length. Note that the num-
ber of bits used by KISS, i.e. n,, is slightly higher than
the ceiling of log, n,. We would have liked to compare our
results with those obtained by other computer programs.
Unfortunately, to the best of our knowledge, we are not
aware of any computer program for optimal state assign-
ment in public domain, distributed and supported.

3VAX is a trademark of DEC corporation. UNIX is a trademark of AT&T
Bell Laboratories.

283

TABLE V
COMPARISON OF THE LENGTH OF THE ENCODING OBTAINED BY KISS, THE
MINIMUM LENGTH ENCODING AND THE MINIMUM-LENGTH ENCODING
SATISFYING THE CONSTRAINTS

Constrained
Number Encoding KISS Encoding
of Minimum Encoding Minimum
States Length Length Length

FSM1 5 3 3 3
FSM2 7 3 5 5
FSM3 4 2 4 4
FSM4 27 5 9* 7
FSM5 8 3 4 4
FSM6 7 3 3 3
FSM7 15 4 5 5

*An encoding using 7 bits has been obtained using the APL version.

Table V compares the length of the encoding con-
structed by KISS to the minimum length assignment and
to the minimum length of an encoding satisfying the con-
straints [24].

An entire control-unit of a microprocessor has been en-
coded by the APL version of KISS. The FSM had 93
states, 18 primary inputs and 14 primary outputs. The
symbolic cover was specified by 3178 symbolic implicants.
The state set was encoded by 12 bits and a minimal Boo-
lean cover with 660 product-terms was derived. However,
preliminary experiments have shown that a further reduc-
tion of the Boolean cover (25 percent) can be achieved by
exploiting the encoding of the next-states. For this reason,
techniques for symbolic minimization and next-state en-
coding are under investigation and will be added to KISS
in the near future.

VI. CoNCLUDING REMARKS

We have presented a new technique for state assignment
of Finite State Machines, based on symbolic minimization
of the FSM combinational component and on a related
constrained encoding problem. Symbolic minimization is
achieved at the moment by multiple-valued-input mini-
mization and yields a minimal sum-of-product represen-
tation of the next-state transition functions, independently
of the state assignment. The state assignment is a solution
to the constrained encoding problem and is constructed
by a heuristic algorithm. The results obtained by program
KISS, which implements our strategy, compare favorably
to other techniques.

There are still some open problems that emerge from
our analysis and that are currently being investigated. In
particular the proposed state assignment technique does
not optimize the PLA area with regard to next-state en-
coding. Different encoding techniques can be investi-
gated. For example: i) encoding the states with the mini-
mal number of bits while satisfying a maximal number of
constraints; ii) exploring the trade-off between this last
technique (that minimizes the PLA columns) versus the
algorithm presented in the previous sections (that mini-
mize the PLA rows) to achieve minimal area. Recent re-

284

sults on different encoding techniques have been reported
in [12]. It is interesting to explore implementations of the
FSM combinational component other than PLA’s. Since
the described technique minimizes the number of product-
terms implementing the next-state functions, it reduces the
implementation complexity of any other two-level logic
implementation. However, it would be challenging to ex-
plore how to encode a finite state machine for optimal
multiple-level implementation of the combinational com-
ponent.

ACKNOWLEDGMENT

The authors wish to thank Curt McMullen and Tiziano
Villa for some helpful discussions. Richard Rudell coded
program ESPRESSO-II in the C programming language
and extended the program to handle symbolic minimiza-
tion of large machines.

REFERENCES

[1] D. B. Armstrong, ‘“A programmed algorithm for assigning internal
codes to sequential machines,” IRE Trans. Electron. Comput., vol.
EC-11, pp. 466-472, Aug. 1962.

[2] D. B. Armstrong, ““On the efficient assignment of internal codes to
sequential machines,” IRE Trans. Electron. Comput., vol. EC-11, pp.
611-622, Oct. 1962.

[3} R. Brayton, G. D. Hachtel, C. McMullen, and A. L. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthe-
sis. Hingham, MA: Kluwer Academic, 1984.

[4] D. W. Brown, ““A State-Machine Synthesizer—SMS,”” in Des. Autom.
Conf., pp. 301-304, Nashville, TN, Jun. 1981.

[5]1 H. A. Curtis, “Systematic procedures for realizing synchronous se-
quential machines using flip-flop memory: Part 1,”" IEEE Trans. Com-
puter., vol. C-18, pp. 1121-1127, Dec. 1969.

[6] —, **Systematic procedures for realizing synchronous sequential ma-
chines using flip-flop memory: Part 2, IEEE Trans. Computer, vol.
C-19, pp. 66-73, Jan. 1970.

[71 G. De Micheli and A. L. Sangiovanni-Vincentelli, ‘‘Multiple con-
strained folding of programmable logic arrays: Theory and applica-
tions,”” IEEE Trans. Computer Aided Design, vol. CAD-2, pp. 167~
180, Jul. 1983.

[8] G. De Micheli and M. Santomauro, ‘“‘SMILE: A computer program
for partitioning of programmed logic array,” Computer Aided Design,
no. 2, pp. 89-97, Mar. 1983; Also, Memo UCB/ERL No. 82/74, Univ.
California, Berkeley.

[9] G. De Micheli, A. Sangiovanni-Vincentelli, and T. Villa, “Computer-
aided synthesis of PL.A-based finite state machines,” in Int. Conf. on
Comp. Aid. Des., Santa Clara, CA, pp. 154-157, Sept. 1983.

[10] G. De Micheli, ‘“Computer-aided synthesis of PLA-based systems,”
Ph.D. dissertation, Univ. California, Berkeley, 1983.

[11] G. De Micheli, M. Hoffman, A. R. Newton, and A. L. Sangiovanni-
Vincentelli, ““A design system for PLA-based digital circuits,” in Ad-
vances in Computer Engineering Design, Jai Press, 1984 (in print).

[12] G. De Micheli, **Optimal encoding of control logic,” in Int. Conf. on
Circ. and Comp Des., Rye, NY, Sept. 1984.

[13] D. L. Dietmeyer and M. H. Doshi, ‘*Automated PLA synthesis of the
combinational logic of a DDL description,” J. Des. Aut. Fault. Tol.
Comput., vol. 3, no. 3-4, pp. 241-257, 1979.

[14] T. A. Dolotta and E. J. McCluskey, *“The coding of internal states of
sequential machines,” IEEE Trans. Electron. Comput., vol. EC-13,
pp. 549-562, Oct. 1964.

[15] G. D. Hachtel, A. R. Newton, and A. L. Sangiovanni-Vincentelli,
“An algorithm for optimal PLA folding,” IEEE Trans. Computer-
Aided Design, vol. CAD-1, pp. 63-77, Apr. 1982.

[16] J. Hartmanis, “‘On the state assignment problem for sequential ma-
chines 1, IRE Trans. Electron. Comput., vol. EC-10, pp. 157-165,
Jun. 1961.

[17] J. Hartmanis and R. E. Stearns, Algebraic Structure Theory of Se-
quential Machines. Prentice-Hall, 1966.

[18] F. Hill and G. Peterson, Introduction to Switching Theory and Logi-
cal Design. New York: Wiley, 1981.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-4, NO. 3, JULY 1985

{19] S. J. Hong, R. G. Cain and D. L. Ostapko, ““MINI: A heuristic ap-
proach for logic minimization,” IBM J. Res. Develop., vol. 18, pp.
443-458, Sep. 1974.

[20] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation. Reading, MA: Addison-Wesley, 1979.

{21] S. K. Hurst, “Multiple-valed logic- its status and its future,” IEEE
Trans. Computer, vol. C-33, no 12, pp. 1160-1179, Dec. 1984.

[22] R. Karp, ““Some techniques for state assignment for synchronous se-
quential machines,” IEEE Trans. Electron. Comput., vol. EC-13, pp.
507-518, Oct. 1964.

[23] Z. Kohavi, ““Secondary state assignment for sequential machines,”
IEEE Trans. Electron. Comput., pp. 193-203, Jun. 1964.

{24} C. McMullen, private communication.

[25] E. L. Post, “Introduction to a general theory of elementary proposi-
tions,”” Amer. J. Math., vol. 43, pp. 163-185, 1921.

[26] D. Rine, Computer Science and Multiple-Valued Logic.
The Netherlands: North Holland, 1977.

[27] R. Rudell, private communication.

[28] R. Rudell and A. Sangiovanni-Vincentelli, ““ESPRESSO-MV: Algo-
rithms for multi-valued logic minimization,” in Proc. Custom Int.
Circ. Conf., Portland, OR, May 1985.

[29] R. Rudell, A Sangiovanni-Vincentelli, and G. De Micheli, “A FSM
synthesis system,” in Proc. Int. Symp. Circ, and Syst., Kyoto, Japan,
June 1985.

[30] G. Saucier, “‘State assignment of asynchronous sequential machines
using graph techniques,” IEEE Trans. Comput., vol. C-21, pp. 282-
288, Mar. 1972,

[31] R. E. Stearns and J. Hartmanis, “‘On the state assignment problem for
sequential machines 2,” IRE Trans. Electron. Comput., vol. EC-10,
pp. 593-603, Dec. 1961.

[32] J. R. Story, H. J. Harrison, and E. A. Reinhard, “Optimum state
assignment for synchronous sequential circuits,” IEEE Trans. Com-
put., vol. C-21, pp. 1365-1373, Dec. 1972.

[33]1 S. Y. H. Su and P. T. Cheung, “Computer minimization of multi-
vatued switching functions,” IEEE Trans. Comput., vol. 21, pp. 995~
1003, Dec. 1972.

[34] H. C. Torng, “*An Algorithm for finding secondary assignments of
synchronous sequential circuits,” JIEEE Trans. Comput., vol. C-17,
pp. 416-469, May 1968.

[35] J. H. Tracey, “Internal state assignment for asynchronous sequential
machines,”” IEEE Trans. Electron. Comput., vol. EC-15, pp. 551-560,
Aug. 1966.

[36] P. Weiner and E. J. Smith, “Optimization of reduced dependencies
for synchronous sequential machines,’’ /IEEE Trans. Electron. Com-
put., vol. EC-16, pp. 835-847, Dec. 1967.

Amsterdam,

*

Giovanni De Micheli (S’79-M’83) was born in
Milano, Italy, in 1955. He received the Dr. Eng.
degree (summa cum Laude) in Nuclear Engineer-
ing from the Politecnico di Milano, Italy, in 1979,
the M.S. and Ph.D. degrees in electrical engi-
neering and computer science from the University
of California, Berkeley in 1980 and 1983, respec-
tively.

He was granted a Fulbright Scholarship in
1980, a Rotary International Fellowship in 1981,
and an IBM Fellowship for VLSI in 1982 and 1983.
He received a Best Paper Award at the 20th Design Automation Confer-
ence, in June 1983. He spent the fall 1981 as Consultant in residence at
Harris Semiconductor, Melbourne, FL. In 1983 he was Assistant Professor
at the Department of Electronics of the Politecnico di Milano. In 1984 he
joined the technical staff of IBM T. J. Watson Research Center, Yorktown
Heights NY, where he is currently Project Leader of the Design Automation
work station group. His research interest include several aspects of the com-
puter-aided design of integrated circuits with particular emphasis on silicon
compilation, logic synthesis, optimization, and verification of VLSI cir-
cuits.

*

Robert K. Brayton (M’75-SM’78-F’81) received the B.S.E.E. degree
from Iowa State University, Ames, in 1956, and the Ph.D. degree in math-
ematics from MIT, Cambridge, MA, in 1961.

While at MIT, he developed the first LISP compiler. He has been at the
IBM T. J. Watson Research Center in Yorktown Heights, NY since 1961

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-4, NO. 3, JULY 1985

spending the years 1966 at MIT and 1976 at Im-
perial College as a visiting professor. He was As-
sistant Director of Mathematical Sciences at IBM
during 1971-1972. He is presently a second-level
manager of the Mathematical Algorithms group.
He is winner of the IEEE Best Paper award (Cir-
cuit and Systems Group), and has received two
IBM Outstanding Innovation Awards and an IBM
Patent Award. During 1970-1972, he was a NSF
Chatauqua Lecturer on Mathematical Models and
Computing. He has been a member of the NSF
Advisory Panel in Mathematics, the IEEE Circuits and Systems ADCOM,
and subcommittees on nonlinear networks, large-scale systems, and com-
puter-aided design. He is the author of over 70 technical papers and two

285

books. His fields of interest have been nonlinear networks, sparse matrices,

numerical analysis, stability theory, computer-aided design, character rec-

ognition, and optimization. His most recent research has been in the con-

struction and design of an automatic chip compiler, involving logic synthe-

sis and minimization, state assignment, and high level design languages.
Dr. Brayton is a Fellow of the AAAS.

Alberto Sangiovanni-Vincentelli (M’74-SM’81-F’83), for a photograph
and biography please see page 166 of this issue.

An Integrated Automated Layout Generation System
for DSP Circuits

JAN M. RABAEY, MEMBER, IEEE, STEPHEN P. POPE, ROBERT W. BRODERSEN, FELLOW, IEEE

Abstract—An integrated CAD system for the automated design of
digital signal-processing (DSP) circuits for audio and telecommunica-
tion applications is described. The system uses as unique input a sym-
bolic description of the algorithm. This representation is translated into
an actual layout using a two-step process. First, the symbolic input is
mapped into the target architecture, which consists basically of a set of
concurrent processors and dedicated I/0 circuitry. The resulting hard-
ware configuration is compiled into a layout description through a full
exploitation of the hierarchy and the modularity of the architecture,
calling consecutively a tiler, a floorplanner, and a global placement and
routing tool. All these layout generation tools are able to support a wide
range of technologies.

The provision of a dedicated register transfer level simulator allows
for the efficient debugging and algorithmic checking of the real-time
operating signal-processing algorithms.

The efficiency and the usefulness of this design methodology has been
demonstrated by multiple examples. Experiments have shown that the
use of these techniques can reduce the complete design process to a few
months.

1. INTRODUCTION

EAL-TIME DIGITAL signal processing with its con-
tinuous data flow and its complex algorithms poses
extreme computational demands which, most of the time,
cannot be met by general-purpose processors or ma-
chines. This has resulted in the development of a range of

Manuscript received February 15, 1985; revised April 16, 1985. This
work was supported in part by the Defense Advance Research Projects
Agency under Contract MDA903-79-C-0429.

J. M. Rabaey is with the Electronics Research Laboratory, the Univer-
sity of California, Berkeley, on leave from the Katholieke Universiteit of
Leuven, Leuven, Belgium.

S. P. Pope was with the University of California, Berkeley. He is now
with Cyclotomics Corp., Berkeley, CA 94704.

R. W. Brodersen is with the Department of Computer Sciences, Uni-
versity of California, Berkeley.

dedicated signal-processing architectures with an in-
creased data throughput as a common feature. This can
be obtained through a full exploitation of the inherent par-
allelism in the signal-processing algorithms, using pipelin-
ing and concurrency. Increases in the computational per-
formance can also be achieved by the use of functional
units optimized for digital signal processing, as parallel
multipliers, address arithmetic units, and dedicated 1/0
processors.

Until recently, a full utilization of these architectural
ideas on a single integrated circuit has been prohibited by
technological restrictions. As a result of the advances in
VLSI technology, the amount of the circuitry and the com-
plexity of the algorithms which can be implemented on a
single integrated circuit has increased dramatically. This
has resulted in the development of a number of single-chip
solutions for digital signal-processing applications. The
approaches to design these chips can be divided into gen-
eral-purpose and custom designs.

The general- purpose signal processor can be con31dered
as the signal-processing equivalent of the microprocessor
and basically uses pipelining and a parallel multiplier to
increase the data throughput (e.g., [1]). The advantage of
this approach is the programmability, which avoids the ex-
pensive design times of the custom approach. The gener-
ality of these processors is, however, a major handicap:
the processor does not fit the specifications and the re-
quirements of a specific algorithm, such as wordlength,
datapath, memory size, data throughput, and 1/O require-
ments.

Fully custom designs on the other hand can be optimally
designed to meet the requirements of a specific applica-

0278-0070/85/0700-0285%$01.00 © 1985 IEEE

