Fast Thermal Simulation of 2D/3D Integrated
Circuits Exploiting Neural Networks and GPUs

Alessandro Vincenzi, Arvind Sridhar, Martino Ruggiero, David Atienza
Embedded Systems Laboratory (ESL), Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{alessandro.vincenzi, arvind.sridhar, martino.ruggiero, david.atienza} @epfl.ch

Abstract—Heat removal is one of the major challenges faced in
developing the new generation of high density integrated circuits.
Future design technologies strongly depend on the availability of
efficient means for thermal modeling and analysis. These thermal
models must be also accurate and provide the most efficient level
of abstraction enabling fast execution.

We propose an innovative thermal simulation method based
on Neural Networks that is able to solve the scalability problem
of transient heat flow simulation in large 2D/3D multi-processor
ICs by exploiting the computational power of massively parallel
graphics processing units (GPUs).

I. INTRODUCTION AND RELATED WORK

Continued scaling and miniaturization of CMOS technology
is drastically increasing device power density. Managing tem-
perature, especially local hot spots, has been indeed recognized
as one of the major challenges for designers in the latest
technology nodes [1]. As a consequence, thermal modeling
and analysis is a novel and distinct area of study that has
gained major attention due to the large power density increase
of the latest integrated circuits (IC) [2]. In addition, this
power density increase will be exacerbated by upcoming 3D
IC stacking, which involves cooling a volume instead of just
cooling a planar IC surface [3], [4].

New thermal modeling technologies that can capture the
transient thermal behavior of hardware elements and their
interaction with the software running on them need to be
developed. These novel thermal modeling approaches must
guarantee a sufficient degree of accuracy to capture the
complex mechanisms that regulate the thermal diffusion and
radiation. At the same time, they must be defined with a level
of abstraction that allows for fast execution [3], [5].

In recent years, a few full-chip 2D/3D thermal models
have been proposed to provide detailed temperature distribu-
tions [1], [2], [5], [6]. However, thermal analysis is a resource
and time consuming task that can be strongly influenced by
its accuracy requirement, as well as the complexity of the run-
time 2D/3D IC execution scenario under study. Thus, finite-
element models [1], [4], as well as compact models [2], can
impose long simulation times that turn out to be unfeasible
for large IC designs.

Nevertheless, in recent times graphics processors have be-
come increasingly competitive in speed, programmability and
price. Indeed the main advantage of GPUs over CPUs is

This research has been partly supported by the Swiss NSF (SNF), grant number
200021-130048, and the Nano-Tera RTD project CMOSAIC (ref. 126618), which is
financed by the Swiss Confederation and scientifically evaluated by SNSE.

978-1-61284-660-6/11/$26.00 © 2011 IEEE 151

the high computational throughput at a relatively low cost,
which is achieved through their massively parallel architecture.
Hence, efficient GPU usage and exploitation have already been
identified as the next breakthrough in EDA tools [7] [12].

However, it is difficult to structure algorithms to take advan-
tage of GPUs. Even if existing thermal models can potentially
exhibit a high level of parallelism, it is difficult to translate
this parallelism into an efficient software implementation for
simulation on GPUs. Only one attempt has been proposed
so far [3]. Even though this approach has not yet been
validated for real 3D ICs, it outlines the potential capabilities
of GPUs for thermal modeling. Therefore, novel GPU-friendly
modeling technologies and capabilities are needed to support
accurate and fast 2D/3D full-chip thermal analysis.

In this context, Neural Networks (NNs) [8] represent a
promising parallelizable solution to this problem [9]. While
one of their main drawbacks is their potentially long execution
time because they are a highly computationally and data
intensive solution [10], their large number of operations and
relatively low data transfer makes them also a potentially
attractive concept for GPU computing [11].

Therefore, in this paper our goal is to utilize and exploit the
power of GPUs, in combination with NNs, to develop a fast
and accurate thermal modeling approach for transient thermal
analysis of 2D/3D full-chips. The main contributions of this
paper are the following:

1) We present a new full-chip thermal modeling methodology
based on NNs and GPUs. The model is transient and can
accurately predict the temporal evolution of both planar and
3D chip temperatures. We have validated the accuracy of the
model comparing our results with 3D-ICE [5], a state-of-the-
art thermal simulation tool for 3D ICs.

2) We propose a methodology for the training of the proposed
NNs for thermal modeling. The one-time training enables
removing the unnecessary state variables in our presented NN-
based thermal model (such as the temperatures of layers in
which the user is not interested), which drastically improves
computational efficiency.

3) We introduce an innovative approximation, namely, the
proximity-based reduction, that further reduces the compu-
tational complexity of our thermal model, while negligibly
affecting model accuracy.

4) Our NN-based thermal model specifically targets GPU
platforms. Utilizing a GPU in our proposed NN-based thermal
modeling approach resulted in considerable time-savings, es-

pecially for large IC problem sizes and detailed layout models.
5) Once trained, our NN-based thermal simulator can be
reused any number of times with different 2D/3D IC floor-
plan configurations. Hence, our proposed thermal modeling
approach enables fast and accurate thermal-aware design space
and floorplanning explorations using GPUs.

II. NEURAL NETWORK-BASED THERMAL SIMULATION

Thermal simulation of ICs is conventionally performed
using compact modeling [2], [13]. The conventional compact
modeling for heat conduction in solids is done by applying
finite-difference approximation to the governing equations of
heat transfer in solids [13]. This involves dividing the different
layers in an IC into cuboidal “Thermal Cells”. Next, the
well-known analogy between heat and electrical conduction
is invoked with the temperature represented as voltage and
heat flow represented as electric current [2] to convert each
thermal cell into an equivalent electrical circuit [5]. Finally,
the nodes of these thermal cells are connected to the nodes of
their neighboring cells through the interfaces by computing the
equivalent conductances between them. Hence, the following
system of ordinary differential equations are generated:

GX(t) + CX(t) = U(1), (1)

where X(t) is the vector of all node temperatures (as a func-
tion of time), C is a diagonal matrix of all cell capacitances
and U(t) is a vector of inputs (heat sources as a function
of time), wherever they exist. G is a sparse symmetric block
tri-diagonal conductance matrix, where the nonzero non diag-
onal elements represent the connections between neighboring
nodes.

A “Thermal Grid” matrix is hence generated by connecting
individual thermal cells in the entire IC. Cell dimensions used
for the discretization of the heterogeneous IC structure are
dependent upon the accuracy and speed requirements of the
designer. In our experiments, we found that cell sizes of few
hundred micrometers are sufficient for accuracy [5].

The next step is the formulation of equations for the simulation
of the Thermal Grid. For this, Eq (1) is integrated numerically
using the backward Euler method as follows:

(G + %c) X(tpy1) = %cxun) + U(tns1)
= AX(tny1) = BX(t,) + IU(tns1),

)

where £ is the time-step used for the numerical integration and
t, denotes the n'" time point during the transient simulation.
The system of linear equations in (2) can be solved using direct
or iterative solvers. We propose a thermal simulator based on
Artificial Neural Networks (NNs) as an alternative to these
approaches.

Artificial Neural Networks are multi-input multi-output
operators, which can be trained to mimic the behavior of
any mathematical function through learning the input-output
dependence of that function from some test data. The various
inputs of this neural network are connected to the outputs

(X CiD-\CE(t n+1)}

3D-ICE
e Training
Ut} | algorithm
0<n<1+N, Xuftoa)t
Fig. 1. NN-based thermal simulator trained using 3D-ICE.

via weighted links. Hence, the outputs can be expressed as a
weighted sum of the inputs as follows:

Yi = Zwijxj7 (3)
J

where w;; connects input x; to output ¥;. In the case of
thermal simulation, assuming that the thermal properties of the
materials in an IC do not vary with temperature, (1) represents
a linear time-invariant (LTT) system. Thanks to this property, a
linear single layer neural network should be sufficient for our
purposes. In addition, the sources representing the ambient
can be eliminated by considering a zero ambient temperature
(invoking the principle of superposition) and later adding the
actual ambient temperature to the results of the simulation.
The goal of our neural network-based simulator is to ap-
proximate the following function derived from (2):

X(tn+1) = PX(tn) + QU(tn+1)v 4

where P = (G+1C)'1Cand Q = (G+ 1C) ™" The
NN here is first trained using samples generated with 3D-
ICE and then run as a stand-alone simulator on GPUs to
give significant speedups when compared to the conventional
techniques.

A. Training of the Neural Network

Learning in NN essentially consists of finding the correct
set of weights for each connection in the NN. Training is
performed by supplying to the NN a set of inputs and outputs
taken from 3D-ICE over a specific simulation interval (N7y.qin
time points or train samples) as shown in Fig. 1. During each
training iteration, the outputs from the NN and the target
output form 3D-ICE are compared and the weights of the NN
are updated according to the error incurred. These iterations
are repeated until convergence is reached based on some
predefined error tolerance. Once the training is finished, these
weights can be stored and can be reused for future simulations.

ICs are heterogeneous structures and consist of many layers
of different materials but designers who want to study the
design-time or run-time thermal characteristics of an IC are
typically interested only in the temperatures of the active
regions of the IC, that are the layers of silicon where the
devices are fabricated and where the bulk of the power is
dissipated. Hence, it would be sufficient to train and run the
neural network to simulate temperatures for only the active
layers. Consequently, the number of neurons (outputs) in the
reduced neural network would equal the number of thermal
cells in the active layers of the IC.

152

B. Training length and method

The training process must ensure that the neural network is
capable of predicting temperatures for all possible power in-
puts and initial temperature states. Hence, a minimum number
of time points of temperature data (N7y4i,) must be supplied
to the training algorithm for a comprehensive training. This
minimum number of training points (N7;qin,min) depends
upon the nature and the size of the thermal grid being solved.
The method to compute this value is the following.

In a neural network consisting of [neurons (outputs)
{y1,¥2...,Yi...,y1} and m inputs {z1,z2...,2;...,Tm }, there
are a total of Im weights to be computed, assuming a fully
connected network. However, as it can be seen from (3), each
neuron y; is affected by only m weights w;;,1 < j < m.
Hence, the training of these m weights is dependent only upon
the difference between the output y; and the corresponding
target output ¢;. That is, each set of m weights is trained
simultaneously within the set, and is independent of the other
sets. Each training time point provides information about how
a particular combination of known inputs {x1, z2..., Z;..., T }
results in a known target output ¢;. These form the coefficients
in the training algorithm. And since there are m unknown
variables (weights) per neuron, at least m equations, or training
time points, are needed to find a unique solution. In other
words, N7yqin,min = ™. In our thermal simulations, given
Neells Number of thermal cells in an active layer of an IC, there
are 2n..;;s inputs to the neural network (past temperatures plus
the power inputs for each cell), related to outputs follows:

el)

X(tni1) = W [Ultns1)

where W is a Nceis X 2Ncelrs matrix containing the weights
of the NN. Hence, Nryqin,min = 2Nceirs. However, it is
recommended that a higher number of data points be used for
the training to hasten the convergence of the training algorithm
and to a much more accurate solution. Since a simultaneous
training of the weights over the entire training data set must
be performed to obtain the correct solution, a batch training
algorithm (as opposed to an incremental training algorithm)
must be used. In all our experiments we used the RPROP batch
training algorithm [14], which is one of the fastest training
algorithms available.

LT T 777777 74

Fig. 2. “Neighborhoods” and input/output dependency of two neurons
between two consecutive train samples.

C. Proximity based model reduction

A significant reduction in computational and memory com-

plexity can be achieved by relaxing the requirement of a
fully connected neural network for thermal simulation. Given
the diffusive nature of the heat flow in an IC, much of the
heat flows vertically upwards from the source to the ambient,
following the path of least resistance. Hence, there is very little
heat flow/interaction between thermal cells that are far apart
within the same layer. Hence, the connection of individual
neurons in the network can be limited to neighbors lying
within some distance r here defined as proximity.
In our experiments, rectangular regions of “neighborhood”
were defined around each neuron based on r, and only cells
lying within this region were connected to the neuron in
the network. Every neuron must also be connected vertically
to all the remaining active layers. Two such neurons and
their corresponding neighborhoods are highlighted in Fig. 2.
This image refers to a 3D IC with two dies and shows how
neurons are connected to their neighbours (input) and how
their outputs match the thermal state of the same thermal cell
in the following time point, as expressed in 5. Hence, the W
matrix in (5) would no longer be a full matrix but very sparse,
leading to considerably lower memory consumption, and faster
training and simulation using the NNs.

D. Randomization of training input

To enable fast design-space exploration of ICs for thermal
reliability, our proposed model must be able to simulate
different floorplan configurations without loss of accuracy. If
the neural network is trained with a given configuration of
floorplan elements then all the thermal cells that lie within
one of them would always be fed with identical power values
at every time step. After the training, if the neural network is
used to simulate a different distribution of floorplan elements,
the thermal cells might receive power dissipation values that
were not recorded in the training set, leading to large errors
(up to 2.5°C) if comapred with the requested precision.

One straightforward way to solve this problem is to random-
ize the inputs during training. That is, once the discretization
size of the thermal cells is fixed, each thermal cell in the
floorplan must be given different and random input power
values in order to train the neural network for the worst
case situation where every thermal cell belongs to a different
floorplan element. Once the NN is trained in this manner,
virtually any kind of floorplan configuration can be simulated
with the error being bounded purely by the training process.
Also, it must be ensured that the entire range of input power
magnitudes has been covered by the training process. For
this, in our experiments, each thermal cell receives a range of
random values between zero and a value higher than the max-
imum heat dissipation per unit area for any floorplan element.
This value can be determined repeating several trainings until
the average magnitude of all the errors measured post training
reaches the target precision of the training.

153

E. Implementation of the NN-based simulator on GPUs

The presented NN for thermal modeling of complex IC has
been implemented for training and running on GPUs. In both
the implementations, single precision floating point values can
be used since our NNs are trained to compute the variation of
the temperatures in the active layers and ony a few bits are
needed to represent the integer parts of these numbers.

1) Training phase on GPU: The training is based on an
iterative process. At each iteration, called epoch, the weights
are used to process all the Nrp,4;, train samples and then
updated, epoch by epoch, to reduce the error measured against
the desired output that the neural network is supposed to learn.
The training stops when the errors produced by all the neurons
on all the train samples are found to be lower than a desired
degree of precision, or when the maximum error error does
not change more than a given threshold after two consecutive
epochs.

As mentioned before (see Section II-B), every neuron (a
row in the W matrix) can be trained independently from the
others since it is connected with the input layer by its own
set of weights. As a consequence, each neuron can process its
own N4, number of samples. Training each neuron inde-
pendently speeds up the training and give a homogeneous level
of precision to all neurons since otherwise the duration of the
entire training and the resulting precision will be dominated
by the neuron with the slowest convergence rate. Moreover,
this gives the possibility to exploit the thread hierarchy and
organization proposed by CUDA by simply creating a block
of threads for each neuron. Then, within a block, every thread
can be assigned to one or more connections with the inputs
(the columns in the W matrix).

The whole training set is stored into the global memory and
organized as a 3D object. Every training sample can be seen
as a set of couples of matrices storing temperatures and power
inputs for each thermal cell in each die (see Fig. 2). Therefore,
the whole training set corresponds to a cudaExtent structure
where the depth is the number of train samples and the width
and the height match the effective number of columns (times
the double of the number of dies) and rows in which the
simulated IC is divided according to the dimensions of the
thermal cells. The same memory organization can be aplpied
to the data stored in shared memory. To execute coalesced
accesses to global memory, temperatures and power values
from all the dies can be interleaved to build a unique matrix:
Fig. 3 shows how to store and align a training sample for a
single die problem, divided into 8 rows and 5 columns. Thanks
to this memory organisation, all accesses to the inputs placed
in the same line of the training sample are done at consecutive
locations of memory.

To increase the occupancy (the number of thread blocks
running on the same multiprocessor) introducing more threads
per block, the algorithm can read more than one line of
memory per time. Threads can indeed be organized into
two dimensional blocks as shown in Fig. 3, rounding the
z dimension to a multiple of the warp size. This will give

Fig. 3. Memory alignment and accesses done by the threads.

two significative improvements: the long latency to access
global memory is hidden by multiple accesses done by more
warps running on the same multiprocessor and different warps
will access a different line of global memory avoiding non
coalesced accesses. In our experiments we found that the
most suitable number of lines (the y dimensions of the
block) corresponds to using a number of threads such that
the occupancy of each multiprocessor given by the CUDA
occupancy calculator is equal to 50%.

The threads in a block must also cooperate to compute
the output y; of the neuron as in 3 to compare it with the
corresponding target ¢; and get a measure of the error to update
the weights. This parallel reduction can be implemented as
suggested in [18].

The only part that slows the performances of the GPU
implementation of RPROP is the update of the weights done
at the end of every epoch. This operation depends on the
runtime values of the weights and this causes divergences in
the execution that cannot be avoided.

2) Runtime execution of NN on GPU: Once the training is
complete, the entire NN is described by means of the weight
matrix W, stored on the GPU global memory according to
the Compressed Sparse Row format (CSR) as required by
the cuSparse library [16]. Every time step of the thermal
simulation corresponds to a matrix-vector multiplication be-
tween W and a vector containing temperatures and power
inputs for all the cells in the active layers. The matrix-
vector multiplication y = «A * x 4+ [y is performed using the
function cusparseScsrmv of cuSparse library [17].

Every input vector x stores all the temperatures X(¢,,) in
the first half and all the power values U(t,,) in the second half
while the output vector y contains the resulting temperatures
X(tn+1)- This last set of values represents the thermal state to
be re-used as input in the following simulation step. Therefore,
to avoid one memory copy at each step, we allocate on GPU
two vectors with as many elements as the number of inputs
and we swap their address at every iteration. This improvement
can be applied only if the weight matrix is permuted after the
training to separate, die by die, the weights connecting neurons
to temperatures from weights connecting power inputs. Each
time step is finally computed with three single statements: the
download of each U(t,,) from CPU to GPU, the matrix-vector
multiplication and the swap of the pointers.

III. EXPERIMENTAL RESULTS

All the ICs tested contain two layers for each die. The
active layer has the UltraSPARC Niagara floorplan [15] on top

154

* 80%
- Maximum Error
- * 9% Erors <0.1°C | [7%%

™
& ~
m
g
&

Maximum Error (°C)

*
N ow
S g
& &

% Errors < 0.1°C (training target)

* -——
10%

0 0%
-100% -80% -60% -40% -20% 0% 20% 20% 60% 80% 100%

Number of training samples (w.r.t. number of connections per neuron)

Fig. 4. Run-time error of the NN-based simulator as a function of the number
of training time points used in the training.

of it while the other one is an interconnect layer conducting
heat to the ambient. All the trainings are done using 0.1°C as
target error and 90W /cm? as the maximum value of power
density for the range of power inputs. To measure the precision
after the training, the NNs are used to simulate two hours
of execution and the maximum run-time temperature error
with respect to the output from 3D-ICE is measured and
recorded before every power switching activity (five times per
second). During this phase, random power inputs are generated
using the peak power value declared by the designers for any
floorplan element as upper bound.

Each experiment that follow will serve to demonstrate the
basis of the various aspects of our implementation and to
highlight the resulting advantages in computational complexity
and accuracy of the proposed simulator.

A. Training Length

The length of the training data set and the use of a
batch training scheme are fundamental to the accuracy and
reliability of the proposed NN-based thermal simulator. As
discussed in Section II-B, temperatures and input data for a
minimum number of training time points (N7,qin, min) that
equals the maximum number of weights (or connections) for
any neuron in the NN must be supplied for a complete learning
of the weights (note that every neuron in a floorplan has
a different number of neighbors as shown in Fig. 2). That
iS, N7rain,min = max;m;. To illustrate this, an IC with
two dies was discretized into thermal cells of dimensions
500pum x 500um and simulated using 3D-ICE to prepare
the training set. Next, a neural network was created with a
neighborhood distance r» = 5000pum and series of trainings
were run using different number of train points. The maximum
error measured against 3D-ICE and the percentage of errors
lower than the target precision requested in the training phase
are plotted in Fig.4. The value 0% in the x axis indicates
that N7pgin = NTrgin,min While the value +40% indicates
N7rain = 1.4NTrain,min- As can be seen, the error drops
quickly as Nryqin approaches Nr,qin,min and then remains
fairly constant, indicating the significance of this training
criteria. On the other side, the percentage of neurons that
produce an error in the output less than 0.1°C keeps increasing
and settles at 98%.

B. Effect of Proximity based model reduction

As described in Section II-C, exploiting the physics of heat
transfer in an IC to reduce the connectivity in the proposed
NN-based simulator considerably reduces memory consump-
tion and computational complexity. However, its effect on the
accuracy of the results must be first studied before using it as
an effective simulation strategy. For this purpose, we studied
the error produced by the neural network when simulating IC
made with one, two and three dies discretized into thermal
cells of dimensions 1000um x 1000um. In each case, the
number of train samples used to train was 1.2N7,qin. min
while the neighborhood distance r was increased to get a
surface from (1000pm)? up to an area covering the full chip
(i.e., a fully connected neural network, where each output
depends upon all the inputs in the IC). The run time errors
are shown in the plot in Fig. 5. The case at three dies with

0.8 100%

95%

3
$90%

°
T e
77
v
o>y
®v

Max Error (°C)
° °
S e bl
r 0/
*
*»V
* >
3 3 g
£ Ed &
% Errors < 0.1 °C (training target)

8
Ed

41 Die Max. ¢ 1Die % -¥2 Dies Max. A 2 Dies % -<3 Dies Max » 3 Dies % ‘ 55%

0
1000 3000 5000 7000 9000 11000 13000 15000
Proximity (um)

Fig. 5. Run-time error of the NN-based simulator as a function of the
proximity 7.

r = 1000um is not shown since the NN cannot complete the
training converging to the desired target precision. The results
show that a full connected network can generate a maximum
error equal to 0.25°C while a loosely connected network,
such as » = 5000um produces a maximum error equal to
0.35°C. On the other side, reducing the proximity decreases
the percentuage of errors lower than the training target but
this side effect can be balanced increasing the length of the
training set used to train the NN.

C. Speed ups using the proposed NN-based thermal simulator

To illustrate the simulation time savings of the proposed
approach compared to the conventional techniques, the NN-
based simulator was trained and then run on the GeForce GTX
480 GPU platform (480 CUDA cores running at 1.4 GHz
and 1.5 GB GDDRYSY). Then the simulation times for various
numbers of time points of simulation were compared with
the corresponding simulation using 3D-ICE run on Intel(R)
Core(TM) i7 920 2.67 GHz processor (4 cores and 6GB of
RAM). The ratios between the simulation times of 3D-ICE
and the neural network run on GPU are compared in term of
speedup and plotted in Fig. 6 as a function of the proximity 7.
In our experiments, the NN-based simulations were found to
be up to 100x faster than 3D-ICE during run time (considering
3 dies and 500pm x 500um discretization with neighborhood

155

-1 Die 1000 -* 1 Die 500 ¥ 2 Dies 1000 -4 2 Dies 500 -3 Dies 1000 < 3 Dies 500

Speedup

[
1000 3000 5000 7000
Proximity (um)

Fig. 6. Simulation time comparison between 3D-ICE run on CPU and NN
run on GPU.

distances 7 = 1000um). The plot shows that the speed-ups
depend upon the complexity of the problem, i.e. the number of
dies, the discretization and the neighborhood distance between
cells. This speed-up is primarily achieved due to the extreme
parallelizability of the NN-based simulator, as opposed to the
3D-ICE run-time operations (forward-backward substitutions
of matrix factors), which are serial in nature. Next, to highlight

[-I-l Die 1000 - 1 Die 500 ¥ 2 Dies 1000 -& 2 Dies 500 -3 Dies 1000 ¢ 3 Dies 500 }

Speedup

o
1000 3000 5000 00 11000 13000 15000

7000 90
Proximity (um)

Fig. 7. Simulation time comparison between training NN on CPU and GPU.

Speedup

1—%"1 Die 1000 - 1 Die 500 ¥ 2 Dies 1000 -k« 2 Dies 500 -3 Dies 1000 ¢ 3 Dies 500 ri

[
1000 3000 5000 0 11000 13000 15000

900
Proximity (um)

Fig. 8. Simulation time comparison between NN run on CPU and GPU.

the need for GPUs in the proposed approach, the same NN-
based simulators were run on both the CPU platform (4 threads
running on the Intel(R) Core(TM) 17 920 2.67 GHz processor)
and the GPU. The ratio between the times taken to train the
NN are plotted in Fig. 7 while Fig. 8 shows the times of the
thermal simulations. Both results are plotted as a function of
the neighborhood distance r, the discretization and the number
of dies. Again, the speed-ups depend upon the complexity of
the problem: for simple cases GPU and CPU performances are
almost the same while for complex ones the GPU is faster (up
to 6x for the training and 9x when simulating). The reported

speed-ups are measured with respect to a multi-threaded CPU
version. If we consider the single-thread CPU serial execution
of the NN, these speedups become much higher (i.e. 24x for
the training and 36x for the simulation). Table I reports the
time taken by 3D-ICE and by our neural networks to simulate
two hours of activity.

TABLE I
SIMULATION TIMES (SECONDS) USING PROXIMITY 7 = 5000um.

1000pm X 1000pm 500pm X 500pm

Dies 3D-ICE NN-CPU NN-GPU | 3D-ICE NN-CPU NN-GPU
1 11.7 4.2 1.4 56.6 13.6 2.9
2 32.1 6.4 1.8 174.9 37.3 7.2
3 579 9.1 2.5 3474 83.7 14.1

IV. CONCLUSION

This paper presented the design and validation of an inno-
vative full-chip thermal modeling approach exploiting neural
networks and the computational power of modern GPUs. Our
experiments with realistic multi-core IC designs show that the
proposed approach achieves relevant run-time speed-ups, while
keeping a negligible error.

REFERENCES

[1] P. Li et al., “IC thermal simulation and modeling via efficient multigrid-
based approaches”, IEEE Trans. on Computer-Aided Design, 25(9),
pp.1763-1776, 2006.

[2] W. Huang et al., “HotSpot: A compact thermal modeling methodology
for early-stage VLSI design”, IEEE Trans. VLSI Sys., 2006.

[3] Z.Feng, P. Li; , “Fast thermal analysis on GPU for 3D-ICs with integrated
microchannel cooling,” Proc. IEEE/ACM ICCAD, 2010.

[4] C. Xu et al.. “Fast 3D Thermal Analysis of Complex Interconnect
Structures Using Electrical Modeling and Simulation Methodologies”,
Proc. IEEE/ACM ICCAD, 2009.

[5] A. Sridhar et al., “3D-ICE: Fast compact transient thermal modeling for
3D ICs with inter-tier liquid cooling”, Proc. IEEE/ACM ICCAD, 2010.

[6] P. Li et al., “Efficient Full-Chip Thermal Modeling and Analysis”,
Proc. IEEE/ACM Conference on Computer-Aided Design, pp. 319-326,
November 2004.

[7] J. Croix and S. Khatri “Introduction to GPU Programming for EDA”,
ICCAD 09

[8] S. Haykin, N Networks: A Comprehensive Foundation (1st ed.), 1994
Prentice Hall PTR, Upper Saddle River, NJ, USA.

[9] P. Kumar, D. Atienza, “Neural network based on-chip thermal simulator”,
Proc. IEEE Sym. Circuits and Systems (ISCAS), 2010.

[10] T.Y. Ho, PM. Lam, and C.S. Leung, “Parallelization of cellular neural
networks on GPU”, Conference on Pattern Recognition, 2008.

[11] K.-S. Oh and K. Jung, “GPU implementation of neural networks”,
Conference on Pattern Recognition, vol. 37, no. 6, pp. 1311-1314, 2004.

[12] S. Raghav et al., “Scalable instruction set simulator for thousand-core
architectures running on GPGPUs” Proc. High Performace Computing
and Simulation Conference 2010, pp. 459-466.

[13] J. Lienhard-IV and J. Lienhard-V, A heat transfer textbook. Cambridge,
Massachusetts: Phlogiston Press, 2006.

[14] M. Riedmiller, “Rprop- description and implementation details”, Uni-
versity of Karlsruhe Technical Report, January 1994.

[15] A. Leon et al., “A power-efficient high-throughput 32-thread SPARC
processor”, Proc. International Solid-State and Circuits Conference
(ISSCC) 2007.

[16] CUDA Sparse Library, http://developer.download.nvidia.com/compute
/cuda/.

[17] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication
on CUDA”, NVIDIA Corporation Technical Report, Dec, 2008.

[18] Mark Harris, “Optimizing Parallel Reduction in CUDA”, URL:
http://developer.download.nvidia.com/compute/cuda/sdk/website/C/src
/reduction/doc/reduction.pdf

156

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

