978-1-4577-0595-3/11/$26.00 ©2011 |EEE

2011 |IEEE International Symposium on Information Theory Proceedings

Degree Distribution Optimization in Raptor
Network Coding

Nikolaos Thomos and Pascal Frossard
Signal Processing Laboratory (LTS4)
Swiss Federal Institute of Technology, Lausanne (EPFL), Lausanne, Switzerland
{nikolaos.thomos,pascal.frossard } @epfl.ch

Abstract— We consider a multi-source delivery system, where
Raptor coding at sources and linear network coding in overlay
nodes work in concert for efficient data delivery in networks with
diversity. Such a combination permits to increase throughput
and loss resiliency in multicast scenarios with possibly multiple
sources. The network coding operations however change the
degree distribution in the set of packets that reach the receivers,
so that the low complexity decoding benefits of Raptor codes are
unfortunately diminished. We propose in this paper to change
the degree distribution at encoder, in such a way that the degree
distribution after network coding operations recovers a form
that leads to low complexity decoding. We first analyze how the
degree distribution of the encoded symbols is altered by network
coding operations and losses in a regular network. Then we
formulate a geometric optimization problem in order to compute
the best degree distribution for encoding at sources, such that
the decoding complexity is low and close to Raptor decoders’
performance. Simulations show that it is possible to maintain
the low complexity decoding performance of Raptor codes even
after linear network coding operations, as long as the coding at
sources is adapted to the network characteristics.

Index Terms— Network coding, Raptor codes, degree distribu-
tion, geometric programming.

I. INTRODUCTION

Mesh networks are very interesting for data distribution as
they typically offer several transmission paths between servers
and clients. These paths might share common links and nodes,
which motivates the design of appropriate distribution and cod-
ing strategies that can properly exploit the network diversity.
Network coding (NC) [1] takes advantage of network nodes
computation capabilities to increase network throughput and
enhance transmission robustness in networks with diversity.
The network nodes typically perform coding operations with
the received data before forwarding them to next hop nodes.
When combined efficiently with coding at sources, network
coding leads to distributed data delivery solutions without the
need for reconciliation among nodes nor differential treatment
of data packets with different importance. This permits to ben-
efit from the network diversity for both increased throughput
and improved resilience to losses.

In this paper, we consider the transmission framework
represented in Fig. 1. We build on the algorithm that has been
proposed in [2] in the specific context of video streaming in
overlay mesh networks. We consider that the source symbols
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Fig. 1. Illustration of a transmission framework with network coding of
Raptor symbols.
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are first processed by Raptor encoders [3] with a degree
distribution 2. Raptor codes are chosen due to their rateless
performance as well as their linear encoding and decoding
times. The encoded symbols are then sent on a regular mesh
network, where intermediate nodes implement linear network
coding. In case of packet loss, the network nodes generate
substitute packets by combining pairs of packets, which are
selected in order to maximize the symbol diversity [2]. Due
to losses and network coding in successive stages, the degree
distribution of the Raptor encoders at sources is altered; it
might finally differ significantly from the degree distribution of
typical Raptor codes that are characterized by low-complexity
decoding. In particular, the generator matrix becomes denser
due to combinations of Raptor symbols by network coding,
which leads to increased decoding complexity.

The computational complexity of the decoding operations
at receivers are clearly driven by the degree distribution of the
received symbols. We thus propose to re-design the degree
distribution of the encoders at sources such that the actual
degree distribution of the receiver permits low-complexity
decoding. We propose here a generic method for comput-
ing an appropriate source degree distribution for any target
degree distribution function after linear network coding in
regular topologies. The optimization problem is formulated as
a geometric programming (GP) [4] problem. GP is typically
characterized by objective and constraint functions of special
forms. Furthermore, it is well adapted for solving large-scale
optimization problems. We assume that the servers are aware
of the network statistics (network losses and topology), and
we design efficient source degree distributions so that the



linear decoding time property is preserved. We show through
simulations that the resulting codes only suffer from a minimal
performance loss compared to optimal degree distributions at
decoder and still provide effective resiliency to losses and
network dynamics. A related problem has been studied in [5]
where the design of LT codes degree distribution for simple
relay topologies has been investigated. The robust soliton
distribution (RSD) [6] is decomposed into to two component
distributions prior to RSD deconvolution. It preserves the
spikes of RSD that guarantee the success of the decoding
process. Although the algorithm in [5] ensures that clients
receive symbols whose degree distribution is close to RSD, it
imposes rather complicated encoding rules. Furthermore, the
extension of this method to complex network topologies is non
trivial.

II. ANALYSIS OF LOW-COMPLEXITY RAPTOR NETWORK
CODES

We analyze here in details the Raptor network coding
scheme proposed in [2] for regular networks that have the same
number of nodes per coding stage as shown in Fig. 1 and each
node is connected with all nodes in the previous coding stage.
By Raptor coding at the senders, the data symbols are first pre-
coded and then fed into a LT encoder. The transmitted symbols
are produced by sampling a degree distribution function

L
Q) =) Q-2
=1

which determines the number of original data symbols that has
been combined for generating the Raptor encoded symbols. €2;
denotes the probability of generating a symbol with degree
1. Since €;’s are degree distribution function coefficients the
following constraints should hold:

>
Q=1
i=1 (1
O >0Vie[l,... L]

As the packets travel through the network, they are com-
bined to compensate for packet losses due to erasures and
network variations. The network coded symbols follow a new
denser degree distribution function that is different from the
original function used at the servers. The degree distribution
at the ky,, coding stage is denoted as

L
O (2)=>_aF -2
i=1

where Qf, i = 1,...L, are the coefficients of the degree
distribution function at nodes in the k;; coding stage. The de-
gree distribution evolves as the symbols traverse the different
encoding stages, and eventually lead to the degree distribution
Q" observed at the client (decoder).

We now analyze in more details the evolution of the degree
distribution in regular networks where all network links have
equal capacity and identical loss rate p. First, single hop
transmission is examined and then the findings are extended
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for larger networks. At the first network coding stage, the re-
encoded packets correspond to a degree distribution function
Q! (z) given by

L L
Q'(z) = Y Q-a'=1-p)-) x-a'+ @)
=1 =1

L
+ opy W'=Y {(1-p)-Qi+p-Tl}-a’

i=1 i=1
where ! (1) is the convolution (2 * Q) () since the symbols
that are combined follow the degree distribution 2 (). It can
be written as

Z Qu e
vl = L“*”:’ L i=0,....L (3)
Z Z QH'QV
=1 ptv=1
or equivalently
1—1
Q- Qi
1 J=1 .
v = o ,1=0,...,L 4)
> 2 Q-
I=1j=1
L 1-1

The W} values are normalized by A =

since some symbols combinations are not eligible as the degree
of the re-encoded symbols can not exceed L, which is equal
to the number of source symbols.

Obviously, the distribution Q! (z) can be seen as the
weighted sum of Q(z) and ¥!(z) with weight parameter
p (i.e., the packet loss rate). For the degree distributions
of typical Raptor codes such as 3GPP [7] and RSD, the
denominator of Eq. (4) is approximately written as

L -1 L/2 L
ZZQj-Ql_jZZQ§+2- Z -0 =
1=1 j=1 =1 1=1,1£L—1

L 2 L
:(ZQ) - > =1-0=1
=1 I=L/2+1

L L/2

Theterm Y. Q7 tends to zeroas . §2; ~ 1 for the 3GPP
I=L/24+1 =1

and RSD distributions that are concentrated into small degree

values. Thus, the coding coefficients 2} of Eq. (2) can be

written as

O =(01-p) - Q+p-Y Q-Qj, fori=0,....,L (5)
j=1
Unfortunately 3GPP Raptor and RSD degree distributions
contain spikes that do not permit direct deconvolution. There-
fore, the resulting equation system cannot be solved as some
of the constraints of Eq. (1) are violated. In order to explain
this limitation, we rewrite Eq. (5) as



i—1
1
Qi: —'{Q%_p'ZQj'Qi—j};for Z:L,L (6)

1—p =

In the case of the RSD, it holds that Q3 > Qf and O, <
Qli=1,...,M —1,M +1,...L where M = K/S;. The
K and S are respectively the number of source symbols and
a parameter that controls the size of the ripple in every step
of the decoding procedure. The ripple contains the symbols
that have been recovered but not processed yet. We have the
following lemma, whose proof is given in the Appendix.

Lemma 1: If Q' (x) has a spike at Q% then it should be:

c> max {2 . QM*l, M}
jE[2,M—2] Qp—2” Qar—j1
1—-p  Qumj }
2:p- Q1 Qu_jn
for Q4 > 0. ¢, ¢ > 1 determine the magnitude of the spike
and it holds Q}w =c- Q}W—l and Q}w =c - Q}M_H.
Therefore, it is not possible to find a function Q(z) that
preserves the spike at the My, position and satisfies the
conditions of Eq. (1), since €2;’s become negative when ¢ and
¢ take large positive value. Similar conclusions can be drawn
for other degree distributions with spikes. Therefore, we can
only design suboptimal degree distributions )(x) that lead to
final degree distribution Q" (z) that are close but not equal to
the target degree distribution functions such as RSD or 3GPP.

and ¢ >  max
je[2,M—2]

ITI. DEGREE DISTRIBUTION OPTIMIZATION
We propose now to optimize the degree distribution at the
source by an iterative algorithm. If there is only one coding
stage, the optimization problem can be formulated as

L Q!
™

(17[))914’]) Zle 'Qifj
j=

min
Q.
[ et

where Q! () is the final distribution. The optimization con-
ditions are given in Eq. (1).

We cast this optimization problem into a Geometric Pro-
gramming (GP) problem. The general form of a GP problem
is

min f() (W)
subject to

fi(W)<1 for i=1,....,m
g(W)y=1 for i=1,...,n

where g;, ¢ = 1,...,n and f;,¢ = 1,...,m are respec-
tively monomials and generalized posynomials [8]. W =
(W1,...W,,,) is a vector with n real variables.

To transform Eq. (7) into a valid GP form, we use the
geometric inequality

L L S
=L [[oF
=1 1=1
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Thus, the objective function is written as

L

. 0!
min » i1
Qi i-(1 —P)l/i ) Qlw 'Plzl IT (€ Qi—j)l/i
j=1
while the optimization constraints are
0<Q; <1
L ﬁ /'t =1

i=1
Since we are aware of the expected loss rate, we add two new

constraints L
Q <(1+p)-Q

Q> (1—p)-

These constraints limit the search space and allow fast con-
vergence. The resulting problem can then be solved with help
of software packages such as [9], [10].

When we have two coding stages, we consider the opti-
mization problem as a cascade of two dependent GP problems.
Since we know the desired degree distribution, we first solve

min ¢
{Q;} 4
=1

izl 1/i
1T (95 -9 )

Jj=1

i—1

i+ (1=p)" @)V p

then after determining the 2} coefficients, we successively
solve

L

O
min A——
S -l -H1 (@ Q)
]:

to find the original degree distribution. The same process is
repeated iteratively for larger networks.

IV. SIMULATION RESULTS

We analyze the performance of the above design algorithm
in a Raptor network coding system. We study the performance
of a system where we target a RSD-like degree distribution
function at decoder, with the design procedure described
above. This distribution is used along with a 3GPP pre-coder
at the encoder. We compare this system with a variant that
combines the same pre-coder as 3GPP codes and LT codes
with RSD distribution (denoted as RSD). The performance
is compared in terms of decoding probability and decoding
complexity. For the sake of completeness, we also study the
performance of classical 3GPP degree distribution (denoted
as 3GPP), which are heuristic distributions commonly used in
wireless broadcasting systems.

We first look at the performance of these codes for different
network sizes. We consider regular topologies with various
number of network coding stages between servers and clients
with three nodes per coding stage. The source packets are
protected by (231,249) Raptor codes. For all the links, the
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Fig. 2.

Performance evaluation of (231, 249) Raptor codes for regular network topologies with three intermediate nodes per stage for 3GPP codes (3GPP),

3GPP codes modified with RSD distribution (RSD) and the proposed distribution. The Raptor decoding failure probabilities at clients with respect to the
number of received symbols are presented for (a) three, (b) six and (c) nine coding stages. Cumulative distribution of symbols degree received by each client

are shown for networks with (d) three, (e) six and (f) nine coding stages.
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Performance comparison of the network coding schemes employing with 3GPP, RSD and the proposed degree distribution functions at encoder, for

regular networks with six stages and (a) three and (b) six nodes per coding stage.

symbol loss ratio is set to 5%, while the link bandwidth b per-
mits the transmission of 83 symbols per link per time interval.
The results for various network topologies are demonstrated
in Fig. 2. The Raptor decoding probabilities with respect to
the number of received packets for three-, six- and nine-
stage network topologies are shown in Figs. 2(a), (b), and (c)
respectively. For three-stage network topologies all methods
perform equally well. As the number of stages increases,
the proposed distribution performs slightly worst in terms of
decoding probability, but it remains close to the performance
of the other schemes. This performance degradation is due
to the inefficiency of the design method in preserving the
exact value of the spikes in the degree distribution function.
This makes the proposed codes less efficient for large size
topologies as the spike value becomes smaller than the ideal
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value. However, when the methods are compared in terms of
the cumulative degree distribution function (cdf) as depicted
in Figs. 2(d), (e), and (f), it is clear that the proposed codes
outperform the 3GPP variant with RSD in terms of decoding
complexity. The RSD scheme results in very dense generator
matrices, while the designed code that targets a RSD-like
degree distribution at the decoder results in sparser matrices
and hence lower decoding complexity. This confirms that
the proposed design algorithm succeeds in achieving low
complexity decoding even after symbols have been combined
by network coding.

Finally, note that both schemes have inferior performance to
the 3GPP codes in terms of decoding probability. In addition,
the 3GPP codes offers sparser generator matrices. This is
expected as 3GPP codes optimize the pre-coder in order to



use sparser LT generator matrices. However, we can observe
in Figs. 2(d), (e), and (f) that the 3GPP codes result in
denser matrices and become therefore less favorable to low-
complexity decoding when the size of the network increases.
The 3GPP codes have very sparse matrices, but network
coding affects the sparsity of the generator matrices as the
number of coding stages increases. For larger networks the
cdf of the codes proposed in this paper becomes similar to the
one of 3GPP codes for low degree values. They lead to similar
decoding complexity as the 3GPP codes, which are among the
most effective codes in practice. This shows that shaping the
source (Raptor codes) degree distribution in order to guarantee
low-complexity decoding is increasingly important for large
network sizes.

We also study the performance of the different coding
strategies for different number of nodes per coding stage.
We consider network topologies with six coding stages, but
respectively 3 and 6 network coding nodes per stage (see
Figs. 3 (a) and (b)). We have set the link capacities in order
to deliver 249 symbols to each receiver when transmission
is error free. All links face 5% symbol loss rate. When
network diversity is limited, the designed codes have inferior
performance in terms of decoding probability, compared to
that of the other two schemes. This performance difference
is however not significant. All schemes take advantage of
the improved network diversity as shown in Fig. 3(b). The
performance gap between the designed codes and the RSD
variant, however, decreases when the number of nodes per
coding stage increases. In this case, the multiple reception
probability! gets lower. This can be explained by a larger
network diversity as more paths connect the clients with the
servers, which favorably compensates for the larger probability
of low degree symbols to be re-combined in network nodes.
The optimized degree distribution permits to take advantage
from the network diversity and leads to decoding performance
that is competitive with the other distributions. At the same
time, it guarantees a low decoding complexity, while the
other source degree distributions lead to increased performance
penalty when the network diversity augments.

V. CONCLUSIONS

In this paper, we presented a novel method for designing
a degree distribution for Raptor like encoding at senders, so
that the degree distribution of the received symbols could be
controlled in network coding data delivery system. A generic
optimization problem has been proposed for determining
through geometric programming the appropriate source degree
distributions in regular network topologies. The simulation
results show that these proposed codes perform close to typical
3G PP Raptor codes in terms of decoding probability. At the
same time, they permit to maintain a linear decoding time
similar to ideal degree distribution functions such as RSD.

The multiple reception probability is the probability that a node receive
multiple times the same symbol, which is non-zero as symbols that have been
combined can be combined again.
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APPENDIX

Proof of lemma I:
From eq. (6) for the spike at M we have Q}, = c-Q},_;
and thus we derive

Qy =

c Q-1 —
M1

M-—2
— (lp%) . Z Qj . QM,j67 Z Qj . Q]v[,j,1
p j=1 Jj=1

In order to determine the designing constraints for c, we
examine when (), takes negative values. Therefore, if ), <
0itis

M—2
p
c-Qu1 < — —~C~ZQ]~QM?];1+
1-p
M-1

p
4+ 5 . Q- Qi
(1-p) ;1 ! !
since Q371 > 0 and 0 < p < 1 the inequality is true iff

D {e-Quo—2-Qp 1} +
M—-2
+ Z Qj . {C-QM_j_l — Q]\/[_j} <0

Jj=2

We want all terms in the left side to be negative. Thus,
c< BBt and e < g =2, M -2,

Qprr—2 Qnr—j— ,
As we have seen due to spike at M we have Q}, = ¢ -
QL +1- Similar to the above analysis it can be seen that {2y <

’ 1— ’ Q o .
0 when ¢ < Q(‘Qf; and ¢ < #jil,j =2,...,M—1.
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