Learning Algorithms and Systems
Laboratory

School of Engineering

Master Thesis

Learning to Control Planar Hitting Motions of a
Robotic Arm in a Mini-Golf-like Task

at
Ecole Polytechnique Fédérale de Lausanne
by

Klas Kronander

Lausanne 2010

LPEARNINGE | EGORITHMSSATID)
&\‘ Ve EMSEL BORARYE
\ -

o %
Linkdping University

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE INSTITUTE OF TECHNOLOGY

Learning to Control Planar Hitting Motions of a
Robotic Arm in a Mini-Golf-like Task

Master Thesis carried out at the Learning Algorithms and Systems Laboratory

at Ecole Polytechnique Fédérale de Lausanne
by

Klas Kronander

Supervisor: Seyed Mohammad Khansari Zadeh
LASA, EPFL

Professor: Aude Billard
LASA, EPFL

Lausanne, November 25th, 2010

Abstract

In this thesis we tackle the problem of goal-oriented adaptation of a robot hitting
motion. We propose the parameters that must be learned in order to use and adapt
a basic hitting motion to play minigolf. Then, two different statistical methods are
used to learn these parameters. The two methods are evaluated and compared.
To validate the proposed approach, a minigolf control module is developed for a
robotic arm. Using the different learning techniques, we show that a robot can
learn the non-trivial task of deciding how the ball should be hit for a given position
on a minigolf field. The result is a robust minigolf-playing system that outperforms
most human players using only a small set of training examples.

Acknowledgments

First of all, I would like to thank my supervisor Mohammad Khansari for all
time and effort he has spent to support me during this project. Mohammad has
been an invaluable source of knowledge, encouragement and feedback throughout
this project, and I truly can not imagine a better supervisor.

I would also like to thank Prof. Aude Billard for giving me the opportunity to
do my master thesis at LASA, and for giving invaluable feedback and encourage-
ment during our meetings.

A good portion of the time in this project has been spent developing a software
module for the RobotToolKit software package. I have been fortunate enough to
have access to Eric, the maker of the RobotToolKit. Without his support and
tips, the minigolf module would never have reached its current state.

I direct my gratitude to Martin Duvanel for teaching me to use the stereovision
system.

I would like to thank J.B.Keller who built the golf club tool for the WAM as
well as the minigolf fields.

Lastly, T would like to thank all the people at LASA for welcoming me to the
lab and for being an awesome group of people.

Contents

1 Introduction
1.0.1 The minigolf task and hitting parameters
1.0.2 Modeling of the hitting motion
1.1 Objectives e
1.2 Outline e
1.3 Notation e

2 A closer look at the minigolf task
2.1 The hitting motion oo
2.1.1 Encoding hitting motions with DS
2.1.2 Changing the hitting speed
2.1.3 Changing the hitting direction
2.2 Choosing the hitting parameters
2.2.1 Different fields require different parameters
2.2.2 The function approximation approach

3 Learning the hitting parameters
3.1 Learning approaches
3.2 Trainingdata Lo
3.3 Statistical learning of the hitting parameters
3.3.1 Gaussian Process Regression
3.3.2 Gaussian Mixture Regression
3.4 Comparisono
3.4.1 Generalization outside range of training data
3.4.2 Local precision oL
3.4.3 Encoding dependency between hitting parameters

4 Practical framework
4.1 The Barrett WAM
4.1.1 The RobotToolKit
4.2 The minigolf module
4.2.1 Operating modes and states
422 Designo

= W W N

oo O ot Gt

10
11
12
13

15
15
16
17
17
22
25
25
27
27

Contents

5 Experiment setup 37
5.1 Data Collection 37
5.2 Fields e 37

5.2.1 Theflat field 38
5.2.2 The multiple hills field 38
5.2.3 The regular hill field 38
5.2.4 The arctan field L. 39
6 Results 41
6.1 Performance of the minigolf module 41
6.1.1 Launch angleerror 41
6.2 Learning techniques 43
6.2.1 Theflat field 43
6.2.2 The multiple hills field 45
6.2.3 The regular hill field 48
6.2.4 The arctan field L. 48
6.3 System performance 54

7 Conclusion and Future Works 57

Bibliography 59

A Original project description 63

A.1 Learning to Control Planar Hitting Motions of a Robotic Arm in a
Mini-Golf-like Task L oo 63

Chapter 1

Introduction

Traditional approaches to controlling robots rely on hard-coding desired motions in
some programming environments. These techniques require an in-depth knowledge
about the robot, the programming environment, and the task, is often non-trivial
and may become completely non-intuitive when working with high Degrees of Free-
dom (DoF) robots. Furthermore, the new wave of motivation to move robots from
research laboratories into society further accentuate the need to develop more in-
tuitive techniques to control robots even by an unexperienced user. Programming
by Demonstration! (PbD) [1, 2] is an approach that tackles this problem.

In PbD, the robot is taught to perform a task by observing a set of demonstra-
tions provided by a trained agent (human or robot). Demonstrations to a robot
may be performed in different ways; back-driving the robot, teleoperating it using
motion sensors, or capturing a task via vision sensors. PbD has higher aims than
to simply record a motion and replay it exactly as recorded?. Ideally, the robot
would be able to capture the important parts of a task, and be able to perform the
task in a new situation while respecting these constraints. More specifically, the
learning process consists of extracting the relevant information from the demon-
strations and encoding this information in a motion model. Using a set of basic
motion models learned in this way, more advanced robot motions can be achieved
by combining these. These so-called motion primitives [1, 3] can be seen as a basis,
from which multiple desired robot tasks can be formed.

The performance of each PbD based approach directly depends on the choice
of learning technique and the motion model. In robotic literature, different mod-
els and subsequently learning techniques have been proposed, including but not
limited to: spline-based methods [4, 5], non-linear time dependent regression tech-
niques [6, 3], time-dependent Dynamical Systems (DS) [7], and non-linear au-
tonomous Dynamical Systems [8, 9]. These methods have been successfully devel-
oped to learn motion primitives such as discrete (point-to-point) motions [8, 6],

Lalso referred to apprenticeship learning, learning by imitation, or learning from demonstra-
tion

2This approach is implemented in industrial robotics. Some robots can have a task showed
to them by manually teleoperating the movement of the robot, and then replaying it exactly as
recorded.

2 Introduction

rhythmic motions [7], hitting motions [10, 11], etc.

The ability to generalize a task and to adapt a learned motion to unseen situa-
tions is a desired for robot motion primitives since the number of demonstrations
is usually few and limited®. One context in which adaptability is crucial is agile
sport games such as tennis or minigolf where a succesful player must be able to
strike a ball at a variety of speeds and angles. Learning of all these situations
by adapting a basic hitting motion is a non-trivial problem, and may not even be
possible. Consider a beginning minigolf player. The first skill that the player must
learn is how to hit the ball. Once this skill has been learned, the player can easily
hit in a different direction and with a differnt speed, using only a slightly different
technique. The next skill the player must learn is at what angle and whith what
speed she should hit the ball so as to sink* the ball. In this thesis we aim at
exploring possible techniques to endow a robot with the ability to properly adapt
a basic motion in the context of a minigolf task.

To reach this goal, we propose the necessary parameters that can be used to
perform such adaptation, and investigate two possible statistical learning tech-
niques to learn these parameters. Though not limited to, in this thesis we test
and verify our method on motion primitives modeled with non-linear autonomous
Dynamical Systems [11]. We validate our approach in a robotic experiment of
playing minigolf with a 7 DoF Barrett WAM [12] robotic arm. A framework al-
lowing simulations as well as real experiments with the WAM arm is set up. This
framework is then used to evaluate the methods on different minigolf fields.

1.0.1 The minigolf task and hitting parameters

Minigolf ® is a game where the players compete in sinking a golf ball in a hole on
a terrain with various features and obstacles. The goal is to sink the ball with
as few hits as possible [13]. Depending on the features of the terrain, the task
of estimating how to hit the ball is a difficult task that for humans takes lots of
practice to master. The task considered in this work is sinking the ball in one
shot.

Consider the following scenario: a player finds the ball placed somewhere on
the minigolf terrain and is faced with the problem of hitting it so that it goes into
the hole in one shot. To solve this task, the following questions must be addressed:

1. How should the ball be approached?
2. At what angle and speed should the ball be hit?

The first question concerns the general motion pattern that is used when ap-
proaching the ball. Given that a general motion pattern has been learned, the
next question is how should this motion be adapted so as to achieve the goal of
the task: sinking the ball. In [14], it is shown that human players usually follows
the same pattern when approaching the ball, even if the hitting point, hitting

3The number of demonstrations should be limited so that to be within the tolerance of a user.
4To sink the ball is golf terminology for putting the ball in the hole.
5 Also commonly referred to as mini-golf, miniature golf, midget golf, crazy golf and Putt-Putt

1.1 Objectives 3

angle and hitting speeds change. In this thesis we make a more strict distinction
between these two questions by assuming that the minigolf tasks consist of two
subtasks that can be learned independently of each other:

1. Approach the ball.
2. Use the correct hitting angle and speed.

To solve the second subtask, a human player would probably use a strategy
based on the relative position of the ball and hole and the features of the field to
get an initial guess of how the ball should be hit. If this guess results in a suc-
cessful attempt, the player knows what parameters to use for that particular ball
position. Once the player has a few successful hitting settings for some different
ball positions, she can guess at what angle and speed the ball should be hit in a
new situations, i.e. previously untested ball positions . How to learn what hitting
parameters to use based on a set of successful examples is the main question of
this thesis.

1.0.2 Modeling of the hitting motion

As stated in the previous section, one of the skills needed to play minigolf is to reach
the ball. In robotics, this corresponds to having a basic motion model governing
the hitting motion. This motion model must of course be chosen such that the
hitting angle and speed can be adjusted. In this work, we consider a hitting motion
modeled with Dynamical Systems (DS). We use the approach presented in [11],
were a point-to-point motion with non-zero velocity at the target can be encoded
in a DS while guaranteeing global convergence at the hitting point.

1.1 Objectives

For a recitation of the original project description, refer to appendix A.

The goal of this master thesis is to investigate techniques that ca be used for
learning how to adapt a hitting motion to new situations.

Two statistical methods to model the mapping from input space to parame-
ter space are considered and compared against each other. These methods are
Gaussian Process Regression(GPR) and Gaussian Mixture Regression(GMR).

The performance of proposed approach are validated in robot experiments of
playing minigolf in different challenging fields on the 7 Degrees of Freedom (DoF)
Barrett WAM Arm and its simulator are used. To perform the experiments, a
minigolf module is developed that can be used to communicate and control both
the robot and its simulator.

To summarize, the project consists of two parts:

e Theoretic part: Evaluation of GPR and GMR when applied to this particular
problem.

e Implementation part: The conception of the minigolf module for the WAM.

4 Introduction

1.2 Outline

In chapter 2, a detailed description of the minigolf task and its challenges is pre-
sented. Chapter 2 also gives an overview of the work presented in [8] and [11],
which is used for the default hitting motion considered. In chapter 3 the models
used to learn the hitting parameters are presented. This is followed by an in depth
presentation of the developed software in chapter 4. The different setups that were
used to evaluate both the overall system performance and the different models for
the hitting parameters are presented in chapter 5. Results from experiments using
this setup and a discussion obout these are given in chapter 6 followed by summary
in 7.

1.3 Notation

Below, the notation of elements that reappear throughout the text are summa-
rized.

Symbol | Dim.
End effector position T R3
End effector velocity & R3
End effector position before starting hitting motion | z° R3
Hitting point x* R3
Default hitting direction o R3
Hitting angle w.r.t. default hitting direction 0 R
Hitting speed v R
Ball position relative to hole (input) 3 R?
Number of demonstrations of default hitting motion | N R
Mean (used in various contexts) W various
Covariance matrix (used in various contexts) by various
Number of hitting parameter training points M R

Chapter 2

A closer look at the minigolf
task

The minigolf task was briefly introduced in chapter 1. In this chapter the task and
its difficulties are formalized in a more detailed manner. Given a minigolf field,
the skill that the robot should acquire is to hit a golf ball so that it goes into a
hole located at some distance from the robot. Contrary to minigolf as normally
played by humans, where the player is allowed to hit the ball several times before
sinking it!, the task considered here is to sink the ball in one shot. As mentioned
in section 1.0.1, in this work we consider that this task has to challenges:

1. Approach the ball.
2. Use the correct hitting angle and speed.

Throughout this work, we consider these two tasks as two clearly distinguishable
subtasks. The first task is considered given for this work, but brief description of
this subtask and how to learn it is included nonetheless, as it is important to the
understanding of the adaptation task.

2.1 The hitting motion

A crucial part of minigolf (or any other ball-game) is how to reach the ball. This
task is similar to point-to-point motions tasks, which have been extensively stud-
ied, see e.g. [6, 15, 16].In this thesis, we use Dynamical Systems (DS) for to model
the hitting motion, as proposed by [11]. This modeling has several advantages
that make it particularly powerful when compared to alternatives:

e The hitting motion is guaranteed to converge at the hitting point from any
point in space.

1Sinking the ball is golf terminology for putting the ball in the hole, i.e. completing the task
successfully.

6 A closer look at the minigolf task

Figure 2.1: The WAM robotic arm with end effector in the rest position z° before

*

starting a hitting motion with direction ¥y towards the ball at position x*.

e Inherent robustness to spatial and temporal perturbations 2.

e Modulability, i.e. the hitting speed and angle can be changed.

Figure 2.1 illustrates an example of the minigolf hitting motion. Here the robot
starts the motion from an initial point z°, and approaches the ball at position z*
along the hitting direction .

In figure the end effector is in its rest position x”. This is the starting point
of the hitting motion. When the hitting motion is started, the end effector will
approach the ball at position z* along the hitting direction. The hitting motion
controls only the trajectory of the end effector. While the orientation of the end
effector could be learned similarly as the trajectory, in this thesis we control the
orientation of the end effector by assuming that the golf club should be perpen-
dicularly aligned to the hitting direction at all times.

0

2.1.1 Encoding hitting motions with DS

Consider a set of N demonstrated hitting motions in the form of observed end
effector position and velocity at each time instant, {z, x}tT:O]ylzl We wish to use
these demonstrations to model a dynamical system @ = f(z) so that all trajec-
tories converge to the default hitting direction®. Let vg = (s, thy,0) denote this
direction, represented as a unit vector. In this work we only consider planar hitting
motions, hence the third component in 1)y vanishes.

In [8], an algorithm called Stable Estimator of Dynamical Systems (SEDS) is

proposed. It is shown how this algorithm can be used to encode demonstrations of

2Temporal perturbation causes the robot execution to be delayed (e.g. when slowed down
because of friction in the gears) while spatial perturbations causes the robot to depart from its
original trajectory (e.g. when slipping or hitting an object).[9]

3Here we assume that the N demonstrated hitting motions were demonstrated by approaching
the ball from the same direction, thus defining the default hitting direction.

2.1 The hitting motion 7

0.5 0.5

xa, (M)

0.25 0.25

0 0.5 1

zla(m)

Figure 2.2: Demonstrations and GMM of a hitting motion (left) and resulting
DS (right). Four demonstrated trajectories as dotted red lines. Based on these
demonstrations, a GMM have been optimized using the SEDS algorithm. The
centers of the two Gaussians in the GMM are represented (left) by black crosses,
and the covariance is represented by the green elipsoids. The blue lines in (left)
show the result of GMR on this model when starting from the same starting points
as the demonstrations. The Dynamics of the resulting system is represented by
streamlines(right) and plotted along with the demonstrations. Notice how all
streamlines lead to the attractor (the ball), regardless of the starting position.

the DS in a Gaussian Mixture Model (GMM) optimized under stability constraints.
Then, the trajectory is reproduced through Gaussian Mixture Regression (GMR):

PRI R 55
S TN (@ ik, D)

k=1

(1 + 35, (55) " (@ —) (2.1)

k . Ej Ek
where ¢ pF = (Z%) and ¥J = (Z%"’ Eix represent the prior, the mean

vector and the covariance matrix of component k in the GMM, and

1

L CHe)TER) T @) (2.9
(2m)PIEL, |

N (s, S%) = p(a|ps, S5, =

is the probability density function of component k£ in the GMM.

Use of the SEDS algorithm to estimate the parameters in (2.1) renders a dy-
namical system that enjoys global asymptotic stability at the attractor z* [8].
Figure 2.2 gives an example of a two dimenstional hitting motion being encoded
in a DS with the SEDS algorithm. Note however that this is not suitable for a
hitting motion. Using the DS as in (2.1) to hit a ball would fail, since the motion
would have zero velocity at the hitting point.

To overcome this problem, [11] proposed a reformulation of the original struc-
ture of DS presented above. In this formulation, a DS is modeled as a multiplica-
tion of a so called target field and strength factor. The target field is defined from
the DS in (2.1) as:

8 A closer look at the minigolf task

@)
1F@I

This entity preserves the directional information given by the DS in (2.1).
Next, let v(x) denote the strength factor of the hitting motion. Like the target
field, the strength factor can be modeled with a GMM, this time considering the
data set {z, ||x||}lej\i:1 and optimizing the model parameters with some suitable
algorithm, for example Expectation Maximization [17]. The strength factor can
then be reacquired for each end effector position according to:

E(z)

(2.3)

K k .
o) =3 o N(xu m)_ i 4035 (S (@ — k) (2.4)
o1 2oim1 oTN (@5 ol o 20

k k v,uk k UEk UEk .
where , 7% 1" = ¥ | and X% = Eix Ei” represent the prior, the
vHy v oz v —vv
mean vector and the covariance matrix of component k& in the GMM.
Now that the target field and strength factor have been defined, we can con-

struct the hitting motion as the target field modulated by the strength factor:
i = g() = v(2)E(x) (2.5)

This DS renders hitting motions in the direction defined by the direction approach
with a hitting speed as per (2.4) while retaining the stability* and robustness
properties of the original DS [11].

2.1.2 Changing the hitting speed

In the previous section we defined the default hitting motion. Recall the default
hitting speed given by v(2*). In this section it is shown how to alter the speed of

the hitting model in (2.5). Consider first the factor s¢ = U(”;*) by which the default
hitting speed must be multiplied to acquire a desired hitting speed v? = s%v(z*).
For the continuous version of DS, as presented in (2.5), we can safely go ahead
and multiply the whole strength factor with our constant s? without adventuring
stability or altering the trajectory [18]. However, when we move to the time
discrete domain, altering the speed in this way will change the trajectory depending
on the sampling time [18]. Thus, it is not clear how the strength factor should be
altered so as to minimize the perturbation of the trajectory while ensuring that
the desired hitting speed is achieved at the hitting point.

A common approach when moving from a continuous representation to a dis-
crete implementation is to assume a sampling frequency that is high enough that
in practice, we need not worry about any of the effects introduced by discretizing.
This approach is used for implementing the default hitting motion in this work.
To alter the hitting speed we have two choices:

4A more correct phrase is asymptotic convergence to the hitting point (rather than stability)
since the end-effector has non-zero velocity at the target.

2.1 The hitting motion 9

1. Modulate the entire hitting motion with a constant.

2. Modulate the entire hitting motion with a monotonic function.

More formally the choice we have is specifying a modulator s(||z—x*||) altering the
hitting motion in (2.5) as & = s(||z — z*||)g(x). The first approach corresponds to
simply setting s = s¢ everywhere. The second option corresponds to choosing some
function s that gradually applies the modulation to the motion, achieving s¢ only
at the hitting point. Figure 2.4 shows the effect that these two alternatives have
on the speed of the end effector throughout the hitting motion. To get a smooth,
natural hitting motion without unnatural jerky movements, s can be chosen such
that:

s(||z — «*||) is monotonic for ||z — z*|| € [0, [|z° — z*||] (2.6a)
5(0) = ¢ (2.6b)

s(l2° —z*|) =1 (2.6¢)

s(||Jx — x*||) is smooth (2.6d)

For an example of a suitable choice of s, refer to figure 2.3.

s(llz — a*|))

s(lz — 2~

@l

0 do 0 do
| — || (e

(a) (b)

Figure 2.3: Two examples of good modulators. In 2.3a, the desired speed is higher
than the default speed. In 2.3b the contrary. The distance dy is the distance
between the initial position of the end effector, 20 and the hitting point. These
modulators are constructed by letting an appropriately shifted sine gradually in-
crease or decrease during half a period.

The two approaches each have advantages. Modulating the whole motion with
a constant has the benefit of exactly preserving the relative speed variations present
in the default model. The main advantage of the monotonic function modulator
is that it could be used in a system suffering from the effects of discretization .
In such a system, changing the speed at an early stage in the motion, when the
end effector follows a curved trajectory, could potentially introduce a significant

10 A closer look at the minigolf task

1.5
vl t
Vo \
1t]
= = = Strength Factor (SF)
Q \
§/ SF modulated by constant
f 05l SF modulated by function
ol

0 0.5 1

[l —a=|[, (m)

Figure 2.4: The hitting model strength factor, acquired through GMR from the
GMM represented by the center (black dots) and covariance matrices(green elip-
soids).The dashed line shows the strength factor for the default hitting motion
when started 1 meter from the ball. The red and blue lines show the result when
changing the hitting speed from the default hitting speed vg to the desired hitting
speed v by multiplying the whole motion with a constant (blue) and multiplying
the motion with a smooth monotonic modulator function (red).

deviation from the original target field. Applying the speed change mainly in
the end phase of such a hitting motion would be beneficial, since the end effector
would then move almost in a straight line. Another advantage of using a monotonic
function modulator is that it could be used to adjust the hitting speed pattern of
the default model, should this not be satisfactory. Also, for the case where the
hitting speed is increased, applying the maximum amplification only at the hitting
point is more energy efficient, and may reduce the wear of the robot.

Applying the modulator to the default hitting motion, we can now change the
speed by adjusting s:

&= s(|le —2"[)g(x) (2.7)

2.1.3 Changing the hitting direction

In (2.7) the original DS in (2.5) was altered to have a desired hitting speed. Thus,
one of the necessary properties of the hitting model has been acquired. This model
can be used according to (2.7) to hit the ball with desired speed in the default
direction, 1. In this section we show how to alter the DS in (2.7) to make it
possible to hit the ball in any direction, as presented in [11].

Consider a new hitting direction 1y defined by:

2.2 Choosing the hitting parameters 11

Yy = R(0)vo (2.8)
with
cos(d) —sin(@) 0
R(O) =] sin(@) cos(f) 0 (2.9)
0 0 1

Thus, the 1y is rotated counterclockwise around the z-axis by the angle 6.
With the new direction formalized like this, the change of (2.7) is merely a rotation
of frames of references. First step is to rotate the end effector position clockwise
around the z—axis by angle 0 so that it aligns with the original frame of reference.
Then, the corresponding velocity output from g(R*(#)) must be rotated back to
the new frame of reference. More formally, the following DS allows us to hit with
a desired speed as in (2.7) and in an arbitrary direction defined by the angle 6
against the default hitting direction.

i = s(]|lz — 2)R(0)g(R" (0)z) (2.10)

Note that the scalar-to-scalar mapping s need not be rotated, since it is only
dependent on the distance between the end effector and the hitting point.

2.2 Choosing the hitting parameters

In the previous section, it was shown how a DS hitting model can be used to hit
in different directions and with different speeds than what was used when training
the model. In this section we will concentrate on how to chose these parameters
when facing the minigolf task.

2.2.1 Different fields require different parameters

Consider the simplest possible minigolf field: a flat field without obstacles. Such
a field depicted in figure 2.5. In this case the choice of hitting angle is trivial -
the ball should simply be hit in a straight line towards the hole. Choosing the
speed is also a fairly easy task as there is generally a wide range of valid speeds
that will sink the ball in combination with a certain angle for this type of field.
The vector & € R? denotes the relative position of the hole to the ball projected
in the xy-plane. This vector completely specifies the situation that the player has
to adapt to when choosing the hitting parameters. As can be seen in figure 2.5,
to play the flat field, the player simply has to align the hitting direction ¥y with
this vector.

Now consider the more advanced field in figure 2.6. Here, £ is aligned with 1y,
which for the flat field would mean that the hitting angle should be zero. Due
to the slope of the field, however, hitting the ball along £ in this case will fail.
To compensate for the slope, a hitting angle must be used, rendering a curved
trajectory of the ball. Changing £ means that a new angle and speed must be
selected accordingly. Thus, in order to play minigolf on this field, or on the simpler
field in figure 2.5, the player needs to be able to estimate the hitting angle, § and
hitting speed,v given the situation on the field, &.

12 A closer look at the minigolf task

Figure 2.5: Situation on a flat minigolf field. A reference coordinate system is
placed on the ball. The 2-dimensional vector £ (represented by the light blue
arrow) describes the situation completely. With the default hitting direction along
the z-axis, hitting the ball with angle # in combination with a range of suitable
speeds will result in sinking the ball.

Figure 2.6: Situation on an advanced field. The ball trajectory of a successful
attempt is indicated by the red line. Note that the vector describing the situation,
& is the projection of the vector between the ball and the hole projected in the
zy-plane. In contrast to the flat field in figure 2.5, hitting the ball along the £ will
fail.

2.2 Choosing the hitting parameters 13

2.2.2 The function approximation approach

The conclusion from the discussion in the previous section is that to solve the task
of correctly estimating the hitting parameters, the player must learn a field-specific
nonlinear mapping from the position of the ball to the hitting parameters. More
formally, the mapping;:

h:&eR? = (0,0) € R? (2.11)

must be learned. It should be noted that the problem of choosing hitting angle
and speed for the situation in figure 2.6 is generally redundant, meaning that
there are several different combinations of (6, v) that will lead to sinking the ball.
Two such possibilities are illustrated in figure 2.7. In order to take the function
approximation approach suggested above,we limit the problem to only one of the
possible combinations for each input. While this approach will not cover all the
different possibilities a player has when faced with the minigolf task, it does supply
enough information to solve the task, since it is clearly enough to learn only one
way to hit the ball for each situation.

Moreover, concentrating on only one solution at each input has the benefit of
dramatically reducing the complexity of the problem. To see why, consider the
possible solutions to the situation in figure 2.6. The redundancy of the problem
can be interpreted as different strategies in the choice of parameters. One strategy
is to hit the ball such that it has the lowest speed possible when reaching the
hole. Another strategy is to try to hit the ball as straight as possible, which would
imply a higher hitting speed. Similarly, all different solutions has a corresponding
strategy. Consequently, to find all possible solutions, one would have to learn one
mapping for each strategy.

14 A closer look at the minigolf task

End Effector Ball

Figure 2.7: The figure illustrates a typical situation for advanced fields: for a given
relative position between the ball and the hole, there are several combinations of
hitting speed and hitting angle that will lead to sinking the ball. In this work, we
call each such combination a strategy. Two different strategies are applied in this
figure, one with a high hitting speed and a less curved trajectory, and one where
compensating for the fields slope by launching the ball at a bigger angle allows for
lower hitting speed.

Chapter 3

Learning the hitting
parameters

The conclusion from the previous chapter was that in order to solve the problem
of using the correct hitting angle and hitting speed, we must learn at least one
mapping (0,v) = h(§) (refer to section 2.2.2). For the rest of this thesis the
situation on the field &, which is the input to the learning problem, will be referred
to as simply the input. In this chapter, the different methods used to learn (0, v) =
h(§) are presented and discussed. We do not go into more detail about learning
the default hitting motion, as this is considered given for this work. For a detailed
description on how to learn the default hitting motion used for this work, refer to
[11].

3.1 Learning approaches

Estimation of the mapping i can be performed in various ways. One approach is
to consider at a set of good examples for which one knows the successful combina-
tions of hitting parameters, and then to guess the parameters for a new situation
based on these examples. This is commonly referred to as supervised learning,
and has the obvious disadvantage of being completely dependent on a human as-
sistant providing good examples for training. On the other hand this approach is
attractive in that, as will be presented in chapter 6, a useful model can be built
based only a small set of training points. Moreover, robust and computationally
efficient learning algorithms exist for solving this type of problems.

Another alternative is to take a reinforcement learning approach and let the
robot explore hitting combinations, take feedback (e.g. observing the path of the
ball with computer vision) and evaluate each explored combination of (£,6,v).
Based on the evaluation of explored parameters, the robot should then use these
evaluations to find a good parameter setting for next attempt. One way to do
this is through Cost-Regularized Kernel Regression, proposed in [19]. While this
approach is attractive in that it allows the robot to learn the task autonomously, it

15

16 Learning the hitting parameters

has the major drawback that convergence to a good solution is slow. Similarly to
the first approach, the technique presented in [19] needs good examples to produce
a useful model. However, since these good examples must be found by exploring
parameter space, a vast number of attempts is needed before a good model can
be built. This is not feasible for implementation on a real robot unless the setup
of the environment(i.e. moving the ball and hole etc) is automated.

In this work, we take the supervised learning approach. There are two major
reasons for this choice:

e As outlined in section 2.2.2, we have drastically reduced the complexity of
the learning problem by only considering only one combination of hitting
parameters for each input, i.e. concentrating on learning one strategy. In
supervised learning, the teacher is responsible for providing the robot with
training examples from the same strategy. Taking the reinforcement learning
approach we either have to consider all strategies, or incorporate a mecha-
nism to classify them. Either of these alternatives considerably increases the
problem complexity.

e By choosing the supervised learning approach, we hope not only to find good
estimates of h, but we also believe that taking this approach can give specific
information about the minigolf task and what is important to learn it (e.g. if
it is useful or even necessary to consider the hitting parameters as dependent
variables).

3.2 Training data

As mentioned in section 2.2.2, the problem of estimating the hitting parameters
based on the situation on the field is a redundant problem. There are several
different strategies a player can choose between when deciding how to hit the ball.
Note that within each strategy, there is a range of different angles and speeds that
leads to sinking the ball. It is important to distinguish this redundancy which is
simply due to the fact that the hole is larger than the ball, and the redundancy
due to completely different possibilities to hit the ball such that it reaches the
hole.

Each different strategy corresponds to its own mapping from input space to
the hitting parameters. Thus, to learn all different strategies, one training set per
strategy is needed. While in this work only one strategy is learned, it is important
to note that any attempt at predicting hitting parameters for a new input is bound
to fail if the training examples are samples of different strategies. Hence, care must
be taken to ensure that the same strategy is used for all the training examples.

Consider a set of M observations of good examples® {¢™, 6™, v™}M_. . Follow-
ing the assumption that we are looking for a function (0,v) = h(§), we assume

INote that these examples are not the same as the demonstrations of the default hitting
motion.

3.3 Statistical learning of the hitting parameters 17

that the training set consists of noisy? observations of this function:

{&m, 0™ I =€ ho (€M) + €9, ho (€™) + €0}y (3.1)

with noise €y and €, corrupting the angle and speed part of respectively.
For notational clarity, we introduce the following notation used specifically for
the training data:

2,0,V}={" ho(&™) + €9, ho(§™) + €0 1= (3.2)
with
&' ho(€') + € ho(€') + ¢,
E= : , 0= : and V = ; (3.3)
M ho (M) + €0 ho(€M) + €

3.3 Statistical learning of the hitting parameters

In this work, two different statistical methods are used to learn from good examples
{2,0,V} to predict parameters for unseen inputs £*. The first one, Gaussian
Process Regression, estimates the values hg(£*) and h,(£*) independently of each
other. The second, Gaussian Mixture Regression, is capable of estimating the
underlying model both with and without considering dependency between the
hitting parameters in the predictive model.

3.3.1 Gaussian Process Regression

Consider first the definition of a Gaussian Process (GP)[20]:

Definition 3.1 (Gaussian Process) A Gaussian Process is a collection of ran-
dom variables, any finite number of which have a joint Gaussian distribution.

When using GP:s for function approximation, the function values are considered
random values indexed by the corresponding input values. More specifically, we
associate to each of the functions hy and h, a distribution over functions:

ho(€) ~ GP(mo(€), k(. &) (3.4
ho(€) ~ GP(m, (€), ku(£,€) |

Where m(€) and k(§,&’) are the mean and covariance functions fully specifying
the GP. In this work, we consider only the case where m(£) = 03. Associating
the function with a distribution over functions implies that the function itself is
drawn from that distribution. This is equivalent to considering the function as
a particular realization of the GP to which it is associated. Depending on the
covariance function, we will see that the amount of possible functions drops as we
condition the distribution over functions on the training set.

2The noise on the observations represents the small redundancies caused by the hole being
larger than the ball.

3This may be perceived as very limiting - in fact it is not. It is standard practice when using
GP:s for regression. See e.g. [20]

18 Learning the hitting parameters

Distribution over functions

The observations in (3.1) are noisy examples of the respective functions, so they
have a joint Gaussian distribution according to definition 3.1. We write the dis-
tribution for the vector containing the noisy observations of hy from the training
set:

~ N (0,Ky(Z,E) + o 1) (3.5)

with
ko(€',6Y) ko(€',€%) ... ko(€', €M)
k9(§23 61) k9(§2a 52) s k9(§27 gN)

Ro(EN,€1) ko(EV.€2) ... ko(eN,E)

and where the noise €y in (3.1) are considered samples from the distribution
N(0,02). Similarly, since we can write the distribution for the training set and
one test point hg(£*) as:

he(€Y)
: N Ky(E,2) + 021 Kp(E, &)))
ho(eN) N (0’ < Ky(£, =) Ky(£*,€%) (36)
ho(£7)
where
ko(€h,€%)
—_ % k9(§2,§* = &% 1 * &2 N
KG(‘:7£): : and K@(:"g): (ke(f*ag),kg(f 7€)7"'7k9(§*7€))
k@(ngg*)

We now condition hy(£*) on the training data and obtain:

ho(€)|2,0 ~ N(ho(£"),55) (3.7a)
with estimate
ho(€) = Ko (£*,E)(Kg(E,E) + 0,1) 1O (3.7b)
and predictive variance
55 = Ko(€%,6%) — Ko(¢5,E)(Ko (2, 2)) 'K (2, &) (3.7¢)

Note that the same holds true for h, of course, the only difference is that the 6
and © above should be replaced by v and V respectively.

3.3 Statistical learning of the hitting parameters 19

Choosing covariance function

As in all Bayesian estimation, a certain prior belief or knowledge [21] about the
data generating process is assumed in GPR. One such prior is the very choice
of using GPR - by choosing to do so we have already made assumptions about
the data®. Another prior is the choice of covariance function. As is clear from
equations (3.7a)-(3.7¢), the covariance function ky has a major impact on the
behavior of the function.

The most commonly used covariance function is the Squared Exponential (SE)
covariance function and variants thereof. In this work, a variant of the classic SE
covariance function that allows encoding of different degrees of correlation of func-
tion values for the different dimension in input space is used. When optimizing the
parameters of such a covariance function, an Automatic Relevance Determination
(ARD) takes place. This means that if changes in one of the input dimension has
little or no effect on the corresponding observations, then the same should hold
true for the predicted values. This covariance function will be referred to as the
ARD covariance function.

Definition 3.2 (ARD covariance function) The Automatic Relevance Deter-
mination covariance function for two-dimensional input is defined as:

k(g &) = ge—(E=€NTM(E-¢")

(L0
v=(% 1)

The parameters 1y and ly are the lenghtscales (or kernel width) of the covariance
function. The parameter o is the signal variance.

where

The infinite differentiability of the ARD covariance implies mean square infinite
differentiability of the GP, so any function drawn from this distribution over func-
tions will have smooth characteristics.

The covariance function and its importance to (3.7a) is best illustrated by a
simple example:

—— Example 3.1: GPR

For the purpose of simplicity in this example, we consider only one training point
¢ with noise-free observation 6 = hy(£) and one test point £* for which we want
to find hy(£*). From (3.7b) we have:

he(€7) = (€™, Ok (£,)0

Defining (A¢1, A&)T = ¢ — &€ we get for the covariance functions involved:

B(E"€) = oo (BGUTAER) (g) =1

4According to (3.4) we have assumed that the function values have a joint Gaussian distribu-
tion.

20 Learning the hitting parameters

we insert these into the expression for the estimate hg (&%):
ho(€7) = ge~ (AeiTAGR)g

It is now easy to see one of the central assumptions when using this type of
covariance function: that points close to each other in input space should have
covariant function values. The speed at which the covariance between the test
point and the training point decays is controlled with /; and lo. It is clear from
the final equation that for a distant test point, the estimate will be very close to
zero. This effect is also illustrated in figure 3.1.

In figure 3.1 an example of a two dimensional dataset learned with GPR is
illustrated. Note how the short lengthscale in figure 3.1le gives excellent repro-
duction at the test points, while it is very sensitive to the reduction of the data
set, as is seen in figure 3.1f. Note also how the shorter lengthscales in figures 3.1c
and 3.1e results in a quick drop of the prediction to zero once we move outside the
training range. This effect is not as drastic in 3.1b thanks to the longer lengthscale.
However, this comes at the cost of being less able to account for local variations,
as is clear when comparing figures 3.1a, 3.1c and 3.1e.

Optimizing the hyperparameters

In the definition in 3.2 there are three free parameters, oy, [; and ls. These param-
eters, along with the observation noise variance o, make out the hyperparameters
of the model. As discussed in the previous section, changing these parameters
can have drastic effects on the prediction. The question is thus how to chose the
hyperparameters. Since we have assumed a Gaussian distribution over functions,
with observations corrupted by Gaussian noise, we are fortunate enough to be able
to explicitly calculate the log marginal likelihood of the training data [20]. This
allows us to use Bayesian model selection, i.e. we select the hyperparameters so
as to maximize the marginal likelihood of the training data. To this end, we use
a conjugate-gradient based search algorithm available in [22].

Experiments with the small data sets used in this work indicate that the
marginal likelihood suffers from local optima. In practice, the algorithm is depend-
ing on the user to supply it with a good prior guess as to what the hyperparameters
should be.

3.3 Statistical learning of the hitting parameters 21

(c) GPR with kernel width 0.1. (d) With reduces data set.

(e) GPR with kernel width 0.05 (f) With reduced data set

Figure 3.1: Estimating a nonlinear data set (represented by black dots) with GPR.
The center line indicate the mean of the predictive distribution (i.e. the regression
curve) and the two enveloping lines indicate the confidence range of one standard
deviation (corresponding to ~ 66%). The predictive confidence is also represented
by the background gray scale, where white indicates high confidence. Figures (a),
(c) and (e) show GPR with kernel widths 0.25, 0.1 and 0.03 respectively, and (b),
(d) and (f) show how the model changes when the data set is altered by creating
a gap in input space. The figures were generated with MLdemos [23].

22 Learning the hitting parameters

3.3.2 Gaussian Mixture Regression

Gaussian Mixture Regression (GMR) is a regression technique that uses a proba-
bility density modeled as a Gaussian Mixture Model (GMM) to make predictions
at query points. In this section we describe how a GMM can be used to encode a
statistical model of training data, and how estimations can be found using GMR
on this model.

Gaussian Mixture Models

To estimate the probability density of the training data, a convex combination of
multivariate Gaussian probability density functions is used:

Definition 3.3 The probability of a point v € RP belonging to the GMM is given

by:
K
p(y) = > 7N (v e,)
k=1
where ,
NOv; i, Bp) = ——e e 3 (=) "2 (7= pa1)
(2m) P[5k
and

The GMM is parametrized by K + DK + MK scalar values corresponding to
the priors, means and covariance® matrices of the K Gaussians in the model. Given
the number of Gaussians, or states in the model, the parameters can be optimized
to maximize the likelihood of the training set. A popular choice of algorithm
to optimize the parameters is the Expectation Maximization (EM) algorithm [17].
EM is a local search technique that guarantees monotone increase of the likelihood
of the training data [6]. The EM algorithm needs an initial guess of the parameters.
To get a good starting guess, one option is to cluster the training data using the
k-means technique. All GMMs in this work® are optimized by EM initialized by
k-means.

Conditioning the GMM

Setting v = (y%,~v9)?, where Z and O signifies input and output, we can write,

for one of the Gaussian components in definition 3.3 [15]:

ol =m0 =N (20)i (16). (08 W) @9

D(D+1)
2

5Covariance matrices are symmetric, hence the number of scalar parameters as op-
posed to D2K as the size of the matrix would otherwise imply.

6Note that the GMMs defining the trajectory planning for the default hitting motion are
considered given and are not part of this work. These GMMs are optimized differently, as

described in [8] and [11].

3.3 Statistical learning of the hitting parameters 23

Now we condition the output on the input:

(@] (@]
(O IE k) = N (1O 20 (3.92)
with ol
u = uf + =0T IS0 - i) (3.9b)
and olz
=3P - SRR T IsEe (3.9¢)

We now consider the full GMM with all its components, and estimate the proba-
bility of the output conditioned on the input by marginalizing out the association
between the data point and the Gaussians:

p(°1yF) Zp (Y°]VE, k) (3.10)

with oL
7"-kp(’}/ |’7) k)

S mip(Y0 17, i)

The probability in (3.10) is a linear combination of K Gaussians as in (3.9a)-(3.9¢),

which means that it is a Gaussian itself [24], with mean and covariance according
to:

p(k) = (3.11)

p(°I7F) = N(yO | uOlF, £OM) (3.12a)
O = p(k) " (3.12D)
20T = p(k)so* (3.12¢)

Now, to model the probability density for the hitting angle and the input, we
simply set v = (&£1,&2,0) and construct the GMM according to 3.3 and optimize
the parameters with EM. Then, we set 77 = (&,&)7 and 49 = (0)T. And use
(3.12b) for some unseen input £* to get ﬁg({*). To get iLU(f*) the @ are simply
replaced by v.

To model the dependency between the hitting angle and hitting speed, a joint
probability is used by setting v = (£1,&2,60,v)7, 4T = (£1,&)T and € = (0,v).
Then, (3.12b) is used to get h(£*).

Figure 3.2 shows GMMs with 2,3 and 4 Gaussians fitted to a nonlinear data set
similar to the data sets considered in this work. In figure 3.2b, we see that using
only two Gaussians is enough to capture the main characteristics of this data set.
Figures 3.2d and 3.2f illustrates that adding more Gaussians doesn’t necessarily
imply a better model.

24 Learning the hitting parameters

(d) GMR on GMM with three Gaussians

(e) GMM with four Gaussians (f) GMR on GMM with four Gaussians

Figure 3.2: Figures (a), (c) and (e) shows a GMMs with two, three and four
Gaussians respectively, fitted to the data set represented by black dots. In (b),
(d) and (f), the regression curve for each GMM is plotted, along with lines at one
and two standard deviations from the mean, representing confidence intervals of
~ 66% and ~ 95%.

3.4 Comparison 25

3.4 Comparison

While both GPR and GMR are powerful methods capable of capturing a wide
range of functions, they have some important practical differences. In this section
we discuss how some of those differences might affect how well they will perform
in the context of learning hitting parameters.

3.4.1 Generalization outside range of training data

One expected drawback with GPR is that query points far from any training point
will be almost zero, as discussed in example 3.1. GMR on the other hand, though
it produces predictions of poor quality for inputs far from the training data, will
not set the predictions to zero. This difference is illustrated in figure 3.4. To see
why this might be beneficial to the case of estimating the hitting angle in minigolf,
consider the following example:

—— Example 3.2

A player plays minigolf on a flat field. She has three training examples located
along a line according to figure 3.3. When faced with the new input, she can
choose one of the following two options:

1. Reason that the new input is too far from the training data and that the
information from the training data is therefore useless. Hence, using the
hitting angle zero is as good a guess as any.

2. Reason that even though the new input is outside the range of the training
data, maybe the best guess is to try to generalize the model outside of the
training range.

As is clear from figure 3.3, in this case it would be better to try to generalize the
function outside the training range. Even if doing so means a very bad guess of
the hitting angle that does not result in sinking the ball, it is certainly more likely
to be successful than to hit the ball at zero angle.

It should be noted that while for simple field such as the one in example 3.2 it
is clearly better to try to make use of whatever training data one has, this is not
generally true. If the field in figure 3.3 were replaced by some highly nonlinear
structure, it might well be so that guessing a hitting angle of zero is better than
desperately trying to make use of distant training data. Also, there is a safety
benefit of setting parameters to zero instead of making a bad guess. Experiments
with GMM shows that generalizing outside the training range can result in un-
expected hitting directions, adventuring the safety of a human assistant working
with the robot.

26 Learning the hitting parameters

’\Hole

~ |

e 1

~ - \

~ - l

S o - [

~ |

: o | . : ~ .|
Training points New_ 1n£ut

¢! & & &

Figure 3.3: Flat field with training data and new input. The green dashed lines
indicate the hitting directions for the training data. For the new input, which is
distant and outside the range of the training set, which hitting direction to use is
not clear cut. Two possibilities are shown by the red dashed lines.

1.5

output
o
ot

Training points
GPR
05 | ——GMR

-2 -1 0 1 2 3 4 5 6 7

input

Figure 3.4: A training set with corresponding regression curves from GPR and
GMR. Note how GPR drops to zero quickly outside the training range, while the
GMR curve is a continuation of the “last seen” pattern. The difference in local
precision is also clearly visible, as the GPR curve passes through all the training
data points.

3.4 Comparison 27

3.4.2 Local precision

One appealing aspect of GPR is the possibility to encode a measure of how much
the training data should be trusted. This is done by varying the noise o, in
(3.5). This adjustment in combination with the important lengthscale offers great
flexibility in terms of model complexity. As outlined in 3.3.1, the hyperparameters
are learned by optimizing the marginal likelihood of the training data. In general
terms, this optimization tries to fit the training data well, but it also punishes high
complexity. The result is usually a model that captures the main characteristics
of the data without overfitting.

Increasing model complexity in a GMM is done by increasing the number of
Gaussians in the mixture. With a small number of training data, care must be
taken not to overfit the GMM to the training data by using to many Gaussians.
Figure 3.2f is an example where too many Gaussians have been used, introducing
artifacts not present in the training data. In practice, for small data sets, the
number of Gaussians must be kept quite low. Consequently, the reproductions
at the training input can be significantly different from the actual training data.
Given that the training data is good, it is clearly favorable to have the training
data well reproduced, so in this aspect GPR has a considerable advantage over
GMR.

3.4.3 Encoding dependency between hitting parameters

In section 3.3.1 we used the probabilities p(6,¢) and p(v, &) to predict E(6*|*)
and E(v*|€*). In section 3.3.2 we did the same thing but with different probability
distributions, but we also used p(6,v, &) to find E(6,v|¢).

An ideal model of the mapping would not need to encode any dependency be-
tween the parameters. The purpose of the function h is to predict for a test input
€* the hitting angle hg(¢*) and the hitting speed h,(€*). Since for an ideal such
estimator, these predictions would always be good, there is no reason to consider
any dependency between the hitting parameters. However, this is assuming a per-
fect model, and this is certainly not what GPR and GMR (or any other technique
for that matter) will deliver. The question is thus if considering the dependency
between the hitting parameters improves the quality of the predictions. If this is
the case, then this favors GMR since this is the only method out of the two con-
sidered that is capable of modeling this dependency. Of course, it might still be so
that the local precision of the GPR still outweighs the added benefit of considering
dependency in GMR. In section 6.2.4, we present results that aims at answering
this question.

Chapter 4

Practical framework

As previously mentioned in section 1.1, one of the goals of this master thesis is
to develop a minigolf module for the Barrett WAM arm. In this chapter, the
WAM robot and the RobotToolKit interface are introduced. This is followed by a
presentation of the minigolf module that has been developed for the WAM.

4.1 The Barrett WAM

The Barrett WAM is an advanced robotic arm developed by Barrett Technology.
It has 7 independently controllable degrees of freedom. Four actuators are placed
in the base of the robot and 3 in the wrist, making the WAM very light compared
to conventional robotic arms. The maximum end effector speed of 3 m/s [12] is
largely sufficient for the minigolf task. To prepare the WAM for the minigolf task,
a golf club tool was designed, see figure 4.1. The golf club tool was designed and
built by J.B. Keller at LASA.

The WAM can be controlled by means of a PC integrated in the base of the
robot, or by a separate PC over a realtime CAN-bus that gives access to the
actuators and sensors in the WAM. In this work, we use the latter.

Figure 4.1: The Barrett Whole Arm Manipulator with the custom made golf club
tool attached to the end effector.

29

30 Practical framework

4.1.1 The RobotToolKit

RobotToolKit is a modular software package developed by Eric Sauser at LASA.
New robots, environments, interfaces and control modules can easily be added.

An extensive function library allows for effortless integration of calculations
such as inverse kinematics, inverse dynamics etc. A robot module, simulator and
realtime control interface for the WAM are included in the package.

For simulator use, the control module interacts with a world specified by the
user in a realistic simulated environment. Objects can be added to the world, and
their physical properties such as friction and moments of inertia can be specified.

When operating on the real robot, the RobotToolKit uses the xenomai [25]
linux realtime kernel, updating the control signals sent to the WAM at a frequency
of 500 Hz.

4.2 The minigolf module

The minigolf module for the WAM is a control module written for the Robot-
ToolKit. It uses the extensive function library available in the RobotToolKit to
implement the hitting motion and its adaptation as described in sections 2.1 and
2.1.2. Tt was designed to have platform on which the techniques to learn the
hitting parameters can be evaluated. Besides the basic functionality which is pre-
defined in appendix A, more features have been added when considered necessary
or convenient. Some key features are:

e Control the Robot to perform a hitting motion governed by a DS retrieved
by GMR.

e Load different default hitting models model and hit the ball with a hitting
angle and speed specified by the user.

e Load a GMM representing a hitting parameter training set and use it for
regression to automatically adapt the hitting parameters to the current sit-
uation.

e Get ball and hole positions from the world by communicating over the net-
work with a stereovision system running on another computer.

4.2.1 Operating modes and states

At each iteration, the module will execute code depending on the current state.
The state is determined by an internal variable that can be altered both by the
user and automatically, for example when one state is done. The different states
that the module has are:

Idle When this state is activated the robot is in gravity compensation mode. This
means that a human assistant can effortlessly move the WAM to any joint
configuration. In this state, the WAM will remain in any joint configuration
it is left.

4.2 The minigolf module 31

Rest position In this state, the robot will move the end effector to a predefined
rest position, and align the golf club so that it is perpendicular to the hitting
direction. This is normally the state of the robot before starting a hitting
motion.

Hitting motion This is the state in which the robot performs the hitting motion.
The robot remains in this state until the ball has been hit. When the ball is
hit, the robot automatically switches to the braking state. Figure 4.2 gives
an overview of how the state of the module switches at different stages of
the hitting task.

Braking When the ball has been hit, the hitting model as defined in section 2.1
can no longer be used to govern the motion of the robot, and the control
scheme must be switched. In this state, the robot lifts the golf club slightly,
so as to ensure that the ball is not touched more than once. At the same
time, all joints are smoothly braked. When all the joints are stationary, the
idle state is automatically activated.

The minigolf module can be run in normal mode or simulator mode. The major
difference is that the normal mode has much more strict security policy, and uses
a significantly slower motion when moving to rest position. Another difference is
the way the module gets information on the ball and hole positions from the world.
In simulator mode, the positions of the objects in the simulated environment are
readily available as continuously updated variables. In normal mode, the module
receives information from a remote stereovision system tracking the ball and hole!.

4.2.2 Design

Figure 4.3 presents an overview of how the minigolf module behaves and inter-
acts with its environment. The three different updates represent an important
separation of the module components. When using the RobotToolKit to control
the WAM, a multithread process is run by the underlying robot interface, calling
functions in the module in order of priority.

The reason that the module must be partitioned in this manner is that online
control of the WAM requires the control signals to be updated continuously at a
rate of 500 hertz. Thus, running the entire module in a single thread would have a
very limiting effect on what type of computations could be done in the module. In
the multithread environment, the control signals are continuously updated from a
high priority thread meanwhile more computationally demanding and less critical
tasks such as high level motion planning and interfacing with the user are handled
by lower priority threads.

1Tt might seem unnecessary to track the hole since on a normal minigolf field that would be
stationary. On the fields used in this work however, we move the hole rather than the ball when
changing the situation. This is to let the robot use the same posture for hitting the ball in the
different situations.

32 Practical framework

(a) Rest position

(d) Braking (e) Braking (f) 1dle

Figure 4.2: Figure shows the WAM at different stages in the hitting motion. In
(a), the robot is in its rest position, awaiting to initialize the hitting motion. In
(b), the hitting motion has been started and the robot accelerates the end effector
towards the ball. Coincidentally with the ball being hit in (c), the robot goes into
the braking state. In (d) and (e), the robot is in the braking state, gently lifting
the golf club while braking the joints. When all the joints have stopped moving
(f) the robot goes into idle mode.

World

A

Y Y A
Core Update l::‘ Robot Update H User Update

Figure 4.3: Overview of the interaction between the different components of the
minigolf module and its environment. Arrows in this figure indicate transfer of
information or orders.

Minigolf module

4.2 The minigolf module 33

A The core, robot

f Hitting Model /-~ > InitiglizeNiee and user updates

configurations Robot update run at different

frequencies.
Configurations/- > etc

Core update

User update

Figure 4.4: Basic flowchart of the minigolf module. Note that the core, robot and
user updates are called in three different threads with different priority. Hence,
they are updated at different frequencies, depending on priority and computational
load.

Overview

When the minigolf module is started, the first thing that happens is that it reads a
configuration file and sets up the internal variables as specified. Then, it loads the
hitting model, whose parameters are loaded from a file specified in the configura-
tion file. After the initialization, the module starts to loop its three updates until
module is closed. Figure 4.4 summarizes what happens when the module is called.
Note that the update frequency of the different updates are not constant. The
high priority core update runs at a fixed frequency while the two lower priority
updates may vary in update frequency, depending on what the current state of the
module is. Each update will be treated separately in the three following sections.

Core update

The core update is the highest priority update in the module. When the module
is running, the core update is looping with a frequency of 500 hertz. This means
that the execution of the update must take at most 2 milliseconds. Consequently,
demanding computations and system calls cannot be done in the core update.

Despite this, almost everything in the module is handled by the core update.
In fact, the only things not being done in the core update are the high level
Cartesian motion control with DS through GMR, position updates from the world
and interfacing with the user.

In figure 4.5 the flowchart for one loop of the core update is presented. After
updating the internal state of the module by reading the sensors from the robot,
different things happen depending on what the current state is. The states hitting
motion and rest position both have control schemes in Cartesian task space. These
states are also the only ones that control the end effector orientation. As described
in section 2.1, the end effector orientation is controlled so as to keep the golf club
head perpendicularly aligned to the hitting direction as in figure 4.6. This involves

34 Practical framework

int velocity braking
Read sensors] et
scheme
0: Idle —— "
1: Rest position »| Maintain curren
2: Hitting motion @ 0 joint configuration

3: Braking

Calculate desired
velocity
based on distance
to rest position

Calculate joint angles and
Read the joint accelerations
velocity calculated

in the robot update

Filtering
PID control

Inverse Kinematics I——‘ C Terminate)

End effector orientation
control

Task space velocity control
Joint space torque control

Figure 4.5: Flowchart of one iteration of the core update.

tilting the end effector by a small angle against the global z-axis to compensate
for the angle between the golf club stick and head. After a change is computed in
task space, it is transferred to joint space with inverse kinematics..

The output from the control module is a set of joint torques that should be
applied to the WAM. The desired torques are calculated by doing inverse dynamics
on the system with the current joint angles, current joint velocities and desired
joint accelerations. Then, a PID-controller is used to compensate for the imperfect
model of the robot dynamics used by inverse dynamics.

Note that there is also a filtering step in joint torque control loop. This fil-
tering is necessary because new calculations on desired velocity while in hitting
motion are only performed in the robot update. This has the effect that the de-
sired velocity in task space is constant for a number of iterations (typically 5)
which corresponds to the amount of core updates per robot update. Hence, the
acceleration will be zero for all iterations except right after a new velocity calcula-
tion has been performed. This results in a high frequency component in the joint
acceleration that makes it impossible to use the control loop described here. The
problem is solved by smoothing the joint velocities using a simple finite impulse
response low-pass filter before proceeding to inverse dynamics.

Robot update

The robot update is of lower priority than the core update and runs approximately
once for every five core updates when in hitting motion. Figure 4.7 gives an

4.2 The minigolf module 35

Figure 4.6: End effector orientation.

overview of the robot update.

First, ball position and hole position are perceived either by stereovision or from
the simulator depending on the operation mode. Then, if recording is activated,
all relevant internal variables and state information are saved together with a time
stamp.

The above mentioned steps are carried out at every robot update iteration. If
the current state is hitting motion, the desired velocity is calculated in the robot
update. This is done through GMR on a GMM representing the DS of the hitting
motion, as described in section 2.1.1.

User update

The lowest priority update is the user update. The user can type commands into
a console at any time. Then, when the user update runs, it starts by checking if a
command has been entered in the console, and if a recognized command has been
entered then action corresponding to that command are executed. An example
of a such command is start hitting motion. When the user update receives this
command it will change the internal state of the module to hitting motion. This
means that the robot and core updates will change their behavior according to
figures 4.7 and 4.5.

36 Practical framework

— = =
=

Get world inf
from stere
Calculate ta
velocity bas
Get world inf

Figure 4.7: Flowchart of one iteration of the robot update.

Set hitting pa

Take action depending
on command

Check fo
com

Figure 4.8: Flowchart of one iteration of the user update.

Chapter 5

Experiment setup

Chapter 3 gave a theoretic background of the techniques used to learn the hitting
parameters. Chapter 4 introduced the practical framework for this work. In
this chapter, we present the different setups used to evaluate the different learning
techniques in the context of the minigolf task, as well as measuring the performance
of the minigolf module.

5.1 Data Collection

As explained in 3.1, in this work we use only good examples for learning the
hitting parameters. To collect a data set, the robot is operated by a user that
manually specifies hitting angle and speed. When a successful setting is found,
the hitting parameters are saved to the data set along with the input vector. Once
the collection is complete, the data set is stored in a file.

As discussed in section 3.2, it is vital to impose continuity on the data being
used for training. In practice, this is done by choosing a style or strategy with
which to hit the ball. For an advanced field this is especially important. Of course,
when collecting data it might not always be so easy to know what strategy one
has employed after having found a successful parameter setting. Two strategies
which are easy to follow and have therefore been utilized in this work are:

Minimum speed The goal of this strategy is to hit the ball such that it has the
lowest possible speed at the moment of sinking.

Minimum angle With this strategy, the ball should be hit as closely as possible
along a straight line through the initial ball position and the hole. This often
means that the ball must be hit with a relatively high hitting speed.

5.2 Fields

The level of difficulty of the minigolf task is entirely dependent on the field. Playing
at an easy field, such as a flat field, is not nearly as challenging as facing a field

37

38 Experiment setup

with a curved surface. To evaluate the system, experiments on several different
fields are conducted. The fields used in the simulator are generated as mesh
data in Matlab and imported to RobotToolKit which builds shapes in the robot
environment based on this data. The fields used for the real robot were built by
J.B. Keller at LASA. They are covered with a fake grass material, of the type
often found on a minigolf course. Below follows a description of the different fields
used in this work.

5.2.1 The flat field

The simplest possible minigolf field, the flat field, is the first field used for exper-
iments. For flat fields, it is possible to hit the ball using a wide range of speeds
and still sink the ball provided that the angle is correct. Thus, hitting speeds
has not been learned for data sets collected on the flat field. Thus, for the flat
field experiment, £ was only changed along a straight line, effectively removing one
of its dimensions from the learning problem. Experiments on the flat field were
conducted in the simulator as well as on the real robot.

(a)

Figure 5.1: The flat field in simulator and with real robot.

5.2.2 The multiple hills field

The multiple hills field consists of an upward slope with two bumps. This field is
significantly harder to play than the flat field. The added difficulty is partly due
to the fact that it is harder to guess the hitting parameters. Another reason is
that this field tends to amplify errors in the launch angle, thus forcing the player
to be more precise when executing the hitting motion. The multiple hills field was
used for experiments both in the simulator and with the real robot, see figure 5.2

5.2.3 The regular hill field

This field is often found on real minigolf fields. Those who have tried playing
minigolf on this field know how hard it is. While being very hard to play, inter-
estingly this field has a relatively simple hitting parameter mapping. The only

5.2 Fields 39

(a)

Figure 5.2: The multiple hills field in the simulator and with the real robot.

valid hitting angle for any situation is to hit the ball in a straight line towards
the hole, i.e. along &. Thus, the problem is reduced to finding an appropriate
hitting speed. Despite the simple hitting parameter mapping, the regular hill field
is indeed a very hard field to play. This is because the field has a tendency to
“punish” even a small error in the hitting angle. Thus, to play this field, the user
needs a very precise execution of the hitting motion, which is probably why human
players experience such difficulty with this type of field. The regular hill field was
only implemented in the robot simulator, see figure 5.3.

Figure 5.3: The regular hill field in the simulator.

5.2.4 The arctan field

The arctan field was named by its origins: the shape of the field is a scaled
evaluation of the arctan function over a two-dimensional grid. The arctan field
is by far the most advanced minigolf field considered in this work. Not only is it
very hard to predict hitting parameters, but errors in both launch speed and angle
often lead to severe misses (i.e. the ball does not even come close to the hole).
The arctan field was used for experiments in the simulator, see figure 5.4a. Figure

Experiment setup

40

5.4b is the same field but with a coded color scheme, so that the height variations

can more easily be seen.

N
o
oy “&vﬂﬁwﬁﬁ
ot
R
NN
Q00
R
lodntdetety
R
dnlodntntofadedody
Jnllodedodobolnby
R
RN
QRO
e
e,
Q0
Q0N

N
o
o

N
OO
it
oy
o

oy
0
ol o o

SsIojoul ‘7

0.5

meters

¥

X, meters

(a) and with a colormap to

Figure 5.4: The arctan field in the robot simulator

)

b

(

facilitate perception the field structure

Chapter 6

Results

In this chapter, after analyzing the performance of the minigolf module, we use
the fields presented in section 5.2 to evaluated the modeling performance of GPR
and GMR (refer to chapter 3) in the context of predicting hitting parameters. We
measure the learned skill of the WAM controlled by the minigolf module endowed
with the different learning techniques presented.

6.1 Performance of the minigolf module

Before evaluating the statistical methods used to choose hitting parameters based
on input data, it makes sense to investigate the accuracy with which the system
can actually reproduce a hitting motion with given hitting parameters. The 7
DoF WAM used in this work has a joint angle resolution of 0.008° [12]. However,
it is likely that the change of speed, which can be seen as a perturbation to the
original hitting model DS (refer to section 2.1.2), introduces an error in hitting
angle. Other components in the minigolf module, e.g. the inverse kinematics,
is also likely to introduce an error. As all recordings indicate that there is no
significant error in the hitting speed at the hitting point, we do not analyze the
error in the hitting speed.

6.1.1 Launch angle error

Let the launch error €; be the error introduced by the system when trying to launch
a ball at the desired angle 6, with the resulting actual launch angle 6;:

0, =0+¢ (6.1)
The launch error is likely to be caused by:

e Approach errors, i.e. the angular offset between the approach trajectory
of the end effector and the hitting direction. In the ideal, i.e. when the
approach error is zero, the trajectory of the end effector is aligned with the
desired hitting direction, as explained in section 2.1. The approach error

41

42 Results

can be caused by the perturbation introduced in the hitting model DS by
changing the speed (refer to section 2.1) or the inverse kinematics.

e Error in the control of the end effector orientation, refer to section 4.2.2.

e Nonlinearities on the ball. The dimples on the minigolf surface can affect
the launch angle.

e Nonlinearities on the field surface.

On all data sets from simulation, the launch error is easily acquired since the
tracking of the ball is perfect. One data set was collected on the simulator flat
field specifically for this purpose. 10 trajectories were recorded when trying to hit
with angle —10°, 0° and 10°. As can be seen in figure 6.1, the launch error for
each hitting angle is significantly biased. This is not as serious an issue as one
might think, since the learning technique will automatically compensate for this
bias!. What would be more alarming would have been if there was a large spread
in the error distribution. Of the errors shown in figure 6.1, hitting angle —10° has
the biggest spread with a standard deviation of 0.042°. This is a small error which
will only bear significance on highly challenging fields such as the regular hill field.

Unfortunately, the tracking of the ball from the real robot is not accurate
enough to allow any useful estimation of the launch angle. However, the ex-
periment in the simulator shows strong correlation between approach errors and
launch errors. It is a fair assumption that the correlation between launch error
and approach error is strong also for the real robot. The approach error from a
data set from the real robot can be seen in figure 6.2. All data sets from the real
robot give similar results, indicating that the approach error is indeed of the same
character as in the simulator: heavily biased with a small variance. We are unable
to quantify this variance though. One would have to assume that it is at least as
big as the one obtained from the simulator.

Since models that work well in practice (results shown in section 6.3) have
been built for the multiple hills and flat fields on the real robot, we can at least
conclude that for fields of this complexity, the accuracy is good enough.

| e
g —
—
= I
2]
+
0 ++ ety + Launch angle errors

Figure 6.1: Launch angle errors for a set of 10 attempts for three different angles
on the flat field in the simulator.

11In the training phase, the error is compensated for by the user who simply selects parameters
that renders successful attempts. It makes no difference if the reason the parameters must be
chosen in a certain way is the field features or to compensate for an error introduced by the robot
when hitting.

6.2 Learning techniques 43

° 0 + Approach error

—

= -1 Linear bias estimator
= 2

0 5 10
Hitting angle, °

Figure 6.2: Approach errors for a range of hitting angles. A linear estimator is
plotted to along with the errors to illustrate the linear structure of the bias.

6.2 Learning techniques

In this section, the results from applying GPR, GMR and joint GMR, as described
in chapter 3 are presented.

6.2.1 The flat field

The flat field experiment was conducted in the simulator and on the real robot
with as similar settings as possible. The flat field in the simulator was correctly
scaled and placed at the same position with the same orientation as the flat field
for the real robot.

The inputs in the training set collected for the flat field consists of 11 equally
spaced points along a line. As explained in section 5.2.1, learning the hitting
speed for the flat surface is not interesting. For obvious reasons, this excludes the
joint GMR method described in section 3.4.3 as a viable option. In effect, we are
interested in finding a one-to-one mapping from position along the line in input
space to the hitting angle. To do this, we use GPR and optimize the parameters
of the ARD covariance function for maximum likelihood on the training set and
GMR with EM on the training set. A first glance at the training set in figure
6.3 reveals the linear structure that one would expect from a flat field. Clearly,
a relatively simple model will adequately model the joint angle mapping for this
field.

Playing on the flat field allows for little fantasy. In fact, there is only one
possible strategy (refer to section 3.2), and that is to hit the ball in a straight
line towards the hole?. Thus, assuming high model complexity for the hitting
parameter mapping for this field is likely to result in pointless overfitting. Thus,
only two Gaussians were used for the GMR, and the noise prior for the GPR is
set to a relatively high value before optimizing (refer to section 3.3.1).

We validated the performance of each method based on the mean square error
(MSE) over a validation data set:

Definition 6.1 (MSE) The mean square error of the function estimate hg(€) on

2We do not consider strategies that involve hitting the ball with spin, in which case the ball
could be hit with a wide range of different angles.

44 Results

Training data 95% confidence range

e Validation data Predicted hitting angles

10 SR / : 10 SR /
S
—~10 /] 210 / o

0 0.2 0.4 0 0.2 0.4

Input data, meters Input data, meters

(a) (b)

Hitting angle, degrees
o

Figure 6.3: Resulting regression curves from models (GPR left, GMR right) based
the training set collected on the flat surface with the real robot.

validation set {07, YY" is defined as:

2

MSE = - ”1 (0° — ho(€1))? (6.2)

<
Il

The MSE from the models in figure 6.3 are presented in table 6.2. Although this
measure suggests that GPR performs better than GMR in this situation, it should
be noted that for the flat field, both of the models are satisfactory in that they
both produce values that sink the ball for new inputs.

GPR | GMR
MSE | 0.1643 | 0.2226

Table 6.1: The mean square error resulted from GPR and GMR, predicting the
hitting angle on the validation data set for the flat field.

6.2 Learning techniques 45

6.2.2 The multiple hills field

The experiments on the multiple hills field were conducted both on the robot and
in the robot simulator. As in the experiments with the flat field, the input is
one-dimensional and we consider only the hitting angle for learning. Although we
considering the same one-to-one learning problem here as on the flat surface, there
is an important difference. For the flat field, we only have to learn the hitting angle
and then we can use this angle with any speed that is fast enough to bring the
ball to the hole, and slow enough to not make the ball skip over the hole when
it reaches it. For the multiple hills field, however we are still only learning the
hitting angle, if a hitting speed different from the one used for training is used in
combination with a predicted hitting angle, the attempt will almost certainly fail.
The reason for this is that by choosing a fixed hitting speed we chose a specific
strategy (refer to section 3.2). This means that any hitting angle predicted by a
model built based on this training data belongs to the strategy used for training.

The shape of the field naturally indicates that a more complex hitting angle
mapping than the one for the flat field should be considered. This intuition has
been experimentally verified by restricting the complexity as with the flat field,
which resulted in a very poor model in terms of success rate for attempts at unseen
inputs. Hence, it appears as though the nonlinearities represented by the training
data must be respected to a higher extent. Recall that higher model complexity
can be modeled by increasing the number of Gaussians in the GMM and decreasing
the noise prior and lenghtscales in GPR.

In figure 6.5 the resulting models are shown. Note that even though the setup
was the same in the simulator as on the real experiment, the data collected from the
real robot seem to have a more complex structure than the data set collected from
the simulator. This can be seen very well when comparing figures 6.5a and 6.5c,
paying special attention to the shaded area representing the predictive confidence.
Both models have been optimized with similar noise priors, but have resulted in
very different length scales (refer to definition 3.2). This results in the higher
predictive variance in between the training data.

The difference is illustrated in figure 6.4, where the regression curves for the
simulator and the real robot are plotted together. One tempting conclusion from
figure 6.4 would be that the models are overfitting the training data, and that the
sublinear structure shared by models from the simulator and the real robot are
the true functions. This is not the case though, as experiments show that both
the robot simulator and the real robot need the nonlinear characteristics present
in each model to predict well the hitting angles for new inputs. Using a model
based on training data from the simulator to predict hitting angles on the real
robot fails, and vice verse. Some possible reasons for this discrepancy are:

e Subideal modeling of environment. Great effort was made at modeling the
field and ball correctly, but small details such as the golf ball dimples® and
filt structure of the field material where not included in the simulator models.

3The small depressions on the surface of the golf ball. These have the effect of improving the
aerodynamics of the ball in flight [26], but have no useful function in minigolf.

N
[=2]

Results

Hitting angle, degrees
(e}

5
0
Real
=5 Simulator
|
0 0.2 0.4 0 0.2 0.4

Input data, meters

(a)

Input data, meters

(b)

Figure 6.4: Comparison of the results obtained with training data from the simu-
lator and the real robot for GPR (left) and GMR (right).

e Robot condition. The simulated robot enjoys ideal specified characteristics,
whereas the real robot has been used for previous experiments and may have
changed characteristics slightly due to wire tension differences etc.

e Subideal physical modeling of the golf club tool. The inertia properties of
the golf club are critical to the control of the real robot (see chapter 4).

GPR GMR
Simulator MSE | 0.0751 | 0.0322
Real MSE | 0.1999 | 0.1655

Table 6.2: The MSE of GPR and GMR predicting hitting angles for the validation

data set for the multiple hills field.

6.2 Learning techniques

47

2 4 ‘ 7
505 LA 5 A
) L .
< Vs Vs
o L oS
:5 S rd
£ 5| il St
z

0 01 02 03 04 0 01 02 03 04

Input data, meters

(a) GPR, training set from the simulator

Training data
e Validation data

Input data, meters
(b) GMR, training set from the simulator

95% condifence range

Predicted hitting angles

w0

5 s e
@ g) 5 Pl
~ V4 4

I o~ o

g o Ve ob
=]

< : : /

) -

=)

£ oy 4 A

=

0 01 02 03 04

Input data, meters
(c) GPR, training set from the robot

0 01 02 03 04

Input data, meters
(d) GMR, training set from the robot

Figure 6.5: Resulting models with GPR and GMR for training sets collected from
the real robot and from the robot simulator. Note the higher complexity present
in the data from the real robot.

48 Results

6.2.3 The regular hill field

The regular hill field is an interesting field in that choosing the hitting angle is
trivial (refer to section 5.2.3), yet it is one of the most difficult type of fields one
encounters at a minigolf course. Since there is only a single possible strategy for
finding the hitting angle for each input?, the player needs to learn what hitting
speed should be used for each angle. Since at each point in input space we can
calculate exactly what hitting angle should be used, learning the hitting angle for
this field might seem unnecessary. However, in order to compensate for the biased
error in launch direction (refer to section 6.1.1), the hitting angle must be learned
anyway. Initial experiments using the theoretical hitting angle were performed,
and all attempts failed.

Indeed, as can be seen in figures 6.6b and 6.6d, the structure of the theoretical
hitting angle is clearly present in the learned models. In 6.6a, two Gaussians were
used. This gave only a slightly better result than using only one Gaussian, which
is equivalent to putting all the predictions in a plane. Using three for this data set
invariably results in models with very poor predictions at the validation points. As
can be seen in figure 6.6¢, the optimization of the hyperparameters in GPR have
resulted in a fairly simple model when compared to GMR. In this case, according
to table 6.3, GMR gave a slightly better prediction of the validation data set.

While the estimating the hitting angle for the regular hill is a fairly easy task,
choosing the correct hitting speed less obvious. The ball must be hit fast enough
so that it manages to climb the face of the field, yet slow enough not to skip over
the hole. Experiments show that the regular hill field is more sensitive to high
hitting speeds than the flat and multiple hills fields. Looking at the field layout
in figure 5.3, this makes sense, as the ball will have a vertical velocity component
once it reaches the top of the hill in immediate vicinity to the hole. The tendency
of the regular hill field to punish launch angle errors is stronger for low hitting
speeds. Thus, in search of a hitting speed model that minimizes the sensitivity to
errors in the hitting angle, a fairly hitting speed was used. However, this is a hard
strategy to follow, resulting in a data set that may contain samples of neighboring
strategies. This might explain the comparatively poor results® of GPR versus
GMR in the hitting speed prediction as can be seen in figure 6.7. Also, the poor
ability to generalize far from the training data of GPR as discussed in section
3.4 is very clear. The two leftmost validation points in figure 6.7b are too far
from any training data to get support from the training points, and the prediction
consequently drops as explained in example 3.1. GMR however, generalizes much
better and provides good quality predictions at all validation points.

6.2.4 The arctan field

Compared to the other fields considered in this work, the arctan field is significantly
harder to play. Within a given strategy, the range of possible angles and speeds

4In fact, there is generally a small interval of valid hitting angles, but all of those are samples
of the same strategy. Refer to section 3.2.

5Recall that GPR. generally has better local precision than GMR. This is a disadvantage if
some of the training data points are bad.

6.2 Learning techniques 49

n
)
]
o
=%0]
()
e}
5
)
=
s
N
i=
= S
o .) 02 0 0.2
&y meters —0.2 &x, meters Sy " &, meters
(a) GMR hitting angle (b) GMR hitting angle with theoretical hitting
angle overlaid
Predicted hitting angle ‘ I Theoretical hitting angle‘

o Training data
Validation data

n
O
o
e
a0
)
e
-
o0
=)
<
= —10 | o/ < T Y . - -
= LS
T e i 0.2
15 =02 02 0
&y, meters £, meters &y ¢,, meters
(c) GPR hitting angle (d) GPR hitting angle with theoretical hitting

angle overlaid

Figure 6.6: Figures show hitting angle prediction over input space for the regular
hill field. In (a) and (c), the hitting angle predictions from GMR and GPR respec-
tively is plotted along with the training and validation data. In (b) and (d), the
hitting angle predictions are plotted with the theoretical hitting angle, represented
by the transparent dark surface.

50

Results

1.35
V)
~
g
~ 1.3
g
& P
sp 1.25 .7
g
Z 12
-1.6
0.2
5377 m
gya m
(a) GMR hitting speed
Predicted hitting speed
o Training data
e Validation data
o 1.35 4
~
g
- 1.3 4-
g
ep 1.25 .
g
£ 1.2
—1.6

0.2

517 m
&y, m

(b) GPR hitting speed

Figure 6.7: Figures show hitting speed prediction over input space for the regular
hill field. Note the poor prediction of GPR at the two leftmost validation points.
GPR does a very bad job at predicting those values, as they are to far from any
training data. GMR handles this better in this case.

6.2 Learning techniques

Regular hill | GPR GMR
Simulator MSE, angle | 0.1946 0.1884
Simulator MSE, speed | 0.4460x1073 | 0.3562x10~3

Table 6.3: MSE for GPR and GMR over the validation set for the regular hill
field.

Arctan field | GPR GMR joint GMR
Simulator MSE, angle | 0.22 0.38 0.34
Simulator MSE, speed | 0.12x1073 | 0.059x10~2 | 0.063x10~3

Table 6.4: MSE for GPR and GMR over the validation set for the regular hill
field.

are very narrow. Furthermore, the arctan field offers a huge number of different
strategies, which as discussed in section 3.2 makes the training phase harder, as the
training data all come from one same strategy. In this experiment, the minimum
speed strategy is employed. To make sure that this strategy was employed for all
points in the data set, the field was given a very shallow hole. Using this hole, a
ball with high speed will instantly roll out again if it is sunk, effectively limiting
the choice of hitting parameters to the minimum-speed strategy.

Contrary to the fields in sections 6.2.1, 6.2.2 and 6.2.3 where the learning was
focused on either hitting angle or hitting speed, for the arctan field it is absolutely
critical to learn good models of both the hitting angle and speed. Thus, it may also
be interesting to look at the dependency between these parameters. Therefore, in
addition to GPR and separate GMMSs, we will in this section use a joint GMM
(refer to section 3.3.2) encoding both hitting parameters in one GMM.

The data set consists of 28 evenly spaced points. Since this is a significantly
harder field than the others, it was assumed that a larger training set would be
needed to get an acceptable model. Of the data set, 9 points were chosen at
random® resulting in a training and validation set as in figure 6.10. As established
in section 3.4, GPR is generally more sensitive than GMR to the structure of
the data in input space. In an attempt to reduce the impact of the training set
selection, models were fitted to 1000 different training sets selected randomly from
the data set. The MSE for the hitting angle and speed were collected for these
1000 models, with means given in table 6.4.

Examining the MSE for the models optimized for the randomly selected train-
ing sets, it is clear that no matter how the training data is selected, GPR generally
have a few points with very poor prediction. In fact, the sum in (6.2) is usually
dominated by only a small amount of validation points with very poor predictions
while the majority of the validation points have very good predictions. For GMR,
however, the MSE is more evenly distributed over the validation set.

69 indices from the data set were generated from a uniform integer distribution over the set of
data set indices, excluding the corners of the data set which were always included in the training
set.

52 Results

Hittign angle prediction
I 95% confidence region
o Training data
e Validation data

8
e
E)D
T T N R S
L0l
=]
2 5| | A
bD
A
£-057
s
0.2
gyym
)
£ 10
g
< 5
% 0
=
= =5
R
05
=
0.2
fy,m
4
£ 10
gh
< 5
)
=
= =5
A
£-05
i 1 ‘
1.5
0.2 0.1 0 0.1 0.2
€y7m O €w7m

(c) joint GMR, hitting angle, arctan field

Figure 6.8: Hitting angle for the arctan field. The predictions over the input
grid are given by the colored surface. A confidence envelop corresponding to two
standard deviations of the predictive distributions are plotted as gray transparent
surfaces.

6.2 Learning techniques

53

Hittign speed prediction
I 95% confidence region
o Training data
e Validation data

Hitting speed, m/s

€Z7m

(a) GPR, hitting speed, arctan field

Hitting speed, m/s

Eaym

(b) separate GMR, hitting speed, arctan field

Hitting speed, m/s

oy m

(c) joint GMR, hitting speed, arctan field

Figure 6.9: Hitting speed for the arctan field. The predictions over the input
grid are given by the colored surface. A confidence envelop corresponding to two
standard deviations of the predictive distributions are plotted as gray transparent

surfaces.

54 Results

—0.7495 e -
g > o o o ¢ Training data
{3: ° ® ® Validation data
—1.3495 e @ o @
—0.1641 0.1359

L

Figure 6.10: The Data set used for the arctan field experiment. Green points
indicate points used for training, and red points indicate 9 randomly selected
points used for validation.

6.3 System performance

In sections 6.1 we studied briefly the performance of the robot and in section 6.2
we studied how well the learning algorithms predicts the hitting parameters. In
this section, we will present how good a minigolf player the robot is when used
in combination with the different learning techniques. This is done by letting the
learning algorithms predict hitting parameters for a set of randomly selected test
points in input space. The world is then set up so as to match one of these test
points, and the robot hits with the predicted parameters. The same procedure
is done for all the points in the test input set, and the result of each attempt is
recorded. Table 6.5 summarizes the results from these experiments.

For the arctan field, the results presented here are from models trained with
the training set in figure 6.10, as well as models trained with the full data set, i.e.
all the points in figure 6.10.

The first comment one can make about the results are that the WAM endowed
with the minigolf module and either of the proposed learning algorithms is a very
good minigolf player, likely superior to most humans”. Even though all learning
algorithms give a high succes rate for all fields, the overall pattern is that GPR is
slightly better. This is interesting, as for most fields the opposite was indicated
by comparing MSE in the previous section. One possible reason for this may that
the high MSE for GPR tends to derive only from a small subset of the validation
data, while the majority of the validation points have very good predictions.

A less surprising piece of information is that attempts on the real robot tend to
have a lower succes rate attempts for the same field in the simulator. As discussed
in section 6.2.2, the training data from from the real robot has a higher inherent
complexity. This is one reason that the results might be worse for the real robot
versus the simulator. Another reason is the error in the execution of a hitting
motion with desired hitting parameters. As discussed in section 6.1, while such an
error has not been quantified for the real robot, the default assumption would have
to be that the error is more significant on the real robot than on the simulator.

"It has been experimentally established that it is far superior to the author.

6.3 System performance 55

Table 6.5: Results from letting the robot play minigolf with the different learning
algorithms and fields.

| Situation | Method | Attempts | Successful [Ratio |
Flat field
Simulator GPR 30 30 | 100%
Real Robot GPR 10 10 100%
Simulator GMR 30 30 | 100%
Real Robot GMR 10 9 90%
Multihill field
Simulator GPR 30 26 7%
Real Robot GPR 10 8 80%
Simulator GMR 30 28 83%
Real Robot GMR 10 8 80%
Regular hill field
Simulator GPR 30 26 87%
Simulator GMR 30 24 80%
Arctan field
Simulator GPR 30 28 93%
Simulator GMR 30 24 80%
Simulator joint GMR 30 25 83%
Arctan field, full data set
Simulator GPR 30 30 | 100%
Simulator GMR 30 24 0%
Simulator joint GMR. 30 27 90%

Chapter 7

Conclusion and Future
Works

In this thesis we addressed the problem of adapting robot motions, specificly we
looked at hitting motions in the context of a minigolf task. Although this is a very
narrow topic, the results are likely transferable to similar problems, i.e. situations
were a basic governing model should be parametically altered so as to fulfill a task
goal under differnt circumstances.

The basic assumption that our proposed method depends on are that to solve
the minigolf task, it is only necessary to find one combination of valid hitting
parameters for each situation. While this does not allow the robot to choose the
strategy, it was assumed that this would be enough to solve the task and that
learning of the task using this approach would require only a small set of training
examples.

The results indicate that this assumption was indeed reasonable. Using be-
tween 10 and 30 data points, the two evaluated statistical learning techniques
both resulted in robust models of the hitting parameter. The comparison of theese
methods was a large part of this work, but deciding on a winner is not clear cut.
In terms of usability, there is no difference since in practice, both models must
be provided with prior information (number of Gaussians for GMR and reason-
able inital guesses of the hyperparameters for GPR) depending on the field and
the structure of the training data in input space. In terms of the performance of
the robot when used in combination with the developed minigolf module and the
different methods, a small advantage can be assigned to GPR. It should also be
noted that the increase in computational cost when increasing the size of training
data is much bigger for GPR! than for GMR.

The shortcoming of our approach is the necessity of a human assistant deliver-
ing good examples to the robot. Although evidently a high performance learning
system has been implemented, the system is not independent in that it can teach
itself. Also, the system proposed here does not improve when new good examples

IDoing GPR involves inverting a matrix the size of the training set, refer to (3.7b)

57

58 Conclusion and Future Works

are found. The system could be incrementally improved by continuously adding
newfound succesful data to the training set.

An interesting area of future research would be to combine the system pro-
posed here with the reinforcement learning approach presented in [19] so as to
quickly have a functioning model that has the role of guiding the parameter se-
lection to the correct strategy as well as providing a reasonable starting point for
exploration. Furthermore, extending such a system to also exploit information
from bad examples is an interesting and hard problem that if solved could lead to
a more human-like learning scheme in robotics.

Bibliography

1]

2]

S.Schaal, “Is imitation learning the route to humanoid robots?,” Cognitive
Sciences, vol. 3, no. 6, pp. 233-242, 1999.

S.Schaal, A.Ijspeert, and A.Billard, “Computational approaches to motor
learning by imitation,” Philosophical Transactions: Biological Sciences (The
Royal Society), vol. 1431, pp. 537-547, 2003.

D.Kulic, W.Takano, and Y.Nakamura, “Incremental learning, clustering and
hierarchy formation of whole body motion patterns using adaptive hidden
markov chains,” The International Journal of Robotics Research, vol. 27,
no. 7, pp. 761-784, 2008.

J. Hwang, R.Arkin, and D. Kwon, “Mobile robots at your fingertip: Bezier
curve on-line trajectory generation for supervisory control,” in Proceedings of
the IEEE/RSJ IROS, 2003.

R.Andersson, “Agressive trajectory generator for a robot ping-pong player,”
IEEE Control Systems Magazine, vol. 9, no. 2, pp. 15-21, 1989.

S. Calinon, F. Guenter, and A. Billard, “On learning, representing and gen-
eralizing a task in a humanoid robot,” IEEE Transactions on Systems, Man
and Cybernetics, Part B, vol. 37, no. 2, pp. 286—-298, 2007.

A. Tjspeert, J.Nakanishi, and S.Schaal, “Movement imitation with nonlinear
dynamical systems in humanoid robots,” in Proceedings of the International
Conference on Robotics and Automation (ICRA), 2002.

S. M. Khansari-zadeh and A. Billard, “Imitation learning of Globally Stable
Non-Linear Point-to-Point Robot Motions using Nonlinear Programming,”
in Proceeding of the 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2010.

S. M. Khansari Zadeh and A. Billard, “Bm: An iterative method to learn sta-
ble non-linear dynamical systems with gaussian mixture models.” Proceeding
of the International Conference on Robotics and Automation (ICRA 2010),
2010, p. 2381-2388, 2010.

59

60

Bibliography

[10]

[16]

[17]

[20]

[21]

[22]

[23]

[24]

[25]

J.Kober, K.Mulling, O.Kromer, C. Lampert, B.Scholkopf, and J.Peters,
“Movement templates for learning of hitting and batting,” in Proceeding of
the International Conference on Robotics and Automation (ICRA), 2010.

S. M. Khansari-zadeh and A. Billard, “Autonomous dynamical system ap-
proach to generate human-like robot motions with non-zero velocity at a
target.” Submitted to International Conference of Robotics and Automation,
ICRA, 2011.

B. T. Inc., “Whole arm manipulator.” http://www.barrett.com.
W. M. S. Federation. http://www.minigolfsport.com.

M. Ramanantsoa and A. Durey, “Towards a stroke construction model,” In-
ternational Journal of Table Tennis Science, vol. 2, pp. 97-114, 1994.

S. Calinon, Robot Programming by Demonstration: A Probabilistic Ap-
proach. EPFL/CRC Press, 2009. EPFL Press ISBN 978-2-940222-31-5, CRC
Press ISBN 978-1-4398-0867-2.

S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “learning movement prim-
itives,” in international symposium on robotics research (isrr2003), springer,
2004.

N. M. L. A. P. Dempster and D. B. Rubin, “Maximum likelihood from in-
complete data via the em algorithm,” Journal of the Royal Statistical Society.
Series B (Methodological), vol. 39, no. 1, pp. 1-38, 1977.

L.Ljung and T.Glad, Reglerteori, Flervariabla och olinjara metoder. Stu-
dentlitteratur AB, 1997.

J.Kober, E.Oztop, and J.Peters, “Reinforcement learning to adjust robot
movements to new situations,” in Proceesings of Robotics: Science and Sys-
tems (RSS), 2010.

C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine Learn-
ing. MIT Press, 2006.

B. Scholkopf and A. Smola, Learning with Kernels. MIT Press, 1999.

C. E. Rasmussen, “Gpml” Matlab package available at
http://www.gaussianprocess.org.

B. Noris, “Mldemos.” Educational software for illustrating Machine Learning
algorithms, accesible at http://mldemos.b4silio.com/.

R. Yates and D. Goodman, Probabilty and stochastic processes. John Wiley
and Sons Inc., 2005.

X. community. www.xenomai.org.

Bibliography 61

[26] C. Smith, N. Beratlis, K. Squires, E. Balaras, and M. Tsunoda, “Direct nu-
merical simulations of the flow around a golf ball: Effect of rotation,” in 61st
Annual Meeting of the APS Division of Fluid Dynamics, American Physical
Society, 2008.

Appendix A

Original project description

A.1 Learning to Control Planar Hitting Motions
of a Robotic Arm in a Mini-Golf-like Task

This project will acquaint the student with the complexity of learning a control
law for a multi-degrees of freedom robot from human demonstrations. We consider
a task that mimics some of the difficulties one encounters when playing mini-golf.
In such a task, hitting the golf ball with the right orientation and speed is crucial
and requires years of training. In this project, the student will further improve
and implement tools developed in the laboratory for estimating such control laws.
Control laws are expressed as non-linear autonomous dynamical systems. Estima-
tion is done through non-linear optimization of Gaussian Mixture Models under
stability constraints. The learned model will be implemented both in a dynamic
simulator and on a seven degrees of freedom robot arm in a realistic mock-up of a
mini-golf terrain. Work will proceed as follow:

1. Teaching a simple point-to-point control law (15%): The student will first
get acquainted with the theory, i.e. the statistical tools used for modeling
the data and the dynamical systems approach for modeling robot motion.
Then, the student will collect a set of demonstrations on the real robot to
learn various control strategies to hit a ball with the right orientation and
right speed so that the ball will reach the hole. We will first consider flat
terrains.

2. Implementation in the robot’s simulator (15%): Using an existing dynamic
simulator of the robot, a new C++ module should be written such that it
enables a user to easily communicate with the simulator to perform different
task such as: loading a DS model, executing motions, recording motions,
and controlling hitting directions.

3. Learning a model to control the hitting direction (50%): To reach this goal,
the student should first determine the minimum necessary input and output

63

64

Original project description

variables that can be used to control the hitting direction in flat and hilly ter-
rains. Then these variables are collected for a set of successful demonstrated
putting motions generated in the simulator. Finally, a probabilistic model
of the collected data set is learned using two statistical methods: Gaussian
Mixture Model and Gaussian Process Regression. The performance of each
method is evaluated and compared against each other in terms of general-
ization of the task to areas not seen during the demonstration and also its
robustness to perturbations.

. Implementation on the robot (20%): In this step, the student extends the

C++ code written for the robot’s simulator. The new code should be able to
communicate with both the stereo vision system and the robot in real-time.
Besides, the learned model in step 3 should be slightly modified to match
well the real experiment set-up.

