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The derivatives of the SEDS optimization cost function and
constraints with respect to the learning parameters

S. Mohammad Khansari-Zadeh and Aude Billard

I. INTRODUCTION

This technical report provides supplementary information
for the optimization problems defined for Stable Estimator of
Dynamical Systems (SEDS) [1]. The source code of SEDS
can be downloaded from:

http:// lasa.epfl.ch/sourcecode/

Reading of this report is not necessary for researchers who
only want to use SEDS learning algorithm. The report is
aimed at helping those persons who want to develop SEDS,
or to write their own optimization program. Reading and
understanding of [1] is a prerequisite for this document. All the
formulations reported here are developed for SEDS models;
however, they can also be used for general Gaussian Mixture
Model (GMM) formulations. In the case of the latter, they
should be slightly modified to consider the general form of
GMM. Hopefully, the report should be clear enough to help
readers in that.

To facilitate reading of the paper, a list of main variables and
mathematical notations is provided in Table I. Furthermore, to
have a clean summary of the final results, all the derivatives
are summarized in Tables II-VI.

The remainder of this document is structured as follows.
Section II gives a recap of the SEDS formulations taken from
[1]. Sections III and V provide analytical formulations to
compute the derivatives of MSE and Likelihood cost functions
with respect to the optimization parameters, respectively. In
addition, Sections IV and VI present two alternative optimiza-
tion problems that automatically satisfy 4 out of 5 constraints
of the original optimization problem through a change of
variable. Finally, Section VII defines a proper mathematical
representation of the optimization constraints, and provides
the analytical derivatives of these constraints with respect to
the optimization parameters.

II. SEDS FORMULATION

Let us consider a robot motion that is defined as an
autonomous Dynamical System (DS). We formulate this DS
as a mixture of Gaussian functions:

ˆ̇
ξ = f̂(ξ) =

K∑
k=1

hk(ξ)(Akξ + bk) (1)

where 
Ak = Σk

ξ̇ξ
(Σk

ξ )
−1

bk = µk
ξ̇
−Akµk

ξ

hk(ξ) = P(k)P(ξ|k)∑K
i=1 P(i)P(ξ|i)

(2)
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TABLE I
NOMENCLATURE

Variable Type (size) Description
d Scalar Dimension of DS
ξ Vector (d) Input variable, e.g. position
ξ∗ Vector (d) Target point
ξ̇ Vector (d) Output variable, e.g. velocity
π Scalar Prior of the Gaussian function
µ Vector (d) Center of the Gaussian function
Σ Matrix (2d× 2d) Covariance matrix of the Gaussian fun.
f Function (d 7→ d) Unknown original DS
J Scalar Optimization cost function
θ Structure Optimization parameters
L Matrix (2d× 2d) Lower triangle matrix
A Matrix (d× d) Matrix of the linear DS
b Vector (d) Intersection point of the linear DS
I Matrix Identity matrix
0 Vector Zero vector
K Scalar Number of Gaussian functions
N Scalar Number of demonstrations

Notation Description

(̂.) Estimated value of a variable
(.)k Of the k-th Gaussian function
(.)T Transpose of a Vector/matrix
(.)t,n The t-th datapoint of the n-th demonstration
(.)i The i-th component of a vector
(.)ij The (i, j)-th component of a matrix
(vec)ξ Sub-vector of vec with indices 1:d

(vec)ξ̇ Sub-vector of vec with indices d+1:2d

(mat)ξ Sub-matrix of mat with indices (1:d, 1:d)
(mat)ξ̇ξ Sub-matrix of mat with indices (d+1:2d, 1:d)
(.)1:c,1:c A slice of a matrix with indices (1:c, 1:c)
0{i} A zero vector with the exception that its i-th component is 1

0{ij} A matrix of zeros with the exception that its (i, j)-th
component is one.

0{ij} A matrix of zeros with the exception that its (i, j)
and (j, i)-th components are one.

adj(.) Adjugate of a matrix
tr(.) Trace of a matrix
ln(.) The natural logarithm

Chol(.) Cholesky decomposition of a matrix

P(ξ|k) = 1√
(2π)d|Σk

ξ |
e−

1
2 (ξ−µk

ξ )
T (Σk

ξ )
−1(ξ−µk

ξ ) (3)

The unknown parameters of f̂(ξ) that should be learned
based on demonstrations are the priors πk = P(k), means
µk and covariance matrices Σk of the k = 1..K Gaussian
functions. Given a set of N demonstrations {ξt,n, ξ̇t,n}T

n,N
t=0,n=1

of the motion, these parameters can be estimated by solving
an optimization problem under the constraint of ensuring the
model’s global asymptotic stability. We consider two different
optimization cost functions: 1) log-likelihood, and 2) Mean
Square Error (MSE), which we explain next.

http://lasa.epfl.ch/sourcecode/
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TABLE II
DERIVATIVES OF THE MSE COST FUNCTION TAKEN FROM SECTION III.

θ = {π1..πK ;µ1
ξ..µ

K
ξ ; Σ1

ξ..Σ
K
ξ ; Σ1

ξ̇ξ
..ΣK

ξ̇ξ
}

Cost function: minθ J(θ) =
1

2N

∑N
n=1

∑Tn

t=0(
ˆ̇
ξt,n − ξ̇t,n)T (

ˆ̇
ξt,n − ξ̇t,n)

Indices range: k ∈ 1..K, i ∈ 1..d

∂J
∂πk = 1

πkN

∑N
n=1

∑Tn

t=0 h
k(ξt,n)(

ˆ̇
ξt,n − ξ̇t,n)T (Akξt,n − ˆ̇

ξt,n)

∂J

∂µk
ξ,i

= 1
N

∑N
n=1

∑Tn

t=0 h
k(ξt,n)

(
(ξt,n − µk

ξ )
T (Σk

ξ )
−10{i}

)
(
ˆ̇
ξt,n − ξ̇t,n)T (Akξt,n − ˆ̇

ξt,n)

∂J

∂Σk
ξ,ij

= 1
N

∑N
n=1

∑Tn

t=0 h
k(ξt,n)(

ˆ̇
ξt,n − ξ̇t,n)T

(
0.5(ξt,n − µk

ξ )
T (Σk

ξ )
−10{ij}(Σk

ξ )
−1(ξt,n − µk

ξ )(A
kξt,n − ˆ̇

ξt,n)

− 0.5tr
(
(Σk

ξ )
−10{ij})(Akξt,n − ˆ̇

ξt,n)−Ak0{ij}(Σk
ξ )

−1ξt,n
)

j ∈ 1..i

∂J

∂Σk
ξ̇ξ,ij

= 1
N

∑N
n=1

∑Tn

t=0 h
k(ξt,n)(ξt,n − µk

ξ )
T0{ij}(Σk

ξ )
−1ξt,n j ∈ 1..d

TABLE III
DERIVATIVES OF THE ALTERNATIVE MSE COST FUNCTION TAKEN FROM SECTION IV.

θ = {π̃1..π̃K ;µ1
ξ..µ

K
ξ ;L1

ξ..L
K
ξ ;A1..AK}

Cost function: minθ J(θ) =
1

2N

∑N
n=1

∑Tn

t=0(
ˆ̇
ξt,n − ξ̇t,n)T (

ˆ̇
ξt,n − ξ̇t,n)

Indices range: k ∈ 1..K, i ∈ 1..d

Change of variables: π̃k = ln(πk), Lk
ξ = Chol(Σk

ξ )

∂J
∂π̃k = 1

N

∑N
n=1

∑Tn

t=0 h
k(ξt,n)(

ˆ̇
ξt,n − ξ̇t,n)T (Akξt,n − ˆ̇

ξt,n)

∂J

∂µk
ξ,i

= 1
N

∑N
n=1

∑Tn

t=0 h
k(ξt,n)

(
(ξt,n − µk

ξ )
T (Σk

ξ )
−10{i}

)
(
ˆ̇
ξt,n − ξ̇t,n)T (Akξt,n − ˆ̇

ξt,n)

∂J

∂Lk
ξ,ij

= 1
2N

∑N
n=1

∑Tn

t=0 h
k(ξt,n)

(
(ξt,n − µk

ξ )
T (Σk

ξ )
−1Φ(Σk

ξ )
−1(ξt,n − µk

ξ )− tr
(
(Σk

ξ )
−1Φ

))
(
ˆ̇
ξt,n − ξ̇t,n)T (Akξt,n − ˆ̇

ξt,n)

where Φ = 0{ij}(Lk)T + Lk(0{ij})T j ∈ 1..i

∂J

∂Ak
ij

= 1
N

∑N
n=1

∑Tn

t=0 h
k(ξt,n)(ξt,n − µk

ξ )
T0{ij}ξt,n j ∈ 1..d

Reconstruction of GMM from the optimization parameters: πk = eπ̃
k

/(
∑K

i=1 e
π̃i

), Σk
ξ = Lk

ξ (L
k
ξ )

T , Σk
ξ̇ξ

= AkΣk
ξ

TABLE IV
DERIVATIVES OF THE LIKELIHOOD COST FUNCTION TAKEN FROM SECTION V.

θ = {π1..πK ;µ1
ξ..µ

K
ξ ; Σ1..ΣK}

Cost function: minθ J(θ) = − 1
N

∑N
n=1

∑Tn

t=0 logP(ξt,n, ξ̇t,n|θ)

Indices range: k ∈ 1..K

∂J
∂πk = − 1

N

∑N
n=1

∑Tn

t=0

(P(ξt,n,ξ̇t,n|k)
Pt,n − 1

)
∂J

∂µk
ξ,i

= − 1
N

∑N
n=1

∑Tn

t=0
P(k)P(ξt,n,ξ̇t,n|k)

Pt,n (0{i})T
[
I (Ak)T

]
(Σk)−1

(
[ξt,n; ξ̇t,n]− µk

)
∀i ∈ 1..d

∂J

∂Σk
ij

= − 1
N

∑N
n=1

∑Tn

t=0
P(k)P(ξt,n,ξ̇t,n|k)

Pt,n

(
0.5(ξt,n − µk)T (Σk)−10{ij}(Σk)−1(ξt,n − µk)− 0.5tr

(
(Σk)−10{ij})

+ (ξt,n − µk)T (Σk)−1Sk
)

∀i ∈ 1..2d, j ∈ 1..i

where Sk =

[
0(

−Ak
[
0{ij}]

ξ
+
[
0{ij}]

ξ̇ξ

)
(Σk

ξ )
−1µk

ξ

]
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TABLE V
DERIVATIVES OF THE LIKELIHOOD COST FUNCTION TAKEN FROM SECTION VI.

θ = {π̃1..π̃K ;µ1
ξ..µ

K
ξ ;L1..LK}

Cost function: minθ J(θ) = − 1
N

∑N
n=1

∑Tn

t=0 logP(ξt,n, ξ̇t,n|θ)

Indices range: k ∈ 1..K

Change of variables: π̃k = ln(πk), Lk = Chol(Σk)

∂J
∂π̃k = − eπ̃

k

N

∑N
n=1

∑Tn

t=0

(P(ξt,n,ξ̇t,n|k)
Pt,n − 1

)
∂J

∂µk
ξ,i

= − 1
N

∑N
n=1

∑Tn

t=0
P(k)P(ξt,n,ξ̇t,n|k)

Pt,n (0{i})T
[
I (Ak)T

]
(Σk)−1

(
[ξt,n; ξ̇t,n]− µk

)
i ∈ 1..d

∂J

∂Lk
ij

= − 1
N

∑N
n=1

∑Tn

t=0
P(k)P(ξt,n,ξ̇t,n|k)

Pt,n

(
0.5(ξt,n − µk)T (Σk)−1Φ(Σk)−1(ξt,n − µk)− 0.5tr

(
(Σk)−1Φ

)
+ (ξt,n − µk)T (Σk)−1S̃k

)
i ∈ 1..2d, j ∈ 1..i

where Φ = 0{ij}(Lk)T + Lk(0{ij})T , S̃k =

[
0(

−AkΦξ +Φξ̇ξ

)
(Σk

ξ )
−1µk

ξ

]
Reconstruction of GMM from the optimization parameters: πk = eπ̃

k

/(
∑K

i=1 e
π̃i

), Σk = Lk(Lk)T

TABLE VI
CONSTRAINTS FORMULATION AND THEIR DERIVATIVES FOR THE ALTERNATIVE LIKELIHOOD AND MSE COST FUNCTIONS TAKEN FROM SECTION VII.

Indices range: k ∈ 1..K, c ∈ 1..d

Constraint: Ak + (Ak)T < 0

The equivalence of the constraint used in the code: C(k−1)d+c : (−1)c+1 |B1:c,1:c| < 0

∂C(k−1)d+c

∂π̃k = 0 (valid for both the MSE and Likelihood cost functions)

∂C(k−1)d+c

∂µk
i

= 0 i ∈ 1..d (valid for both the MSE and Likelihood cost functions)

The derivatives specific to the MSE cost function:

∂C(k−1)d+c

∂Lk
ij

= 0 i ∈ 1..d, j ∈ 1..d

∂C(k−1)d+c

∂Ak
ij

= (−1)c+1tr
(
adj
(
B1:c,1:c

)[
0{ij}]

1:c,1:c

)
i ∈ 1..d, j ∈ 1..d

The derivative specific to the Likelihood cost function:

∂C(k−1)d+c

∂Lk
ij

= (−1)c+1tr
(
adj
(
B1:c,1:c

)
X1:c,1:c

)
i ∈ 1..2d, j ∈ 1..i

where Φ = 0{ij}(Lk)T + Lk(0{ij})T , Ψ = (−AkΦξ +Φξ̇ξ(Σξ)
−1, X = Ψ+ (Ψ)T
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III. MEAN SQUARE ERROR OPTIMIZATION

Mean Square Error (MSE) is a means to quantify the
accuracy of estimations based on demonstrations, and it is
defined as:

min
θ

J(θ) =
1

2N

N∑
n=1

Tn∑
t=0

(
ˆ̇
ξt,n − ξ̇t,n)T (

ˆ̇
ξt,n − ξ̇t,n) (4)

subject to

(a) bk = −Akξ∗

(b) Ak + (Ak)T < 0

(c) Σk
ξ > 0

(d) 0 < πk ≤ 1

(e)
∑K

k=1 π
k = 1

∀k ∈ 1..K (5)

where ˆ̇
ξt,n = f̂(ξt,n) are computed from Eq. (1). The

optimization parameters for this objective function are: θ =
{π1..πK ;µ1

ξ ..µ
K
ξ ; Σ1

ξ ..Σ
K
ξ ; Σ1

ξ̇ξ
..ΣK

ξ̇ξ
}. Solving the above opti-

mization requires a user to provide the derivative of the cost
function w.r.t. the optimization parameters. These derivatives
are provided next.

A. Derivatives w.r.t. Priors πk

∂J

∂πk
=

1

2N

N∑
n=1

Tn∑
t=0

∂J

∂
ˆ̇
ξt,n

∂
ˆ̇
ξt,n

∂πk
∀k ∈ 1..K (6)

The partial derivatives ∂J

∂
ˆ̇
ξt,n

and ∂
ˆ̇
ξt,n

∂πk can be computed
from Eqs. (7) and (8), respectively:

∂J

∂
ˆ̇
ξt,n

=
1

N

N∑
n=1

Tn∑
t=0

(
ˆ̇
ξt,n − ξ̇t,n)T (7)

∂
ˆ̇
ξt,n

∂πk
=

hk(ξt,n)

πk
(Akξt,n − ˆ̇

ξt,n) (8)

Substituting Eqs. (7) and (8) into Eq. (6) yields:

∂J

∂πk
=

1

πkN

N∑
n=1

Tn∑
t=0

hk(ξt,n)(
ˆ̇
ξt,n − ξ̇t,n)T (Akξt,n − ˆ̇

ξt,n)

(9)

B. Derivatives w.r.t. Means µk
ξ

Since µk
ξ is a d-dimensional vector, we need to compute the

derivative w.r.t. each component of µk
ξ separately:

∂J

∂µk
ξ,i

=
1

2N

N∑
n=1

Tn∑
t=0

∂J

∂
ˆ̇
ξt,n

∂
ˆ̇
ξt,n

∂µk
ξ,i

∀i ∈ 1..d, k = 1..K (10)

The partial derivative ∂J

∂
ˆ̇
ξt,n

is given by Eq. (7), and ∂
ˆ̇
ξt,n

∂µk
ξ,i

is:

∂
ˆ̇
ξt,n

∂µk
ξ,i

= hk(ξt,n)
(
(ξt,n − µk

ξ )
T (Σk

ξ )
−10{i}

)
(Akξt,n − ˆ̇

ξt,n)

(11)
where 0{i} has the dimension of d.

C. Derivatives w.r.t. Means µk
ξ̇

By substituting directly the constraint Eq. (5)-(a) into Eq.
(1), the partial derivative ∂

ˆ̇
ξt,n

∂µk
ξ̇,i

is always zero because f̂(ξ) no

longer depends on µk
ξ̇
. Therefore, µk

ξ̇,i
can be dropped from

the list of the optimization parameters. In fact, at each iteration
µk
ξ̇

is exploited to satisfy this constraint, and its value can be
directly computed from Eq. (5)-(a).

D. Derivatives w.r.t. Σk
ξ

Since Σk
ξ is a d× d matrix, we will compute the derivative

w.r.t. its each component separately. Since Σk
ξ is a symmetric

matrix, we compute the derivatives only for the components
on the lower triangle matrix.

∂J

∂Σk
ξ,ij

=
1

2N

N∑
n=1

Tn∑
t=0

∂J

∂
ˆ̇
ξt,n

∂
ˆ̇
ξt,n

∂Σk
ξ,ij


∀i ∈ 1..d

∀j ∈ 1..i

∀k ∈ 1..K

(12)

The partial derivative ∂
ˆ̇
ξt,n/∂Σk

ξ,ij is:

∂
ˆ̇
ξt,n

∂Σk
ξ,ij

= −hk(ξt,n)Ak0{ij}(Σk
ξ )

−1ξt,n+

hk(ξt,n)

2

(
(ξt,n − µk

ξ )
T (Σk

ξ )
−10{ij}(Σk

ξ )
−1(ξt,n − µk

ξ )

− tr
(
(Σk

ξ )
−10{ij}))(Akξt,n − ˆ̇

ξt,n) (13)

where 0{ij} has the dimension of d× d.

E. Derivatives w.r.t. Σk
ξ̇ξ

The partial derivatives of the cost function w.r.t. the com-
ponents of Σk

ξ̇ξ
are

∂J

∂Σk
ξ̇ξ,ij

=
1

2N

N∑
n=1

Tn∑
t=0

∂J

∂
ˆ̇
ξt,n

∂
ˆ̇
ξt,n

∂Σk
ξ̇ξ,ij


∀i ∈ 1..d

∀j ∈ 1..d

∀k ∈ 1..K
(14)

The partial derivative ∂
ˆ̇
ξt,n/∂Σk

ξ̇ξ,ij
is:

∂
ˆ̇
ξt,n

∂Σk
ξ̇ξ,ij

= hk(ξt,n)0{ij}(Σk
ξ )

−1ξt,n (15)

where 0{ij} has the dimension of d× d.
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IV. ALTERNATIVE MSE OPTIMIZATION

Though the MSE optimization provided in Section III
is sufficient to estimate a stable DS, its performance can
be significantly increased through a change of optimization
parameters. Let us define:{

π̃k = ln(πk)

Lk
ξ = Chol(Σk

ξ )
(16)

where Lk
ξ is a d×d lower triangle matrix. Since Σk

ξ are positive
definite matrix, their Cholesky decomposition Lk

ξ always exist.
Furthermore, as it was pointed out before, by substituting Eq.
(5)-(a) into Eq. (1), we can define the evolution of motion
with:

ˆ̇
ξ = f̂(ξ) =

K∑
k=1

hk(ξ)Ak(ξ − ξ∗) (17)

Considering Eqs. (16) and (17) and defining the optimization
parameters to be θ = {π̃1..π̃K ;µ1

ξ ..µ
K
ξ ;L1

ξ ..L
K
ξ ;A1..AK}, the

alternative MSE optimization can be expressed as:

min
θ

J(θ) =
1

2N

N∑
n=1

Tn∑
t=0

(
ˆ̇
ξt,n − ξ̇t,n)T (

ˆ̇
ξt,n − ξ̇t,n) (18)

subject to

Ak + (Ak)T < 0 ∀k ∈ 1..K (19)

where ˆ̇
ξt,n = f̂(ξt,n) are computed from Eq. (17). Once

the optimization finished, the parameters of GMM can be
reconstructed as follows:


πk = eπ̃

k

/(
∑K

i=1 e
π̃i

)

Σk
ξ = Lk

ξ (L
k
ξ )

T

Σk
ξ̇ξ

= AkΣk
ξ

(20)

In fact the proposed change of parameters allows us to
automatically satisfy the last three optimization constraints
of Eq. (5). The first constraint of Eq. (5) is also removed
since it is directly considered in Eq. (17). The derivatives of
the new optimization problem are provided in the following
subsections.

A. Derivatives w.r.t. Priors πk

∂J

∂π̃k
=

1

2N

N∑
n=1

Tn∑
t=0

∂J

∂
ˆ̇
ξt,n

∂
ˆ̇
ξt,n

∂πk

∂πk

∂π̃k
∀k ∈ 1..K (21)

The partial derivatives ∂J/∂
ˆ̇
ξt,n and ∂

ˆ̇
ξt,n/∂πk are given

by Eqs. (7) and (8), and the derivative ∂πk/∂π̃k is simply:

∂πk

∂π̃k
= eπ̃

k

(22)

B. Derivatives w.r.t. Means µk
ξ

These derivative can be similarly computed from Eq. (10).

C. Derivatives w.r.t. Lk

Lk
ξ is a d× d lower triangle matrix. The partial derivatives

of the cost function w.r.t. its parameters are:

∂J

∂Lk
ξ,ij

=
1

2N

N∑
n=1

Tn∑
t=0

∂J

∂
ˆ̇
ξt,n

∂
ˆ̇
ξt,n

∂Lk
ξ,ij


∀i ∈ 1..d

∀j ∈ 1..i

∀k ∈ 1..K
(23)

The partial derivative ∂
ˆ̇
ξt,n/∂Lk

ξ,ij is:

∂
ˆ̇
ξt,n

∂Lk
ξ,ij

=
hk(ξt,n)

2

(
(ξt,n − µk

ξ )
T (Σk

ξ )
−1Φ(Σk

ξ )
−1

(ξt,n − µk
ξ )− tr

(
(Σk

ξ )
−1Φ

))
(Akξt,n − ˆ̇

ξt,n) (24)

where Φ = 0{ij}(Lk
ξ )

T + Lk
ξ (0

{ij})T , and has the dimension
of d× d..

D. Derivatives w.r.t. Ak

The partial derivatives of the cost function w.r.t. the com-
ponents of Ak are

∂J

∂Ak
ij

=
1

2N

N∑
n=1

Tn∑
t=0

∂J

∂
ˆ̇
ξt,n

∂
ˆ̇
ξt,n

∂Ak
ij


∀i ∈ 1..d

∀j ∈ 1..d

∀k ∈ 1..K

(25)

The partial derivative ∂
ˆ̇
ξt,n/∂Ak

ij is:

∂
ˆ̇
ξt,n

∂Ak
ij

= hk(ξt,n)0{ij}ξt,n (26)

where 0{ij} has the dimension of d× d.

V. LIKELIHOOD OPTIMIZATION

The likelihood optimization is defined as:

min
θ

J(θ) = − 1

N

N∑
n=1

Tn∑
t=0

logP(ξt,n, ξ̇t,n|θ) (27)

subject to the same constrains as given by Eq. (5). In Eq. (27),
P(ξt,n, ξ̇t,n|θ) is computed from:

P(ξt,n, ξ̇t,n;θ) =
K∑

k=1

P(k)P(ξt,n, ξ̇t,n|k)
{
∀n ∈ 1..N
t ∈ 0..Tn (28)

where P(k) = πk/(
∑K

i=1 π
i) is the prior and P(ξt,n, ξ̇t,n|k)

is the conditional probability density function given by:

P(ξt,n, ξ̇t,n|k) = N (ξt,n, ξ̇t,n;µk,Σk) =
1√

(2π)2d|Σk|
e−

1
2 ([ξ

t,n,ξ̇t,n]−µk)T (Σk)−1([ξt,n,ξ̇t,n]−µk) (29)

The optimization parameters for this objective function are:
θ = {π1..πK ;µ1

ξ ..µ
K
ξ ; Σ1..ΣK}. Next we compute these

derivatives with respect to θ.
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A. Derivatives w.r.t. Priors πk

∂J

∂πk
= − 1

N

N∑
n=1

Tn∑
t=0

∂J

∂Pt,n

∂Pt,n

∂πk
∀k ∈ 1..K (30)

where for simplicity we shorten the notation P(ξt,n, ξ̇t,n;θ) to
Pt,n. The partial derivatives ∂J

∂Pt,n and ∂Pt,n

∂πk can be computed
from Eqs. (31) and (32), respectively:

∂J

∂Pt,n
= − 1

N

N∑
n=1

Tn∑
t=0

1

Pt,n
(31)

∂Pt,n

∂πk
= P(ξt,n, ξ̇t,n|k)−Pt,n (32)

Substituting Eqs. (31) and (32) into Eq. (30) yields:

∂J

∂πk
= − 1

N

N∑
n=1

Tn∑
t=0

(P(ξt,n, ξ̇t,n|k)
Pt,n

− 1
)

(33)

B. Derivatives w.r.t. Means µk
ξ

Special attention should be considered in computing deriva-
tives with respect to µk

ξ . As it is already discussed in Section
III, there is a direct relation between µk

ξ and µk
ξ̇

through
the constraint Eq. (5)-(a). By substituting the corresponding
value of µk

ξ̇
into the cost function given by Eq. (27), the

optimization no longer depends on µk
ξ̇
. Hence, we can drop

µk
ξ̇

from the optimization parameters and the constraint Eq.
(5)-(a) is always satisfied. However, this substitution should
be considered when computing the derivatives with respect to
µk
ξ :

∂J

∂µk
ξ,i

= − 1

N

N∑
n=1

Tn∑
t=0

∂J

∂Pt,n

(∂Pt,n

∂µk
ξ,i

+
d∑

j=1

∂Pt,n

∂µk
ξ̇,j

∂µk
ξ̇,j

∂µk
ξ,i

)
(34)

The partial derivative ∂J
∂Pt,n is given by Eq. (31), and

∂Pt,n/∂µk
ξ,i is:

∂Pt,n

∂µk
ξ,i

= (0{i})T (Σk)−1
(
[ξt,n; ξ̇t,n]− µk

)
P(k)

P(ξt,n, ξ̇t,n|k) ∀i ∈ 1..d (35)

where 0{i} is a vector of dimension 2d.
The partial derivative ∂Pt,n/∂µk

ξ̇,j
can be computed simi-

larly to Eq. (34); however by replacing 0{i} with 0{i+d}.

The derivative
∂µk

ξ̇,j

∂µk
ξ,i

can be computed by differentiating Eq.

(5)-(a) with respect to µk
ξ,i:

∂µk
ξ̇,j

∂µk
ξ,i

= Ak
ji ∀i ∈ 1..d, j ∈ 1..d (36)

Thanks to matrix multiplication, we can significantly sim-
plify the multiplications by substituting Eqs. (35), (36), and
(31) into Eq. (34), and compute ∂J

∂µk
ξ

:

∂J

∂µk
ξ

= − 1

N

N∑
n=1

Tn∑
t=0

P(k)P(ξt,n, ξ̇t,n|k)
Pt,n

[
I (Ak)T

]
(Σk)−1

(
[ξt,n; ξ̇t,n]− µk

)
∀i ∈ 1..d (37)

where I has the dimension of d× d. Note that ∂J
∂µk

ξ

is now a

vector of dimension d, and each ∂J
∂µk

ξ,i

is in fact one element
of this vector.

C. Derivatives w.r.t. Means µk
ξ̇

By substituting directly the constraint Eq. (5)-(a) into Eq.
(1), the partial derivative ∂Pt,n

∂µk
ξ̇,i

is always zero because f̂(ξ)

no longer depends on µk
ξ̇
. Therefore, µk

ξ̇
can be dropped from

the list of the optimization parameters. For more information
see Section V-B.

D. Derivatives w.r.t. Σk

Similar to Section V-B, we need to consider the effect of
substitution of µk

ξ̇
when computing the derivatives of Σk.

All Σk are 2d × 2d symmetric matrices, hence we compute
the derivatives only for the components on the lower triangle
matrix.

∂J

∂Σk
ij

= − 1

N

N∑
n=1

Tn∑
t=0

∂J

∂Pt,n

(∂Pt,n

∂Σk
ij

+
∂Pt,n

∂Σk
ij

∣∣∣∣∣
µk
ξ̇

) 
∀i ∈ 1..2d

∀j ∈ 1..i

∀k ∈ 1..K
(38)

where ∂Pt,n

∂Σk
ij

∣∣∣
µk
ξ̇

corresponds to the portion of derivatives due

to the effect of µk
ξ̇
, and can be computed from:

∂Pt,n

∂Σk
ij

∣∣∣∣∣
µk
ξ̇

=
d∑

l=1

d∑
m=1

∂Pt,n

∂µk
ξ̇,l

∂µk
ξ̇,l

∂Ak
lm

∂Ak
lm

∂Σk
ij

(39)

The partial derivative ∂Pt,n/∂Σk
ij is:

∂Pt,n

∂Σk
ij

= 0.5
(
(ξt,n − µk)T (Σk)−10{ij}(Σk)−1(ξt,n − µk)

− tr
(
(Σk)−10{ij}))P(k)P(ξt,n, ξ̇t,n|k) (40)

where 0{ij} has the dimension of 2d× 2d.
The partial derivative ∂Pt,n

∂Σk
ij

∣∣∣
µk
ξ̇

could be significantly sim-

plified if it is computed in the matrix form (because we can
drop the both summations on l and m):

∂Pt,n

∂Σk
ij

∣∣∣∣∣
µk
ξ̇

= P(k)P(ξt,n, ξ̇t,n|k)(ξt,n − µk)T (Σk)−1Sk(41)

where Sk is a vector of dimension 2d and is equal to:

Sk =

[
0(

−Ak
[
0{ij}]

ξ
+
[
0{ij}]

ξ̇ξ

)
(Σk

ξ )
−1µk

ξ

]
(42)
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In Eq. (42), 0 is a zero column vector of dimension d, and
0
{ij}
ξ and 0

{ij}
ξ̇ξ

are partitions of 0{ij}. Finally, by substituting
Eqs. (40), (41), and (31) into Eq. (38) we have:

∂J

∂Σk
ij

= − 1

N

N∑
n=1

Tn∑
t=0

P(k)P(ξt,n, ξ̇t,n|k)
Pt,n(

0.5(ξt,n − µk)T (Σk)−10{ij}(Σk)−1(ξt,n − µk)

− 0.5tr
(
(Σk)−10{ij})+ (ξt,n − µk)T (Σk)−1Sk

)
(43)

VI. ALTERNATIVE LIKELIHOOD OPTIMIZATION

Similarly to Section IV, we can define an alternative likeli-
hood optimization so that 4 out of 5 optimization constraints
can be automatically satisfied through a change of variable:

{
π̃k = ln(πk)

Lk = Chol(Σk)
(44)

where Lk are 2d × 2d lower triangle matrices. Since Σk

are positive definite matrices, their Cholesky decomposition
always exist. The alternative likelihood optimization can be
expressed as:

min
θ

J(θ) = − 1

N

N∑
n=1

Tn∑
t=0

logP(ξt,n, ξ̇t,n|θ) (45)

subject to

Ak + (Ak)T < 0 ∀k ∈ 1..K (46)

where θ = {π̃1..π̃K ;µ1
ξ ..µ

K
ξ ;L1..LK}. Once the optimization

finished, the parameters of GMM can be reconstructed as
follows:

{
πk = eπ̃

k

/(
∑K

i=1 e
π̃i

)

Σk = Lk(Lk)T
(47)

In fact the proposed change of parameters allows us to
automatically satisfy the last three optimization constraints
of Eq. (5). The first constraint of Eq. (5) is also removed
since it is directly considered in Eq. (17). The derivatives of
the new optimization problem are provided in the following
subsections.

A. Derivatives w.r.t. Priors πk

∂J

∂π̃k
= − 1

N

N∑
n=1

Tn∑
t=0

∂J

∂Pt,n

∂Pt,n

∂πk

∂πk

∂π̃k
∀k ∈ 1..K (48)

The partial derivatives ∂J/∂Pt,n, ∂Pt,n/∂πk and ∂πk/∂π̃k

are given by Eqs. (31), (32), and (22), respectively.

B. Derivatives w.r.t. Means µk
ξ

These derivative can be similarly computed from Eq. (34).

C. Derivatives w.r.t. Lk

Lk is a 2d×2d lower triangle matrix. The partial derivatives
of the cost function with respect to the optimization parameters
are:

∂J

∂Lk
ij

= − 1

N

N∑
n=1

Tn∑
t=0

∂J

∂Pt,n

∂Pt,n

∂Lk
ij


∀i ∈ 1..2d

∀j ∈ 1..i

∀k ∈ 1..K
(49)

The partial derivative ∂Pt,n/∂Lk
ij is:

∂J

∂Lk
ij

= − 1

N

N∑
n=1

Tn∑
t=0

P(k)P(ξt,n, ξ̇t,n|k)
Pt,n(

0.5(ξt,n − µk)T (Σk)−1Φ(Σk)−1(ξt,n − µk)

− 0.5tr
(
(Σk)−1Φ

)
+ (ξt,n − µk)T (Σk)−1S̃k

)
(50)

where Φ = 0{ij}(Lk)T + Lk(0{ij})T , and has the dimension
of 2d× 2d. The 2d dimension vector S̃k is:

S̃k =

[
0(

−AkΦξ +Φξ̇ξ

)
(Σk

ξ )
−1µk

ξ

]
(51)

where 0 is a zero column vector of dimension d.

VII. OPTIMIZATION CONSTRAINTS AND THEIR
DERIVATIVE

In this section we provide formulations for the optimization
problems defined in Sections IV and VI, where the only con-
straint is the negative definiteness of matrices Ak. To ensure
this constraint, we first need to define a method to mathemat-
ically determine whether a matrix is negative definite. There
are several ways to ensure whether a symmetric matrix B is
negative definite, among which the two most famous ones are
1) all eigenvalues of B are strictly negative, 2) using Sylvesters
criterion. In our work, we use Sylvesters criterion because it
provides us with an analytical formulation to verify negative
definiteness (compared to computing eigenvalues which is an
iterative procedure).

Sylvester’s criterion states that a Hermitian matrix B is
negative-definite if and only if the determinant of all i-th order
leading principal minors1 are negative if i is odd and positive
if i is even [2]. Each d× d symmetric matrix has d principal
minors. By defining Bk = Ak + (Ak)T , the optimization
constraint given by Eq. (46) is equal to:

C(k−1)d+c : (−1)c+1 |B1:c,1:c| < 0

{
∀c ∈ 1..d

∀k ∈ 1..K
(52)

where we use C(k−1)d+c to refer to the ((k − 1)d + c)-th
constraint. Thus for a GMM model composed of K Gaussian
functions, there are K × d constraints that should be satisfied

1The i-th principal minor of a d × d symmetric matrix B is a quadratic
upper-left part of B, which consists of matrix elements in rows and columns
from 1 to d.
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during the optimization. The derivative of these constraints
with respect to πk and µk are always zero, irrespective of
which cost function is used:

∂C(k−1)d+c

∂π̃k
= 0

{
∀c ∈ 1..d

∀k ∈ 1..K
(53)

∂C(k−1)d+c

∂µk
i

= 0


∀c ∈ 1..d

∀i ∈ 1..2d

∀k ∈ 1..K

(54)

For the MSE optimization defined by Eq. (18) we have:

∂C(k−1)d+c

∂Lk
ij

= 0


∀c ∈ 1..d

∀i ∈ 1..d

∀j ∈ 1..i

∀k ∈ 1..K

(55)

∂C(k−1)d+c

∂Ak
ij

= (−1)c+1tr
(
adj
(
B1:c,1:c

)[
0{ij}]

1:c,1:c

)
∀c ∈ 1..d

∀i ∈ 1..d

∀j ∈ 1..d

∀k ∈ 1..K
(56)

where 0{ij} has the dimension of d × d. For the likelihood
optimization defined by Eq. (45) we have:

∂C(k−1)d+c

∂Lk
ij

= (−1)c+1tr
(
adj
(
B1:c,1:c

)
X1:c,1:c

)
∀c ∈ 1..d

∀i ∈ 1..2d

∀j ∈ 1..i

∀k ∈ 1..K
(57)

where X is a d× d symmetric matrix defined by:

Φ = 0{ij}(Lk)T + Lk(0{ij})T (58)

Ψ =
(
−AkΦξ +Φξ̇ξ

)
(Σξ)

−1 (59)

X = Ψ+ (Ψ)T (60)

where Φ is a 2d× 2d matrix.
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