
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. G. De Micheli, président du jury
Dr M. Mattavelli, directeur de thèse

Prof. E. Charbon, rapporteur
Dr J. Janneck, rapporteur
Dr M. Raulet, rapporteur

Dataflow Programming for Systems Design Space
Exploration for Multicore Platforms

THÈSE NO 5069 (2011)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 28 juin 2011

À LA FACULTÉ SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
GROUPE DU LSM

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2011

PAR

Christophe Lucarz

2

Version résumée

De nos jours, les systèmes de traitement de l’information deviennent de plus en
plus complexes dû au nombre croissant d’applications exigeantes présentes sur
ces systèmes, surtout dans le domaine du traitement du signal et de la vidéo.
Progressivement, la conception de tels systèmes devient un vrai défi, et ce pour
trois raisons:

L’avènement de l’ère du parallélisme La précédente ère durant laquelle
les performances des processeurs séquentiels doublent tous les ans est défini-
tivement terminée. Aucune amélioration significative de leurs performances
est à noter dans les cinq dernières années. Tous les projets visant à passer la
barrière des 4 Ghz ont été annulés par les fabricants. Afin de continuer cette
amélioration des performances et du pouvoir de calcul des processeurs, il n’y
a pas d’autre choix que d’implanter plusieurs processeurs tout en essayant de
réduire la consommation énergétique globale.

Les programmes de références ne sont plus adaptés Jusqu’à main-
tenant, l’utilisation de programmes de références écrit d’une manière séquentielle
était l’approche la plus viable pour exploiter au mieux le potentiel de chaque
nouvelle génération de processeurs dit séquentiels. Mais l’avènement cette nou-
velle ère du parallélisme bouleverse les méthodes de conception et d’implantation
des systèmes, résultant en l’obsolescence de la représentation séquentielle des
programmes de références qui deviennent de plus en plus dur à utiliser comme
point de départ pour concevoir ces nouveaux systèmes.

La demande grandissante des fonctionnalités et des performances
En plus de la miniaturisation des systèmes et de la nécessité de satisfaire des
contraintes sévères liés aux ressources, les fonctionnalités et la complexité d’une
large gamme de systèmes tend à augmenter, les rendant comparables aux or-
dinateurs personnels classiques. La multitude des contraintes de temps et de
qualité rend la conception architecturale de ces systèmes très problématique,
tant au niveau de l’allocation des ressources qu’à celui de l’ordonnancement
des tâches. Le probléme devient très préoccupante et constitue un défi sans
précédent.

Les systèmes devenant de plus en plus complexes due à l’implantation d’appli-
cations exigeantes, il devient très difficile de les concevoir au plus proche de
leur implantation finale en utilisant les langages respectifs à chaque plateforme
(VHDL/Verilog et C/C++). Une solution à ce problème serait de créer un nou-

3

veau niveau d’abstraction pour la conception de ces systèmes. Mais la création
de ce nouveau niveau suppose qu’il soit capable de modéliser correctement les
niveaux sous-jacents, ce qui implique que le parallélisme exposé à un niveau
supérieur d’abstraction puisse être applicable et utilisable aux niveaux inférieurs.
En conséquence, la portabilité du parallélisme envers les différentes plateformes
cibles doit être un point central dans l’élaboration de cette nouvelle couche
d’abstraction et des méthodologies associées. La création d’un nouveau niveau
d’abstraction peut présenter le risque de s’éloigner des caractéristiques réelles de
l’implantation et de n’avoir plus assez de précision à haut niveau pour permettre
d’obtenir des implantations efficaces.

Ce travail examine la solution qui consiste à utiliser un langage flux de
données, en l’occurence Cal, pour servir de base à ce nouveau niveau d’abstrac-
tion. La résolution du problème passe par l’élaboration d’un environnement
logiciel permettant l’exploration de l’espace des solutions à haut niveau pour fa-
ciliter l’implantation d’applications complexes sur des plateformes hétérogènes.
Cela consiste à extraire des métriques à travers des analyses statiques et dy-
namiques des programmes Cal dans le but de guider les algorithmes heuris-
tiques de partitionnement et d’ordonnancement afin de trouver les meilleures
configurations possibles. Cela implique aussi le développement des méthodes
visant à guider les concepteurs pour l’optimisation des programmes à haut
niveau. Au final, c’est une méthodologie holistique qui a été élaborée sous forme
de procédure pour guider les concepteurs depuis la spécification des applications
jusqu’à leur implantation.

Alors que dans les approches traditionnelles, les différents niveaux d’abstrac-
tions doivent être tous abordés pour tester une solution d’implantation, le lan-
gage Cal comme base d’un nouveau niveau d’abstraction, permet aux concep-
teurs de séparer clairement trois aspects orthogonaux : fonctionnalité, partition-
nement et implantation. Cette séparation des ces trois aspects de conception
facilite l’exploration de l’espace des solutions et permet l’accroissement de la
productivité dans la conception des systèmes complexes.

Ce travail a permis la création de plusieurs outils aidant à la conception :
(1) des outils de profilage pour l’extraction de métriques à partir de programmes
flux de données Cal et (2) des outils d’exploration qui incluent des algorithmes
heuristiques de partitionnement et d’ordonnancement mais aussi d’évaluation
des performances. Ces outils ont été développés dans le but de guider les con-
cepteurs dans leur exploration de l’espace des solutions afin d’arriver à des
implantations efficaces. Une méthode systématique a également été élaborée et
appliquée avec succès à des applications tirées du monde industriel. Grâce aux
mesures extraites des programmes Cal et aux méthodologies d’optimisation, les
facteurs limitant d’un décodeur vidéo MPEG-4 Simple Profile ont été identifiés
et optimisés, résultant en une augmentation des performances d’un facteur 7.

Mots clés Flux de données, parallélisme, exploration des solutions, méthode
de conception, abstraction haut niveau, plateformes hétérogènes, profilage, par-
titionnement, ordonnancement, évaluation des performances, génération de code.

4

Abstract

Nowadays processing systems are asked to support increasing complex and de-
manding high-performance applications, especially in the signal processing and
video processing domains. The design of these systems are becoming extremely
challenging because of several factors. Among them the most relevant are:

The advent of the parallel era The sequential general purpose proces-
sor era during which performance increased more than two-fold every year, is
definitely over. There has been no further increase in leading edge processor per-
formance for over five years now and all projects aimed at breaking the 4 GHz
barrier have been canceled by the major processor manufacturers. So as to
continue increasing the computing power of computer systems, manufacturers
have to use several slower processing cores, while trying to minimize the power
consumption.

Sequential reference softwares are no longer adapted Up to now,
sequential software have proven to be the winning approaches for exploiting the
potential of each new generation of sequential processors. But the advent of
the new parallel era changes the way systems are implemented and sequential
reference software used as specification base are no longer appropriate starting
points for designing complex systems.

The increasing demanding functionality and performance In parallel
with miniaturization and the necessity to handle severely resource-constrained
implementation platforms, the functionality and complexity of large classes of
systems continue to increase making them from many respects comparable to
ordinary desktop personal computers. A mixture of different types of timing
and quality constraints make overall system architecture design, resource allo-
cation and scheduling more important and challenging topics than ever before.
Additionally, the market asks companies to build efficient systems while using
the minimum of resources as fast as possible.

Due to the level of complexity reached by high-demanding digital systems, it
is no longer reasonable to handle such systems at low levels of abstraction (e.g.
VHDL/Verilog or C/C++). A solution to the problem is to higher the level of
abstraction at which the design of such systems is performed. But for raising
the level of abstraction, the need for portable parallelism is primordial so as to
be able to implement all kind of systems on a wide range of target platforms.
Thus, enabling portable parallelism should be a primordial requirement for the

5

development of this level of abstraction and the associated methodology and
tools. However, creating a new abstraction layer may incur in the risk of loos-
ing contact with implementation details and accuracy necessary for achieving
efficient implementations.

This work focuses on tackling such problem by using the Cal dataflow lan-
guage as main abstraction at the basis of the design process. The attempt of
solving such challenging problem consists in building an environment for en-
abling high level design space exploration of complex parallel application for
seamless implementation on heterogeneous platforms using Cal. It includes
the extraction of metrics (static analysis and profiling) with the intention to use
them as a basis for partitioning and scheduling heuristics aiming at finding the
most efficient partitions. It also implies developing methodologies for guiding
designers in the optimization of the high level specifications. Finally, a holistic
approach has been defined in form of a complete design flow starting from Cal
specifications down to implementations.

Where traditional approaches are faced to traverse, at each iteration of the
design flow, all the levels of abstraction for testing a design solution, the use of
Cal as an abstraction layer enables designers to separate clearly three domains
of concerns that are made orthogonal: functionality, partitioning and imple-
mentation. The separation of these domains of concerns eases the design space
exploration and leads to an increase in productivity in the design of complex
systems.

This work leads to the creation of several new design tools: (1) profiling tools
which extracts metrics from Cal programs and (2) exploration tools which in-
clude partitioning and scheduling heuristics and performance evaluation. These
tools have been implemented with the aim of guiding designers in the high level
design space exploration of systems in order to achieve efficient implementation.
A systematic methodology has been also elaborated and has been tested suc-
cessfully on a real world applications. Thanks to the metrics extracted from the
Cal program, the design bottlenecks of a MPEG-4 SP video decoder have been
identified and removed at a high level of abstraction, leading to improvements
up to 7 times faster implementation.

Keywords Dataflow, parallelism, design space exploration, design flow,
high level of abstraction, heterogeneous platforms, profiling, partitioning, schedul-
ing, performance evaluation, code generation.

6

Acknowledgements

I would sincerely like to thank Dr. Marco Mattavelli for having supervised me
during all these years. Special thanks for having involved me in so many MPEG
meetings and in the ACTORS European project, it was very rewarding.

Several parts of my research work would have not been possible without the
collaboration with many co-workers. I would like to thank – in alphabetical or-
der – Dr. Jani Boutellier, Dr. Johan Eker, Abdallah Elguigy, Pascal Faure, Dr.
Jörn W. Janneck, Dr. Andreas Karrenbauer, Samuel Keller, Martin Niemeier,
Carl von Platen, Dr. Mickaël Raulet and Dr. Ghislain Roquier. I would like
to thank to the IETR team (INSA-Rennes, France) for their great work which
enables me to work on my research topics. I would like also to thank all my
co-authors of the numerous publications. We all know how publications are
important in research.

I have spent a very good time discussing, joking and re-inventing the world
with the french-speaking team of the lab, Romuald, Ghislain, Richard, Anthony,
Endri and Simone. Thank you all!

Claire, je voudrais te remercier d’avoir pris autant sur toi pour supporter
toutes ces longues et dures années de vie à distance. Il est maintenant temps
de mettre fin à cette séparation géographique !

N’oublions pas de remercier également Goldorak, Blanche Neige, le lapin au chapeau, Hop
Hop Hop, le critical path, Johnny Be Good, Kolmogorov, le good Cal model, les Phares à On,
le fonctionnaire, Baghoune le chatCal...

7

8

Abbreviations

ADM Abstract Decoder Model
ASIC Application-Specific Integrated Circuit
AVC Advanced Video Coding
AVS Audio Video Standard
BSDL Bitstream Syntax Description Language
BSD Bistream Syntax Description
BSD Berkeley Software Distribution
CA-2D-VLC Context-Adaptive Two Dimensional Variable Length Coding
Cal Caltrop Actor Language
CL Computational Load
CMOS Complementary MetalOxideSemiconductor
CP Critical Path
CPU Central Processing Unit
CSDF Cyclo-Static Dataflow
CUDA Compute Unified Device Architecture
DAG Directed Acyclic Graph
DDF Dynamic Dataflow
DSP Digital Signal Processor
FFT Fast Fourier Transform
FIFO First In, First Out
FIR Finite Impulse Response
FU Functional Unit
FND Functional unit Network Description
FNL Functional unit Network Language
FSM Finite State Machine
FPGA Field-Programmable Gate Array
GALS Globally Asynchronous Locally Synchronous
GPP General Purpose Processor
GUI Graphical User Interface
HDL Hardware Description Language
HVC High-Efficiency Video Coding
HW Hardware
IDCT Inverse Discrete Cosine Transform
IICT Inverse Cosine Transform

9

IEC International Electrotechnical Commission
IPC Inter-Processor Cost
IQ Inverse Quantization
IS Inverse Scan
IT Inverse Transform
ISO International Organization for Standardization
JPEG Joint Photographic Experts Group
KPN Kahn Process Networks
MoC Model of Computation
MPEG Motion Picture Expert Group
NP Nondeterministic Polynomial
ORCC Open RVC-CAL Compiler
PNSR Peak Signal-to-Noise Ratio
PU Processing Unit
QCIF Quarter Common International Format (178×144)
SDF Synchronous Dataflow
SVG Scalable Vector Graphics
RTL Register Transfer Level
RVC Reconfigurable Video Coding
SIT Software Instrumentation Tool
SNR Signal-to-Noise Ratio
SoC Systems on Chip
SP Simple Profile
SVC Scalable Video Coding
SW Software
TLM Transaction Level Modeling
VHDL Very high speed integrated circuit Hardware Description Language
VLC Variable Length Codes
VLD Variable Length Decoding
VOL Video Object Layer
VTL Video Tool Library
UML Unified Modeling Language
WCET Worst Case Execution Time
XDF XML Dataflow
XSLT Extensible Stylesheet Language Transformations

10

Contents

1 Introduction 15
1.1 Motivation of the work . 16
1.2 Organization of the document . 19

2 State of the art 21
2.1 Application: languages and modeling formalisms 22

2.1.1 Cal language . 24
2.2 Architecture: specification and simulators 28
2.3 Extracting metrics . 29

2.3.1 Static analysis techniques 30
2.3.2 Profiling tools . 30
2.3.3 Metrics guiding the design space exploration 32

2.4 Existing approaches for bridging the implementation gap 35
2.4.1 Model-driven techniques 36
2.4.2 C-based methodologies . 37
2.4.3 Transaction Modeling and SystemC 38
2.4.4 From graph specifications 39
2.4.5 UML-based design flow 40
2.4.6 Commercial tools . 40

2.5 Discussion . 41

3 A strategy for the algorithmic optimization of dataflow pro-
grams 47
3.1 Notions on parallel programming 48

3.1.1 Amdahl’s law . 48
3.1.2 Parallelism taxonomy . 48

3.2 Extracting metrics from Cal programs 50
3.2.1 Static code analysis . 52
3.2.2 Profiling . 52

3.3 Optimization strategy: trace critical path minimization 57
3.3.1 Definition of the most critical action 57
3.3.2 Critical Actions Detection algorithm 58
3.3.3 Refactoring techniques . 59

3.4 Discussion . 62

11

3.5 Tools . 64
3.5.1 Cal Static Analyzer 64
3.5.2 Cal Dynamic Analyzer 65
3.5.3 ProfiCal . 66
3.5.4 CrossCal . 67
3.5.5 WeightCAL . 68

4 Mapping dataflow programs onto platforms 71
4.1 The partitioning/scheduling problem: the case of Synchronous

Dataflow . 72
4.1.1 Analyzing Synchronous Dataflow models 72
4.1.2 Partitioning and scheduling for multiprocessors platforms 74

4.2 Partitioning and scheduling Cal programs 75
4.2.1 Round-robin load balancing 76
4.2.2 Simulated annealing load balancing 78
4.2.3 Causation trace scheduling 80
4.2.4 Static regions scheduling 83

4.3 Performance evaluation heuristics 86
4.3.1 Communication model . 88
4.3.2 Scheduling model . 90

4.4 Code Generation . 90
4.4.1 Open RVC-Cal Compiler (ORCC) 91
4.4.2 OpenForge . 92
4.4.3 Ericsson Code Generator 92
4.4.4 Co-Design Tool . 92

4.5 Tools . 93
4.5.1 SchedulCal . 93
4.5.2 EvalCal . 94

5 A design flow for high level exploration of the design space 97
5.1 How to represent the design space? 98
5.2 How to evaluate the performance of a solution? 98

5.2.1 At different levels of abstraction 99
5.2.2 Several methodologies . 100

5.3 How to explore the design space? 100
5.4 Tools infrastructure . 104
5.5 Summary . 105

6 Design case study: MPEG-4 SP 107
6.1 The steps of the design space exploration 108

6.1.1 Improving the efficiency of actions 108
6.1.2 Removing unnecessary dependencies 109
6.1.3 Refactoring of the most critical actions 109
6.1.4 Searching for efficient partitioning solutions 115
6.1.5 Splitting for better load balancing 117

6.2 Results and discussion . 118

12

7 The shift of paradigm for systems specification: the case of
Reconfigurable Video Coding 125
7.1 Overview . 126

7.1.1 Normative part . 126
7.1.2 Non-normative part . 128
7.1.3 Languages defined within RVC 129

7.2 Promises . 130
7.2.1 Towards portable and scalable parallelism 131
7.2.2 Deployment of video coding technology 131

7.3 Contributions . 133
7.3.1 General development of the standard 133
7.3.2 Easing the design of parsers 134
7.3.3 Testing the reconfigurability capabilities 138

8 Conclusion 143

Bibliography 148

Personal Publications 160

MPEG Contributions 163

13

14

Chapter 1

Introduction

The research challenges in the field of digital systems for signal processing have
radically changed since the first digital signal processing pioneering works in the
60s and early 70s aimed at showing the potential of transforming analog signals
into digital samples. At that time, the implementation of basic building blocks
of digital processing systems, such as analog to digital converters, FIR filters
and FFT for example, represented the main architectural challenges. From a
technology point of view the challenges were represented by the development of
new silicon technologies, capable of providing faster and smaller circuits. With
the advent of silicon CMOS technology, scaling into higher density components
emerged as the main motor driving architectures and processing innovation.
Indeed, in the past two decades, the performance of digital systems have pro-
gressed at an astounding pace sustained by the successful scaling of silicon
CMOS technology in the submicron range providing powerful platforms in the
form of general purpose processors, DSP, dedicated SoC and FPGA satisfying
new demanding applications such as multimedia processing, digital transmission
and video compression.

The importance of digital systems in modern economies is growing. They are
used in mass market products and services in many domains: security, medicine,
automation, transportation, consumer electronics, telecommunications. Digital
systems span all aspects of daily life. The added value is created by supplying
either functionality or quality. Functionality is defined as the service rendered to
the user. Quality characterizes extra-functional properties of the product or ser-
vice, such as performance, or dependability. For instance, a cellular phone offers
functionality for mobile media communication, while quality is characterized by
audio fidelity, battery life, and durability.

Modern digital systems are characterized by severe resources limitations,
high complexity, and stringent performance requirements. Nowadays, the de-
sign methodologies adopted to cope with these difficulties have not yet reached
maturity and are based on empirical techniques derived from the experience of
the designer. Most of the design process is performed by trial and error. Thus,
several iterations are needed to fit correctly the applications onto the target

15

platform. This type of approach is time-consuming is far from being optimal if
the complexity of the applications and architecture of the target platform are
complex. What is required is a unified approach to the design problem which
borrows from different disciplines (from computer science, control systems, elec-
tronic engineering) to build the foundations of a solid design practice. Such an
approach should enable the designers to model the application performance as
a function of the underlying hardware and estimate the change in performance
and the cost for migrating an application to another platform.

1.1 Motivation of the work

The design of digital systems is becoming extremely challenging because of
several factors.

The race for the fastest processor ended For most of the history of
silicon-based computing, the relentless scaling of silicon technology has led to
ever faster sequential computing machines, with higher clock rates and more
sophisticated internal architectures exploiting the improvements in silicon man-
ufacturing. Backwards compatible processor designs ensured that software re-
mained portable to new machines, which meant that legacy software automat-
ically benefited from any progress in the way processors were built. In recent
years, however, this has ceased to be the case: in spite of continued scaling of
silicon technology, individual sequential processors are not becoming faster. All
projects aimed at breaking the 4 GHz barrier have been canceled by the major
processor manufacturers. The two major factors driving this radical change are
the need to reduce power dissipation and the limits of electrical design models
in the microwave range. Consequently, rather than building more sophisticated
and complex single processors, manufacturers have used the space gained from
scaling the technology by building more processors onto a single chip, making
multi-core machines a nearly ubiquitous commodity in a wide (and increasing)
range of computing applications. As a result, the performance gains of modern
computing machines are primarily due to an increase in the available parallelism.

The sequential general purpose processor era is definitely over.
Platforms are now mainly composed of several processing units.

Reference softwares and methodologies are no longer adapted Se-
quential models for specifying algorithms, sequential software and processors
architectures have proven to be the winning approaches for exploiting the po-
tential of each new generation of silicon CMOS scaling. Software developers and
hardware designers knew that at each scaling the boost in performance achiev-
able would be higher and easier to obtain than what could have been expected
by developing new parallel systems, tools and architectures. The only impor-
tant exception to this rule is represented by a specific field, the graphic world
where the intrinsic wide parallelism of tasks has lead to the development of a

16

family of parallel architectures only used for a very restricted set of basic oper-
ations (e.g. polygon rendering). So, while the success of silicon CMOS scaling
has been the main driving force for performance progress, it has at the same
time practically restricted the way system specification software development,
hardware design and all related tools and formalisms have evolved in the last
twenty-five years. The consequence is that parallelism has not been a primordial
issue when designing digital systems.

The case of MPEG is a good illustration of the situation. The ”Moving Pic-
ture Experts Group” (MPEG) is a working group of experts that was formed by
ISO and IEC to set standards for audio and video compression and transmission.
Different forms of specifications have been adopted since the very beginning of
standard video coding. MPEG-1 and MPEG-2 were only described by textual
specifications. For MPEG-4, the C reference software became the true stan-
dard specification. However, the specification of the standard by means of such
monolithic C/C++ descriptions will present several limitations and drawbacks.
During the sequential processor era, it was convenient to have a monolithic ref-
erence software, which is no longer the case with the advent of the new parallel
era. Mapping the monolithic C/C++ reference software means refactoring the
application completely in order to distribute the computations on the different
processing units. This task is far from being easy and is very time-consuming.
The problem is even harder when the application should be mapped on hetero-
geneous platforms, made of sequential processors and FPGA for instance.

No common formalism, language or methodology is available to
design, analyze and map parallel applications onto software and/or
hardware platforms from the specification down to the implementa-
tion through all the different levels of abstractions.

Increasing demanding functionality and performance In the mean-
while, digital algorithms, such as digital video compression and multimedia
processing, have grown in functionality and performance, at the expense of an
ever growing complexity. In the domain of video coding technology, MPEG
has produced, in the last 20 years, many important and innovative video cod-
ing standards, such as MPEG-1, MPEG-2, MPEG-4 Part 2, Advanced Video
Coding (AVC), Scalable Video Coding (SVC) and is currently working on High-
Efficiency Video Coding (HVC). Video coding technology in these years has
reached very high levels of complexity.

Digital systems are asked to support an increasing number of com-
plex applications, while keeping a high level of performance and min-
imizing resources consumption.

The implementation gap is growing The increasing complexity of sys-
tems coupled with the fact parallel programming is more difficult than usual se-
quential programming enlarges the gap between the traditional sequential spec-
ifications and final parallel implementation. Indeed, complexity has reached
levels for which mapping application specification onto parallel architectures

17

now need to be performed using new methodologies and tools capable of assist-
ing and supporting the work of the designer. The size of current source codes
has become too large for any efficient optimization stage driven by designer cre-
ativity and becomes frustrated by the quantity of resource he needs to spend to
yield a satisfactory working design. Figure 1.1 (Source: [1]) illustrates the prob-
lem faced by designers. Filling this gap is and will remain the main challenge
of digital system design during the next two decades.

Abstraction

Descriptions by
means of generic

model languages (*)

Abstract System
Descriptions

Verification
Models

(software)

ADLs
(UML, …)

Goals,
Ideas,
Plans

LACK OF
SUITABLE
TOOLS !!!

Programming
Languages,
Compilers,

Heterogeneous
HW/SW

Descriptions

Descriptions by Software

HW/SW
Co-design Tools

(SystemC,
Ptolemy, …)

TOOLS !!!

Architecture
Gap

Compilers,
Debuggers

Profilers,

Cross-Compilers

Software
Implementation

Hardware
Implementation

Targeted
ImplementationTargeted implementation

not yet defined
(or loosely defined)

Descriptions by
means of HDLs
(HW Description

Languages)

Software
Descriptions
(Targeted for a

specific architecture)

HDLs
(VHDL, Verilog)

Profilers,
Instruction Level

Simulators

*: generic model languages are not fully functional models

Figure 1.1: Methodologies and tools are missing for assisting designers in the im-
plementation of complex sequential applications specifications on parallel plat-
forms.

The gap between the application specification and its implemen-
tation was ”filled” by the designer. This gap is enlarging and what is
even more worrying is the fact that it is becoming much more diffi-
cult or even impossible to be covered by the designer’s intuition and
creativity alone.

Need for raising the level of abstraction Due to the level of complexity
reached by high-demanding digital systems, it is no longer reasonable to handle
such systems at low levels of abstraction (e.g. VHDL/Verilog or C/C++). A
solution to the problem is to higher the level of abstraction at which the design
of such systems are performed. The abstraction enables designers to focus on a
small set of criteria during the design of the system and not to be slowed down
by low-level implementation details. Abstraction is a well-tried technique. In
integrated circuit design, several level of abstractions have been created over the
years: logic gates, Register Transfer Modeling (RTL), VHDL. The same phe-
nomena is visible in software: C/C++, object-oriented languages and high level

18

language in general. Abstraction through high-level languages make complex
programming simpler and allows achieving quicker larger efficient designs. The
architecture of high-demanding systems may include heterogeneous processing
units (mix of FPGA/ASIC and software processors). The model of computation
of these two devices are different, making even harder the design of such sys-
tems. Thus, abstracting them supposes a language that is capable of handling
the two models of computations of these two processing units.

Several issues need to be solved: which formalism or language
is capable of supporting such an abstraction and how to generate
efficient software and hardware implementation code from these high
level specifications?

Need for exposing portable parallelism An approach aimed at dealing
with parallelism only by means of specific tools during the final mapping stage
into a (parallel) platform is clearly inadequate when considering the complex-
ity of today’s specifications and algorithms. Specifications and high level
models should explicitly expose parallelism from the very beginning
of any design flow and should be enough portable to be mapped easily
of different types of platforms. It will then be up to designer’s creativity
and to the specific design tools to specify the level of parallelism suitable for
the architecture of the final platform.

1.2 Organization of the document

The state of the art of the existing methodologies and tools for dealing with
the design of complex digital systems is presented in Chapter 2. It shows that
the existing approaches do not gather all the necessary ingredients for support-
ing a robust high level methodology for seamless implementation of complex
applications onto parallel platforms. It argues for a shift of paradigm for the
specification, design and implementation of parallel systems.

Based on this new formalism - dataflow programming and Cal language -
methodologies need to be developed in order to have methodologies and heuris-
tics for designing, mapping and exploring the design space in a systematic way
which guarantees efficient results with less efforts. Chapter 3 proposes a strategy
for optimizing dataflow programs at the algorithmic level. Chapter 4 tackles the
problem of mapping these optimized programs onto parallel platforms. Chap-
ter 5 presents a systematic methodology aiming at guiding designers in the
design space exploration. It includes profiling tools, partitioning heuristics and
performance evaluation.

Chapter 6 presents how the tools, metrics and heuristics described in the
previous chapters have been used and applied to a real world application, the
MPEG-4 Simple Profile decoder. It details the different results at each step of
the optimization and shows how the metrics and heuristics helped in guiding
the designer during the optimization process.

19

The work for introducing this shift of the paradigm at the specification level
has been concretized by the creation of a new ISO/IEC standard, Reconfig-
urable Video Coding (RVC), presented in Chapter 7 . It introduces dataflow
programming and the Cal language for the specification of the video coding
technology.

20

Chapter 2

State of the art

This chapter provides an overview of the existing languages, methodologies and
tools used for high level design space exploration of parallel embedded systems.
Research in embedded system design consists in finding the most efficient way to
execute an application (e.g. an MPEG decoder, a JPEG encoder, a control of
a robot, etc) onto a given target platform with a given architecture (com-
posed of a set of processing units connected together through communication
channels and memories) with the best performance while minimizing the re-
sources. Another aspect to take into account in the equation is the time needed
to reach such a design. The time required for achieving efficient implementation
of parallel systems is higher than with sequential programs.

All the difficulty in system design resides in how to fit the application onto
the target platform so that the system has the best performance while minimiz-
ing the resources. When dealing with parallel systems, i.e. a parallel program
executed on several processing units, this task is even more complex because
there are many ways to distribute the computations of the application onto the
different processing units of the platform. This task of exploring and finding
the best mapping of the application onto the target platform is called the de-
sign space exploration. The application and the architecture of the target
platform are described with different languages and representations, which are
not always suited for performing efficient design space exploration.

Furthermore, the language used to specify the application is not necessary
the same as the one used for its implementation onto the platform. And even if
it is the same, the code needs to be revisited in order to fit to the constraints of
the platform. In any case, there is some burdensome and time consuming work
to convert the specification of the application into the final implementation on
the target platform. The application can also be described in different
languages between its specification and its implementation on the
parallel platform.

Section 2.1 reviews the different languages and representations to describe
applications. Section 2.2 reviews the different languages for describing the archi-
tecture of the target platform and the tools capable of simulating the execution

21

of an application onto a target platform. Section 2.3 presents the different
means for characterizing the application and the architecture and extracting
the metrics guiding the design space exploration. Section 2.4 reviews the ex-
isting approaches and frameworks to bridge the implementation gap between
specification and implementation. Finally, section 2.5 discusses the state of the
art and shows how this work is providing a solution to a real need in the design
of complex parallel embedded systems.

2.1 Application: languages and modeling for-
malisms

There are lots of languages that are capable of specifying application. There is
no golden representation, it really depends on the domain of the application, the
know-how of a company and the experiences of the designers. But the choice is
constrained by the use of target platforms which accept most of the time C/C++
for software and VHDL/Verilog for hardware. Thus, the specification of the
applications are often written in these languages. The problem with traditional
programming languages (C, C++, VHDL, Verilog) is that they lie at a low
level of abstraction, providing all the necessary implementations details. The
problem is that these low-level details are an obstacle to the rapid exploration
of the different implementation solutions because for each tested solution, every
detail must be taken into account. This process is time-consuming and error-
prone. The abstraction of these layers is a solution for dealing with this problem.

”A model of computation (MoC) is an abstraction of a real computing
device” [2]. Because, working at the implementation level is not very convenient
for exploring seamlessly the design space, a MoC aims at abstracting these lower
levels by suppressing some properties and details that are irrelevant for design
space exploration and they focus on other properties that are essential. The
plethora of existing MoC makes the choice the ”right” one a very difficult task.
The choice of a MoC really depends on the field of application. Some are focusing
on the reactivity of the system while other described more data paths. Being
based on the classification of the MoC reported in [3], the following paragraphs
report briefly the different models of computation used in embedded system
design.

Finite State Machines Finite State Machines (FSM) have been used
for decades because it is a convenient way to represent the different states and
computations (transitions) of a program. A FSM can be represented as a graph
containing a finite set of states and transitions. Each firing of a transition leads
to a given state of the system. Two types of FSM exist: Moore type (or state-
based), in which the output depends on the activation of a state [4] and the
Mealy type (or transition-based) in which the output depends of the activation
of a transition. A lot of extensions of the usual FSM exist in order to cope with
precise aspects needed by the different application domains.

22

Finite State Machine with DataPath (FSMD) [5] is an extension of the com-
mon FSM formalism in order to cope with the lack of support of data mem-
ory and data processing capabilities. Hierarchical/Concurrent Finite State Ma-
chine (HCFSM) extends the common FSM formalism in order to cope with the
lack of support of the concurrency and hierarchical structures of the model.
Statecharts [6, 7] are the most well known formalism. Co-Design Finite State
Machines (CFSM) [8,9] connect individual sequential elements in a global asyn-
chronous network. Communications between elements are asynchronous and the
elements (described by a FSM) are executed sequentially and synchronously,
based on events. It is based on a Global Asynchronous Locally Synchronous
(GALS) scheme and can well express the parallelism of an application. Program-
State Machines (PSM) allows the use of programs to define a transition of usual
FSM. VHDL and C code can be used to specify these actions allowing code gen-
eration. PSM formalism was used by SpecCharts [10] and SpecC [11] languages.

Petri nets Petri nets [12], invented by Carl Adam Petri in 1962, are di-
rected graphs with two types of nodes: places and transitions. Places and
transitions are connected alternatively, i.e. two places or two transitions cannot
be connected. Places correspond to the states of the program and transitions
are the computational entities. A firing of the transition implies the consump-
tion of a token in each of the input places and output a token in each of the
output places. The consumption and production rates of the transitions can
be also weighted. Petri net have many declinations: Colored Petri nets, Timed
Petri nets, Free Choice Petri Nets, etc. The reader is referred to the Petri net
community to have further details.

Discrete Event In a discrete event MoC, events are sorted by a time
stamp stating when they occur and analyzed in chronological order [3]. Trans-
action Level Modeling (TLM) is a discrete-event model of computation built on
top of SystemC, where modules interchange events with time stamps. Interac-
tions between software and hardware are modeled using shared buses. Mod-
ules can be specified at several levels of abstraction, making possible to specify
functionals, untimed state machine models for the application and specify an
instruction-accurate performance model for the architecture. TLM raises the
level of abstraction one step above SystemC but remains low, making it hard
to use for design space exploration.

Synchronous models In the synchronous MoC, all events are synchronous:
signals have events with equal tags to other events in other signals. This type of
MoC is more suited for programming control and real-time systems. Esterel [13]
is one of these synchronous languages. A compiler exists for translating Esterel
programs into Finite State Machines and in software and hardware implemen-
tation. Other synchronous languages are Lustre [14] and Signal [15].

Petri net community: http://www.informatik.uni-hamburg.de/TGI/PetriNets/

23

http://www.informatik.uni-hamburg.de/TGI/PetriNets/

Dataflow models Dataflow models are graphs where nodes represent op-
erations (actors) and edges represent data paths on which tokens are flowing.
A token is an atomic piece of data. Dataflow graphs are often used to represent
data-dominated systems, like signal processing applications. Several dataflow
models are referred in the literature: Kahn Process Networks (KPN), Dataflow
Process Networks and Synchronous Dataflow graph (SDF).

Kahn Process Networks (KPN) [16] have been introduced by Gilles Kahn
in 1974 and consists in concurrent processes which communicate through un-
bounded and unidirectional FIFO. Each process is sequential but the global
execution at the processes level is parallel. KPN cannot be scheduled at compile-
time because its firing rules do not allow to build a priori a schedule such that
the system does not block in any circumstances. The YAPI model [17] ex-
tends KPN by associating a data type with each channel and by introducing
non-determinism. Dataflow Process Networks [18] is a special case of KPN.

Synchronous Dataflow graphs (SDF) [19] are similar to KPN but with addi-
tional restrictions: each firing of a node consumes and produces a given number
of tokens, and for each firing the number of available tokens at its input must
be larger that its consumption rate. The edges of the SDF graph are annotated
with the number of data tokens produced and consumed by the computation
at the node. These extra information are necessary for computing schedules at
compile-time and memory requirements for buffering data between processing
units.

2.1.1 Cal language

Cal [20] is a domain-specific language for describing actors in dataflow pro-
grams. It has been developed as part of the Ptolemy project at the University
of California at Berkeley and was released in December 2003. More generally,
it allows defining complex applications by interconnecting Cal actors. It pro-
vides useful abstractions for writing dataflow programs using several models of
computations, for handling parallelism and for dealing with large complexity.
Indeed, the Cal language has been used for specifying a wide variety of appli-
cations, and is well-adapted for describing complex signal processing algorithms
with a set of encapsulated actors communicating with each others in a dataflow
manner [143, 144]. The following sections present briefly the language. The
reader is referred to [20] [145] for an in-depth description of the language.

2.1.1.1 Principle

The interconnection of Cal actors forms a dataflow program (or Cal applica-
tion). Figure 2.1 illustrates a simple Cal application.

Actors are independent and can run concurrently. As a consequence, (1) the
state of an actor is not shared, i.e. an actor cannot modify the state of another
actor and not even access it and (2) actors can exchange data only through
the exchange of tokens (atomic piece of data) using FIFOs between the ports
(i.e. inputs/outputs) of the actors. Each actor is composed of one or several

24

Figure 2.1: A Cal application results from the interconnection of actors speci-
fied in Cal language.

actions which are executed sequentially. Inside actors, firing rules determine
which action must be fired next.

The Cal language allows defining applications in several models of compu-
tations seamlessly within the same environment: Synchronous Dataflow (SDF),
Dynamic Dataflow (DDF), Cyclo-Static Dataflow (CSDF). CSDF extends SDF
in the sense that production and consumption rates are constants for fixed se-
quence of firing of an actor. DDF extends SDF in the sense that actors may
have multiple production and consumption rates and may be fired conditionally
on input tokens values and actor state. The support of multiple MoC allows
using it for describing a wide range of applications.

2.1.1.2 Basics

Structure of an actor The structure of a Cal actor is shown in Fig-
ure 2.2. The actor splitter BTYPE has one input port BTYPE and three output
ports Y, U, V. This actor contains three actions (cmd.newVop, skip BTYPE and
cmd.split). Action cmd.newVop consumes one token on the input port and
produces one token on each output ports. Action skip BTYPE consumes two
tokens (keyword repeat) on the input port and produces two tokens on each
output port. The Finite State Machine (keyword fsm) manages the firing of
the actions, according to the values of the input tokens (keyword guards) and
priorities between actions (keyword priority). Internal variables can be defined,
such as B SZ and NEWVOP.

Actions An action is an atomic piece of code. They can be labeled or not.
Each action firing implies:

1. reading and consuming input tokens,

2. and/or modifying the internal state of the actor,

3. and/or producing output tokens.

Firing rules An actor may contain several actions that are executed se-
quentially. Firing rules and the corresponding language constructs exist for
determining which action should be fired next:

Token availability An actions is fired only if the input tokens are available.

25

actor splitter BTYPE () i n t (s i z e=B SZ) BTYPE ⇒
i n t (s i z e=B SZ) Y, i n t (s i z e=B SZ) U, i n t (s i z e=B SZ) V:

i n t B SZ = 12 ;
i n t NEWVOP = 2048 ;

cmd . newVop : action BTYPE: [cmd] ⇒ Y : [cmd] , U : [cmd] , V : [cmd]
guard
bitand (cmd , NEWVOP) != 0

end

skip BTYPE : action BTYPE: [cmd] repeat 2 ⇒
Y : [cmd [0] , cmd [1]] , U : [cmd [0] , cmd [1]] , V : [cmd [0] , cmd [1]]
end

cmd . s p l i t : action BTYPE: [l i s t] r epeat 6 ⇒
Y : [l i s t [0] , l i s t [1] , l i s t [2] , l i s t [3]] , U : [l i s t [4]] , V : [l i s t [5]]
end

schedule fsm cmd :
cmd (cmd . newVop) −−> sk ip ;
cmd (cmd . s p l i t) −−> cmd ;
sk ip (skip BTYPE) −−> cmd ;

end

priority
cmd . newVop > cmd . s p l i t ;

end

end

Figure 2.2: Example of a Cal actor.

Guards An action is fired only if the values of the input tokens satisfies the
conditions.

Finite State Machine An action is fired only if it is enabled given the state
of the actor. In Figure 2.2, the actor has two states: cmd and skip. When
the actor is in the skip state, only the action skip BTYPE is enabled and
can be fired.

Priorities In case several actions are enabled, the priority statement indicates
which action should be fired next.

2.1.1.3 Networks of actors

The connections of the actors form the Cal application. The network of actors
is specified using an XML dialect called XML DataFlow (XDF). The language
is defined in MPEG-B (ISO/IEC 23001-4 [21]). The corresponding description
of the network of Figure 2.1 is illustrated in Figure 2.3. The network itself has
input and output ports and the instantiated entities may be either actors or
other networks, which allows hierarchical design.

26

<XDF name="IDCT2D">
<Port kind="Input" name="IN">
<Type name="int">
<Entry kind="Expr" name="size">
<Expr kind="Literal" l i t e r a l −kind="Integer" value="13"/>

</Entry>
</Type>

</Port>
<Port kind="Input" name="SIGNED">
<Type name="bool"/>

</Port>
<Port kind="Output" name="OUT">
<Type name="int">
<Entry kind="Expr" name="size">
<Expr kind="Literal" l i t e r a l −kind="Integer" value="9"/>

</Entry>
</Type>

</Port>
<In s tance id="scale">
<Class name=" Proprietary .IETR.Scale"/>

</Instance>
<In s tance id="row">
<Class name=" Proprietary .IETR. scaled_1d_idct "/>

</Instance>
<In s tance id="col">
<Class name=" Proprietary .IETR. scaled_1d_idct "/>

</Instance>
<In s tance id="transp">
<Class name=" Proprietary .IETR.Transpose "/>

</Instance>
<In s tance id="retr">
<Class name=" Proprietary .IETR.Transpose "/>

</Instance>
<In s tance id="shift">
<Class name=" Proprietary .IETR. rightshift "/>

</Instance>
<In s tance id="clip">
<Class name=" Proprietary .IETR.Clip"/>

</Instance>

<Connection dst="clip" dst−port="SIGNED" s r c="" src−port="SIGNED"/>
<Connection dst="clip" dst−port="I" s r c="shift" src−port="Out"/>
<Connection dst="" dst−port="OUT" s r c="clip" src−port="O"/>
<Connection dst="scale" dst−port="SIn" s r c="" src−port="IN"/>
<Connection dst="row" dst−port="In" s r c="scale" src−port="SOut"/>
<Connection dst="transp" dst−port="In" s r c="row" src−port="Out"/>
<Connection dst="col" dst−port="In" s r c="transp" src−port="Out"/>
<Connection dst="retr" dst−port="In" s r c="col" src−port="Out"/>
<Connection dst="shift" dst−port="In" s r c="retr" src−port="Out"/>

</XDF>

Figure 2.3: A Cal application is defined by the interconnection of Cal actors.
The network of actors is specified in XML DataFlow (XDF).

27

2.2 Architecture: specification and simulators

Simulating the execution of an application onto a given architecture is a very
convenient feature by avoiding the designer to implement on the real platform
the complete system, which is very time-consuming. The simulation allows
evaluating the performance and the necessary resources for the current design,
in terms of speed, power consumption, memory or area consumption.

Architecture Description Language (ADL) is a standard way for rep-
resenting system architectures, aiming at promoting mutual communication,
the embodiment of early design decisions, and the creation of a transferable
abstraction of a system. Sophisticated ADL allow for early analysis and fea-
sibility testing of architectural design decisions. There is a large variety in
ADLs developed by either academic or industrial groups. In principle, ADLs
differ from requirements languages, because ADLs are rooted in the solution
space, whereas requirements describe problem spaces. They differ from pro-
gramming languages, because ADLs do not bind architectural abstractions to
specific point solutions. Modeling languages represent behaviors, where ADLs
focus on representation of components. ADLs allow designers to create, refine
and validate architectures. ADLs provide a basis for further implementation,
so it must be able to add information to the ADLs specification to enable the
final system specification to be derived from the ADLs. ADLs differ in their
ability to handle real-time constructs, such as deadlines and task priorities, at
the architectural level, to support the specification of different architectural
styles. The positive element of ADLs is that it constitutes a formal way of rep-
resenting architecture, are intended to be both human and machine readable,
support descriptions of systems at a high level, permit analysis of architectures
completeness, consistency, ambiguity, and performance. The drawback is that
there is not a common agreement on what ADLs should represent, particularly
as regards the behavior of the architecture. Representations currently in use
are relatively difficult to parse and are not supported by commercial tools. The
most known are Aesop [22], C2 [23], Darwin [24], LILEANNA [25], MetaH [26],
Rapide [27], SADL [28], UniCon [29], Weaves [30] and Wright [31]. Medvidovic
et al. [32] present a classification and comparison framework for these architec-
ture description languages.

IP-XACT is an XML format that defines and describes electronic compo-
nents composing the architectures. It was created by the SPIRIT Consortium
as a standard to enable automated configuration and integration through tools.
It has been recently standardized by IEEE [33]. The goals of the standard are
to ensure delivery of compatible component descriptions from multiple com-
ponent vendors, to enable exchanging complex component libraries between
electronic design automation (EDA) tools, to describe configurable components
using metadata and to enable the provision of EDA vendor-neutral scripts for
component creation and configuration.

28

Simics is a full-system simulator used to run unchanged binaries of the
target hardware at high-performance speeds. Simics can simulate systems such
as Alpha, x86-64, IA-64, ARM, MIPS, MSP430, PowerPC, POWER, SPARC-
V8 and V9, and x86 CPUs. Many operating systems have been run on various
varieties of the simulated hardware, including MS-DOS, Windows, VxWorks,
OSE, Solaris, FreeBSD, Linux, QNX, and RTEMS. The purpose of simula-
tion in Simics is often to develop software for a particular type of embedded
hardware, using Simics as a virtual platform. The Device Modeling Language
(DML) enables to create and configure non-standard devices such as ASICs and
FPGAs. DML largely automates the routine task of creating code to manage
the hundreds and often thousands of registers in a modern system. A compiler
translates DML into high-performance device models that enable Simics to sim-
ulate complete electronic systems at a performance measured in speeds of up to
billions of simulated instructions per second. DML enables developers to start
programming earlier, saving time and capital early in the product life-cycle.
Simics [34] is now a product of WindRiver company.

Simulators at different levels of abstraction At the system level, ser-
vice curves [35] describe a non-linear worst-case envelope for the computation
or communication capabilities of system-level components for all possible time
intervals. Service curves are measured in units of cycles, instructions, bytes, or
service time per second. This model is used in EXPO [36] to model building
blocks of SoC designs. At the task level, in task-accurate models the timing
behavior of a resource is described by a list of supported tasks and their worst-
case or average (estimated) execution times on this resource. This abstraction
level is suited for SoC designs in which the level of granularity of interest is on the
level of computation cores, memories, and buses. This model is used in the work
of Ascia et al. [37]. At the lowest level of abstraction, in instruction-accurate
models, the timing behavior of a resource is described by a list of symbolic
instructions and their associated latencies. Traces of symbolic instructions are
generated by annotated application models during execution and handed to the
architecture models to determine the overall execution time of an application.
This type of model is used in the SPADE framework [38].

2.3 Extracting metrics

When dealing with large software specifications, it is difficult for designers to
implement them by relying on their intuition. Designers need tools to analyze
finely the application and to detect quickly the bottlenecks in order to take the
right decisions in the early steps of the design. The two main approaches for
analyzing a program (i.e. the application) are static analyzes (Section 2.3.1)
and dynamic analysis (Section 2.3.2).

In order to achieve the implementation that satisfies the requirements of the
systems, developers need to know how fast and how resource-consuming their
designs are. Program profiling can record all the operations performed during

29

the execution of the program, providing an exhaustive basis for the design space
exploration. These extracted metrics can be classified into three categories:
memory, computations, communication.

When dealing with parallel systems, another aspect must be taken into ac-
count: how the parallelism of the application is exploited by the platform? How
the computations are distributed onto the different processing units?

These analyzes can be done at different levels of abstraction. At a low level
of abstraction, it implies that the system is fully implemented, profiling tools
exist and is not intrusive in the execution. It would results in very precise
profiling but it is very time-consuming. At a high level of abstraction, it is less
time-consuming but also less precise. The aim of the profiling is to extract the
meaningful metrics which will lead to the right design choices during the design
space exploration. Even if the profiling does not reflect exactly the behavior of
the application on the target platform, it supports the designer to improve their
designs without implementing the whole system, saving much time.

2.3.1 Static analysis techniques

Static analyzes are the analysis of computer software that is performed without
actually executing programs built from that software. The methods based on a
static analysis of the source code range from the simple counting of the number of
operations appearing in a program up to sophisticated approaches determining
lower and upper running time of a given program on a given processor [39, 40].
While the simple counting technique provides a very accurate evaluation of the
operations, it cannot handle loops, recursion and conditional statements except
for some particular cases. Explicit or implicit enumeration of program paths
can handle loops and conditional statements and can yield bounds on run time
best and worst case [39,40].

The main drawback of these techniques is that the real computations of
many real-life algorithms heavily depends on the input data while static analysis
depends only on the application. For video coding algorithms, for instance, strict
worst-case analysis can lead to results one or two orders of magnitude higher
than the typical complexity values [41]. Consequently the range [worst case,
best case] is so wide that results are meaningless.

2.3.2 Profiling tools

Profiling consists of the investigation of a program’s behavior using information
gathered as the program executes. There are several approaches to gather these
information at runtime. There are two main approaches: either the source code
is instrumented and compiled with extra code gathering runtime information
(Section 2.3.2.1) or new instructions are inserted at run-time in the executable
in order to gather these informations (Section 2.3.2.2).

30

2.3.2.1 Instrumentation during source code compilation

During the compilation of the source code, the program structure is known and
including extra code at the source level is the way profiling metrics are obtained.
The extra code is inserted in every function to the program so that when the
program executes, the profiler gathers the measures. However these methods
require the availability of the source code of the files, which is not possible with
proprietary applications.

Software Instrumentation Tool (SIT) [42] has been developed with
the goal of measuring the computations of a specific application independently
from the underlying platform on which the program is run. Former methodolo-
gies are always platform- or compilation-dependent. The approach of the SIT is
possible by means of a breakthrough in the instrumentation / overloading tech-
nology enabling a complete detection of all C operators without any limitation
in the way pointers and data structures are used. There are no limitations for
ANSI C and K&R compliant C code. It is based on GCC [43]. The SIT can be
seen as a virtual-machine for running C source code. Furthermore, customizable
virtual memory architectures can be plugged into the virtual-machine extending
the analysis capabilities to the data-transfer and memory domain. The whole
instrumentation process, from the source files to the instrumented executable,
is automatic.

The SIT is performing the following analyzes:

• the complexity analysis provides information on the type and the num-
ber of operations executed. The type of the operands associated to each
operation is also available. It helps the designer to partition the system
into software and hardware, because hardware is better for intensive com-
puting and software for control.

• the dataflow analysis gives the data transfers between the different func-
tions of the program. It becomes very easy to visualize at a glance what
are the large data transfers among the functions. This is a useful infor-
mation when designing the architecture of the system.

• the critical path analysis shows the functions which belong to the crit-
ical path. Understanding which parts of the algorithm are critical is very
important. For instance, it can help the designer to improve the through-
put of the system by shortening as most as possible the critical path.
It gives also an interesting indication useful in the HW/SW partitioning
step.

• the memory analysis shows what type of memory operations are done.

• the memory architecture analysis helps the designer to find an optimal
memory architecture for a given algorithm. The designer runs the C/C++
code with a virtual memory architecture and the tool provides the number
of read or write misses and the read or write hits. Memory is a very

31

important issue in multimedia systems. Thus, it is very important to find
the optimal solution at the first stage of the design flow.

• the execution tree indicates the execution order of the functions. It
provides also the hierarchy of the function calls. How many times a part
of the algorithm is run is also a valuable information to detect computer
intensive blocks.

Other tools like Abstract Execution [44] and iprof tool [45] operate at the
source code level. ATOM [46] is inserting instrumentation code after its compi-
lation into the object files during linking.

2.3.2.2 Binary instrumentation

Binary instrumentation techniques insert dynamically (i.e. at runtime) addi-
tional instructions at precise locations in programs, collecting the necessary
information for the profiling. The advantage is that source code is not needed,
there is no need to recompile the source code with certain profiling options and
the compiler-link process remains unchanged. The main drawback of these ap-
proaches is that the profiling is based on the binary and thus depends on the
processor architecture, the operating system and the executable representation.

Pin [47] is a dynamic binary instrumentation framework (for Intel archi-
tectures) that enables the creation of dynamic program analysis tools. Pin is
used in tools such as Intel Parallel Inspector, Intel Parallel Amplifier and Intel
Parallel Advisor. The tools created using Pin, called Pintool, can be used to
perform program analysis on user space applications in Linux and Windows.
As a dynamic binary instrumentation tool, instrumentation is performed at run
time on the compiled binary files. Thus, it requires no recompiling of source
code and can support instrumenting programs that dynamically generate code.

Valgrind [48], QPT [49, 50] and Pixie [51] are other tools for binary instru-
mentation.

Libraries (such as Executable Editing Library [52] and Libbfd) have been also
developed in order to read and modify the executable of a compiled program.
Tools using these libraries are able to add foreign code before or after almost any
instruction. The well-known Gprof [53] is using the Libbfd library for collecting
the number of calls of each function and the amount of time spent in each, as
well as the call graph.

2.3.3 Metrics guiding the design space exploration

Nowadays, it is no longer possible for designers dealing with complex parallel
systems to find in a reasonable time the optimal partitions of the system by
relying only on their intuitions. They need metrics to guide their choices.

During the design space exploration step, which consists in finding the best
partitioning of the parallel application onto the target platform, developers
should refer to these metrics to decide which part of the application and/or
architecture to optimize. In embedded system design, the most three important

32

aspects are : computations, communication and memory. The following sections
present the different metrics for characterizing the application, in these three
domains.

2.3.3.1 Usual metrics

A system can be characterized by its speed, in different ways: the global
throughput for computations and communications, the total amount of data
processed or transferred, the reactivity of the system in the case of real-time
systems, the global latency of the system, the time necessary for a given amount
of computations or the clock speed supported by the design.

Resources consumption is an important issue in the current context of
energy reduction. It shows how much resources (how many processors, how
much memory, what is the data traffic between processing units?) are needed by
the application. Energy is closely related to the use of these components. On the
one hand, systems optimized for speed have to cope with the heat of components
which could reduce the system lifetime. On the other hand, embedded systems
have to deal with power leakage during idle periods. For hardware systems
(FPGA, ASIC), designers talk about area consumption. It corresponds to
the amount of silicon used for the implementation of the application. Reducing
this area allows companies to use smaller chips, reducing resource consumption.

2.3.3.2 Computations-related metrics

Some parts of the application are more suited for a given type of target than
others. For example, Computation-intensive tasks are more suited for hardware
and control tasks for software. This is basically the aim of these metrics, to
detect what kind of target is better suited for the different parts of the applica-
tion.

An affinity metric is defined in the work of Sciuto et al. [54] [55]. The con-
sidered targets are GPP, DSP and ASIC. The authors define a set of constructs
which are more adapted for different targets. The affinity metrics are the re-
sult of the analysis and highlight instruction sequences which are DSP-oriented
(buffer circularity, MAC operations inside loops, etc.), ASIC-oriented (bit level
instructions) or GPP-oriented (conditional or I/O instructions ratio).

A method for selecting processors is presented in [56]. Three metrics give
the orientation of functions in terms of control, data transformation and data
accesses by counting specific instructions from a processor independent code. A
distance is computed, with specific characteristics of processors regarding their
control, bandwidth and processing capabilities. It does not take into account
the instruction dependencies and there is no detail about the different types of
memory accesses regarding the abstract processor model used. This approach is
at a very low level of abstraction, dealing with specific processors characteristics
to choose what is the best processor for a given application.

A regularity metric is defined in [57]. If a given application exhibits a high
degree of regularity, i.e., requires the repeated computation of certain patterns

33

of operations, it is possible to take advantage of such regularity for minimizing
implementation overhead. It is interesting to detect these different types of
regularity in order to optimize the design for one special target.

The Control Orientation Metric (COM) has been introduced in [58].
This metric indicates the frequency of control operations which cannot be elimi-
nated at compile time. This metric is useful for evaluating the need for complex
control structures to implement a function. Functions with high COM values
will be more efficiently implemented in a global processing processor than in
hardware (in which large FSM would be needed).

2.3.3.3 Communications-related metrics

Communications are very important in embedded system design because they
can constitute a serious bottleneck if they are not well handled. Some method-
ologies help designers to analyze these communications at a high level of ab-
straction. Among them, clustering techniques aim at gathering functions / tasks
/ operators which are closely related and at separating functions / tasks / oper-
ators which are independent. These techniques can reduce the communication
overhead. They can be applied at different levels of abstraction.

The metrics defined in [59,60] are computed at the functional level to high-
light resource, data and communication channel sharing capabilities in order to
perform a pre-partitioning resulting in function clustering to guide hardware/-
software partitioning. The aim is to optimize communications and resource
sharing.

Locality of computations is defined in the work of Peixoto et al. [57]. Com-
putations are said to have a high degree of locality if the computations, rep-
resented as nodes in a execution graph, constitutes an isolated, strongly con-
nected (sub)graph. If an application exhibits several clusters with a good degree
of locality of computations, such clusters define a clear way of organizing the
functional units into modules so as minimize the number of global buses, control
and steering logic.

At a lower level of abstraction, other communications-related metrics are
presented in [61]. The goal is to quantify the communications between arith-
metic operators (through memory or registers). These metrics focus on a fine
grain analysis and are mainly used to guide the design of data paths, especially
to optimize local connections and resource reuse.

2.3.3.4 Memory-related metrics

The metrics related to the memory are important in order to determine the
best memory architecture of the system. A well-designed cache architecture in
multiprocessor systems can lead to a significant speedup of the system. The
number of conflict and capacity misses, cache hit and miss ratios, as well as the
locality of accesses extracted from the application are useful in the early stage
of the design flow to adapt either the application and/or the architecture to
achieve good implementation.

34

The Memory Orientation Metric (MOM) [58] indicates the frequency
of global memory accesses, i.e. accesses to input/output data. By referring
to this metric, the designer can see which functions require special focus for
implementation: those with large MOM values are most likely to require a
good data bandwidth. The MOM metric also indicates the potential need for a
memory hierarchy since, this metric is computed for all the hierarchy levels of
a function graph.

The Software Instrumentation Tool (SIT) [42] have capabilities to test dif-
ferent cache architectures. As seen in Section 2.3.2.1, this tool is capable to
provide the number of read/writes misses and the read/write hits for dif-
ferent memory architectures defined by the designer.

2.3.3.5 System-level metrics

Parallelism is a fundamental metric nowadays, as the target platform contains
several processing units. Being capable to characterize a application in terms
of parallelism is now becoming compulsory. Being able to detect which part
of the application is inherently sequential or can be written in a more parallel
way is a very precious information. In [58], they define a metric which indicates
the average parallelism of a function. Those having the largest values offer
more optimization opportunities since, they are likely to present a number of
implementation alternatives offered by their inherent parallelism.

The notion of flexibility has been firstly described in [62]. The flexibility
of a design is difficult to express quantitatively. However, many fundamental
design decisions are based on the need of programmability or dynamic reconfig-
urability in order to extend the life-time of a design, to be able to incorporate
late fixes due to, for instance, changes in communication standards, or to ease
the remote maintenance of an embedded system. An application is described
as a hierarchical directed acyclic graph (DAG) where hierarchy levels represent
different options (algorithms) to implement the same functionality denoted by
the parent node in the graph. An architecture is supposed to be more flexible
the more options described in the application DAG it can implement, given
timing and cost constraints.

2.4 Existing approaches for bridging the imple-
mentation gap

This section details the existing approaches aiming at bridging the implementa-
tion gap, i.e. mapping an application onto an architecture in the most efficient
way. The reviews [8,63–67] present a large overview of the different methodolo-
gies.

35

2.4.1 Model-driven techniques

Daedalus [68] provides a unified environment for rapid system-level ex-
ploration, high-level synthesis, programming and prototyping of multimedia
MP-SoC architectures. In this framework, the implementation is based on a
library of pre-determined and pre-verified IP components. Daedalus design flow
is strongly related to SPADE [38], Artemis [69] and Compaan framework [70].
This latter enables the automatic transformation of nested loop programs writ-
ten in Matlab to Kahn-like process networks. This framework is based on Kahn
Process Networks [16]. The design flow is fully automatic and comprises several
tools. The KPNgen tool converts automatically sequential applications (writ-
ten in C/C++) into a parallel Kahn Process Network (KPN). These latter are
inputs to the Sesame modeling and simulation environment to perform system-
level architectural design space exploration. The output of the Sesame tool is a
set of candidate system designs with their corresponding specifications including
system level platform description, application-architecture mapping description,
and application description. Then, the ESPAM tool inputs these latter specifica-
tions with RTL description of the corresponding components from the IP library
to perform VHDL synthesis. It implements the candidate MP-SoC platform ar-
chitecture. C/C++ code is also generated for application processes that are
mapped onto programmable cores. This implementation can be mapped onto
FPGA using commercial synthesis tools and compilers. The Daedalus frame-
work is very interesting, making the design flow fully automatic from Kahn
Process Networks or directly from C/C++ specifications. KPN are well suited
for signal processing systems. Nevertheless, some modifications in the C/C++
specification are sometimes needed in case the input specification did not en-
tirely meet the requirements of the KPNgen tool, but these modifications seem
not to be very time-consuming. The modeling of interrupts is difficult because
of the nature of KPN models. Thus, it makes the study of time-dependent
systems limited.

Metropolis [71] [72] [73] is a framework allowing the description and re-
finement of a design at different levels of abstraction and integrates modeling,
simulation, synthesis, and verification tools. Metropolis is based on the Po-
lis design environment [74]. The application is modeled as a set of processes
that communicate through media. Architecture components are represented by
performance models where events are annotated with the costs of interest. A
mapping between functional and architecture models is determined by a third
network that correlates the two models by synchronizing events (using con-
straints) between them. The framework uses an internal representation called
the Metropolis Meta-Model (MMM). It uses different classes of objects to rep-
resent a design in which processes, communication media, and netlists describe
the functional requirements, in terms of input / output relations.

Mescal [75] aims at designing heterogeneous, application-specific, pro-
grammable (multi) processors. The goal is to allow programmers to describe

36

an application in any combination of models of computation that is natural
for the application domain. The goal is also to find a disciplined and correct
by construction abstraction path from the underlying micro-architecture to an
efficient mapping between application and architecture. The architecture devel-
opment system is based on an architecture description language. The Mescal
architecture development framework (called Teepee) implements a design space
exploration methodology based on the Y-chart.

Ptolemy framework [76] focuses on component-based heterogeneous mod-
eling and allows to combine hierarchically different models of computations at
high level of abstraction in a Simulink [77] fashion. It uses tokens as the under-
lying communication mechanism. Controllers regulate how actors fire and how
tokens are sent between each actors. This mechanism allows different models of
computation to be combined within the Ptolemy framework.

PeaCE framework [78] specifies the system behavior with a heteroge-
neous composition of several models of computation. The PeaCE environment
provides seamless co-design flow from functional simulation to system synthesis,
utilizing the features of the formal models maximally during the whole design
process. This framework is based on the Ptolemy project [76] [79]. When
dealing with C/C++ specifications, the PeaCE approach does not propose an
automatic procedure to transform this specification into dataflow graphs. This
step is manual and an example of this transformation on a MPEG-4 decoder is
given in [80].

2.4.2 C-based methodologies

The starting point of this type of tools is the specification written in an imper-
ative language as C/C++.

C-to-Gates tools as ImpulseC [81], Handel-C [82] [83] and Spark [84]
generate VHDL code from C-like specifications. They do not aim at exploring
the design space but only translating a C-like representation of the algorithm
into hardware code. Handel-C and ImpulseC tools allow some partitioning but
the well-known C-to-Gate tool from Mentor Graphics (CatapultC [85]) does
not allow any partitioning. Commercial offerings such as Mentor CatapultC,
Celoxica Handel-C [86], C2Verilog, and Bach [87] defined a subset of ANSI C
to do either synthesis or verification.

De Micheli and his students discussed in [88,89] the main problems of using
C as a HDL. The lack of concurrency and the concept of time are missing in C.
The way communication mechanisms are written in imperative languages are
not suited for hardware representation.

.NET framework based tool The .NET framework based tool [90] uni-
fies and automates the hardware and the software design flows. It is capable of

37

refining automatically a high-level system specification, given in a programming
language supported by the .NET framework, to a hardware/software descrip-
tion. The .NET framework [91] is a set of tools and mechanisms for the de-
velopment of multi-lingual software components. The application is described
with a high-level programming language supported by the .NET framework
and is compiled into Common Intermediate Language (CIL) [92]. The hard-
ware is described in CASM (Channel-based Algorithmic State Machine), an
intermediate-level hardware description language [93].

This framework is interesting because it lets designers specify the system
at a much higher level of abstraction than the traditional frameworks, with a
large number of different programming languages, making the design flow more
flexible. But design space exploration tools are missing. It is one-way design
flow and there is back annotation capabilities in order to guide the design space
exploration step aiming at leading to a satisfactory implementation.

2.4.3 Transaction Modeling and SystemC

SystemC, based on C/C++, is a solution for representing functionality, com-
munication, software and hardware at various system levels of abstraction. It is
mainly used for simulation because it is not totally synthesizable. In practice,
it must be reduced for ensuring the use of a synthesizable subset which is at a
low level of abstraction. Because of that, the simulation capabilities at a high
level of abstraction are compromised. One can use the non-synthetizable subset
to perform the high level simulation, but the code must be modified for the
synthesis, which is a burdensome and error-prone task.

StepNP [94] is a system-level exploration framework based on SystemC
targeted at network processors and developed by ST Microelectronics in col-
laboration with universities. It enables rapid prototyping and architectural
exploration. It provides well-defined interfaces between processing cores, co-
processors, and communication channels to enable the usage of component mod-
els at different levels of abstraction. It enables the creation of multi-processor
architectures with models of interconnects (functional channels, NoCs), proces-
sors (simple RISC), memories and coprocessors.

BlueSpec [95] takes as input a SystemVerilog or a SystemC subset and
manipulates it with technology derived from term rewriting systems (TRS) [96]
initially developed at MIT by Arvind et al. It offers an environment to capture
successive refinements to an initial high-level design that are guaranteed correct
by the system.

An other approach [97], more focused on SW, consists in making high level
refactoring of the source code in order to take into account the target platform.
This work is useful when mapping a program on processors but does not apply
to the hardware domain.

38

Interface design Interfaces are often a serious bottleneck in embedded
system design. Thus, the work of Jerraya and al. [98] focusses on interface
design for multiprocessors SoC.

2.4.4 From graph specifications

In a more abstract way, the algorithm specifications can be described using
different type of graphs. The three frameworks presented here use respectively
Petri nets, control data flow graph or synchronous data flow graphs.

CodeSign framework [99] uses Object Oriented Time Petri Nets (OOTPN)
as the modeling language. This language is quite powerful to model real-time
systems and has a mathematical formalization that makes it easily analyzable.
The notion of time allows performance evaluation at the early stages of the
design. In order to facilitate the hardware/software partitioning task according
to system constraints, CodeSign supports generic models which are refined with
implementation details. Interfaces between hardware and software are automat-
ically inserted according to the protocol specifications. Since the configuration
of the interfaces can have a large impact on the system performance, CodeSign
allows exploring different implementations derived from a master specification.
CodeSign supports C and VHDL code generators for software and hardware
implementation. Codesign project produced the Moses Tool Suite, a tool for
modeling and simulating and evaluating heterogeneous systems using Petri nets.
This tool supports the Cal language [20], a dataflow- and actor-oriented lan-
guage, especially suited for modeling and simulating signal processing systems.

Trotter design flow [100] enables rapid prototyping and design space
exploration by using an internal graph representation of the application. The
framework provides metrics, useful for evaluating the impact of the design
choices (of the application) on resource requirements in terms of processing,
control, memory bandwidth and potential parallelism at different levels of gran-
ularity. The application must be written in C and is immediately converted into
Hierarchical and Control Data Flow Graphs (HCDFG). The required informa-
tion and the results are stored as attributes in this graph, composed of elemen-
tary nodes (processing, memory, control), dependence edges (control, data) or
subgraphs. This framework performs automatically the application design space
exploration at the event-based level. Tools are available for simulation, formal
proof and code generation at the event-based level but they do not consider any
path to hardware.

Syndex [101] [102] is a Computer-Aided-Design software aiming at map-
ping an application onto an architecture. It implements the Algorithm Architec-
ture Adequation methodology (AAA) [103]. Within this environment, the de-
signer defines an algorithm graph, an architecture graph and system constraints.

39

The methodology is based on graphs models to exhibit both the potential paral-
lelism of the algorithm and the available parallelism of a given multi-component
architecture. The methodology consists in distributing and scheduling the al-
gorithm graph on the multi-component architecture graph while satisfying real-
time constraints, maximizing a unique criterium, throughput. The heuristics
take into account the execution time of the computations and inter-component
communications. The results of the graphs transformations is an optimized Syn-
chronized Distributed Executive (SynDEx), automatically built from a library
of architecture dependent executive primitives composing the executive kernel.

2.4.5 UML-based design flow

Unified Modeling Language (UML) is largely used in software engineering for
designing large software programs. The most complete design flow using UML
for system modeling is achieved by Kukkala et al. and is called Koski.

The target of the Koski design flow [104] is multiprocessor System-on-Chip
(SoC). It is a library-based method that hides unnecessary details from high-
level design phases, but does not require a plethora of model abstractions. The
design flow provides an automated path from UML design entry to FPGA pro-
totyping, including functional verification, automated architecture exploration
and back annotation. The design of the architecture is based on the application
model: it results in a application-specific implementation. The flow has been
successfully applied to a WLAN Video Terminal [105].

The targeted platform is a multiprocessor SoC platform implemented on
FPGA. UML models (i.e. application, platform and mapping models) are writ-
ten thanks to the experience of the designers and there is no help for their
elaboration. Furthermore, one can wonder if UML is a nice way to express
parallelism? When dealing with C/C++ specifications, UML models must be
written, which can be a burdensome task for the designer. The design space
is restricted to multiprocessor SoCs. An other aspect is highlighted in [106]:
graphical languages are not well accepted because it is slower to use than writ-
ing code. Coding an algorithm in a textual manner is more productive than
drawing the equivalent flow chart.

2.4.6 Commercial tools

There are several commercial tools helping in the design of complex systems, at
different levels of abstraction.

Matlab-Simulink and LabVIEW Simulink from Mathworks [77] and
LabVIEW from National Instruments [107] are the most known tools for mod-
eling control and signal processing application using a nice graphical environ-
ment. These tools focus on the functional aspects of the algorithm and not
really on the implementation aspect even if some progresses have been made
in this domain. For example, the Xilinx System Generator for DSP tries to

40

fill the gap between the high-level abstract version of a design and its actual
implementation in a FPGA.

Electronic System Level (ESL) tools The Signal Processing Worksys-
tem (SPW) [108] is a tool using data flow formalism even earlier than Ptolemy.
SPW has been acquired by CoWare in 2003. Coware proposes a system-level
tool performing design, analysis and simulation of system specified in SystemC
and using TLM.

Synopsys System Studio [109] is a model-based design and analysis
tool helping the designer to build systems at a high level of abstraction. It
supports all the models of computation supported by SystemC. It is possible
to run co-simulation of HDL descriptions with SystemC models or Matlab al-
gorithms. This tool supports also hardware synthesis from SystemC. C/C++
and SystemC are used to describe a high level model or to integrate existing
Intellectual Property (IP) blocks. Because it is hard to make reusable models in
C/C++, SystemC is often used as an encapsulation mechanism. The problem
of these tools is that there is no explicit methodology which helps the designer
in choosing the right mapping decisions.

2.5 Discussion

The state of the art covered briefly the different aspects of design space explo-
ration applied to parallel digital systems: how the application is specified, how
the architecture is handled, how to extract the metrics to characterize the met-
rics that guide the design space exploration heuristics and what are the existing
tools and methodologies which support designers to reach efficient implementa-
tion of parallel applications.

There is still something missing

Many tools exist but most of them address the problem only partially and focus
only on well-bounded problems such as efficient hardware or software mapping,
interfaces, partitioning, scheduling, etc. C-to-Gates tools [81–87] address the
problem of translating C/C++ code into hardware. The .NET framework based
tool [90] unifies the hardware and software design flow to have an automatic
mapping of the application on the different processing units. But it lacks design
space exploration tools. Kangas et al. [104] present the Koski design flow that
only covers the design phases from system-level modeling to FPGA prototyping.

Few of them consider an holistic approach to the problem of bridging the
implementation gap, from the specification down to the implementation [78] [76]
[68].

The more evolved approaches that are closed to consider the problem as
a whole are the Ptolemy/Peace project [78], the Daedalus framework [68],
Metropolis [71] and Mescal [75].

41

Up to the author’s best knowledge, there is no tool that provides a complete
design flow for the design of complex digital systems from the specification down
to the implementation onto the target platform comprising:

High level specification and design that guarantees the seamless writing of
complex applications with features such as conciseness, reuse and portabil-
ity. The well-defined language is necessary for enabling the compatibility
between the developed tools.

Systematic design space exploration that guides the designer in the explo-
ration of the large design space. It should include profiling tools, parti-
tioning / scheduling heuristics and an optimization strategy for helping
designer in making the right design choice in the early steps of the design
flow.

Efficient code generation that translates the high level description into effi-
cient native implementation code according to the target platform.

Proposal: raise the level of abstraction...

Abstraction is the solution adopted by many approaches for bridging the im-
plementation gap because it allows to focus on a small set of aspects and to
hide low-level implementation details. Working at a higher level of abstrac-
tion is a non-negligible gain of time and resources for the design and the debug
of applications. Memory management, time dependencies and synchronization
processes are such aspects that can be hidden.

Raising the level of abstraction is an interesting mean for shortening the
design cycle of digital systems. Performing the design space exploration at high
level of abstractions allows designers to make the right choices at the early steps
of the design flow, avoiding loosing time in implementing non-efficient solutions
at low-level of abstractions.

The design of digital systems with competitive performance is speed-up
thanks to the deeper exploration of the design space, made possible through
the raise of the level of abstraction.

...using dataflow programming...

The increasing complexity of digital systems coupled with the advent of parallel
platforms put back into question the use of sequential specification and ask for a
shift of paradigm. Why continuing specifying complex applications in a way that
does not help for the implementation? Sequential specifications were extremely
useful while using traditional sequential processors to implement them, they
belong to the same paradigm. It is not the case anymore: target platforms are
now parallel and specifications remain in a sequential form.

Sequential programming hides parallelism Imperative programs are
modeled as a sequence of operations and the flow of data between these opera-
tions is secondary. The over specification of imperative programming in terms

42

of control hides the potential parallelism of the application, limiting the way
operations can be executed and thus the way these operations are mapped on
threads and processing units. A direct consequence of this over specification is
that it does not give any freedom in the scheduling of the different operations
of the application onto processing units [110].

A strong lack of flexibility ”Threads are a seemingly straightforward
adaptation of the dominant sequential model of computation to concurrent sys-
tems” [111] argued Edward A. Lee. He explained clearly why threads are not a
good idea for dealing with parallelism.

Applications are structured explicitly using threads and processes that com-
municates using shared memory or other means of communications (e.g. mes-
sages, pipes, semaphores). ”Threads are often not a practical abstraction because
creating the illusion of shared memory is often too costly” [111]. The structure
of the application is hardly modifiable to fit the target platform because of the
too expensive management of the locks and synchronization processes. The
cost of refactoring the applications to fit the different target platforms is very
costly in terms of rewriting effort and is risky because bugs can be introduced.
The direct consequence of this lack of flexibility is that the degree of exposed
parallelism is rarely adapted to the available parallelism of the platform: either
too many threads are mapped on processing units, incurring large scheduling
overhead or processors are under-utilized. An application with a given level of
exposed parallelism is optimal only if implemented on a platform with the same
level of parallelism [110].

The other way round? As long as processors were sequential, reference
software were written in imperative language and were the most appropriate
way for specifying and implementing systems. With the advent of the multicore
era, programmers need to parallelize applications to fit parallel platforms. It
is only a deep knowledge of the application algorithm that allows restructuring
the program so that it exposes more parallelism. One can think of the other
way round: why not exposing the potential parallelism of the application and
sequentialize (if necessary) the operations of the application so that it fit to the
available parallelism of the target platform [110]?

Unlike traditional approaches, dataflow programming is a natural way to
expose the parallelism of signal processing applications because the structure
itself of the program (set of interconnected actors) exposes explicitly this par-
allelism. Actors are independent from each other, providing a great flexibility
for the design and implementation of parallel systems. This flexibility allows
exposing seamlessly different levels of parallelism of the applications, which is a
very interesting feature for exploring the design space.

43

...and Cal language

Each tool described in Section 2.4 has its own language with their own speci-
ficities. The choice of the language capable of supporting a high level design
space exploration is primordial and is specific to the application domain. The
review of the existing languages used in digital systems design highlights the
primordial properties of languages capable of supporting a high level design
space exploration.

The tools based on various graphs [99] [100] [102] for the representation of
the application are limited either by the fact that the representation is not well
formalized or limited to a very small domain of application, limiting the simula-
tion and portability of the application, or by the fact that it is not convenient to
generate implementation code from it. Tools [94] [95] based on SystemC offer
a too low level of abstraction to support high level design space exploration
because too many implementation details are exposed.

The Cal language (Section 2.1.1 and [20]) has some interesting feature for
describing the computational entities of a dataflow representation, namely the
actors.

Conciseness It provides a concise high-level description of an actor. Cal
is a textual language for writing down the functionality of actors: input and
output ports, parameters, states, finite state machines, typing constraints and
firing rules. The advantage is obviously a reduction of the lines of code to be
written.

Formal specification Having a rigorous specification of the language is
very important for its simulation and for generating implementation code from
it. Otherwise, compatibility issues are a bottleneck for the development of such
tools. It ensures also the portability of the programs and is a larger guarantee
for its adoption.

Analyzability Through its representation in Cal, an actor is easily an-
alyzable. One can extract the tokens rates of actors, the sequence of actions
firing inside an actor, and can be used for dataflow analysis and code genera-
tion. This is a very important feature for being able to support high level design
space exploration.

Several models of computations The Cal language can describe ac-
tors in different Models of Computation. Thus, in a single dataflow program,
actors may be of different natures: Synchronous Dataflow (SDF), Cyclo-Static
Dataflow (CSDF) and Dynamic Dataflow (DDF).

Modularity and reuse Cal language insulates the behavior of each ac-
tor, making them independent from each others during the execution of the
program. This encapsulation property enables the seamless composability of

44

dataflow programs. This ability to create new computational entities by us-
ing existing entities is a valuable feature for easing the coding of applications.
It makes the writing of actors more accessible and makes actors portable and
reusable. The possibility to define an actor as a sub-network of actors enables
hierarchical design of programs, helping managing the high degree of parallelism.

Required features

It is nice to raise the level of abstraction, but in order to be usable, it should
support simulation, be portable for code generation and be able to support high
level design space explorations methodologies.

Simulation capabilities The level of abstraction should have the neces-
sary constructs and semantics to support simulation, which is a essential step
for designers for the design and the debug of parallel applications. Too abstract
languages do not often support simulation and architectural representations are
at a too low level of abstraction, making the design harder. The Cal language,
through its formal definition [20], has these necessary simulation capabilities.

Code generation and portability Having an appropriate representation
at high level of the application is a nice feature but is useless if there is no way
to make profit of it by generating implementation code from it.

The architectures of target platforms are various and present a wide range
of levels of available parallelism. The traditional thread-based approach lacks
portability because application threads cannot scale properly to the available
parallelism of the platform and cannot be fully exploited. The variety of the
target processing units causes the problem of portability of the code. CUDA
(Compute Unified Device Architecture) is a parallel computing architecture spe-
cially developed by NVIDIA and compatible for a small set of cards. CUDA
gives developers access to the virtual instruction set and memory of the parallel
computational elements in CUDA GPUs. In October 2009, Tilera Corporation,
a semiconductor company focusing on scalable multicore embedded processor
design, announced a new chip TILE-Gx100 that features up to 100 cores at
1.5 GHz. Tilera provides software development tools - Multicore Development
Environment (MDE) - and a line of boards, both built around the Tile processor.

The loss of time and resources may be considerable if changing the target
platform means rewriting completely the application. As a consequence, the
design space exploration is so expensive that it is inexistent. Flexibility and
cross-platform portability are major issues that guarantee efficient system de-
sign.

Because Cal language makes no assumptions about the underlying physi-
cal architecture, native implementation code for a wide range of programming
devices (sequential processors, multicore, manycore, processors arrays, FPGA,
GPU, etc.) can be generated from Cal programs.

45

High level design space exploration Representing a program as a net-
work of connected encapsulated actors is a strong guarantee for providing the
necessary flexibility for efficient design space exploration. Dataflow program-
ming is a natural way to express the inherent parallelism through the inter-
connection of actors. One can expose different levels of parallelism of any
application according to the level of granularity chosen to specify the actors.
The encapsulation property of Cal actors allows the easy interchange of actors
with different levels of granularity. A monolithic actor can be replaced by a
sub-network of actors to increase the degree of parallelism and vice-versa to
reduce it. The encapsulation property prevents any actor to modify the state
of another actor, allowing the safe and seamless transfer of any actor from a
processing unit to another because there is no need to take care of sharing the
states of actors among the different processing units. Unlike in imperative pro-
grams in which the sequence of computations is specified, dataflow programming
with Cal provides a valuable degree of freedom that allows designers to apply
different scheduling techniques in order to best fit target platforms.

The advantageous features of dataflow programming with Cal (scalable par-
allelism, partitioning and scheduling capabilities, portability) are mandatory for
supporting heuristics and methodology for the exploration of the design space
at a high level of abstraction.

Summary

Traditional approaches lack flexibility for scaling reference softwares on mas-
sively parallel platforms and there is no existing approach that gathers all the
required features for efficient design of complex systems, namely:

• High level specification of complex applications based on a formalized
language,

• High level design space exploration, including profiling tools, partitioning
and scheduling heuristics and optimization strategy,

• Efficient code generation.

Dataflow programming with Cal language for describing actors is an inter-
esting paradigm for building an high level design space exploration environment
in order to ease the specification, the design and the implementation of complex
digital systems.

46

Chapter 3

A strategy for the
algorithmic optimization of
dataflow programs

Most of the applications are traditionally specified as sequential programs that
do not reveal the available algorithmic parallelism, thereby hindering the effi-
cient mapping of this application onto a parallel multi-processing units platform.
Cal language provides the necessary constructs to describe concisely parallel
application. Actors are sequential processes that are executed concurrently, on
the condition that data dependencies are respected. Thanks to this duality, an
application can be written in different ways, exposing more or less parallelism,
letting infinite manners to write Cal programs.

On one side, writing sequential Cal programs which do not expose enough
parallelism are not suitable for multicore platforms because the inherent paral-
lelism of the application cannot be exploited by the platform, resulting in large
actors that cannot be reused.

On the other side, exposing too much parallelism is not the solution either.
Cal programs have to be translated into implementation code (C/C++ for soft-
ware and VHDL/Verilog for hardware) for the target platforms. Cal language
allows to define applications at a higher level of abstraction, but the price to pay
for this new feature is the introduction of some overhead in the management
of the firing of the actions in a parallel way. Fine-grain parallelism implies too
much communication and management overhead compared to the computations
of the application. However, it is not always the case for all types of platforms.
In hardware, too much parallelism is not really a problem because all the actors
can run in parallel. In software, it causes a problem if the number of processors
is less below the number of actors, the cost for managing the actions firing on
the different processors may become important.

Having in mind all these aspects, the aim of the developer is to write a Cal
program that scales properly to the target platform in terms of parallelism in

47

order to fully exploit its available resources and to obtain the best performance.
But the problem resides in how to proceed to determine the appropriate level
of parallelism that needs to be exposed.

This chapter proposes a strategy which consists in guiding the designer in
the refactoring of the program by highlighting the actors that impact the most
the completion date of the program and by proposing appropriate refactor-
ing techniques to remove the potential bottlenecks. A first section introduces
preliminary notions on parallel programming. Section 3.2 describes different
metrics that can be extracted from Cal programs and their associated tools.
Section 3.3 exposed the optimization strategy and the last section presents the
tools that implement this strategy.

3.1 Notions on parallel programming

Section 3.1.1 introduces some notions about the speed-up of programs and Sec-
tion 3.1.2 lists the different types of parallelism.

3.1.1 Amdahl’s law

In case of sequential programs, the law is concerned with the speedup achiev-
able from an improvement to a computation that affects a proportion γ of that
computation where the improvement has a speedup of S. For example, if an
improvement can speed up 30% of the computation, γ will be 0.3; if the im-
provement makes the portion affected twice as fast, S will be 2. Amdahl’s law
states that the overall speedup of applying the improvement will be:

Speedup =
1

(1− γ) + γ
S

(3.1)

In case of parallel programs, this law states that if γ is the proportion of
a program that can be made parallel (i.e. benefit from parallelization), and
(1 - γ) is the proportion that cannot be parallelized (remains serial), then the
maximum speedup that can be achieved by using N processors is

Speedup =
1

(1− γ) + γ
N

(3.2)

In light of these laws, Cal programs can be optimized on two main axes:

1. Optimize the unbreakable sequential portions of the program.

2. Remove the unnecessary dependencies between actors, responsible for the
sequentiality, identify the portion of the programs that can be made par-
allel and split actors to expose this new available parallelism.

3.1.2 Parallelism taxonomy

There are different types of parallelism (task, data, pipeline) at different lev-
els of granularity (coarse- and fine-grain). In parallel computing, granularity

48

means the amount of computation in relation to communication, i.e. the ratio
of computation over communication.

Task parallelism ”refers to pairs of actors that do not have precedence
relations in a dataflow program. Precedence relations are inferred from the to-
kens dependencies between actors in a dataflow program (A precedes B means
B cannot execute until completion of A)” [112].

Whereas the splitting of actors may increase task parallelism (in case the
splitting does not imply internal dependencies), the merging of actors reduces
it. One can exploit this type of parallelism by mapping the actors on distinct
processing units. Exposing task parallelism by distributing the computations
into actors cannot be automated. It is the knowledge of the application that
guides this decomposition.

Data parallelism ”refers to actors that have no (state or token) depen-
dencies between successive firing. A set of input data can be processed concur-
rently” [112]. In other words, N sets of tokens can be processed by N different
actor instance.

Exposing data parallelism consists in splitting an actor into several identical
instances, each one processing a subset of the input data. One can exploit data
parallelism by mapping the multiple instances of the same actor on distinct
processing elements. There exists no tool capable of automatically splitting
such actors.

Pipeline parallelism ”refers to chain-structured region of the dataflow
program. An actor does partial processing and then forwards the result to an-
other. [...] This kind of parallelism is useful when dealing with a stream of data
on which a certain number of processing should be applied. The gain will be
observed on a set of data and a small cost induced by the initialization of the
pipeline (that implies a latency on the first processing).” [112]

Exposing pipeline parallelism consists in structuring actors into a chain such
that each actor depends only on its predecessor. One can exploit pipeline par-
allelism by mapping those actors on distinct processing elements. There is no
tool for organizing the actors such a way.

Coarse- and fine-grain parallelism Relatively small actors - in terms
of code size and execution time - that are exchanging tokens frequently refers
to fine-grain parallelism. On the contrary, relatively large actors that are ex-
changing tokens infrequently refers to coarse-grain parallelism. ”The finer the
granularity, the greater the potential for parallelism and hence speed-up, but the
greater the overheads of synchronization and communication .

Fine-grain parallelism is hardy exploitable by software platforms because the
communication costs tends to hide the gain obtained from the parallelization

Source: http://foldoc.org/granularity

49

http://foldoc.org/granularity

and sometimes results in worse performance. Fine-grain parallelism is more
appropriate to hardware platforms that can exploit this parallelism with lower
communication costs. On the contrary, coarse-grain parallelism is more appro-
priate to software platforms because communications are expensive. Whereas
splitting actors lowers the level of granularity, merging actors contributes to
raise it. The splitting of actors cannot be automated but the merging of actors
can.

Figure 3.2 (Source: [112]) depicts the different kinds of parallelism, applied
to a simple dataflow program (Figure 3.1 ; Source: [112]). Let CA = CB = CC

3 =
CD = CE = CF be the computational load of each actor. Communication costs
are not considered.

A

B

C

D E F

Figure 3.1: A simple dataflow program.

3.2 Extracting metrics from Cal programs

Efficient design space exploration heuristics need realistic metrics, characterizing
the lower levels of abstraction in order to compute high level solutions that lead
to efficient implementations. Having a high level representation of an application
is useless if it cannot reflect the real underlying implementation. The profiling
of the implementation code generated directly from high level descriptions is a
viable way to get realistic metrics and to attach them to the Cal program.

Ideally, the profiling should occur at the algorithmic level and should not
be altered by specific architectures on which the application is executed. A
reliable algorithmic complexity analysis must be performed at the abstraction
level of the source code, i.e. at the same abstraction level of verification models,
which are conceived and developed for no specific target architecture but for
algorithmic specification and validation purposes only. Any complexity anal-
ysis based on the modification of the compiled code inevitably takes into ac-
count the code transformations due to the compilation process (e.g., source-code
to intermediate-format transformations, optimization transformations, target-
architecture specific transformations) and strictly depends on the instruction-
set of the target architecture. When a pure algorithmic complexity analysis at
high-abstraction level is of concern, the results of a platform- or compilation-
dependent analysis can yield misleading complexity evaluations because of the
aforementioned transformations.

50

(a) Sequential.

time

processing units

A

B

C

D

E

F

(b) Task parallelism.

time

processing units

A

B

C

D

E

F

(c) Task and data parallelism.

time

processing units

A

B C C C

D

E

F

(d) Task, data and pipeline parallelism.

time

processing units

A

A B

B

C

C

C

C

C

C D

D E

E F

F

Figure 3.2: Parallelization of a simple dataflow program.

51

Cal programs can be easily analyzed in different ways: static code analysis
(Section 3.2.1) and profiling (Section 3.2.2).

3.2.1 Static code analysis

Static code analysis consists in analyzing the source code without executing the
program.

3.2.1.1 Nature of actors

As mentioned in Section 2.1.1, Cal is capable of describing applications in
different models of computations (SDF,CSDF,DDF). Thus, according to the
way actors fire their actions, several types of actors can be distinguished:

Static actors retain the ability to be scheduled at compile-time. They can be
part of two subsets:

• SDF actors [113] include one or several actions with the same token
rates are SDF.

• CSDF actors [114] include one or several actions that may have dif-
ferent token consumption and production. Theses actions are fired
following a fixed cycle. For each cycle, the numbers of consumed and
produced tokens are identical. They extend SDF actors in the sense
that they are still static at the cycle level.

Dynamic actors [115] refer to the most general type of deterministic actors,
i.e. a given input sequence of tokens always produces a unique output
sequence. They can contain several actions with different token consump-
tion and production. They can test the availability of the input tokens
and can check their values to fire actions. Dynamic actors need to be
scheduled at run-time because the value of the input tokens cannot be
known a priori at the compile-time.

Time-dependent actors fire actions depending on the arrival time of the to-
kens. Thus, time-dependent firing sequences may produce non-deterministic
output, since their effect might depend on the arrival time of inputs.

Several tools aim at classifying actors according to their MoC. A first tool has
been implemented by Ericsson as a contribution to OpenDF [116]. This work has
been integrated into the Cal Static Analyzer (Section 3.5.1). One can also
mention the classifier implemented within the ORCC framework (Section 4.4.1).

3.2.2 Profiling

Profiling is a kind of dynamic program analysis (as opposed to static code anal-
ysis). It is the investigation of the behavior of a program using information
gathered as the program executes. Thus, the profiling of any program implies
that the results are closely linked to the input data being used during the analy-
sis. In order these results to be valuable, the input data must be a representative

52

set that correspond to a normal behavior of the program, otherwise the profiling
results may not be meaningful.

The following sections present a non-exhaustive list of metrics that can be
extracted from Cal programs.

3.2.2.1 Actions profiling

Having an estimation of the execution time of the actions is compulsory for
computing efficient mapping of the Cal program on a given platform. This
profiling can be performed at different levels:

Cal level, platform-agnostic At a high level of abstraction, the values ex-
tracted by this profiling are far from the real implementation and are not
suitable for efficient optimization on a given platform. It can be used for
pure algorithmic optimization.

Implementation level, platform-agnostic At a lower level of abstraction,
one can profile the implementation code (C/C++, for instance) by not
taking into account the architecture of the underlying platform. This pro-
filing measures the computational load of each action in terms of C/C++
operators. ProfiCal (Section 3.5.3) provides this profiling by instru-
menting the source code generated from the Cal program by the C++
backend of the ORCC code generator (Section 4.4.1).

Implementation level, platform-aware At the lowest level of abstraction,
the profiling on the given platform is the most precise, because the real im-
plementation code is analyzed. Thus, this profiling is platform-dependent.
Two solutions have been envisaged:

• Record the total time spent by each of the action of the program,
using the well-known Gprof [117].

• Measure the computational load of each action in terms of executed
instructions. This can be done by instrumenting the binaries at run-
time. This metric is extracted by the Cal Dynamic Analyzer
(Section 3.5.2).

3.2.2.2 Causation trace

Cal language allows writing dynamic programs, i.e. the sequence of actions
firings depends on the input token values. In order to analyze this type of
programs, one needs to record the sequence of actions firings during an execution
of the program given input data. Janneck et al. [118] firstly introduces the
causation trace to represent such a recording and defines it as follows:

Definition 1. The causation trace of a dataflow program is a directed acyclic
graph such that:

• every node is a firing of an action of an actor in the program,

53

• every edge from the node v1 to the node v2 is a dependency (either through
a token, state or port) from v2 on v1, implying that therefore action v1 has
to be executed before action v2.

The causation trace is extracted by the Cal Dynamic Analyzer (Sec-
tion 3.5.2) or by ProfiCal (Section 3.5.3).

3.2.2.3 Trace critical path

By assigning to each node of the causation trace the corresponding execution
time of the action that has been extracted (Section 3.2.2.1), one can obtain a
weighted causation trace. Identifying the longest weighted path of this causation
trace reveals very valuable information. The problem of identifying the longest
path in a program is called a critical path problem [119]. The critical path
profiling is a metric explicitly developed for parallel programs [120] that proved
to be useful.

Indeed, extracting the critical path allows identifying the components in
a parallel program that limits its performance. It is an effective metric for
tuning parallel programs and is especially useful during the early stages of the
application design. As long as the functions belonging to the critical path
are optimized, the critical path may change completely, highlighting the new
functions to optimize. Any delay in the execution of the actions belonging to
the critical path impacts directly the completion date. It also helps to find out
which components should be prioritized to complete the program execution in
time. When a task has to be completed in a given time, the critical path analysis
helps to focus on the essential activities to which attention and resources should
be devoted. The extraction of the critical path at the algorithmic level of the
execution of C/C++ programs has been already studied by Christophe Clerc [1].
In this research work, this notion of critical path has been applied to dataflow
programs and thus can be defined as follows:

Definition 2. The critical path of a dataflow program execution is simply de-
fined as the longest weighted sequence of events from the start of the program
to its termination. The parallel computations being described by the causation
trace, the trace critical path is the longest weighted path from the source to
the sink node of the causation trace.

The trace critical path (illustrated in Figure 3.3) is the longest weighted
path because considering only the longest path - i.e. considering unit weight for
all the actions of the causation trace - is not relevant because it does not allow
for real impact of actions onto the performance. By considering unit weights
for all actions, it means that complex and simple actions have the same impact
and thus same execution time. This is obviously not the case. By weighting the
actions with their respective running time (extracted thanks to profiling tools),
it guarantees that the trace critical path will include the actions that impact
the most the completion date of the execution.

The CrossCal tool (Section 3.5.4) extracts the trace critical path of the
execution of a program from its causation trace. As nodes in the causation trace

54

Figure 3.3: Illustration of the trace critical path of the execution of a program
represented as a Directed Acyclic Graph (DAG).

are actions firing, the trace critical path is at the action level. This is coherent
with the atomic nature of the actions in Cal. The principle of Algorithm 1
which extracts the trace critical path from the causation trace is:

1. Label each node with its respective weight, given by the profiling.

2. Traverse the causation trace from the source to the sink and computing
of the distance of each node from the source using the weights. Record of
the precedent node used to compute the distance of the current node.

3. Traverse the trace from the sink to the source to recover the trace critical
path by following the precedent node of each current node.

3.2.2.4 Data transfers

Actors communicate between each others thanks to tokens through connections.
Knowing the amount of data flowing between actors through these connections
is useful for estimating the necessary bandwidth between the different partitions
of the implemented system. This metric also guides the partitioning of the Cal
program, trying to minimize the communications between actors because the
exchange of tokens implies communications overhead which is not negligible at
the implementation level.

Knowing the number of execution of each action and the size in bits of each
of the ports, it is easy to compute the data transfers between actors thanks to
Algorithm 2. Data transfers are extracted by the CrossCal tool (Section 3.5.4).

55

Algorithm 1 Extraction of the trace critical path from the causation trace

Let G be the causation trace (G) of the execution ;
Let W (v) be the weight of node v ;
Let cp be the ordered list of the nodes belonging to the trace critical path ;
Let lengths be the array with |V (G)| elements of type int with value 0 ;

for vertex v in topologicalOrder(G) do
for edge (v, w) in Edge(G) do

if lengths[w] ≤ length[v] +W (w) then
lengths[w] = lengths[v] +W (w) ;
pred(w) = v ;

end if
end for

end for

u = sink(G) ;
while u 6= source do
add(u) to cp ;
u = pred(u) ;

end while

Algorithm 2 Profiling the data transfers

Let N(a) be the number of execution of action a ;
Let Port(a) be the output ports of action a ;
Let Size(p) be the size in bits of port p ;
Let C(p) be the connection linked to the port p ;
Let DT (c) = amount of data flowing through connection c ;

for action a in the Cal program do
for port p in Port(a) do
bits = N(a)× Size(p) ;
DT (C(p))+ = bits ;

end for
end for

56

3.3 Optimization strategy: trace critical path
minimization

In large and complex applications, the main problem remains in finding which
functions need to be optimized in order to have the best speed-up for a mini-
mum effort. The trace critical path is a very useful metric in case of parallel
programs because it indicates the functions that are critical and really affect
the completion date of the execution, as discussed in Section 3.2.2.3. Because
any change in the execution time of these actions belonging to the critical path
impacts directly the completion date of the execution, these actions are the best
starting points for the optimization.

The optimization consists in reducing the contribution of these actions to the
critical path so that their reduction of their execution times reduce the general
duration of the execution. By doing so for the most critical actions of the critical
path, the designer can significantly optimize the Cal program. More generally,
the optimization consists in minimizing the trace critical path of the execution.

Section 3.3.1 presents how to compute the contribution of an action to the
critical path and defines the most critical action, the action with the largest
contribution to the critical path. Section 3.3.2 presents an algorithm for pre-
dicting the successive most critical actions during the optimization process. Sec-
tion 3.3.3 proposes several techniques for helping the designer in the refactoring
of the Cal program for getting rid of the detected bottlenecks of the program.

3.3.1 Definition of the most critical action

The trace critical path is the list of actions which impact the most the completion
date of the execution. One can sort these actions according to their contribution
to the trace critical path. The sorting can be based on the number of occurrences
of each actions. But it is not because an action appears the highest number of
times that it contributes the most to the trace critical path. The execution
time of these actions must be taken into account to decide which actions are
the largest contributors. The action having the largest contribution to the trace
critical path is the one cumulating the largest computations in the trace critical
path and thus is a good starting point for the optimization.

Definition 3. The most critical action is the one which has the largest
contribution to the trace critical path in terms of computational load for a given
execution. Let Contrib(action), the contribution of an action to the trace critical
path, the most critical action can be defined in Equation 3.3:

MostCriticalAction = max
a∈Actions

{Contrib(a)} (3.3)

Let a an action belonging to the trace critical path, CL(a) its computational
load and CP the set of all the actions of the trace critical path, the contribution

57

of an action a is defined by Equation 3.4:

Contrib(a) = |a ∩ CP | × CL(a) (3.4)

At the actor level, Equation 3.5 defines the contribution of an actor A,
which is the ratio between the sum of the contribution to the trace critical path
of its actions and the total computational load of the actor.

Contrib(A) =

∑
a∈A{Contrib(a)}

CL(A)
(3.5)

3.3.2 Critical Actions Detection algorithm

Being able to identify systematically the critical actions of a Cal program for
a given execution makes possible the estimation of the necessary optimization
of the action so that it is no longer critical. This information indicates to the
designer how much the action needs to be optimized. But as long as the actions
belonging to the trace critical path are optimized, the trace critical path may
change completely, highlighting the new critical actions. By computing the trace
critical path iteratively with decreasing values for the computational load of the
current most critical action until it is no longer in the trace critical path, one can
extract the list of the N next critical actions and their necessary optimization.
Algorithm 3 provides the list of the critical actions and is implemented in the
CrossCal tool (Section 3.5.4).

Algorithm 3 Critical Actions Detection algorithm

Let Bn be the most critical action at iteration n ;
Let CL(A) be the current value of the computational load of action A ;
Let CLi(A) be the initial value of the computational load of action A ;
Let k be the optimization step (in %) ;
Let OPT be the number of minimum optimization (in %) ;

CPi = CriticalPath() ; {Value of the initial trace critical path}
B0 = MostCriticalAction() ;
CL(B0) = k × CL(B0) ;
n = m = 0 ;
while (v < OPT or m 6= N) do
n+ + ;
Bn = MostCriticalAction() ;
if (Bn 6= Bn−1) then

Add action Bn−1 to the list with opt. = 100× (1− CL(Bn−1)
CLi(Bn−1)

) % ;
m+ + ;

v = 100× (1− CriticalPath()
CPi

) ;
end if
CL(Bn) = k × CL(Bn) ;

end while

58

3.3.3 Refactoring techniques

After having identified a set of actions as critical, there are several techniques
aiming at refactoring the dataflow program in order to get rid of these bottle-
necks. The aim is to reduce the contributions of the most critical actions so
that they do not belong to the critical path any more, or they are at least not
critical.

The Critical Actions Detection algorithm (Section 3.3.2) extracts the N most
critical actions which are the main bottlenecks of the program. The programmer
needs to focus on these particular actions in order to improve the performances
of the whole system. Thanks to the advantageous modularity features of Cal
programming, designers can work concurrently on the refactoring of the different
bottleneck actors. As long as the behavior of actors in terms of input and
output tokens requirements is respected, the newly refactored actors can be
interchanged seamlessly with the old ones.

Equation 3.4 defined the contribution of an action to the critical path. There
are mainly two ways for reducing the contribution of an action:

By minimizing |a ∩ CP | by breaking the sequentiality The programmer
may have introduced unnecessary sequentiality in a critical action whose
impact on the performances is important. Being embodied in a critical ac-
tion, this sequentiality slows down the execution of the program. Breaking
this sequentiality by splitting the most critical actors helps in minimizing
the global critical path (Section 3.3.3.1).

By minimizing the computational load CL(a) of the action It consists in
rewriting the actor/action in a more efficient way so that the functionality
of the action is fully kept but by using less computing resources (Sec-
tion 3.3.3.2).

3.3.3.1 Breaking unnecessary sequentiality

Every application contains an incompressible and inherent sequentiality. Nev-
ertheless, some unnecessary dependencies may have been introduced by the
developer while writing the application. When writing parallel programs, it is
important to remove the unnecessary dependencies. For instance, the sum of
four numbers a, b, c and d can be implemented in two different ways. In the
sequential implementation (Figure 3.4(a)), each number is added one after the
other, creating useless dependencies between each step. In the parallel imple-
mentation (Figure 3.4(b), intermediate sums (Sum1 and Sum2) can be calculated
in parallel.

The dependencies introduced by the programmer while writing the appli-
cation hide the task and data parallelisms (see Section 3.1.2) which can be
exploited by the platform. Thus, these dependencies may be a real bottleneck
in the parallelization of the application because they cannot be guessed by com-
pilers even if this field of research has been active for decades. Removing it
directly at the application level is a guarantee of producing solutions which can
really fit to parallel platforms.

59

A B C D

+

sum

+

sum

+

sum

(a) Sequential implementation. (b) Parallel implementation.

Figure 3.4: Different implementations of the sum of four numbers.

3.3.3.2 Minimization of the computational load

3.3.3.2.1 Action and actor rewriting The first idea is to rewrite the
action that has been detected as the most critical. It consists in rewriting the
action in a more efficient way, using less computation-intensive processes to
perform the same functionality. But it is not always possible to do so and the
refactoring of the whole actor is necessary. The complete refactoring of the
Finite State Machine of the actor is sometimes compulsory.

3.3.3.2.2 Merging actors The refactoring of the actor only may be not
enough for the optimization of the critical part of the program. For example, in
order to improve the ratio between computations and communication (because
communications have a non-negligible cost), it may be necessary to merge con-
nected actors in order to reduce the overhead due to the communication at the
price of less exposed parallelism.

3.3.3.2.3 Reducing implementation overhead Cal allows to specify
applications at a high level of abstraction, it is not an implementation language.
Cal programs cannot be executed directly on target platforms. Thus, they
need to be converted in the respective native language of the platforms, i.e.
VHDL/Verilog for hardware platforms and C/C++ for software platforms.

The conversion of a high level language as Cal into low-level software lan-
guages reveals necessary overheads that must be considered, both in hardware
and software. Additional macros need to be inserted in order the manage low-
level details that are not explicitly specified into Cal programs. This extra cost
is called the implementation overhead. The reader is referred to Section 4.4 for
further details on code generation.

In multi-processing-units software systems, communication channels
between actors are turned into real FIFO implementations which may introduce
additional synchronization protocols in case of concurrent memory accesses.
The implementation of actors introduces a controller (namely action scheduler)
which is responsible for deciding which action must be fired next according to

60

the state of the actor, the action guards, the token availability at the input and
the status of the FIFO. In case several actions can be fired, the action scheduler
needs to choose only one. Thus, a well-defined scheduling policy needs to be
defined and implemented.

In hardware systems (FPGA, ASIC), the level of available parallelism is
much higher than in software systems, allowing each actor to run in parallel
as in Cal programs. Thus, each actor implemented in HDL on the target can
run concurrently with each others. The system can be self-scheduled, driven
by the production of tokens and the concurrent work of the actors. Addition-
ally, protocols need to be implemented for managing the accesses to the FIFOs
when consuming or producing tokens. At the actor level, an action scheduler is
necessary in order to decide which action must be fired next. These controllers
introduce overheads in terms of processing time and area.

Developers can design systems at a high level of abstraction (in Cal) without
worrying about low-level implementation details but it is not a reason for ignor-
ing the underlying mechanisms at the implementation levels. Brilliant C/C++
developers are aware of how the code is turned into assembler after compilation.
The same idea can be applied concerning Cal, designers need to be aware of
the overhead due to the implementation: whatever the target is, any execution
of an action implies four steps:

1. The scheduling determines:

(a) at the actor level, which action to fire next,

(b) at the processing unit level, which actor to fire next.

2. Input memory accesses: the action consumes token(s) at the input.

3. Execution of the body: computations of the application.

4. Output memory accesses: the action produces token(s) at the output.

Obviously, applying these transformations may become useless if the imple-
mentation overhead is reduced in the future versions of the code generators.
Section 3.3.3.2.3 and Section 3.3.3.2.3 expose respectively the different refac-
toring techniques aiming at reducing the implementation overhead due to the
scheduling and the memory accesses.

Minimizing scheduling overhead In Cal, at the actor level, these are
different mechanisms for scheduling the actions. The Finite State Machine
(FSM) - if any - is a behavior model composed of a finite number of states and
transitions between them (i.e. the actions). FSM are similar to a flow graph in
which one can control the actions firing when certain conditions are met (token
availability, internal state of the actor, guards). The guards are conditions on
the value of internal variables that need to be satisfied for an action to be fired.
Priorities allow defining which action to fire in case several actions are fireable.

All these mechanisms are costly in terms of processing time at the imple-
mentation level because checks (guards, input tokens, priorities) need to be

61

performed before firing any action. This is the reason why it is recommended
to remove dynamic structures whenever is possible. Obviously, dynamic actors
like the parser need these constructs to be functional.

Scheduling-dominated actors need to be refactored in order to minimize the
workload of the scheduling functions. There are different techniques to minimize
this scheduling overhead:

Reduce (or remove) Finite State Machine One can merge actions or du-
plicate a given action into several others, make use of priorities, etc. This
will reduce the code needed to schedule actions.

Remove guards implies checking less conditions at each test of action firing.

Turn the actor static By preferring static actors, the generated code will be
more efficient because the scheduling functions will be minimized. If the
runtime has a static scheduling policy, the overhead can even be null if the
actor is part of a sequence of static sequence of actors. The Cal Static
Analyzer provides the information on the type of actor (static, dynamic,
time-dependent) and is a first indication of which actor to focus on.

Minimizing memory accesses to FIFO Too many memory accesses
is a problem only when the granularity of the actor is too low, i.e. there is
too much communications compared to computations. One possible solution is
too increase this ratio, which corresponds in fact to merge this actor with its
neighbors in order to avoid communications.

The amount of data exchange is not very important while it is under a given
threshold. Above this threshold, the amount of data begins to have its impor-
tance, but below, the most important thing is that there is a communication,
the cost of locking the FIFO, reading writing and accessing the FIFO is domi-
nant. Then, sending one or one hundred tokens for each firing does not make a
difference. Section 4.3.1.1 shows that below one thousand, the size of the data
transfers does not influence the total execution time.

Once the amount of data exceeds the threshold, one solution could be to
merge the tokens into larger ones. The efficiency of the transfer is improved.
But one must be careful of the modularity of the design if tokens are too much
conglomerated.

3.4 Discussion

In order to optimize the execution of a Cal program, one needs to minimize
the overhead due to the scheduling and memory accesses so that the real com-
putations of the application have a larger part in the whole execution. One can
define the efficiency of an actor A as being the ratio between the computations
of this actor and the overhead due to the scheduling and the communications

62

of this actor as shown in Equation 3.6:

Efficiency(A) =
ComputationalLoad(A)

SchedOverhead(A) + CommOverhead(A)
(3.6)

In order to increase the efficiency of an actor, either the scheduling and/or
the communications must be reduced or actions must be more computational-
intensive. Consequently, a Cal program composed of a single actor would have
the best efficiency. But the parallelism of the program is no longer exposed
and thus cannot be exploited by the platform, loosing the potential achievable
speed-up by the parallel execution of the program.

Thus, a trade-off must be found in order to achieve the best performance.
On one side, the efficiency of the different actors must be maximum and on
the other side, parallelism must be exposed so that it can be exploited by the
platforms. Figure 3.5 illustrates the trade-off to be found out.

Efficiency

Exposed parallelism

Performances

Granularity

Figure 3.5: Finding the right trade-off between the efficiency of actors and the
exposed parallelism.

If the granularity of the actors is too low, the efficiency of these actors will
be too low and will lead to poor performance at implementation because of
the overheads. If the granularity is too high, the actors are too large and the
achievable speed-up by the platform will be low. But, finding the good trade-
off in which the efficiency of the actors are maximized while exposing enough
parallelism is the key point for designing efficient Cal programs.

The technique aiming at removing the unnecessary dependencies increases
the exposed parallelism while removing the implementation overhead at the Cal
level and shortening the trace critical path aims at improving the efficiency of
the actors.

The exposed parallelism of the application should be at the same level as the
one exploitable by the platform. Figure 3.6 illustrates the concept. If too much
parallelism is exposed in the application, mapping it on a sequential processor
implies a large scheduling overhead. On the contrary, if too little parallelism
is exposed in the application, mapping it on a highly parallel platform will be
inefficient. However, there exists some techniques (such as static scheduling)

63

that allow to keep the exposed parallelism at the Cal level and to reduce the
overhead at the implementation (see Section 4.2.4).

Figure 3.6: The level of exposed parallelism should be coherent with the degree
of parallelism of the platform.

3.5 Tools

3.5.1 Cal Static Analyzer

This tool performs one static analysis of Cal programs:

The actors classification classifies the actors in three categories by analyzing
the internal behavior of each actor taken separately:

• Static if a (possibly periodic) static sequence of action firings can be
determined,

• Dynamic if the sequence of action firings is dependent on the (values
of) inputs that an actor receives, but not the arrival time of the
inputs,

• Time-dependent otherwise.

Additionally, this tool gathers some structural information of the Cal pro-
gram on actors, actions, connections between actors, ports size and token rates.
The aim is to pre-process the Cal program in order to gather these structural
information in a single file, avoiding the other tools to parse each time the same
Cal source files. For each actor instance, the following information is gathered
into a single output file:

• Actors instances and actions are identified with a unique hierarchical iden-
tifier:

– Actors : /top/network1/network2/instancenameofactor

– Actions : uniqueID[$tag] (the uniqueID are in lexical order, starting
from 0)

64

• The list of ports and their size in bits.

• The list of actions with their respective tokens consumption and produc-
tion on the ports.

• The connections between actors.

The Cal Static Analyzer is written in Java using the Eclipse RCP frame-
work. This tool is exportable as an executable on different operating systems:
Windows, Linux and MacOS. Figure 3.7 is a screenshot of the tool.

Figure 3.7: Graphical User Interface of the Cal Static Analyzer

3.5.1.1 Inputs

The input is the Cal source code.

3.5.1.2 Outputs

The output is a single XML file containing the results of the actor classification
and the pre-processing of the source code.

3.5.2 Cal Dynamic Analyzer

Cal Dynamic Analyzer is a Pintool written in C++ for Pin [47], a framework
for dynamic instrumentation of binaries. Pin was designed to provide the means
to inject code dynamically at different places in the binary file and to record

65

the information while running the executable This tool can be also used under
different operating systems: Linux, Windows and MacOS.

3.5.2.1 Inputs

The binary of the application compiled from the generated code produced
by the C++ back-end of the ORCC framework (Section 4.4.1).

The names correspondence between the names of the functions in the gen-
erated C++ code and the names of the Cal actions in order to know
which functions to profile.

3.5.2.2 Outputs

The profiling of the actions For each action of the program, it outputs its
number of execution, its total number of computations and its average
computational load in terms of instructions. It outputs the results in a
single XML file.

The causation trace as defined is Definition 3.2.2.2. One XML file per actor
instance is created and lists the firing of its actions in the chronological
order. This format of the trace does not contain the dependencies between
the actors but can be retrieved thanks to the connections contained in the
output file of the Cal Static Analyzer. The choice of this format has
been motivated by size-related issues. Keeping the dependencies into the
XML file produces huge causation traces which were tricky to handle.

3.5.3 ProfiCal

The ProfiCal tool has the same features as the Cal Dynamic Analyzer
but profiles actions at the C/C++ operator level of a Cal application instead
of the instruction level. The instrumentation of the source code is made thanks
to the Software Instrumentation Tool (SIT) [42].

ProfiCAL

CAL program
ProfiCAL

preprocessor

C code

Actor i

Tokens
(stored in
text files)

Actor i

ProfiCAL
packager

ProfiCAL
library

Actor 1

Input Tokens

C code

Main

Actor 2

Input Tokens

C code

Main

Actor n

Input Tokens

C code

Main

SIT
Results

(database)

Actor i

ProfiCAL
postprocessor

ProfiView

XML results
File

Figure 3.8: Architecture of the ProfiCal tool.

The Cal application is converted in C++ code, using the C++ backend of
ORCC. The generated code is executed, and the tokens are recorded during the
execution. The whole is input to the SIT which outputs the results in form of a

66

small database. The profiling of the actions are extracted in terms of C/C++
operators.

3.5.3.1 Input

The input is the Cal program and its input data.

3.5.3.2 Outputs

The profiling of the actions For each action of the program, it outputs its
number of execution, its total number of computations and its average
computational load in terms of C/C++ operators. It outputs the results
in a single XML file.

The causation trace is also extracted, the same as in the Cal Dynamic
Analyzer.

3.5.4 CrossCal

The CrossCal tool aims at providing an environment for easily crossing the
results of the different metrics and profiling from the other tools. It results
in advanced metrics that are very valuable for the design of Cal programs.
CrossCal performs three analyzes:

Critical Actions Detection algorithm consists in detecting and listing the
potential critical actions of a Cal program executed with given input data
(Section 3.3.2).

The extraction of the trace critical path from the causation trace (Sec-
tion 3.2.2.3). The weights of the nodes (i.e. actions) are computed by the
WeightCAL tool (Section 3.5.5).

The profiling of the data transfers outputs the size of the data exchanges
between actors. For each connection, the contribution of each action to
the total amount of data is also specified (Section 3.2.2.4).

The tool is written in Java using the Eclipse RCP framework. This tool is
exportable as an executable on different operating systems: Windows, Linux
and MacOS. A screenshot of the tool is shown in Figure 3.9.

3.5.4.1 Inputs

The results of the static analyzes output by the Cal Static Analyzer.

The causation trace provided by the Cal Dynamic Analyzer.

The profiling of the actions provided by ProfiCal or the Cal Dynamic
Analyzer.

The execution time of actions provided by WeightCAL.

3.5.4.2 Output

The output is a single XML file containing the results of the different analyzes.

67

Figure 3.9: Graphical User Interface of the CrossCal tool

3.5.5 WeightCAL

WeightCAL is responsible for setting the execution time of the actions given
the different profiling available. Three schemes are possible:

By considering only action bodies either in terms of C/C++ operators (pro-
vided by ProfiCal) or in terms of instructions (provided by the Cal
Dynamic Analyzer).

By considering body of actions and scheduling overhead Additionally to
the profiling, a part of the scheduling overhead is estimated and added to
the execution time.

From Gprof The executable of the application compiled with ORCC can be
profiled with Gprof [117] which outputs the results in a gmon.out file. This
file must be converted into a CSV file to be compatible with WeightCAL.

The tool is written in Java using the Eclipse RCP framework. This tool is
exportable as an executable on different operating systems: Windows, Linux
and MacOS. A screenshot of the tool is shown in Figure 3.10.

3.5.5.1 Inputs

The profiling of the actions provided by:

• Cal Dynamic Analyzer for a profiling in terms of instructions,

• ProfiCal for a profiling in terms of C/C++ operators,

• Gprof for a profiling in terms of real execution time.

The partial profiling of the scheduling overhead provided by the Cal Dy-
namic Analyzer, ProfiCal or Gprof.

68

Figure 3.10: Graphical user interface of the WeightCAL tool

3.5.5.2 Output

The output is a single XML file containing the execution times of all the actions
of the program.

69

70

Chapter 4

Mapping dataflow programs
onto platforms

The mapping is a one-way process consisting in fitting the Cal program onto
a given platform. The problem is twofold: (1) how to distribute the actors of
the program on the different processing units of the platform. i.e. find the
partitions that lead to an efficient implementation and (2) how to convert the
high level Cal program into a program which can be executable on the given
platform? Answering these questions implies to investigate on several points:

The partitioning/scheduling problem Partitioning consists in assign-
ing actors to processing units and scheduling in determining the order of exe-
cution of the actions on each processing unit. The aim is to find the optimal
partitions and schedules that maximize the performance. This combinatorial
problem is NP-complete, making compulsory the elaboration of heuristics. In
order to obtain valuable results, the Cal program needs to be profiled and re-
alistic data needs to be extracted and used as input to the problem. The tools
presented in Section 3.2.2 aims at providing these metrics. Section 4.1 intro-
duces the problem and the different approaches for solving it are presented in
Section 4.2.

The performance evaluation Partitioning heuristics may need to es-
timate its current solution in order to be able to iterate and search for a new
solution that improves this current solution, based on this estimation. Thus, the
estimation of the performance serves as a guide towards the solution, implying
that a special attention needs to be paid on this issue in order not to guide the
heuristics towards inefficient solutions. Being able to model the behavior of the
Cal program at the implementation level is a challenging task. The proposed
approach for the evaluation of a solution is exposed in Section 4.3.

71

The code generation Having an appropriate representation at high level
of the application is a nice feature but is useless if there is no way to make
profit of it. This is the reason why software and hardware code generators are
being developed in order to translate high level Cal programs into efficient
implementation. The code generation issue is discussed in Section 4.4.

4.1 The partitioning/scheduling problem: the
case of Synchronous Dataflow

This section aims at introducing the partitioning/scheduling problem by study-
ing the case of Synchronous Dataflow (SDF) before tackling the problem with
Cal programs. Synchronous Data Flow (SDF) [113] is a restricted dataflow
model that is well suited for static analysis. In SDF models, the tokens pro-
duction and consumption rates are fixed a priori. In other words, an actor
consumes and produces always the same amount of tokens at each actor fir-
ing. This restriction offers a higher degree of analyzability at the price of lower
expressiveness. Thus, it is possible to schedule the SDF model – ordering the
actions firings – and to determine the buffer requirements at compile-time. SDF
models are well-adapted to a wide range of applications especially in the domain
of critical real-time systems.

A

2

B

3 2

C

3

Figure 4.1: Example of a simple Synchronous Dataflow (SDF) model.

A simple SDF model is illustrated in Figure 4.1 (Source: [112]). The firing of
actor A produces two tokens on its output port. The firing of actor B consumes
three tokens and produces two tokens. The firing of actor C consumes three
tokens. This representation reveals the task parallelism but hides the data
parallelism. Another representation in form of a Directed Acyclic Graph (DAG)
is used to expose both parallelisms. This DAG is also referred as the task graph
in the literature. Each node of the DAG is weighted with the computational load
of the actor and each edge with the communication cost. The corresponding
DAG of the simple dataflow program of Figure 4.1 is illustrated in Figure 4.2
(Source: [112]). As the DAG reveals the data dependencies, one can notice that
B1 may be fired in parallel with A3.

4.1.1 Analyzing Synchronous Dataflow models

As a counterpart of its limited expressiveness, SDF are highly analyzable. Check-
ing the consistency of the model and finding for the repetition vectors are ex-
ample of analyses.

72

A1

A2

A3

A4

A5

A6

A7

A8

A9

B1

B2

B3

B4

B5

B6

C1

C2

C3

C4

Edge weight = 2

Edge weight = 1

Figure 4.2: Associated Directed Acyclic Graph (DAG) of the Synchronous
Dataflow model.

73

Checking the consistency consists in verifying that the infinite execution
of the SDF model does not lead to unbounded memory requirements. A SDF
model is consistent if the rank of its topology matrix equals the number of
actors reduced by one. The topology matrix is the weighted incidence matrix
where the weights correspond to the token production and consumption rates.
The following equation (Source: [112]) checks the consistency of the simple SDF
model of Figure 4.1.

Γ =

[
2 −3 0
0 2 −3

]
and rank(Γ)= 2 = card({A,B,C})- 1

After having checked the consistency of the SDF model, one can compute
its repetition vectors. It consists in determining the number of firing of
each actor so that the program executes without deadlocks and with bounded
buffer requirements. The repetition vector q is the minimal integer solution of
Γ×q = 0. The repetition vectors of the simple SDF model indicates that there
are 9 occurrences of actor A, 6 of B and 4 of C, according to the following
equation (Source: [112]):[

2 −3 0
0 2 −3

]
×

 q1
q2
q3

=

[
0
0

]
that leads to q =

 9
6
4


4.1.2 Partitioning and scheduling for multiprocessors plat-

forms

Partitioning and scheduling a SDF model in case of multiprocessors platforms
consists in finding a partition of actors (i.e. determining the allocation of actors
onto processors) and a schedule of actions onto each processing unit (how the
actions firing are ordered). This problem is NP-complete.

List scheduling [121] is the most common approach to solve this problem.
The principle is to traverse at compile-time the DAG of the SDF model using
different graph traversals (topological, breadth-first, etc.) and to assign prior-
ities to actions using different strategies (ASAP start-time, longest processing
time, critical path, etc.). At runtime, the SDF model is scheduled according to
the assigned priorities. For each strategy, a well-defined criterion is optimized
(e.g. throughput, latency). The most common criteria in signal processing
systems are: minimization of the latency, maximization of the throughput or
minimization of the resource usage for a given throughput/latency.

The maximization of the throughput of the simple SDF model leads to the
Gantt chart presented in Figure 4.3 (Source: [112]). Communication cost are
considered to be null and an unlimited number of processing units is considered.
Obviously, it is never the case on real-world platforms.

Usually, the nodes of the DAG are weighted with a computation cost (i.e.
the execution time of the actor) and the edges are weighted with a communica-
tion cost which reflects the required time for performing the exchange of tokens
between two actors. Given a SDF model composed of two actors A and B.

74

Figure 4.3: The ideal schedule to maximize the throughput.

The computation cost of each actor is equal to 2 for both processors P1 and
P2. The communication cost is either equal to 1 if actors communicate through
two different processors or is null if they lie on the same processor. Consid-
ering different optimization criteria may lead to different partitioning of the
actors as shown in Figure 4.4 (Source: [112]). The first partitioning minimizes
the makespan (the first iteration of the execution) (4 < 5), while the second
maximizes the throughput (1/3 > 1/4).

(a) Makespan minimization.

time

m
a
ke

sp
an

th
ro

u
gh

p
u

t

A

B

A

B

P1 C P2

(b) Throughput maximization.

time

m
ak

es
p

an

th
ro

u
gh

p
u

t

A

A→B

B

A

A→B

B

P1 C P2

Figure 4.4: Considering different optimization criteria may lead to different
partitioning of the actors onto the processors.

4.2 Partitioning and scheduling Cal programs

The expressiveness of the Cal language is higher than the one of the SDF for-
malism, allowing it to describe applications in several models of computations,
as already discussed in Section 2.1.1. As a counter part, it is more difficult to
generate efficient implementations. This potential combination of several mod-
els of computations make the partitioning and the scheduling of Cal programs
harder. The principle remains the same - assigning actors to processing units
and ordering the firing of actions on each processing unit - but the solution is

75

much complex because of the mix of static and dynamic actors. The positive
point is that Cal is well-defined and formalized, which helps analyzing it.

The problem is separated into the two phases of assigning actors to proces-
sors and then sequencing the actions. The aim is to find such partition and
schedule that lead to an efficient implementation. The solution space, being
very complex, is split into two orthogonal spaces: the permutation space of the
actors on the processors and the space specifying precedence among actions.
The only argument for this leap stems from the fact that usually the number of
Actors is very small in comparison to the number of nodes. Thus, a search on
the partition of Actors on processors can be considered as sufficiently compre-
hensive to examine all possibly efficient partitions.

Several approaches will be examined:

1. The load balancing is a technique aiming at distributing the computations
of the actors across processing units. A first round-robin approach is
presented in Section 4.2.1.

2. The load balancing technique is kept in this second approach described
in Section 4.2.2, but a simulated annealing approach taking into account
communications costs is adopted.

3. Minimization of the makespan (completion date of the execution) based
on the causation trace using a simulated annealing approach is described
in Section 4.2.3.

4. An alternative approach, aiming at considering the non-negligible schedul-
ing overhead, is exposed in Section 4.2.4. It consists in extracting static
regions at Cal level and in computing their schedule at compile-time. At
runtime, these static regions are detected, triggered and executed accord-
ing to the schedule computed at compile-time. This technique aims at
reducing the overhead at the implementation level.

4.2.1 Round-robin load balancing

The main idea of this first partitioning / scheduling heuristic is to load bal-
ance the total computations of the actors on the different processing units in a
round-robin way. The computational load of each actor is provided by the Cal
Dynamic Analyzer or ProfiCal. The proposed heuristic is described by the
pseudo code of Algorithm 4. The heuristic contains two phases:

1. It assigns actors to processing units: the actors are sorted in decreasing
order with respect to their computational load and then are distributed
in a round-robin way on the different processors.

2. It assigns priorities to actions: for each processing unit, its assigned ac-
tions are sorted in decreasing order with respect to their total number of
occurrences during the execution. Then, the highest priority is given to
the most called action, and so on.

76

Algorithm 4 Round-robin load balancing heuristic

Let a be the actions set, sorted in decreasing order w.r. to their total comp.
load;
Let A be the actors set, sorted in decreasing order w.r. to their total comp.
load;
Let PU be the set of processing units ;

P = PU0;
j = 0;
while (A is not empty) do

if (PUj exists) then
Assign actor Ai to processor PUj ;
j + +;

else
Assign actor Ai to processor PU0;
j = 0;

end if
Remove Ai from A ;

end while

m = 0 ;
while (a is not empty) do

Set priority m to ai ;
m+ +;

end while

77

The heuristic complexity is O(|A|) and outputs the partitioning along with a
priority list scheduling. This approach has been implemented in the Schedul-
Cal tool.

Discussion Obviously, this heuristic is very fast but does not provide very
efficient partitions, because of the poor accuracy of the load balancing and be-
cause it does not take into account the communication costs nor the implemen-
tation overhead.

4.2.2 Simulated annealing load balancing

This heuristic aims at improving the previous one by using a simulated annealing
approach to load balance more accurately the computations of the actors onto
the different processing units by taking into account the communication costs.
The objective is to minimize the largest load (computation and communication)
among all the processors. The objective function to minimize - the cost of a
partition - is defined in Equation 4.1. For a given partition, the total load of an
actor is defined in Equation 4.2.

Cost(Partition) = max{
∑
Actors

Load(Actor)}Processors (4.1)

Load(Actor) = CompLoad(Actor) + CommLoad(Actor) (4.2)

CommLoad(Actor) = Data× IPC (4.3)

The communication cost of an actor is computed as the product between
the total amount of exchanged data (input and output) with other partitions
and the Inter-Processor Cost (IPC). The user is asked to set the IPC corre-
sponding to the cost of exchanging one unit of data with another partition. For
instance, if data transfers are defined in bytes, the IPC corresponds to the cost
of transferring one byte of data through two partitions.

The computation cost of an actor is given by the profiling of its actions. It
can be in terms of C/C++ operators, instructions and time.

The user must be careful about maintaining a coherency between all these
units in order to obtain meaningful results. Algorithm 5 describes this new
approach. The Perturbate() function returns an aleatory move.

This heuristic has been written by Per Persson (Ericsson) and has been
integrated into the SchedulCal tool.

Discussion This heuristic is slower than the first version because several
thousands runs are launched. The advantages is that it takes in account the com-
munication costs. By setting large communication costs, the heuristic behaves
like a clustering heuristic, trying to gather the actions which large interdepen-
dencies. The fact of considering only the amount of data exchanged between
actors does not produce as good results as expected. The reason is that it is

78

Algorithm 5 Simulated annealing load balancing

Let Pcur be the initial partition ;
Let NbIt be the number of iterations ;
Let Pmin be the best partition with the minimal cost ;
Let Cost(P) be the max of the load of the processors ;
Let be T the current temperature ;

initPartition() ; {Random}
T0 = initTemperature() ;
for (i = 0 to MaxRound(T0)) do

for (j = 0 to NbIt) do
Pnext = Pertubate();
if (Cost(Pnext) < Cost(Pcur)) then
Pcur = Pnext;
if (Cost(Pnext) < Cost(Pmin)) then
Pmin = Pnext;

end if
else

if (random() < e−(Pnext−Pcur)/T) then
Pcur = Pnext ;

end if
end if

end for
T = T × 0.95 ;

end for
return Pmin ;

79

mostly the fact that actors are connected together - whatever the amount of to-
kens transfered, under a certain limit - which is dominant and not the amount
of data. The experiment of Section 4.3.1.1 assesses this hypothesis.

4.2.3 Causation trace scheduling

The Load balancing heuristics presented in Sections 4.2.1 and 4.2.2 distribute
the amount of computations at the actor level on the different processors but
ignore the dependencies between actions. However, dependencies are important
to be considered.

The dependencies between actions firings can be retrieved from the causation
trace extracted by the Cal Dynamic Analyzer or ProfiCal. Distributing
the nodes of the causation trace (i.e. the actions) on the different processors
according to a given partition can provide an estimation on the resulting perfor-
mance. The problem is to find the best actors partition and actions scheduling
on a multiprocessor system in order to minimize the makespan which can be
defined as follows:

Definition 4. The makespan corresponds to the latest finishing time of any
action firing.

4.2.3.1 Problem statement

The problem is based on the typical scheduling problem with the objective of
minimizing the makespan. Additionally, all actions of a single actor must run en-
tirely on a single processor. This constraint is essential for seamless maintenance
of the state and cache-friendliness inside an actor. It is also this restriction that
makes the problem unique from the collection of studied variants of scheduling
problems. The problem would be a very typical scheduling problem if it were
not the constraint for which each actor runs entirely on a single processor, that
is, if actor(u) = actor(v), then processor(u) = processor(v).

This simple problem, the partitioning for non preemptive tasks with the
minimization of the makespan, with this additional constraint, does not seem
to have been formulated and analyzed in literature before and lacks any results
regarding hardness, approximatively or heuristic solutions [122].

The problem is abstracted as a scheduling problem with the extra
constraint that groups of actions belonging to the same actor must run
on the same processor, the objective being to minimize the makespan.

Let:

• The set of actors A,

• Each actor A has actions labeled {a0, .., ai},
• A set of P processors,

• The required execution time of an action of an actor on a processor p is
defined by runtime(actor, action, p),

80

• For each pair of processors p and q, comm(p, q) is the delay of sending one
byte from p to q.

The aim is to schedule the causation trace on the processors such that:

• Each action firing v is assigned to exactly one processor, called proc(v).

• Tasks running on the same processor do not overlap.

• Tasks are not preempted, an action firing v runs from start(v) to end(v) =
start(v) + runtime(actor(v), action(v), proc(v)).

• Each action firing v assigned to a processor p runs for exactly a period of
time defined by runtime(actor(v), action(v), p).

• The starting time of an action firing v, given the dependency (u, v), is
given by start(v) ≥ end(u) + comm(proc(u), proc(v))× data(u, v).

• Each actor runs entirely on a single processor: let u and v two actions
firing, if actor(u) = actor(v), then proc(u) = proc(v).

The inputs are:

• The causation trace CT (N,E) in which nodes N are action firing and
edges E and dependencies between these action firing.

• Each action firing v is labeled with a pair (actor(v), action(v)).

• Each edge (u, v) is labeled with data(u, v) corresponding to the number
of bytes action u sends to action v.

Problem size It is necessary to have an idea of the expected sizes of
the input parameters of the problem to be able to judge the success of the
discussed algorithms to solve the problem efficiently. The Cal networks that
have been studied and are specified in the new Reconfigurable Video Coding
(RVC) standard do not exceed one hundred actors. However, the number of
action firings can be arbitrarily large. A causation trace may easily contain
hundreds of millions of action firings. Therefore, it is absolutely necessary that
none of the discussed algorithms is superlinear in the number of nodes of the
causation trace. The algorithms are even required to have a complexity with a
small constant in the term proportional to the number of nodes.

4.2.3.2 Lower bounds

Most of the problems considered are computationally hard and optimal solutions
for realistic data sets are hard to compute. However, it is necessary to get an idea
of how close the obtained results are to the optimal. Since all our problems are
minimization problems, lower bounds on the optimal are needed. This section
discusses several lower bounds.

Trace critical path The first estimation on the optimal schedule is ob-
tained by computing the longest computational path in Cal programs (see
definition of the trace critical path in Section 3.2.2.3). It is obvious that no
schedule can lead to a smaller makespan than the time consumed by the longest

81

chain of dependent actions running in sequence. It is not clear, however, which
running time to choose for each action (on which processor). The estimate can
choose to either take average values or worst case values. The former is not
a guaranteed lower bound while the latter is not a realistic bound. Luckily,
choosing one or the other does not affect the values significantly in the tested
data. It is noteworthy that computing the longest path can be done in linear
time (Algorithm 1). The communication costs are considered to be zero.

Minimum processor load Another very good lower bound is the min-
imum possible load on a processor. This estimate is only applicable on ar-
chitectures with identical processors. The estimation remains accurate if the
processors are not very different. The estimation is obtained by summing up
the running times of all firings of actions (the running time is either the same on
all processors or the average is taken) and this sum is divided by the number of
processors. This number is obviously a lower bound (or an accurate estimation)
on the optimal solution.

4.2.3.3 Heuristic

Algorithm 6 describes the approach. From an aleatory partition, the heuristic
computes new partitions based the swapping of two actors (SwapActors()). The
heuristic stops when the specified number of iterations has been reached. The
evaluation function Evaluate(P,CT) returns an estimation of the makespan of
the execution given the computed partitioning and scheduling. This evaluation
is further discussed in Section 5.3 and is a major issue in the success of this
approach.

Algorithm 6 Minimization of the makespan

For each node v, label(v) = runtime(v) + max{label(predecessori(v)}i;
Let Pbest be the partition leading to the best makespan ;
Let makespan(P) be the value of the makespan for a given partition P ;
Let NbIt be the number of iterations ;

while (i < NbIt) do
P = SwapActors(); {Swap two actors}
makespan = Evaluate(P,CT) {Evaluation Function}
if (makespan < bestmakespan) then
Pbest = P ;
bestmakespan = makespan;

end if
end while
return Pbest ;

This heuristic has been implemented in the SchedulCal tool.

82

4.2.3.4 Discussion

This success of this approach is strongly dependent on the accuracy of the eval-
uation of the performance of the solution. This heuristic may be mis-guided
if the results given by the estimation are too far from the real behavior. An-
other point is that the performance evaluation of a solution takes some time.
If the accuracy of the performance evaluation is improved, the complexity of
this process increases because more computations are then involved. In other
words, the time needed to estimate a solution may increase with respect with
its accuracy. Thus, for this approach to be efficient, a fast process to evaluate
the performance of the solution is needed at the risk of producing poor results
or of waiting a long time for producing precise results.

What could be wrong with this approach is to be stuck to the causation trace,
which is the results of the execution of the Cal program using fixed input data.
The resulting partitioning may be efficient for this given input data but not for
other. This drawback can be faced by using appropriate input sequence, which
is statistically representative of a common execution of the application.

This heuristic has been improved by Abdallah Elguindy [122] by considering
the swap of three actors. Furthermore, the assignment of the priorities is also
modified. Actions with longer chains of subsequent dependencies are given
priority. In other words, each node is labeled by the length of the longest path
in the graph starting from this node. Precedence between nodes ready to run
is determined by this value, the larger takes priority.

4.2.4 Static regions scheduling

This section exposes an alternative approach for tackling the partitioning and
scheduling problem. The heuristics presented in the previous chapters ignore the
overhead due to the scheduling process. In the last approaches, it was assumed
that the execution of the actions dominates any scheduling overhead. This is
not exactly the case as shown in Figure 4.5.

60%

70%
Interpolation_halfpel Add

40%

50%

60%

70%
Interpolation_halfpel Add

30%

40%

50%

60%

70%
Interpolation_halfpel Add

10%

20%

30%

40%

50%

60%

70%
Interpolation_halfpel Add

0%

10%

20%

30%

40%

50%

60%

70%

Scheduling Algorithm Memory

Interpolation_halfpel Add

0%

10%

20%

30%

40%

50%

60%

70%

Scheduling Algorithm Memory

Interpolation_halfpel Add

0%

10%

20%

30%

40%

50%

60%

70%

Scheduling Algorithm Memory

Interpolation_halfpel Add

Figure 4.5: Proportion of scheduling, algorithm and memory during actor exe-
cution.

In the currently studied Cal programs, actions are defined at a quite low

83

level of granularity and thus the scheduling overhead is often non negligible.
It makes sense to try to find good enough schedules that are easy to find at
compile-time without incurring much overhead. The main idea lies in splitting
the program into segments (static regions) that are repeated and computed once
for all efficient schedules for these segments.

One can define a static region as follows:

Definition 5. A static region is a set of actions for which their mutual de-
pendencies at runtime (state and tokens dependencies) do not depend on input
data nor time. It other words, static regions corresponds to invariant patterns
in the causation trace with respect to input data and time, making possible their
scheduling at compile-time.

A Cal program contains actors that do not necessary belong to the same
model of computation. Actors may be static (SDF, CSDF), dynamic (DDF) or
time-dependent. Thanks to the classification of the actors (Section 3.2.1.1), one
can detect sequences of connected static actors that can be scheduled statically.
But when dynamic actors are finely analyzed, one can notice that they may
also reveal several static behaviors according to the value of the input tokens.
Let call these static behaviors modes. These modes are triggered by guarded
actions which fire only when the tokens requirements and the guard conditions
are fulfilled. In a given mode, a unique sequence of actions is executed, be-
having like a static region which can be scheduled in an efficient way using the
SDF techniques and thus avoiding the overhead due to the scheduling of these
hidden static regions. One problem is the detection of such static regions in
these dynamic actors. For instance, the Finite State Machine of Figure 4.2.4
(Source: [146]) describes the behavior of such an actor.

Figure 4.6: The actions texture, motion and other triggers three different modes
which are respectively composed of a sequence of 64 firings of the actions tex,
mot and comb plus the firing of action done.

The main challenge of this approach lies in:

1. Splitting the program into static regions that are repeated (Section 4.2.4.1).

2. Computing efficient schedules for these static regions (Section 4.2.4.2).

3. Finding a scheme to identify these patterns at runtime (Section 4.2.4.3).

84

4.2.4.1 Finding static regions at compile time

The first idea would be to search in the causation trace some repeating patterns.
But comparing two subgraphs of the causation trace graph for isomorphism is a
hard problem [123]. Furthermore, the size of the trace is so large that it makes
this approach intractable. Detecting repeating patterns in the causation trace
does not guarantee that this sequence of actions firing is really static. The input
data can be such that it induces similar patterns of action firing.

By analyzing further the problem, actions which have guards checking values
of input tokens are good starting points for these repeated patterns. As an
example, the MPEG-4 Simple Profile decoder contains different decoding modes,
reflected in the actors of the program. The actor ADD (Figure 4.2.4) has three
running modes: texture only, motion only, combine. Figure 4.7 (Source: [146])
has been obtained by extracting from the causation trace the static regions of
different actors running in a same mode and by merging them to obtain an
overview of the cross-actor static region.

Figure 4.7: A static region can be represented as a DAG ; example taken from
the MPEG-4 SP decoder.

4.2.4.2 Scheduling static regions at compile time

The Directed Acyclic Graph (DAG) presented in Figure 4.7 represents all the
dependencies that admissible schedules must respect. Depending on the re-
quirements of the application, it might be necessary to minimize the memory
resources, the latency or to maximize the throughput. For each of these criteria,
different partitions and schedules are computed at compile-time from this de-
pendencies graph. Constraint programming can be used to schedule these static
regions optimally according to different criteria. These DAG are equivalent to
SDF graphs. Some scheduling techniques of SDF models are presented in [113].

4.2.4.3 Triggering static regions at runtime

The second challenge is to identify at runtime the entry points of these static re-
gions, which have been identified and scheduled at compile-time. The scheduler

85

has the following options:

1. It can check the first few elements of the sequence and check it against
previously stored patterns. If they match, then the stored sequence is
immediately scheduled. If the sequences differ (and the match was a false
positive), an exception is thrown and any scheduling technique is used.

2. A suffix tree is maintained with the leaves having prepared schedules, Ac-
tions are tentatively scheduled until the scheduler is sure that the sequence
was seen before.

As shown in Figure 4.8 (Source: [146]), when a static region has been de-
tected, it is scheduled on one or several processors.

Static region Computed schedule at compile-time The schedule is triggered at runtime

Figure 4.8: Schedules computed at compile-time and executed at runtime.

4.2.4.4 Discussion

The design heuristic aiming at removing the implementation overhead to turn
actors static (Section 3.3.3.2.3) is in line with this approach because the static
scheduling is only possible with static actors and dynamic actors should be
avoided. This work at the Cal level is very precious because it has non-negligible
impact on the performance.

The advantage of static scheduling is that the the modularity of the Cal
program is kept because actors are still distinct.

Gu et al. [124] show that exploiting these static regions at the implementa-
tion level leads to better performance. A preliminary work on how to find these
static regions has been done by Boutellier et al. [146,147].

However, there are still some limitations to this approach: (1) it lacks a clear
and systematic methodology for extracting from the Cal program the different
static regions, which can be numerous and difficult to extract. Furthermore, the
way the Cal program is written can hide its inherent static portions because
of the insertion of some dynamic actor into it and (2) how to detect the static
regions at runtime.

4.3 Performance evaluation heuristics

Being able to estimate the performance of a Cal program given a partitioning
on a target platform is a very challenging task but can be very powerful. If

86

the behavior can be predicted, the partitioning heuristics can be guided by
these estimations of the performance and can iterate over and over towards
efficient partitioning. At the contrary, if the behavior is wrongly predicted,
these heuristics output inefficient solutions.

Predicting the behavior of the program is a hard task because multiple code
transformations between the Cal program and assembler code are performed
and because of all the mechanisms that occurs on parallel systems, making hard
to consider all these aspects in the performance evaluation step. The difficulty
resides in the fact to find the right level of details for the performance evaluation,
not too simple in order to reflect the reality but not too complex at the risk of
being lost and outputting false estimations.

The solution chosen is to build a Gantt chart of the execution of the Cal
program. One can reconstitute the execution of the Cal program by distribut-
ing the actions firing of the causation trace across the different processing units
specified in the partitioning computed by the heuristics. The duration of the
events of the Gantt chart is given by the profiling of the actions in terms of
instructions, C/C++ operators or time. Figure 4.13 illustrates such a Gantt
chart. The procedure for building the Gantt chart is detailed in Algorithm 7.

Algorithm 7 Performances evaluation: Gantt chart

Set the set runnable = {}. ;
for all node u in CT (V,E) do

if (indegree(u) = 0) then
add node u to runnable ;

end if
Sort(runnable) ; {Sort items by the label value in descending order}
while (runnable is not empty) do

Schedule the first node of runnable ASAP on Processor(u) ;
Remove this first node of runnable ;

end while
end for

As the causation trace contains only the firing of the actions, the Gantt chart
contains only actions. However, in order to keep in view the characteristics
of the runtime, the execution times of the actions are modified as shown in
Equation 4.4. The execution time texec of an action can be seen as the sum of
the time elapsed for scheduling (tsched which depends on the partitioning P , the
scheduling policy SP and the size of the FIFOs FS), for the application (talgo
which is constant) and for the memory accesses (tmem which depends on the
partitioning P).

texec = tsched(P, SP, FS) + talgo + tmem(P) (4.4)

Where :

• talgo is the profiling of the running time of the actions, provided by the
Cal Dynamic Analyzer, ProfiCal or Gprof.

87

• tmem(P) is estimated as shown in Section 4.3.1.

• tsched(P, SP, FS) is estimated as shown in Section 4.3.2.

4.3.1 Communication model

Refining the communication model aims at improving the accuracy of the Gantt
chart in the purpose of predicting as close as possible the performance of the
solution.

4.3.1.1 Experiment: estimation of the communication cost

The extra cost due to the data communication through different processing
units is platform-dependent. The following experiment aims at evaluating the
communication cost in case of the Hewlett Packard 6710b (Intel R©CoreTM2 Duo
CPU T8300 at 2.4 Ghz) platform. It consists in profiling the communications
of a simple Cal program composed of two actors (A and B), each actor being
mapped to a distinct processor. Both actors are composed of a single action
with a constant computational load. The firing of actor A produces N tokens
entirely consumed by actor B. The communication cost during the execution
of 105 firings of actors A and B is profiled.

The profiling of the communication cost has been performed for increasing
values of the number of tokens (N = {1, 10, 102, 103, 104, 105, 106}) exchanged
at each firing of actors A and B. Figure 4.9 plots the duration (in seconds) of
the full execution (105 firings of A and B), according to the number of tokens
N exchanged at each firing of actor A and B. The experiment is repeated
considering:

• Actors A and B on the same processor (blue curve, single core)

• Actors A and B on two processors (red curve, two cores)

The communication cost really depends on the platform and the results of
these experiments (Figure 4.9) are valid only for the Hewlett Packard 6710b
platform (Intel R©CoreTM2 Duo CPU T8300 at 2.4 Ghz).

The results confirm that using a FIFO which is accessible by several actors
mapped on different processors has a non-negligible cost. The extra time is due
to the use of locking primitives for the shared FIFO which is more expensive
than a simple unshared FIFO in terms of computations. The communication
cost remains unchanged when the actors A and B exchange from 1 to 102 tokens
at each firing. When N > 103, it evolves linearly with the number of exchanged
tokens.

88

Figure 4.9: The communication cost remains identical when data transfers are
smaller than 100 tokens. Above this threshold, it evolves accordingly with the
size of the data transfers (Platform: Hewlett Packard 6710b Intel R©CoreTM2
Duo CPU T8300 at 2.4 Ghz)

4.3.1.2 Model

From the results of the experiment, one can define a communication model. In
case N < 103, the communication model for the HP 6710b platform is:

texec(P) =

{
taction if the action is not connected with another partition.

taction + k × tcommcost otherwise.
(4.5)

Where:

• texec(P) is the execution time of the action taking into account commu-
nication costs. It depends on the partitioning P because of the communi-
cation cost.

• taction is the execution time of an action without communication cost.

• tcommcost corresponds to the communication cost in terms of extra time
due to the use of a shared FIFO. It is constant.

• k is the number of ports through which the action exchanges tokens with
an actor of another partition. For example, if an action inputs and outputs
tokens from two different partition, k = 2.

The communication cost is considered as constant (tcommcost) for any tokens
transfer, whatever its size inferior to 103. The communication model is very

89

simple to implement in the tools because for each execution of an action com-
municating with another action on another partition, the extra cost (tcommcost)
can be added to the current execution time of the action.

4.3.2 Scheduling model

Whatever the runtime, the firing of an action needs several steps which are not
negligible. The question is how to reflect this scheduling overhead through the
Gantt chart. In ORCC, only the functions isSchedulable() are called before
each action firing, making possible to consider their computational load in the
current version of the Gantt chart. But for the other scheduling steps, it is not
obvious how to determine the extra scheduling cost for a given action execution
because any firing of action depends on the following parameters:

The scheduling policy The decidability of actions firing can be more or less
computations-intensive according to the chosen policy.

The partitioning According to the number of actions assigned to a processor,
the scheduling of these actions will not be the same, and the overhead
differs from different partitioning.

The size of the FIFO connecting the actors The round robin scheduling
policy executes an action until it is no longer possible to fire any action
of the actor, making the status of the FIFO an important parameter to
decide which action must be scheduled next.

In order to improve the accuracy of the performance evaluation, a new ar-
chitecture of the Gantt chart engine is proposed as future work in Chapter 8.

4.4 Code Generation

Having a high level representation of the application is a advantageous feature
but is useless if there is no way to make profit of it. Code generators are the
missing link between the high level specifications and their implementation,
thus bridging the implementation gap by turning any high level specification
into a runnable implementation on a target platform. Several research groups
are currently working on code generators in order to improve the efficiency of
the generated code.

Moreover, generating code supposes a systematic process which links clearly
any high level specification in Cal to its implementation. By understanding
well this relation and by modeling it, one can guess the behavior of any Cal
program at high level without executing it on the platform. If designers need to
implement themselves the application described at a high level of abstraction, it
is impossible to get this link between the high level specification at which design
space exploration occurs and the implementation. Another crucial point is that
code generators are primordial for extracting metrics at the implementation level
and for bringing them up to higher levels in order to perform realistic design
space exploration. This link, created between the high level specification and

90

the low level implementation, is crucial for this purpose. Figure 4.10 illustrates
this necessary link between specification and implementation.

High level
model Implementation

Code generators

Metrics extracted
from the profiling

Figure 4.10: Code generators are making the link between high level specifica-
tion and implementation.

The capability to estimate the performance of a Cal program given a parti-
tioning makes meaningful the elaboration of design space exploration method-
ology aiming at finding the best partitioning of a Cal program onto a given
platform. Advanced partitioning heuristics (Section 4.2) need this performance
evaluation of the solution at high level in order to iterate and to output efficient
partitions.

But the implementation of a high level language as Cal into low-level soft-
ware languages - such as C/C++ or VHDL/Verilog - reveals necessary overheads
that must be considered.

In software Communication channels between actors are turned into real
FIFO implementations which may introduce additional synchronization proto-
cols in case of concurrent memory accesses. Indeed, the implementation of actors
introduces a controller (namely action scheduler) which is responsible for firing
actions. Based on the current state of the actor, the token availability and the
guards, the action scheduler selects the next action to fire. At a network level, if
several actors are mapped on a single processing unit (PU), a scheduling policy
must be defined to execute actors in the right order.

In hardware - FPGA, ASIC - the system is ”self-scheduled” since all
actors can run in parallel. Actors are executed concurrently, managed by a
controller (namely action scheduler). All of these controllers introduce overheads
in terms of processing time, silicon usage, etc.

The existing code generators for converting Cal programs into software and
hardware implementation are presented in the following paragraphs.

4.4.1 Open RVC-Cal Compiler (ORCC)

The Open RVC-CAL Compiler (ORCC) is a compiler infrastructure for convert-
ing RVC-Cal programs into other languages: C, C++, Java, LLVM, VHDL and

91

XLIM are the current languages available. Only source code is generated, and
programs must be compiled with the usual tools. Specific libraries need to be
developed for each language so that it can be compiled and run. The generated
code is cross-platform. The ORCC framework is fully described in [125] and
the reader is referred to [126] for an overview. ORCC was created at IETR
(INSA Rennes - France) and is now being developed by industrials and research
laboratories worldwide.

4.4.2 OpenForge

OpenForge [127] is a behavioral synthesis tool infrastructure and software frame-
work, translating applications specified in Cal into hardware descriptions ex-
pressed in VHDL/Verilog. This is a promising tool in the sense that the code
generated from the Cal program outperforms a commercially produced VHDL
design in terms of both throughput and silicon area [128]. Recently, a couple
of students finished their Master’s thesis [129] on generating low power hard-
ware implementation from Cal. The fundamental properties of Cal make it a
promising candidate for Globally Asynchronous Locally Synchronous (GALS)
design.

4.4.3 Ericsson Code Generator

As part of the European project ACTORS , Ericsson has also developed its own
C code generator targeting ARM processors. This software tool called Xlim2C
translates an intermediate representation of a Cal actor - called XLIM - into a
C program. This tool compiles directly the generated code into an executable.
This code generator works only under Linux and only ARM processors are
targeted. The reader is referred to [130] for further details.

4.4.4 Co-Design Tool

The idea of a co-design tool comes from the work on a rapid prototyping plat-
form [148–150] aiming at easing the design of hardware systems. Software and
hardware code generators (ORCC and OpenForge) are used for the respective
targets [151] and a interface generation tool [131] has been implemented in order
to ease the implementation. The aim is to be able to implement any kind of
application on a wide range of architectures. This tool has been successfully
used for the implementation of an industrial application on an heterogeneous
platform [132]. Currently, it is still under development.

ACTORS project: http:\www.actors-project.eu

92

http:\www.actors-project.eu

4.5 Tools

4.5.1 SchedulCal

This tool contains the implementation of the different partitioning heuristics
described in Section 4.2:

Basic load balancing In a round-robin fashion, this algorithm distributes ac-
tors on the different processing units according to their total computa-
tional load. The priority list scheduling policy is used.

Load balancing using a simulated annealing approach A more advanced
load balancing heuristic has been developed, based on simulated anneal-
ing and taking into account communication costs between actors. The
round-robin scheduling policy is used.

Minimization of the makespan using a simulated annealing approach
Based on the causation trace, this heuristic minimizes the makespan of
the execution by using a simulation annealing approach. The priority list
scheduling policy is used.

Two scheduling policies have been defined :

Priority list policy Each action has a priority. In case several actions can be
fired on a same processing unit, the priorities determine the next action
to fire.

Round-robin policy For each processing unit, an ordered list of actor is de-
fined. The actions of the first actor are executed until there is no more
fireable action in this actor. Then, the second actor is considered until no
more actions of this actor is fireable, and so on. At the end of the list, the
first action is considered again.

The tool is written in Java using the Eclipse RCP framework. This tool is
exportable as an executable on different operating systems: Windows, Linux
and MacOS. Figure 4.11 shows a screenshot of the GUI of the tool.

4.5.1.1 Inputs

Structural information of the Cal program provided by Cal Static An-
alyzer.

The causation trace provided by Cal Dynamic Analyzer or ProfiCal.

Execution time of actions provided by WeightCAL.

4.5.1.2 Output

The output is an XML file containing the partitioning and the scheduling of
the Cal program.

93

Figure 4.11: Graphical user interface of SchedulCal

4.5.2 EvalCal

The tool aims at evaluating the design by building the Gantt chart of the exe-
cution (as explained in Section 4.3), given a partitioning of actors, a scheduling
of actions, the causation trace and the running time of each action of the pro-
gram. EvalCal supports two scheduling policies defined in the SchedulCal
tool (Section 4.5.1). Two analyzes on the Gantt chart have been implemented:

Occupancy of processors This is the estimation of the occupancy of the dif-
ferent processors.

Density of operations It reports how dense are executed the actions of the
processors. The results are reported as distributions of the size of the idle
time between two executions of actions.

The tool is written in Java using the Eclipse RCP framework. This tool is
exportable as an executable on different operating systems: Windows, Linux
and Mac Os. A screenshot of the tool is shown in Figure 4.12. Figure 4.13
shows an example of Gantt chart that can be generated by the tool.

4.5.2.1 Inputs

Structural information of the Cal program provided by the Cal Static
Analyzer.

The causation trace provided by Cal Dynamic Analyzer.

94

Figure 4.12: Graphical user interface of EvalCal.

Partitioning and scheduling of the CAL program, specifying the assign-
ment of actors onto the processing units and the scheduling policy on
the processing units.

Execution time of actions provided by WeightCAL.

4.5.2.2 Outputs

Gantt chart in XML The Gantt chart of the execution, given the chosen
partitioning.

Gantt chart in SVG Optionally, the tool can generate the Gantt chart in a
Scalable Vector Graphics (SVG) format.

XML result file containing the result of the different analysis: occupancy of
each processor, density of operation on each processor.

95

source/action0 source/action1 source/action2

RGBtoYCrCb/action0 YCrCbtoRGB/action0 Z/action0 (2)

Z/action0 (1)

Z/action0(0)

Figure 4.13: Example of a Gantt chart of an execution.

96

Chapter 5

A design flow for high level
exploration of the design
space

Digital systems design consists in fitting one or several applications onto a given
platform with constrained resources while satisfying predefined criteria. This
work implies optimizing the applications at an algorithmic point of view. Chap-
ter 3 exposed some rules for writing well-shaped Cal programs. The mapping
of the application onto the target platform consists in assigning actors to the
different processing units and in converting the Cal code into implementation
code with respect to their assigned target. Chapter 4 presented heuristics and
methodologies for mapping Cal programs onto target platforms.

The work of the designers is to find the best matching between the appli-
cation and the architecture in order to obtain an efficient system while mini-
mizing the resources consumption. This task implies working at different levels
of abstraction: (1) at the application level, at which the developer writes an
application whose parallelism is coherent with the level of exploitable paral-
lelism of the platform, (2) at an intermediate level at which the Cal program
is weighted with platform-dependent metrics whose analysis leads to the detec-
tion of the bottlenecks of the system and allows the designer to refactor the
Cal program accordingly and (3) at the implementation level, at which every
actor is translated in the native implementation language corresponding to its
target processing unit.

This chapter describes a systematic design flow supporting designers in this
difficult task of matching complex applications onto parallel architecture, by
making them navigate through the different levels of abstraction and by guiding
them during the program refactoring process. Section 5.1 introduces the notion
of design space, Section 5.2 presents how a design can be located into the design
space, Section 5.3 explains the proposed design flow and the tools supporting it
and Section 5.4 presents the tools infrastructure.

97

5.1 How to represent the design space?

In order to be able to explore the different solutions for the implementation of
an application onto a target platform, there should be a mean for comparing
the different architectural solutions in order to choice the one which fulfills the
requirements in terms of speed, resources, energy consumption, etc. In the
context of this research work, the design space represents the set of all possible
implementations of a Cal application onto a target architecture.

Exploring the design space means evaluating the various possible solutions
with a given range of possible partitioning, scheduling and refactoring. It also
consists in optimizing the solution with respect to the criteria defined for vali-
dating a solution towards a solution which fulfills the requirements.

The design space is commonly represented using graphs so that the different
architectural solutions can be properly compared according to a given number of
criteria (throughput, resources, cost, etc.). For instance, Figure 5.1 illustrates a
graph representing a design space according to two criteria. The reader is refer
to the review [64] for further details on design space exploration.

The different components of the design space are:

Axes Systems design is guided by constraints: performance, resources,
size, cost, etc. Designers try to optimize the design according to these cri-
teria. The number of criteria defines the dimension of the design space, e.g.
respectively 2D or 3D if two or three criteria are considered and so on. Each
criterion is represented by an axis of the design space. Generally, a 2D design
space representation is sufficient to cover common design constrains. Usually,
throughput and resources are the criteria that define the axis of the 2D design
space representation as shown in Figure 5.4.

Design point In this research work, each point in the design space cor-
responds to a triplet {Cal program, partition, schedule}. The partition is a
one-to-one correspondence between actors and processing elements. The sched-
ule represents the ordering of actions onto each processing unit. The solution
is evaluated according to the chosen criteria.

Target Region Depending on the maximization, minimization or low-
er/upper bound conditions, specific regions (segment, area or volumes) of inter-
ests can be defined. The aim is to reach a design which belongs to this target
region by fulfilling the constraints.

5.2 How to evaluate the performance of a solu-
tion?

The performance evaluation can be performed at different levels of abstraction
(Section 5.2.1) and in several different ways (Section 5.2.2).

98

Maximize
Performances

Minimize
Resources

Design point

Target region

Requirement
on criteria 1

Criteria 1

C
rit

er
ia

 2

Requirement
on criteria 2

Resources
Requirement

Figure 5.1: Representation of the design space according to two criteria.

5.2.1 At different levels of abstraction

High: at the level of the Cal program The metrics that position the
solution in the design space are obtained by running the Cal program under
a simulation environment interpreting the execution of the program according
to an asynchronous data flow computation model. Thus, the dimensions of the
design space are for instance the token throughput between actors, the minimum
FIFO size for concurrent execution of all actors, the amount of computations
for a given input sequence, etc. Currently, there is no tool for performing such
a profiling at the level of Cal operators.

Intermediate: at the level of the source code of the implemen-
tation The performance evaluation process inputs the the partitioning and
the scheduling of the Cal program and an architecture model of the target
platform. The profiling of the Cal program (computational load of actions,
communication costs) is provided by the analysis of the implementation source
code (C/C++). Because the profiling of the actions is performed on the im-
plementation code that is going to be executed on the platform, it results in
a more accurate performance evaluation. It is the level chosen for running the
partitioning and scheduling heuristics in the proposed approach.

Low: at the level of the implementation on the platform The
performance of the real implementation of the Cal program can be measured
directly on the target platform and the positioning of the design point in the
space is characterized by dimensions such as execution time, CPU occupancy,
area, etc. Such position is only possible after the compilation of the software
code and the synthesis of the hardware code using the appropriate code gen-
erators [133] [152]. This level is used in the proposed approach to validate the
results and to confirm the steps of the design space exploration.

99

5.2.2 Several methodologies

There are several methods for evaluating a design, from high to low levels of
abstraction.

Evaluation from pure analytical models can be too pessimistic (and
thus not representative of the reality) since these models often consider the
worst-case only. Considering Worst Case Execution Time (WCET) is not very
representative, especially in signal processing algorithms. This type of analysis
is suitable for Cal programs composed of static actors because there is no
uncertainties, their behavior is totally deterministic. Thus, this methodology
has not been used in the proposed design flow because we should be able to
analyze dynamic programs.

Simulations-based evaluations are well suited to study dynamic and
unforeseeable effects in Cal programs whereas formally verifiable Cal pro-
grams require a deterministic behavior, given any stimuli. This type of analysis
is necessary for Cal programs composed of dynamic actors because of the uncer-
tainties due to the dynamic behavior of these Cal programs. Currently, apart
from pure functional evaluation, there exists no tool that performs advanced
analyzes of Cal programs based on a simulation.

Trace-based evaluation consists of simulation the behavior of the Cal
program on a given target platform from the causation trace of the execution.
The problem is that the evaluation is based on a given stimuli and may not
reveal the real evaluation of the program for any stimuli. The designer must be
very careful on the choice of the input data which must be representative of a
usual execution of the Cal program. As for the simulation-based evaluation,
this type of analysis is necessary for Cal programs containing dynamic actors.
This is the methodology chosen in the proposed approach and tools have been
implemented accordingly.

Cycle-accurate evaluation provides a good accuracy of the performance
because the level of refinement is defined by a single clock-cycle. It means that at
any given clock cycle, the state of the simulator must be identical with the state
of the evaluation. It is at a very low level of abstraction and is far from the Cal
program. This is very hard to obtain such a precision in the current evaluation
process. Thus, in the proposed approach, the cycle-accurate evaluation is not
respected.

5.3 How to explore the design space?

What is penalizing during the design space exploration on heterogeneous multi-
core/multiprocessor platforms using the traditional (sequential) methodologies
is that every refactoring and every change in the partitioning of the program is

100

very resource demanding in terms of code rewriting. Testing a new partitioning
of a program onto processors is time-consuming and error-prone. Thus, there
is a large gap between the idea of the new solution and its real test on the
platform. The design flow presented in this chapter (and presented in [153])
aims at reducing the size of this gap by guiding the designer into steps directed
towards a better solution. The abstraction features of the Cal language and
the associated metrics that makes possible such design space exploration lead
to efficient implementation solutions. Applying a new partitioning of actors or
refactoring some actors are example of exploration steps. By iterating these
steps, the designer can drive a system transformation until it fulfills the desired
design requirements.

Code generators are primordial in two ways: (1) they enable designers to
work at a high level of abstraction without the cost of dealing with low level
implementation details and (2) they allow the high level estimation of the per-
formance of the implementation on a given platform, enabling the elaboration
of technique for automatic mapping of Cal program.

Figure 5.2 illustrates the proposed design flow along with the tools for ex-
ploring the design space at high level.

There are different types of systems requirements and they can vary accord-
ing to the domain and/or the application. There are many possible optimiza-
tion criteria, but performance and resources are the most common. Maximizing
performance of the system or achieving a given performance while minimizing
resources consumption are the main optimization criteria.

Sequential to parallel program transformation There are several
ways to specify an application: textual description, C/C++ models. UML mod-
els and many others. This sequential specification has to be firstly translated
in a Cal program. There is no automatic way to translate a C/C++ specifi-
cation into a Cal program. The Software Instrumentation Tool (SIT) [42] is a
tool providing capabilities to analyze complex sequential C/C++ applications
in order to get the necessary metrics to translate it into a parallel program in
Cal. The critical path analysis and the data transfers between functions are
examples of analyzes that allow the designer to operate this conversion. A suc-
cessful translation of the C/C++ specification of the MPEG-4 Simple Profile
video decoder into a Cal program is reported in [1]. This step is not in the
scope of this research work.

Characterization The characterization of the Cal program consists in
extracting the metrics which are the basis information for the design space
exploration. The analyzes described in Section 3.2 contribute to characterize
Cal programs:

• Nature of the actors,

• Computational load of actions in terms of instructions, C/C++ operators
or time,

• Causation trace,

101

EvalCAL

SchedulCAL

Characterization

Weighting

Partitioning &
Scheduling

Evaluation of the
CAL program

Designer
choice

CAL
program

Refining the
evaluation

CAL program
refactoring

Final CAL
design

Sequential to
Parallel

transformation

Implementation

HW/SW Code
Generators

Specification

ProfiCAL
CAL Dynamic

Analyzer

OpenForge ORCC

SIT

CAL Static
Analyzer

CrossCAL

WeightCAL

AnalytiCAL

OpenDF

Figure 5.2: Illustration of the proposed design flow and the supporting tools.

• Trace critical path,

• Data transfers between actors.

The Cal Static Analyzer, Cal Static Analyzer, ProfiCal and Cross-
Cal are the tools that have been implemented in order to extract these metrics.

102

Weighting This step consists in estimating the execution time of actions
according to the target platform. The specificities of the target platform must
be clearly taken into account in the design flow in order to estimate more pre-
cisely the performance of the design. As an example, in the ARM 7500FE
processor, a General Purpose Processor (GPP), the multiply instructions take
one instruction fetch and m internal cycles, m being the number of cycles re-
quired by the multiply algorithm, which is determined by the contents of the
registers. In Digital Signal Processors (DSP), a Multiply-Accumulate operation
costs only one clock cycle. In other words, this step aims at adapting the raw
metrics output by the characterization tools to the target platform in order to
predict as close as possible the performance of the design.

WeightCAL is the tool that has been implemented for setting the execution
time of the actions. Currently, it is capable of choosing from different sources:
Cal Dynamic Analyzer (instruction level) or ProfiCal (C/C++ operator
level) or Gprof (time). It is not capable of determining the weight of each
operator independently but it is one of the potential improvement of the tool.

Partitioning and scheduling The partitioning consists in allocating ac-
tors to processing units and scheduling in setting the order of execution on
actions of the processing units. Section 4.2 exposes the heuristics for partition-
ing and scheduling Cal programs:

• Round-robin load balancing,

• Simulated annealing load balancing,

• Causation trace scheduling,

• Quasi-static scheduling.

All these heuristics have been implemented in the SchedulCal tool.

Performance evaluation The performance evaluation step consists in
predicting the behavior of the partitioned and scheduled Cal program onto the
target platform, taking into account the maximum number of specificities of the
target platform. In the current version of the tools, only the communication cost
is considered. The estimation of the performance is performed by reconstructing
a Gantt chart of the execution, given the running time of actions, the causation
trace and the partitioning/scheduling. The techniques presented in Section 4.3
have been all implemented in the EvalCal tool.

This step is crucial because it allows to assess or not the refactoring per-
formed during the design space exploration, and the partitioning computed for
a given program. The performance evaluation step guides the designer in the
design space.

Designer choice In case the predicted performance do not fill the require-
ments, the designer has several choices:

• Refactor the Cal program,

103

• Partition and schedule the Cal program by using a different heuristic of
by specifying it by hand.

Cal program refactoring The performance of the implementation is
directly linked to the quality of the Cal program. Chapter 3 describes a strat-
egy for optimizing Cal programs at the algorithmic level in order to reach
the desired target region. It includes detecting the most critical actions of
the programs (using the Critical Actions Detection algorithm presented in Sec-
tion 3.3.2) and to propose appropriate refactoring techniques (Section 3.3.3).
The aim of this step is to remove the potential bottlenecks of the programs by
guiding the design in the refactoring. The Critical Actions Detection algorithm
has been implemented in the CrossCal tool.

Code generation Once the design is ready for the implementation, the
code generators convert the final Cal program into the corresponding native
platform language (i.e. HDL for FPGA, DSP code, C/C++, etc.). Design-
ers have at their disposal several code generators that generate C, C++ or
VHDL/Verilog implementations from Cal programs. The different code gener-
ators are described in Section 4.4.

5.4 Tools infrastructure

The tools infrastructure implementing the design flow is shown in Figure 5.3.
There are two types of tools. The characterization tools (Cal Static An-
alyzer, Cal Dynamic Analyzer and ProfiCal) analyze Cal programs by
performing static analyzes and profiling. The exploration tools (CrossCal,
WeightCAL, SchedulCal, EvalCal, AnalytiCal) allow to explore the
design space, enabling designers to test different solutions with minimal efforts.

The main reason of having structured the tools such a way is the modularity.
By defining clearly the interfaces of each tool, it is simpler for the developers
of the tools to concentrate on the different aspects of the problem without
being disturbed by the modification of other tools. The choice of XML for
the intermediate files is motivated by their seamless integration within a Java
environment.

The choice of the Eclipse RCP platform is motivated by the capability to
package the tools into stand-alone applications for the ease of use and of distri-
bution and to export them on different operating systems: Windows, Linux or
MacOS.

The exploration tools are gathered into an integrated environment called
CalXplore, each tool previously described being a perspective in this frame-
work. The screen-shots of the different tools are in fact the perspective of
each tool. The CalXplore framework contains CrossCal, WeightCAL,
SchedulCal, EvalCal and AnalytiCal.

104

CALXplore : Design Space Exploration tools

Characterization tools

CALStaticAnalyzer CALDynamicAnalyzerProfiCAL

CrossCAL EvalCALSchedulCALWeightCAL AnalytiCAL

Repository of XML results files

Static and dynamic analyzes

Figure 5.3: There are two types of tools: characterization and explorations
tools.

5.5 Summary

The developed tools (Section 5.4) support designers in the exploration of the
design space (Figure 5.4) using the proposed design flow (Figure 5.2).

Performances
requirements

Intermediate design point

Initial design point

Throughput

S
of

tw
ar

e
re

so
ur

ce
s

Intermediate design point

Resources
requirements

Target
region

Final solution

Figure 5.4: The design flow aims at guiding the designer in the exploration of
the design space in order to reach a satisfactory implementation.

Thanks to the metrics extracted by the tools and the heuristics aiming at

105

partitioning, scheduling, detecting bottlenecks, profiling the execution, the de-
signer has enough information and means for implementing quickly a solution
for matching the application onto the target architecture. Each step in the
exploration is either the refactoring the Cal program or the choice of a new
partitioning and/or scheduling of the program. Chapter 6 illustrates how this
design flow has been successfully applied to a real world application using the
developed tools.

106

Chapter 6

Design case study:
MPEG-4 SP

This chapter illustrates a concrete example of optimization and mapping of a
real world application by applying the proposed methodology (Section 5.3). The
chosen application is the MPEG-4 Simple Profile video decoder described by the
standard document ISO/IEC 14496. Figure 6.1 depicts the initial version of the
decoder (referred as Serial-v0 in the text) written by Xilinx Inc.

Figure 6.1: The initial version of the decoder.

Figure 5.2 provides a graphical representation of the different steps compos-
ing the design flow. At each iteration of the design flow due to the refactoring
of the Cal program, the steps are:

Profiling of the actions The input sequence used during the design flow is
Foreman in QCIF format (176x144) of 5 frames. The actions are profiled
in terms of instructions using the Cal Dynamic Analyzer.

Weighting The execution times of the actions are set according directly to the
profiling of the actions, in terms of instructions.

107

Partitioning Two heuristics have been used to find the best partitioning: load
balancing using the simulating annealing approach (Section 4.2.2) and the
makespan minimization technique (Section 4.2.3).

Performance evaluation The Gantt chart is built in order to evaluate the
performance of the current solution. It reconstructs the execution on 5
frames of the input Foreman sequence in QCIF format.

Refactoring The optimization strategy described in Section 3.3 has been ap-
plied.

Code Generation The C++ backend of the ORCC framework is used for
generating the code either for profiling and for implementation.

Three target platforms have been considered:

Two cores Hewlett Packard 6710b Personal Computer, Intel R©CoreTM2 Duo
CPU T8300 at 2.4 Ghz.

Four cores Hewlett Packard ProLiant ML350 G6 Server, Intel R©Xeon R©CPU
E5504 at 2 Ghz.

Eight cores Freescale QorIQ Platform, P4080 processor at up to 1.5 Ghz.

Five refactoring of the decoder have been performed: merging of actors
for reducing implementation overhead (Section 6.1.1), splitting of actors for
removing unnecessary dependencies (Section 6.1.2) and the removing of three
bottlenecks thanks to the optimization strategy (Section 6.1.3).

6.1 The steps of the design space exploration

6.1.1 Improving the efficiency of actions

As discussed in Section 3.3.3.2.3, the way actors are written has an important
impact on the implementation overhead. The initial version of the decoder
(Serial-v0) contains a sequence of static actors that can be merged in order to
reduce the scheduling overhead. The classification of the actors performed by
the Cal Static Analyzer outputs that the actors scale, row, transpose,

column, shift and clip of the IDCT sub-network are static. Figures 6.2(a)
and 6.2(b) illustrate the refactoring of the Cal program.

After partitioning and scheduling the refactored version of the decoder (Serial-
v1), the resulting Pareto points in the design space defined by the throughput
and resources criteria are plot in Figure 6.11. This refactoring improves the
decoder when mapped on a small number of processors but the performance is
still decreasing when mapped on more processors. The merging of the actors in-
creases the efficiency of the IDCT computations but reduces the level of exposed
parallelism, resulting in smaller performance on a higher level of processors. In
order to improve the performance of the decoder on more than two cores, a
major refactoring aiming at exposing more parallelism is needed.

108

(a) Initial version (b) Refactored
version

Figure 6.2: The static actors of the IDCT sub-network have been merged in
order to increase the efficiency of the actors and reduce the implementation
overhead.

6.1.2 Removing unnecessary dependencies

As explained in Section 3.3.3.1, unnecessary dependencies need to be removed
from the Cal program in order to expose more parallelism. In MPEG-4, each
QCIF frame of a video contains 99 macroblocks. A macroblock is composed of
six blocks of 8x8 pixels: four blocks for the luminance (Y) and one block for
each chrominance (U and V). The initial version of the decoder (Figure 6.1)
has been implemented such that each 8x8 block composing a macroblock of the
frame is processed serially by the different actors although the decoding of these
Y, U and V macroblocks do not imply any dependencies. As a consequence,
these macroblocks can be decoded in parallel, independently.

This refactoring consists in splitting the Texture and Motion sub-networks
into three branches, each one processing a unique type of macroblocks. Addi-
tional actors need to be inserted in order to distribute the tokens output by the
parser to the different branches and to reconstruct the decoded macroblocks for
the display. Figure 6.3 depicts the resulting parallel video decoder.

The parallelization of the decoder has been eased by the modularity capa-
bilities of the Cal language: the Texture and Motion sub-networks have been
duplicated for the three branches Y, U and V. This refactoring allowed to re-
duce the trace critical path of the execution from 140.43×106 to 94.40×106,
assessing that sequentiality has been removed. The trace critical path is ex-
pressed in terms of executed instructions as the profiling of the actions have
been performed at this level.

After partitioning and scheduling this version of the decoder (RVC-v0), the
resulting Pareto points in the design space defined by the throughput and re-
sources criteria are plot in Figure 6.11. This refactoring improves the perfor-
mance of decoder when mapped on more than three processors but because
of the additional scheduling overhead due to the addition of many actors, the
performance of the decoder with less than three processor remains low.

6.1.3 Refactoring of the most critical actions

The performance of the RVC-v0 parallel version is better than the previous serial
versions when mapped on more than three processors, but they are not improved

109

Figure 6.3: This version of the decoder (RVC-v0) results from the splitting of
the Serial-v1 version into three branches (Y, U and V) in order to expose more
parallelism.

when increasing the number of processors. It means that some bottleneck is
slowing down the decoder and the exposed parallelism of the platform cannot
be exploited. The Critical Actions Detection algorithm (Section 3.3.2) based
on the analysis of the trace critical path, one can highlight the actions that
really affect the performance of the decoder. Thanks to this heuristic, three
bottlenecks have been detected and removed, leading to better implementations.

6.1.3.1 Iteration 1: Addressing in motion compensation

Table 6.1 lists the critical actions of the RVC-v0 version, extracted by Cross-
Cal.

Critical actions Necessary optimization
decoder/motion Y/address/11$read addr Y 50
decoder/motion Y/interpolation/3$other Y 10
decoder/motion Y/address/10$write addr Y 10
decoder/motion Y/interpolation/3$other Y 10
decoder/motion Y/address/10$write addr Y 10

Table 6.1: List of the detected critical actions and their necessary optimization
in the RVC-v0 version.

According to the results, the most critical action of the RVC-v0 version is

110

the action read_addr_Y of actor Address in the motion compensation network
(Y branch). The actor address exchanges a large amount of tokens with the
framebuffer actor. Table 6.2 lists the five most expensive communications in
terms of bits between actors. One can notice that the communication between
the address and framebuffer actors are on the top of the lists. Thus, in order
to get rid of the bottleneck, these actors are merged so that the communication
costs are removed, resulting in more efficient computations. Figure 6.1.3.1 illus-
trates the refactoring. Thanks to the advantageous modularity capabilities of
Cal, the address and framebuffer actors in the U and V branches have been
also replaced by the merged version.

After partitioning and scheduling this version of the decoder (RVC-v1), the
resulting Pareto points in the design space defined by the throughput and re-
sources criteria are plot in Figure 6.11. The performance has been incredibly
improved when mapped on more than three processors and small improvement
is observed on two processors.

Source (Port) Destination Size (Mbits)
motion Y/address (RA) motion Y/buffer 3.080
motion Y/address (WA) motion Y/buffer 3.042

Merger420 (YUV) display 1.521
parser/blkexp (OUT) parser/splitter 420 B 1.242
motion Y/buffer (RD) motion Y/interpolation 1.155

Table 6.2: Top 5 most expensive communications in the RVC-v0 version.

(a) Initial version (b) Refactored version

Figure 6.4: The bottleneck of the version RVC-v0 has been removed by merging
the framebuffer and the address actors in the motion compensation network.

6.1.3.2 Iteration 2: Interpolation in motion compensation

By applying again the Critical Actions Detection algorithm to this new version
of the program (RVC-v1), new critical actions are detected, listed in Table 6.3.

According to the results, the most critical action is the action start in actor
Interpolation halfpel belonging to the Motion network (Y branch). In RVC-
v1, for each 8x8 block of a macroblock, the interpolation actor fires the following

111

Critical actions Necessary optimization
decoder/motion Y/interpolation/3$other Y 60

decoder/texture Y/idct2d/1$inter Y 10
decoder/motion Y/interpolation/3$other Y 20

decoder/texture Y/idct2d/1$inter Y 10
decoder/motion Y/interpolation/3$other Y 10

Table 6.3: List of the detected critical actions and their necessary optimization
in the RVC-v1 version.

sequence of actions:

{start, row col × 9, {row col, other × 8} × 8, done} (6.1)

Thus, for each 8x8 block, 83 actions are fired. The interpolation actor can
be refactored such that for each 8x8 block, this sequence of action is replaced by
only one unique action firing. Figure 6.1.3.2 illustrates the modification of the
Finite State Machine. This refactoring has been done by colleagues in Ericsson
Research.

(a) Initial version (b) Refactored version

Figure 6.5: The bottleneck of the RVC-v1 version has been removed by rewriting
the Interpolation halfpel actor in a more efficient way.

Tables 6.4 and 6.5 compare the initial and refactored versions of the inter-
polation actor in terms of calls and total computations. In the new version,
actions are bigger and called less, resulting in a great improvement in terms of
total computations. After partitioning and scheduling this new version of the
decoder (RVC-v2), the resulting Pareto points in the design space defined by
the throughput and resources criteria are plot in Figure 6.11. The performance
is largely improved on any platform.

112

Y U or V
Action Calls Tot. Avg. Calls Tot. Avg.
other 111 376 50 859 834 456 30 272 13 860 456 457

row col 29 592 83 832 41 283 8 041 22 779 68 283
done 1 740 120 060 69 473 32 637 69
start 1 741 240 258 138 474 65 412 138
Total 144 449 59 603 393 - 39 260 16 236 473 -

Table 6.4: Profiling of the actions of the Interpolation halfpel actor before
refactoring.

Y U or V
Action Calls Tot. Avg. Calls Tot. Avg.

both 224 1 337 280 5 970 107 638 790 5 970
col 324 1 492 344 4 606 71 327 026 4 606
row 132 616 440 4 670 34 158 780 4 670
none 1 060 4 043 900 3 815 261 995 715 3 815
Total 1 740 7 489 964 - 473 2 120 311 -

Table 6.5: Profiling of the actions of the Interpolation halfpel actor after
refactoring.

6.1.3.3 Iteration 3: Inverse Scan in texture decoding

By applying again the Critical Actions Detection algorithm to this new version
of the program (RVC-v2), new critical actions are detected, listed in Table 6.6.

Critical actions Necessary optimization
decoder/texture Y/idct2d/1$inter Y 40

decoder/texture Y/IS/5$read write Y 10
decoder/texture Y/idct2d/1$inter Y 20

decoder/texture Y/IS/5$read write Y 10
decoder/texture Y/idct2d/1$inter Y 10

Table 6.6: List of the detected critical actions and their necessary optimization
in the RVC-v2 version.

According to the results, the most critical action is the action inter_Y in
the IDCT actor in the texture decoding network (Y branch). IDCT has been
already the scope of an optimization (Section 6.1.1). Thus, the designer can
focus on the second critical action which is the action read_write_Y in the
IS actor (Inverse Scan). Figures 6.6(a) and 6.6(b) illustrate the refactoring of
the actor. All the actions (except skip) have been merged into a single larger
action.

Tables 6.7 and 6.8 compare the initial and refactored versions of the inverse
scan actor in terms of calls and total computations. In the new version, ac-

113

(a) Initial version (b) Refactored
version

Figure 6.6: The bottleneck of the RVC-v1 version has been removed by rewriting
the IS (Inverse Scan) actor in a more efficient way.

Y U or V
Action Calls Tot. Avg. Calls Tot. Avg.

read write Y 58 244 22 598 704 388 6 300 2 444 400 388
write only Y 17 325 4 322 241 249 1 197 299 124 249
read only Y 17 388 4 043 025 232 1 197 277830 232
done IS Y 1 475 195 646 132 138 18458 133

start Y 1 201 136 914 114 120 13 680 114
skip Y 874 88 274 101 415 41 915 101
Total 96 507 31 384 804 - 9 367 3 095 407 -

Table 6.7: Profiling of the actions of the IS (Inverse Scan) actor before refac-
toring.

Y U or V
Action Calls Tot. Avg. Calls Tot. Avg.

rw 1 199 3 894 352 3 248 119 386 512 3 248
skip 874 88 274 101 413 41 713 101

Total 2 073 3 982 626 - 532 428 225 -

Table 6.8: Profiling of the actions of the IS (Inverse Scan) actor after refactoring.

tions are bigger and called less, resulting in a great improvement in terms of
total computations. After partitioning and scheduling this new version of the
decoder (RVC-v3), the resulting Pareto points in the design space defined by
the throughput and resources criteria are plot in Figure 6.11. The performance
is improved when mapped on more than four cores.

114

6.1.3.4 Final version

The AnalytiCal tool allows browsing and visualizing the metrics characteriz-
ing this resulting version of the decoder. Figure 6.7 is a screenshot of the tool:
the size of the nodes (actors) represent the total computational load of actors,
the blue nodes are the actors belonging to the trace critical path and the size
of the edges represents the size of the data transfers.

Figure 6.7: The AnalytiCal tool allows visualizing graphically the metrics
extracted from Cal programs. This screenshot corresponds to the RVC-v3
version.

By applying again the Critical Actions Detection algorithm to this new ver-
sion of the program (RVC-v3), the new critical actions are detected and listed
in Table 6.9.

Critical actions Necessary optimization
decoder/texture Y/idct2d/1$inter Y 50
decoder/texture Y/idct2d/0$intra Y 10
decoder/texture Y/idct2d/1$inter Y 10
decoder/texture Y/idct2d/0$intra Y 30

Table 6.9: List of the detected critical actions and their necessary optimization
in the RVC-v3 version.

6.1.4 Searching for efficient partitioning solutions

The optimizations being over, one can search now for efficient partitions of the
decoder on the three target platforms.

Figures 6.8 and 6.9 illustrate how an efficient partition has been found.

115

Figure 6.8: Different points in the design space, corresponding to different par-
titioning solutions.

M → A Actors with the largest computational load (i.e. texture decoding and
motion compensation of the luminance branch, respectively named TY
and MY) are assigned to a second core.

A → B Using 4 cores, motion compensation Y and texture decoding Y are as-
signed to two different cores. Motion compensation and texture decoding
of the U and V branches are assigned to a single core, all together. The
rest of the actors are on another core.

B → C Using 8 cores, the whole decoder is pipelined. Each of the following
sets are assigned to one core: {source, parser}, {texture decoding Y},
{motion compensation Y}, {texture decoding U}, {motion compensation
U}, {texture decoding V}, {motion compensation V} and {merger, dis-
play}.

C → D In order to save cores, motion compensation U and texture decoding
U are assigned to the new core, as well as motion compensation V and
texture decoding V.

D → E In order to better load balance the partitions in terms of computational
load, the IDCT actor in the luminance branch is assigned to a single core
and {texture decoding U, motion compensation U, texture decoding V,
motion compensation V} are assigned to the same processor. The results
shown in AnalytiCal (Figure 6.7) serve for the load balancing.

E → F In order to continue saving resources, the merger and the display ac-
tors are assigned to the same core as texture decoding U/V and motion
compensation U/V.

116

S P

TY

TU

TV

MY

MU

MV

M D S P

TY

TU

TV

MY

MU

MV

M D

S P

TY

TU

TV

MY

MU

MV

M D S P

TY

TU

TV

MY

MU

MV

M D

S P

TY

TU

TV

MY

MU

MV

M D S P

TY

TU

TV

MY

MU

MV

M D

S P

TY

TU

TV

MY

MU

MV

M D S P

TY

TU

TV

MY

MU

MV

M D

M A

B C

D E

F G
IDCT

IDCT

IDCT

Figure 6.9: The different partitions while searching for an efficient partitioning.

F → G To re-adjust the load balancing between partitions, the merger and
display actors are now attached to the same core as texture decoding
Y and motion compensation Y. It is the partition that offers the best
performance.

The performance of the resulting Cal program (RVC-v3) is shown in Fig-
ure 6.11.

6.1.5 Splitting for better load balancing

Table 6.10 illustrates how the computations are distributed among the different
clusters of actors in the RVC-v3 version. One can notice that the Y branch con-
tains half of the computations. Thus, its parallelization would be beneficial for
speeding-up this part of the decoder. The DCReconstruction network has been

117

parallelized by splitting the addressing and invpred actors. Figures 6.10(a)
and 6.10(b) illustrate this refactoring. The IDCT actor (only in the Y branch)
has been replaced by its initial version, i.e. the pipelined version (Figure 6.2(a)).
The obtained version of the decoder is referred to RVC-v4. Figure 6.13 compares
the performance of the RVC-v3 and RVC-v4 versions and Section 6.2 discusses
the results.

Parser Y branch U branch V branch Merger
Total 53 119 469 118 621 592 16 202 189 16 422 733 9 419 697

Total (%) 25 % 55 % 8 % 8 % 4 %

Table 6.10: Distribution of the computations among the different clusters of
actors of the RVC-v3 version.

(a) Initial version (b) Refactored version

Figure 6.10: Parallelization of the DC Reconstruction network.

6.2 Results and discussion

The different techniques presented in Section 3.3 drove the design space explo-
ration by:

• Removing scheduling overhead by merging actors (Section 6.1.1)

• Splitting actors to expose more parallelism (Section 6.1.2)

• Shortening the trace critical path:

– By optimizing actions bodies (Section 6.1.3.2)

– By merging actors (Section 6.1.3.1)

Efficient design space exploration Six versions of the decoder, three
different platforms with different architectures and level of parallelism (from one
to eight processors), the proposed approach with the supporting tools allows
exploring a large design space as shown in Figure 6.11. The effort for exploring

118

such a design space is small compared to what it would have been if using
traditional approaches.

The different refactoring have led to important improvements of the perfor-
mance of the implementation of the MPEG-4 decoder on several parallel plat-
forms. Figure 6.11 illustrates the performance of the different versions of the
decoder. The results have been obtained using a QCIF Foreman input sequence.

Figure 6.11: Performance of the different versions of the MPEG-4 SP decoder
on the different platforms. The points corresponds to Pareto points.

The first refactoring (Serial-v0 to Serial-v1) improved slightly the decoder
when mapped on a small number of processors. The actors of the IDCT be-
ing merged, it resulted in more efficient actions, removing the scheduling over-
head and communication costs due to individuals actors. The second refactor-
ing (Serial-v1 to RVC-v0) slowed down the decoder when mapped on a small
number of processors because the splitting of actors introduced overhead but
speeded-up the decoder when mapped on more than five processors because the
removing of the unnecessary dependencies enabled the parallelism of the appli-
cation to be really exploited by the platform. The third refactoring (RVC-v0
to RVC-v1) improved a lot the performance of the decoder because a first seri-
ous bottleneck has been removed. The addressing process for the frame buffer
in motion compensation implied too much communications compared to com-
putations. Thus, the merging of the two actors allowed increasing this ratio
between computations and communications. The fourth and fifth refactoring
(respectively from RVC-v1 to RVC-v2 and from RVC-v2 to RVC-v3) led also
to better performance thanks to the removing of the bottlenecks, based on the
same principles as for the third refactoring.

Validation of the optimization strategy Figure 6.12 compares the to-
tal computations and the trace critical path of the execution for each version
of the decoder. The trace critical path values and the total number of compu-

119

tations can be considered respectively as the lower and upper bounds on the
performance. If the application is entirely mapped on a single core, the execution
time of the execution evolves directly with the total number of computations
and cannot be larger. At the contrary, if each actor of the program is mapped
on a single core, the execution time of the execution corresponds directly to the
trace critical path - without considering the communications costs - and cannot
be smaller. This graph shows the potential range of expected performance.

Figure 6.12: The trace critical path and the total number of computations can
be considered as the lower and upper bounds on performance.

It should be noticed that each refactoring leading to better performance has
also a smaller trace critical path. Thus, these results validate the proposed
approach (Section 3) which consists in guiding the designer in the refactoring
of the Cal program thanks to the minimization of the trace critical path.

Fine-grain parallelism is hardly exploitable In case of software sys-
tems, fine-grained parallelism is hardly exploitable by platforms because the
communication cost takes the advantage on the speed-up gained by the paral-
lelization. The refactoring presented in Section 6.1.5 confirms the idea. Fig-
ure 6.13 compares the obtained performance of the RVC-v3 and RVC-v4 ver-
sions.

Parallelization does not necessary mean speed-up on software platforms. The
difference between the parallelization of the version Serial-v1 (which speeds-
up the processor) and this parallelization (which does not) lies in the level
of granularity at which the parallelism is exposed. In the first case, the new
parallelism was at the macroblock level whereas in the second case, was at a
much deeper level, which makes it impossible to exploit with the current status

120

Figure 6.13: Fine-grain parallelism is hardly exploitable: the parallelization of
the Y branch does not improve performance on software platforms.

of the tools and the given platforms. However, the parallelization of the Y
branch allows the platform to exploit more parallelism. For RVC-v3, the best
performance is found when the decoder is mapped on five processors whereas
for the RVC-v4, six processors are necessary. But the cost of the parallelization
is higher than the gain from the parallelization. The cost is mainly due to
communications.

This experiment highlights the fact that communication cost due induced by
any splitting must be carefully analyzed. The level of granularity needs must
be superior to a given threshold so that the parallelization process leads to
more efficient implementations. This level may change according the the future
optimizations of the code generations for which their development consists in
minimizing the overhead due to the handling of the actions and their synchro-
nization. In hardware, the threshold of the level of granularity may be much
lower than the one for software systems. The reason is that the exploitable par-
allelism by hardware platforms is much higher than software systems because
all the actors can effectively run concurrently with each others.

The choice of the input sequence As the design space exploration is
mostly based on dynamic analysis of the Cal programs, the choice of the input
sequence is important. It has been chosen to take as input sequence the foreman
sequence because it contains both a static background and a moving object. A
non-statistically meaningful analysis does not provide the expected results.

For example, if the profiling of the actions is limited to the INTRA pictures
and the design space exploration is performed from these metrics, the perfor-
mance may be different from the one expected because the INTER pictures
have not been analyzed and as the INTER pictures are generally dominant in
video sequences, it will lead to non-efficient implementation. The optimal solu-

121

tion computed from the metrics extracted from the analysis of INTRA pictures
has a good chance not to be the same when dealing with a complete sequence
comprising also INTER pictures.

Algorithmic exploration: a key point Dataflow languages have one
important benefit that cannot be ignored: their ability to embed computations
in independent entities that can be run on a set of independent processing units.
In case of Cal, the embedding of each actor coupled with a graphical visual-
ization of the program reduces parallel programming pain and contributes in
bringing parallel programming to the average programmers. As a consequence,
writing a parallel program is almost as easy as thinking of some code for filling
the sketched boxes that any designer draws with a pen on a sheet of paper to
model the application.

The easiness for conceiving parallel programs should enable developers to
really focus on designing optimal applications at an algorithmic point of view.
The MPEG-4 video decoder case study confirmed that the way applications
are written has important impacts on the implementation performance. Con-
sequently, design space exploration at an algorithmic level (i.e. Cal level) is
primordial for achieving efficient designs. But one needs to define the optimality
of a program at the pure algorithmic level. This optimality is closely linked to
the target platform. Algorithmic efficiency is the process aiming at reducing
the completion time of the execution, the resource consumption, and in case of
parallel programming, exposing the right level of parallelism that can be fully
exploited by the platform. The procedure for obtaining optimal programs is not
trivial and should be investigated in order to find metrics and heuristics that
efficiently guide designers in the design space exploration.

Cal has this specificity to allow certain degrees of freedom in the applica-
tion specification. A special type of non-determinism (time-dependency) can
be introduced in the specification without affecting the global deterministic be-
havior of the application. This is the case for the frame buffer actor in the
MPEG-4 SP decoder. This degree of freedom should be better exploited at the
implementation stage, according to the target platform. This voluntary under-
specification of the application - which does not affect its accuracy - is a source
of optimization.

Does Cal really unify hardware and software worlds? The hard-
ware and software worlds are known to be really different because of their un-
derlying model of computations: the first is massively parallel while the second
is sequential. With the advent of the muticore era, the software world is now
faced to the parallelization of the applications because developers can no longer
profit from the incredible constant increase of the performance of the sequential
general purpose processors. The consequence is that these two worlds are now
getting closer.

The time has maybe come to find a new formalism for unifying the specifi-
cation of applications in these two worlds. The Cal language seems to be good

122

candidate for being the base of this unification. It has been already proven
that it really suits for hardware synthesis [128] for which the generated code
outperforms the manual implementation. Now, it needs to be proven that effi-
cient software code can be generated from Cal. This objective will be quickly
reached as the optimizations of the existing code generators are going well.

However, the question of a unique and optimal representation of an applica-
tion remains opened. Currently, a Cal program leading to an optimal solution
in hardware does not imply that it is also the optimal solution in software be-
cause the level of parallelism that can be exploited by the software and hardware
platforms are not comparable. Cal offers valuable modularity capabilities for
interchanging actors in a very seamless way. An actor optimized for software
can be substituted by its hardware version (and vice-versa) very easily as far as
the input and output tokens requirements are compatible. This kind of opera-
tion can even be automatic according to the processing unit to which the actor
is assigned. The compiler can choose the appropriate representation of an actor
with respect to the platform. In case of hardware platforms, a tool is currently
being developed at the laboratory for automatically create a pipeline structure
of the most complex actions by means of automatic Cal transformations.

The approach adopted by the C-to-Gates tool, i.e. converting sequential
code onto massively parallel platforms, has been largely criticized. But, one
can ask - in the same way - if Cal does not have the similar problem with
software implementation, the other way round. Dataflow programming is closer
to the hardware model of computation in which each actor can run concurrently.
Where parallelization is the main problem in the C-to-Gates approaches for
mapping sequential programs on hardware, sequentialization becomes a crucial
issue for mapping massively parallel Cal programs on less parallel platforms.
As a consequence, this issue needs to be deeply investigated. Hopefully, the
advent of the parallel era increases the level of exploitable parallelism in the
software world and brings closer the hardware and software worlds, reducing
the importance of the sequentialization issue.

Keeping a close link between specification and implementation
through code generators Mapping seamlessly parallel applications onto
heterogeneous platforms is an incredible feature for today’s manufacturers. The
refactoring of high level programs is valuable only if it has positive effects on
the performance of the implementation. Estimating precisely the gain of the
refactoring without implementing it on the real platform is a crucial issue be-
cause heuristics aiming at guiding the designers through the design space are
based on this performance evaluation.

The accuracy of the performance evaluation is possible only if a close link
between the Cal program and its implementation is maintained through code
generators. How to evaluate the impact of any refactoring of the program if
this latter can lead to different implementation solutions? There must be a one-
to-one correspondence between the high level program and its implementation.
This close link allows also attaching to the high level program low level metrics

123

that reflect its real behavior on target platform. These realistic metrics are
necessary to have a precise performance evaluation and thus an efficient design
space exploration.

124

Chapter 7

The shift of paradigm for
systems specification: the
case of Reconfigurable
Video Coding

The proposed design space exploration methodology using dataflow program-
ming and Cal language has been shown to be efficient but it supposes the
existence of the Cal programs. Translating sequential reference software into
a dataflow representation is still a hard task and time-consuming task and this
is the reason why there was an important effort by several teams worldwide to
push a new standard for changing the paradigm at the specification level.

The emergence of the multicore technology allows the development of plat-
forms capable of supporting multiple coding standards and multiple profiles.
These standards may have commonalities at the level of the coding tools but
there is currently no explicit way to exploit such commonalities at the level of
the specification nor at the level of implementation.

The lack of capabilities for handling parallelism and for exploiting the com-
monalities between codecs of the traditional methodologies led to the devel-
opment of the Reconfigurable Video Coding (RVC) standard [154–156] by the
Moving Picture Experts Group (MPEG) – a working group of experts formed
by ISO and IEC – in order to change the way the video coding technology is
specified.

The RVC standard provides a framework which aims at deploying the video
coding technology, at easing the implementation of complex video coding ap-
plication and at promoting the adoption of a more adapted paradigm for the
specification, design and implementation of applications which target parallel
platforms. Modularity, flexibility and portability are some characteristics that
make RVC a very attractive approach.

125

7.1 Overview

The novelty of the RVC standard lies in its ability to specify new codecs by
combining blocks called Functional Units (FUs). Unlike previous video coding
standard, it does not specify rigidly new video coding algorithms but it allows
the combination of a multitude of video coding tools (FUs) defined in Video
Tools Libraries (VTLs) to specify new codecs in a very flexible and modular
way. Obviously, it eases drastically the design of multi-standards video coding
application by enable reuse of the FUs across the different standards. In the
context of RVC, there are two standard documents:

ISO/IEC 23001-4 (or MPEG-B part 4 [21]) describes the whole framework
and the internal processes and specifies the languages

ISO/IEC 23002-4 (or MPEG-C part 4 [134]) specifies the elementary video
coding tools (the so-called Functional Units) of the standard MPEG Video
Tool Library (VTL).

The principle of RVC is illustrated in Figure 7.1. An RVC decoder is built
with the interconnection of FUs. The decoder inputs the Decoder Description:
it is the description of how the FUs are connected together to build the de-
coder. Each FUs can be instantiated either from the standard MPEG Video
Tool Library (VTL) or from a proprietary VTL. ISO/IEC23002-4 specifies the
functionality of each FU and clearly describes their input/output tokens require-
ments. Thanks to this flexibility, decoders specified within the RVC standard
(i.e. conform to ISO/IEC23001-4) can be of different types:

Type-1 The decoder is built only by using FUs in the MPEG VTL. Thus, this
decoder conforms also to ISO/IEC23002-4.

Type-2 The decoder is built using FUs from the MPEG VTL and proprietary
VTLs. Thus, this decoder does not conform to ISO/IEC23002-4.

Type-3 The decoder is built using only FUs from proprietary VTLs. Thus,
this decoder does not conform to ISO/IEC23002-4.

The traditional approaches using imperative languages are not appropriate
for supporting such modular specifications of video codecs. Cal is the language
that has been chosen for defining Functional Units in the VTLs.

Figure 7.2 describes more precisely the different components and processes
within the RVC standard. The top level precises the normative procedure, how
the Abstract Decoder Model (ADM) is built and the bottom part explains the
non-normative part, how an RVC decoder can be implemented from the ADM.

7.1.1 Normative part

A decoder defined within RVC can be distinguished from decoders rigidly speci-
fied by traditional video coding standards because the description of the decoder,
called Decoder Description, is sent along with the encoded data. This Decoder
Description fully specifies the composition of the decoder and the structure of
the incoming bitstream thanks to:

126

Decoder type-1
or Decoder type-2
or Decoder type-3

MPEG VTL
(MPEG-C)

Video Tools
Libraries {1..N}

Decoder Description

Coded data Decoded video

MPEG-B decoder

Figure 7.1: An RVC decoder is specified by the interconnection of Functional
Units (FUs) instantiated from the standard MPEG and/or from proprietary
Video Tools Libraries (VTLs).

Figure 7.2: Illustration of the normative and non-normative parts of the Recon-
figurable Video Coding framework.

The Bitstream Syntax Description (BSD) which describes the structure
of the bitstream by listing all the syntax elements (with type and size) con-
tained in the bitstream. The BSD is specified in the RVC-BSDL language

127

(Section 7.1.3.3).

The FU Network Description (FND) which describes the network of the
coding tools (FUs) and the parameters necessary to instantiate the differ-
ent FUs of the decoder. The FND is specified in the FU Network Language
(FNL) (Section 7.1.3.2).

The aim of the normative process is to specify the Abstract Decoder Model
(ADM) which is the normative behavioral model of the decoder. The ADM is
built thanks to the Decoder Description and the FUs defined in Video Tools
Libraries (MPEG or proprietary).

Video Tool Library (VTL) The Functional Units (FUs) of the VTL are
specified using a subset of the Cal language called RVC-Cal (Section 7.1.3.1).
The chosen level of granularity for the specification of the Functional Units is
very important and must be such that it allows the reuse of the different video
coding tools (FUs) in future codecs implementations. If FUs are defined with a
too coarse granularity, it will result in too large modules which will be unusable
in new codecs because it does not perfectly fit the required functionality. At
the contrary, if the granularity is too fine, the number of modules explodes and
the configuration of the decoder becomes too complex because of the numerous
interconnections of FUs, even obscuring the desired high-level and modular
description of the RVC codec.

7.1.2 Non-normative part

The implementation process of the decoding solution from the ADM (defined by
the normative part) is non-normative. The Decoder Description establishes the
interconnections between the FUs. These FUs are specified in RVC-Cal into
the MPEG and proprietary VTLs and need to be converted into components de-
scribed in native implementation code, C/C++ for targeting software platforms
or Verilog/VHDL for hardware platforms. Existing software and hardware code
generators [128, 135] translate directly the FUs defined in RVC-Cal into na-
tive implementation code. The formalism chosen in RVC guarantees that as far
as the implementation of the FUs conforms to the description of the VTLs in
terms of input/output tokens requirements, the resulting implementation will
be consistent with the ADM.

Hence, as far as the input/output tokens requirements at the FU level is
respected, nothing prevents the designer to build different versions of the FU in
implementation code. This modularity is a very valuable feature for the design
space exploration when implementing any RVC decoder onto a wide range of
target platform. As discussed in the previous chapters, the future challenge of
digital systems design is how to implement efficient complex applications onto
massively parallel platforms. In RVC, designers can build different versions of
each FU, exposing more or less parallelism to target a maximum range of plat-
forms. A less-parallel implementation of a FU better suits software platforms
because of the restricted number of available processors. At the contrary, a

128

massively parallel implementation better suits hardware platforms which can
fully exploit the exposed parallelism. Thus, special VTLs targeting different
type of platforms (multicore, FPGA, GPU, etc.) can be built in order to make
profit of the flexibility offered by RVC to reach efficient implementation of RVC
codecs.

7.1.3 Languages defined within RVC

In order to ensure the generation of efficient implementations of the FUs of the
VTL by means of code generators, only a subset of Cal has been standardized
within RVC. Having a well-defined subset of a language is necessary to ensure
the full compatibility of the language with the underlying tools. This subset is
called RVC-CAL and specified in Section 7.1.3.1. This subset has only small
differences with Cal. For the same reason, BSDL has been restricted and
extended with new constructs in order to guarantee that this subset has only
the required features to describe the syntax so that parsers can be generated
efficiently. RVC-BSDL is described in Section 7.1.3.3.

7.1.3.1 RVC-Cal

RVC-Cal is a large subset of the Cal language and is specified in MPEG-B
(ISO/IEC 23001-4 [21]). The main difference between Cal and its subset is
that RVC-Cal only deals with fully typed actors. Additional minor restrictions
on the Cal language constructs are necessary in order to have efficient hard-
ware and software code generations without changing the expressivity of the
algorithm. For an in-depth description of the subset of the language, the reader
is referred to the Annex C of ISO/IEC standard [21].

7.1.3.2 FU Network Language

The FU Network Language is an XML dialect specified in MPEG-B (ISO/IEC
23001-4 [21]) and describes the network of FUs composing the ADM, their
parametrization and their interconnections. It corresponds to the FU Network
Description (FND). Figure 2.3 shows an example of FND. A graphical edit-
ing framework called Graphiti [136], a generic graph editor under BSD license
created by IETR/INSA Rennes, is available to create, edit, save and display
networks.

7.1.3.3 RVC-BSDL

RVC-BSDL is an XML dialect specified in MPEG-B (ISO/IEC 23001-4 [21])
and is a subset of the BSDL language [137]. RVC-BSDL is the language aiming
at describing the Bitstream Syntax Description (BSD) which is an XML schema.
This schema describes the structure of the incoming bitstream compatible with
the decoder. Listing 7.4 is a piece of the BSD describing the incoming bitstream
for the Simple Profile of the MPEG-4 video decoder.

129

<XDF name="Sum">

<Port kind="Input" name="In"/>

<Port kind="Output" name="Out"/>

<Instance id="add"/>

<Instance id="z">

<Class name="Z"/>

<Parameter name="v">

<Expr kind="Literal" literal -kind="Integer" value="0"/>

</Parameter >

</Instance >

<Connection dst="add" dst -port="A" src="" src -port="In"/>

<Connection dst="add" dst -port="B" src="z" src -port="Out"/>

<Connection dst="z" dst -port="In" src="add" src -port="Out"/>

<Connection dst="" dst -port="Out" src="add" src -port="Out"/>

</XDF >

Figure 7.3: FNL representation of the Sum network.

<xsd:complexType name=" VideoPacketHeaderType ">

<xsd:sequence >

<xsd:element name=" resync_marker " type=" ResyncMarkerType "/>

<xsd:element name=" macroblock_number " type=" MBNumberType "/>

<xsd:sequence minOccurs="0" bs2:if="$m4v: video_object_layer_shape !=& binaryOnly ;">

<xsd:element name=" quant_scale " type=" VOPQuantType "/>

</xsd:sequence >

<xsd:sequence minOccurs="0" bs2:if="$m4v: video_object_layer_shape =& rectangular ;">

<xsd:element name=" header_extension_code " type="bs1:b1" bs0:variable="true"/>

</xsd:sequence >

<xsd:element name=" VPHeaderExtension " minOccurs="0" bs2:if=" $header_extension_code =1"

type=" VPHeaderExtensionType "/>

</xsd:sequence >

</xsd:complexType >

Figure 7.4: A piece of the Bitstream Syntax Description of the MPEG-4 SP
decoder.

For the sake of clarity, it is possible to define groups of elements of syntax.
For example, the group VideoPacketHeaderType is composed of a sequence of
several elements of syntax: a first element resync marker comes, followed by
a second element macroblock number, followed by a third element quant scale
only if the element video object layer shape previously decoded is of not of type
binaryOnly, and so on. The RVC-BSDL subset contains only the minimum set
of necessary constructs (XML elements and attributes) like bs2:if, bs2:ifNext,
minOccurs, bs2:nOccurs (non-exhaustive list) in order to be able to fully de-
scribe complex bitstreams. The reader is refered to [21] for further details.

7.2 Promises

The relentless increase of the codecs complexity poses a new challenge in their
implementation onto parallel platforms. Traditional methodologies lack flexi-
bility to efficient map complex codecs onto platforms with different levels of
parallelism, different native implementation codes and different technologies. A
shift of paradigm is needed at the specification level and RVC provides a solution
to this challenge.

130

”Data dependencies were not considered important factors during standard-
ization in the sequential processor age, however, now they can become the real
obstacle for an efficient multicore implementation”. [154]. The adoption of the
RVC standard is intended to have a significant impact in the field of multime-
dia systems design by proposing a new paradigm capable providing portable
and scalable codecs specifications. The direct consequence would be the larger
deployment of video coding technology onto a wide range of parallel platforms.

7.2.1 Towards portable and scalable parallelism

Cal specifications do not imply any specific assumption on the underlying ar-
chitecture.Cal programs are composed of computational entities, independent
from each others (encapsulation property) and share data only through the ex-
change of tokens. In case of multicore platforms, there is no need for cache
coherency protocols as far as the states of the actors are not shared. As a
consequence, Cal specifications can be translated into native implementation
codes on a wide range of platforms thanks to software and hardware code gen-
erators [128,135].

Additionally to its portability, the parallelism of a RVC specification is also
scalable in the sense that designers have the freedom to choose a different im-
plementation of a Functional Unit, exposing different levels of parallelism by
using different Video Tools Libraries in order to fit the available parallelism of
the platform.

Figure 7.5 (Source: [154]) illustrates this concept. The parallelism of the
RVC specification is naturally shown by the interconnections of the Functional
Units (IQ, Adder, DF, etc.), as each FU can potentially work concurrently. At
the level of the Functional Unit (e.g. 2-D IT), the designer can choose, in a
proprietary library, a version of this FU that exposes more parallelism (1D-IT,
Transpose and 1D-IT) in order to better exploit the processors let vacant by the
less-parallel implementation of this FU provided by the standard MPEG VTL.

7.2.2 Deployment of video coding technology

The RVC standard provides an undeniable flexibility for the implementation of
codecs onto the next generation of parallel platforms thanks to the adoption of a
new paradigm (dataflow programming and Cal language) for the specification of
codecs and thanks to the definition of decoder descriptions (FND) and bitstream
descriptions (BSD) as input to any RVC decoder. The degree of freedom offered
by varying the different encoding/decoding schemes, by choosing different FUs
instantiations and by partitioning the ADM in different ways is such that there is
a theoretically unbounded set of implementation possibilities. Such a flexibility
is paramount for the efficient implementation of codecs and to make a full profit
of the potential computations power of the new parallel platforms.

Figure 7.6 (Source: [154]) illustrates a potential use of the RVC standard.
At the server side, an RVC encoder produces a bitstream composed of the usual

131

Figure 7.5: Illustration of the concept of mapping an RVC specification onto a
multicore platform (a) from the MPEG Video Tools Library or (b) from user-
defined proprietary Video Tools Libraries.

decoder description (FND) and the bitstream description (BSD) along with
several enhancement layers, each layer providing a higher decoding quality.

The decoder-3, implemented on a small platform with low computing power,
decodes only the base layer of the bitstream. The decoder-2, implemented on a
more powerful platform, decodes the base and the enhancement layer 1 of the
bitstream, Finally, decoder-1 decodes the entire bitstream (base + enhancement
layers 1 and 2) because the platform has the required resources for decoding it.

For designers, the adoption of the RVC standard presents two main advan-
tages in terms of scalability:

• To be able to scale the exposed parallelism of the application to fit the
available level of parallelism of the platform

• To be able to better take into consideration the constraints imposed by the
desired target platform (in terms of computing power, energy consump-
tion, area, etc.) when implementing the Abstract Decoder Model (ADM)
– in other words, the Cal program – onto the desired platform.

Hence, the use of the RVC standard and the appropriate tools and method-
ologies (as the ones presented in this research work) ensures efficient implemen-
tations of decoder specifications in spite of the large diversity of the platforms.

132

Figure 7.6: An RVC bitstream can be efficiently decoded by various platforms
with various architectures.

7.3 Contributions

7.3.1 General development of the standard

I participated actively to the development of the RVC standard from the begin-
nings. It includes:

• Study of the compactness of an RVC bitstream containing the description
of the bitstream and the description of the network of FUs [164,165],

• Study of the feasability of defining FUs with different levels of granular-
ity [166],

• First proposal of the FU interfaces (inputs/outputs) according to the
MPEG-4 SP decoder [167],

• Proposal of a template for the textual description of the FUs of the
VTL [168],

• Proposal of a classification of FUs in the MPEG VTL in order to distin-
guish algorithmic video coding tools from pure data management tools [169],

• Proposal of a naming convention in the MPEG VTL for a unique identi-
fication of FUs [170],

• Exploration of the classification of tokens in the MPEG-4 SP decoder for
easing the connectivity of FUs [171,172],

• Submission of the parallel version of the MPEG-4 SP decoder [173],

• Submission of new FUs in the MPEG-4 SP decoder: for dealing with the
BTYPE datatype [174], for Variable Length Coding [175] and some serial
versions of existing FUs [176],

133

• Definition of the subset of the BSDL language and description of the
MPEG-4 SP bitstream in RVC-BSDL [177],

• Proposal for the implementation of multiple reference frame support for
extending the MPEG-4 SP to higher profiles [178],

• Proposal of a methodology and a tool for converting bitstream description
into Cal parsers [179,180] (the reader is referred to Section 7.3.2),

• Test of the reconfigurability capabilities of decoders defined within the
standard in order to prove the concepts of RVC [173] (the reader is referred
to Section 7.3.3),

• Edition of the standard documents [21,134].

7.3.2 Easing the design of parsers

The RVC framework aims at facilitating the development of new video coding
tools. The flexibility offered to explore rapidly different decoder reconfigura-
tions is primordial. However, testing new decoding solutions implies that the
bitstream syntax may change from a solution to another, implying the refactor-
ing of the parser. The parser FU may be very complex and writing it by hand is
time-consuming and error prone. This section proposes a solution for generating
a parser in Cal directly from the bitstream description (BSD). The reader can
refer to [157–160] for further details. Many contributions to the standard have
been submitted [175,177,179,180].

7.3.2.1 The BSDL2CALML tool

The difficulty of such transformation remains in the fact that a description (the
bitstream description) is converted into an executable. Using a XML formalism,
the BSD describes the sequence of syntax elements constituting the bitstream
and the parser is the process that distributes the elements of syntax to the
others actors of the network. The challenge is to develop a process such that
the parser is capable of handling all the possible combinations of the syntax
elements allowed by the BSD.

As BSD is an XML schema and RVC-Cal can be represented in XML
(CalML) XSL Transformations (XSLT) is the most appropriate way to perform
this conversion.

The conversion process illustrated in Figure 7.7 is performed in five passes.
For each pass, only some parts of the BSD are considered and predefined CalML
templates are used to generate the parser.

First pass creates the header of the parser actor in CalML. It consists of
adding constant values, initialized variables, input and output ports and
the signature of the actor.

Second pass creates the actions for each syntax element of the bitstream de-
scription (the BSD schema). One or several actions can be created for
each syntax element. Follows an non-exhaustive list of cases:

134

Figure 7.7: Illustration of the process converting a bitstream description (BSD)
into a CalML parser.

• If the syntax element is simple (fixed sized element, without any
condition on its existence), only one action is created

• If the syntax element presents some conditions on its existence, three
actions will be created: the first action tests if this element exists,
the second action consumes the tokens relative to this syntax element
and the third action is created for jumping to the next syntax in case
of this element does not exists.

• If the syntax element must be repeated several times, three actions
are created. An action is needed to check if this element needs to be
repeated, an action which consumes the token of the syntax element
and an action which is used to jump to the next syntax in case of the
element must be not repeated anymore.

• If the parser actor needs to communicate with an external actor to
parse this syntax element, then several actions are created for es-
tablishing a communication protocol between these two actors (Sec-
tion 7.3.2.1.1).

Third pass creates the Finite State Machine (FSM) of the whole parser. A
preliminary sub-step is performed in order to build an intermediate tree
which is a more convenient representation of the initial tree so that it is
then easier to perform the transformation for building the FSM. The pro-
cess consists of obtaining a flatten representation of the relations between
all the actions in order to have a better view on how the actions follows
from each others.

Fourth pass sets priorities in case several actions are fireable at the same time.

135

Fifth pass closes the file.

7.3.2.1.1 Dealing with unsized syntax elements Bitstreams can con-
tains elements of syntax for which the size in not known a priori. In MPEG-4, it
is the case with Variable Length Codes (VLC). It makes the decoding process a
bit more complex because the parser needs to handle the processes for decoding
these unsized elements. One solution consists in externalizing these decoding
processes in an FU, which needs to be written by hand because the decoding
process cannot be guessed. Figure 7.8 illustrates the procedure for decoding
such unsigned syntax elements.

Figure 7.8: The generated Parser sends bits to the external FU (VLD Table
B-16) and receives back an acknowledgment from the FU. Once the data is
decoded by the FU, it is send to the next FU, Block Expand.

A generic communication protocol needs to be defined between the parser
and these FU in order to achieve the parsing. Each time a sized syntax element
is parsed, the parser fires a xxx.read action. When it parses an unsized syntax
element (e.g. variable length codes), the following protocol is followed:

1. The parser reads a bit and sends it to the FU by firing an xxx.read action.

2. The FU receives the bit and start the decoding process. Then, the FU
acknowledges the parser according to the results of the process: either the
element has been decoded or not.

3. If the parser receives an acknowledgement saying that the element has been
decoded, the parser fires an xxx.finished action and continues with the
next element of the bitstream. If the element has not been yet decoded,
the parser fires an xxx.notfinished action, sending a new bit to the FU.
This loop continues as long as the element is decoded.

In case of the MPEG-4 SP decoder, Li and al. [159] have developed a system-
atic way for generating in RVC-Cal the FU capable of handling the Variable
Length Code (VLC).

136

7.3.2.2 Example

Figure 7.9 shows a simple example of BSD. The bitstream is composed of four
elements: the first element is a 1-bit long element and is output on port A, the
second element is 2-bit long and is an output on port B, etc. Figure 7.10 reports
the CalML code generated for decoding the first element of syntax, the read

action and the FSM for decoding the piece of BSD.

<xsd:element name=" bitstream_root ">

<xsd:complexType >

<xsd:sequence >

<xsd:element name=" firstelement " type="bs1:b1" rvc:port="A"/>

<xsd:element name=" secondelement " type="bs1:b2" rvc:port="B"/>

<xsd:element name=" thirdelement " type="bs1:b3" rvc:port="C"/>

<xsd:element name=" fourthelement " type="bs1:b4" rvc:port="D" />

</xsd:sequence >

</xsd:complexType >

</xsd:element >

Figure 7.9: Sample of a Bitstream Syntax Description (BSD).

<!-- action for parsing the element "firstelement" of 1 bit -->

<Action >

<QID name=" firstelement .read">

<ID name=" firstelement "/>

<ID name="read"/>

</QID >

<Input kind="Elements" port="bitstream">

<Decl kind="Input" name="b"/>

<Repeat >

<Expr kind="Var" name=" BS1_B1_LENGTH "/>

</Repeat >

</Input >

<Output port="A">

<Expr kind="Var" name="b"/>

<Repeat >

<Expr kind="Var" name=" BS1_B1_LENGTH "/>

</Repeat >

</Output >

</Action >

[...]

<!-- Finite state machine of the parser -->

<Schedule kind="fsm" initial -state="root. firstelement_exists ">

<!-- Transition for switching the actor state after having parsed the first element -->

<Transition from="root. firstelement_exists " to="root. secondelement_exists ">

<ActionTags >

<QID name=" firstelement .read">

<ID name=" firstelement "/>

<ID name="read"/>

</QID >

</ActionTags >

</Transition >

[...]

</Schedule >

Figure 7.10: For each action, the tool generates a Cal action for parsing the
element firstelement and the corresponding part of the Finite State Machine.

137

7.3.3 Testing the reconfigurability capabilities

This case study aims at proving the concept claimed by RVC [161] [173]. Being
able to create, develop and test quickly new decoder configurations for easing
the development of video coding technology is one of the main idea behind RVC.
This is possible by exploiting the existing commonalities between decoders and
be able to compose, mix and refactor them seamlessly.

Starting from the MPEG-4 Simple Profile decoder presented in Figure 7.11,
this experiment consists in replacing the Inverse Quantization (IQ) and In-
verse Transform (IT) FUs by the ones of Audio Video coding Standard of
China (AVS). Section 7.3.3.1 presents briefly the AVS standard, Section 7.3.3.2
presents the few steps for reconfiguring the decoder and Section 7.3.3.3 discusses
the results.

Parser

Y

Buffer
Inter-
polate

Addr

DC
Addr

DC
Predict-1

Scan-1DC
Split

Quant-
ize-1 DCT -1

Clip
AC

Predict-1

U

DC
Addr

DC
Predict-1

Scan-1DC
Split

Quant-
ize-1 DCT -1

Clip
AC

Predict-1

V

DC
Addr

DC
Predict-1

Scan-1DC
Split

Quant-
ize-1 DCT -1

Clip
AC

Predict-1

Texture Decoding

Motion Compensation

Multimedia Data
Buffer

Inter-
polate

Addr

Buffer
Inter-
polate

Addr

+

+

+

+

Figure 7.11: The MPEG-4 Simple Profile decoder.

7.3.3.1 Audio Video coding Standard (AVS)

Audio Video coding Standard of China (AVS) [138] is a new compression stan-
dard developed by AVS Workgroup of China. AVS Part 2 (referred as AVS for
short) is addressing high-definition, high-density storage media and digital video
broadcasting applications and was published as national standard for China in
February 2006. Integer transform, intra and inter-picture prediction, in-loop
deblocking filter and context-adaptive two dimensional variable length coding
(CA-2D-VLC) are the key compression tools of AVS [139].

The Inverse Quantization (IQ) stage in AVS is characterized by a QP for
which the reconstructed transform coefficients are obtained through a 1-D lookup
only. Compared with MPEG-4 Simple Profile in which two inverse quantiza-
tion methods are used and DC coefficients of intra coded blocks are inverse
quantized in a different manner, AVS implies only one quantization type and
processes coefficients of the whole block in the same way.

The 8x8 pre-Scaled Integer Inverse Cosine Transform (IICT) is used by AVS
for providing a unique specification for the finite precision implementations and

138

for yielding significant saving in processing complexity when compared with
the traditional Inverse Discrete Cosine Transform (IDCT), features that are
particularly interesting for low-end processors.

7.3.3.2 Decoder reconfiguration

Although the Inverse Quantization (IQ) and Inverse Transform (IT) algorithms
are different between AVS and MPEG-4, they both have the same behavior
in terms of input and output tokens requirements: 8x8 blocks. The level of
granularity used to define these FUs allows to interchange them seamlessly.
Being able to lower the standardization level at the coding tool level is one
strength of RVC.

Inverse Quantization and Inverse Transform tools (FUs in green in Fig-
ure 7.11) are taken from the AVS toolbox, and the rest of the video coding
tools are the ones from MPEG-4 SP, resulting in a hybrid decoder with new
properties.

The flexibility offered by RVC to interchange easily the FUs must lead to
the improvement of the decoding solution. In this case study, the quantization
precision of MPEG-4 SP ranges on a 5-bit scale and is extended to 6 bits ap-
plying the quantization algorithm of AVS. Bitstream syntax changes because
elements such as vop_quant, quant_scale need to be extended to 6 bits in the
new bitstream syntax. Thus the new bitstream format is no longer the one
of MPEG-4 SP format and in RVC it has to be described by a correspond-
ing RVC-BSDL schema. The syntax elements vop_quant and quant_scale are
both defined as a syntax element of type VOPQuantType whose bit length is
equal to quant_precision. For the new schema, quant_precision is extended
to 6 bits.

The BSD presented in Figure 7.12 contains the changes that are necessary
by the new IQ and IT stages.

<xsd:schema >

[...]

<xsd:annotation ><xsd:appinfo >

<bs2x:variable name="m4v: quant_precision " value="6"/>

</xsd:appinfo ></xsd:annotation >

[...]

<xsd:element name=" vop_quant" type=" VOPQuantType ">

[...]

<xsd:element name=" quant_scale " type=" VOPQuantType "/>

[...]

<xsd:simpleType name=" VOPQuantType ">

<xsd:restriction base="bs1:b9">

<xsd:annotation ><xsd:appinfo >

<bs2x:bitLength value="$m4v: quant_precision "/>

</xsd:appinfo ></xsd:annotation >

</xsd:restriction >

</xsd:simpleType >

[...]

</xsd:schema >

Figure 7.12: Modification of the Bitstream Syntax Description (BSD) for the
new decoder.

139

This modification of the BSD implies that the parser needs to be also mod-
ified to parse correctly the new bitstream format. This new parser can be
generated automatically using the approach presented in Section 7.3.2.

7.3.3.3 Results and discussion

The quantization precision has been extended to 6 bits in both the variable
length encoder and the variable length decoder. A new bitstream is produced
and provided as input into the reconfigured decoder.

The overall decoding performance is evaluated under the following test con-
ditions: I frames only, progressive sequence coding, VOL frame rate equal to
30, sequence of 200 frames. In the MPEG-4 decoder, the quantization range is
equal to 5 bits, IDCT is used for Inverse Transformation and the values of QP
are {1, 2, 3, 5, 7, 11, 16, 21, 26, 31}. In the reconfigured decoder, the quantiza-
tion range is equal to 6 bits, IICT from AVS is used as inverse transform and
the values of QP are {1, 9, 15, 22, 29, 36, 43, 50, 57, 63}.

Figure 7.13 reports the PSNR curve versus bitrate and shows that at low and
medium bitrates, the two decoders yield very similar performance. However, the
performance of the two decoders differs at high bitrates where the reconfigured
decoder improves gradually at increasing bitrates.

Figure 7.13: Bitrate versus PSNR for the original MPEG-4 SP and reconfigured
with AVS quantization for the Foreman sequence.

In this simple example, coding tools from AVS are used by the reconfigured
decoder, yielding both complexity reduction and improvements of the perfor-
mance in high bitrate ranges. Obviously, other reconfigurations can be specified
by selecting coding tools from different standards, such as intra prediction,

140

half/quarter-pixel precision interpolation, motion vectors prediction, to achieve
specific complexity performance trade-offs.

This experiment shows the potential offered by the RVC framework to re-
configure easily decoders and to improve them seamlessly thanks to this new
actor- and dataflow-based paradigm enabling the tool-level specification of the
standard Video Tool Library and resulting in a greater modularity. It is likely
that the usage of the RVC will make disappear the traditional MPEG profile-
level definition. RVC provides the means to explore seamlessly new video coding
algorithms.

141

142

Chapter 8

Conclusion

During my research work, I contributed to make significant advances in digital
systems design by enabling efficient high level design space exploration through
the use of dataflow programming and the Cal language [143,153]. It includes:

• The development of profiling tools in order to extract metrics from Cal
programs which serves as a basis for the design space exploration: execu-
tion times of actions, trace critical path and data transfers between actors
(Section 3.2).

• The elaboration of an optimization strategy aiming at guiding designers
in the refactoring of Cal programs by minimizing the trace critical path
of the execution of programs (Section 3.3).

• The implementation of partitioning and scheduling heuristics based on the
causation trace [146,147] (Section 4.2).

• The elaboration of a holistic methodology for systematically explore the
design space by gathering all the steps described previously. An important
work of integration of the different tools was necessary to make all the
tool compatible, and gathering the work of several teams into a single
environment [153] (Section 5.3).

I also contributed to the creation of a new ISO/IEC standard, Reconfigurable
Video Coding (RVC), aiming at shifting the paradigm for the specification of
MPEG video coding technology [145,154–156,162]. It includes:

• The development of the standard from the beginnings by exploring dif-
ferent solutions, by proposing methodologies for classifying the FUs, by
submitting new FUs, by defining the languages used in the framework,
etc. [164–172,174,176,178]. I took part of the writing of the two standard
documents [21,134] (Section 7.3.1).

• The development of a tool aiming at generating parsers in Cal directly
from bitstream descriptions [157–160] [175,177,179,180] (Section 7.3.2).

143

• The proof of concept of RVC by testing the reconfigurability of coding
tools coming from different standards and mixing them together to test
new decoder configuration [161] [173] (Section 7.3.3).

The proposed approach allows exploring the design space on different target
platforms with different levels of parallelism with a reduced effort compared
to what it would have been by using traditional approaches. We suceeded in
optimizing the performance of a MPEG-4 Simple video decoding by a factor of
seven. The optimization strategy aiming at minimizing the trace critical path
of the execution of Cal programs for guiding the refactoring of Cal programs
towards the target region of the design space has been validated by the results.

Future work

Some problems have been clearly identified problems in the methodology and
need to be addressed in the future. The first work consists in improving the
accuracy of the performance evaluation of Cal programs mapped on a target
platform. It includes the improvement of the discrete event simulalor and the
modeling of target platforms with realistic characteristics. The second issue re-
lates to new partitioning and scheduling heuristics. The third topic concerns the
improvement of the code generators for minimizing the effect of the scheduling
on the performance.

Towards more accurate performance evaluation

The performance evaluation of a solution is performed by reconstructing virtu-
ally the execution of a Cal program by mean of a Gantt chart thanks to its
causation trace (Section 4.3).

New architecture of the discrete event simulator

A more sophisticated engine for reconstructing the Gantt chart must take into
consideration more characteristics of the runtime and the target platform in
order to improve the accuracy of the estimation. Currently, the Gantt chart
engine inputs the causation trace, the partitioning and scheduling configuration
and the running time of actions. In order to better reflect the influence of the
scheduling overhead - which is far from being negligible - onto the performance,
the engine should be based on a model of the underlying runtime. This model
should describe the different steps for scheduling the actions. As a consequence,
the engine can reconstruct the Gantt chart of the actions firings with an in-
creased accuracy by introducing in the Gantt chart the scheduling overhead
induces by the modeled underlying runtime. The advantage of externalizing
the runtime model from the engine is that several runtimes can be used for
the performance evaluation, enabling designers to compare the performance of
several runtime for a given partitioning and scheduling. Figure 8.1 illustrates

144

the proposed refactoring of the Gantt chart engine. This latter should have the
following characteristics:

• Reflect the different steps of the runtime for scheduling and executing
actions,

• Consider the scheduling policy implemented in the runtime,

• Consider the state of the FIFO when scheduling actions: if it is full, any
actor connected to its input cannot fire, if it is locked, any of other actor
cannot fire.

• Be fast, because performance evaluation heuristics are using it.

Gantt chart Engine

Trace

Profiling of actions

Partitioning / scheduling

Instantiation of
the runtime

model

Elaboration of the
Gantt chart

AS S A

S A S A S A S A S A

S A S A S A

Gantt chart

start

Top:
schedule actors

Actor :
schedule actions

Exec.
Action 1

Exec.
Action 2

Exec.
Action 3

t

P

runtime
model

Figure 8.1: Illustration of the proposed refactoring of the Gantt chart engine.

Modeling target platforms

Performing meaningful design space exploration implies being able to evaluate
correctly the performance of the implementation. Because every platform has its
own intrinsic properties (speed, communication costs, memory hierarchy, com-
puting power, parallelism, etc.), models need to be elaborated to report these
characteristics at high level. It should include the characteristics that are really
important for the performance evaluation at the Cal level, i.e. communications
costs and running time of actions. Dedicated tools need to be developed for each
type of platforms in order to profile the running time of actions and the com-
munication costs between actors. The tool developed in this research work (the
Cal Dynamic Analyzer) is dedicated to Intel architectures. Experiments like
the one described in Section 4.3.1.1 need to be ran on a larger range of target
platforms in order to model appropriate communication models.

145

Alternative partitioning/scheduling approaches

Clustering partitioning

During the search for efficient partitions (Section 6.1.4), it has been noticed -
given the current status of the tools - that the best partitions are the ones that
present the following characteristics:

• The ratio between computations and communications should be over a
given threshold,

• The clusters of actors assigned to the different processors must be chosen
such as there are minimal-cuts between them in terms of communication
channels,

• The partitions should be computationally load balanced.

An alternative approach, based on clustering algorithms, for partitioning the
actors on the different processors can be elaborated from this observation.

Cache-friendly scheduling

In order to minimize the overhead due to the memory accesses, one can think
of scheduling the actions such that caches misses are minimized and the hit
rate is improved. This work has been started by Mirko Ferrati and Alessandro
Pignotti [140]. It focuses on improving the performance of the implementation
of dataflow programs by scheduling actions with a cache aware schedule. This
work needs to be continued and to be integrated into the existing tools.

Improving code generators

Even if the improvements of the performance of the software code generators
are important, there is still room for optimization.

The main topic is still the reduction of the overhead due to the scheduling of
actions. The current solution being studied is the static scheduling of the actions
belonging to static regions. These static regions (discussed in Section 4.2.4)
can be detected thanks to the analysis of Cal programs through a verification
modeling language called PROMELA (Process or Protocol Meta Language).
This language allows for the dynamic creation of concurrent processes to model,
for example, distributed systems.

Another important topic is the reduction of the discrepancy between the de-
sign of dataflow programs targeted for hardware and software. Currently, there
are still some special coding rules that lead to efficient solutions in hardware
but not in software and vice-versa. The aim is to try to converge to a unique
dataflow program or to minimize the refactoring for switching from one to the
other. It is possible thanks to smarter code generators.

146

The future is promising

With the advent of the multicore era, there is no clear path to a unified method-
ology for the specification of complex applications and their implementation
onto heterogeneous platforms. There are several approaches trying to tackle the
problem, some with more emphasis to the reuse of legacy code and IP blocks,
others that require specific methodologies tighten to a given type of platform
or technology. Very few approaches have as main objective the achievement
of a true portable parallelism. We are just at the beginnings and most of the
industry has not yet changed their traditional way of working fully based on
sequential approach. However, there will be soon compelling reasons to change.
It is the right time to develop a common technology for dealing with paral-
lelism in systems design and this PhD work has tried to make some advances
in this direction. What is sure is that breakthroughs for the adoption of new
methodologies in parallel programming will be possible only if the increase of the
difficulty and complexity of the problem will correspond to simplifications and
support by means of a set of tools that allows a seamless use of the technology
by the average designer.

Dataflow programming with Cal provides extremely interesting features
to allow such simplification and adoption, thus it has the potential to bring
efficient parallel systems design to the average developers. Its semantics and
its model of computation enable the development of code generation tools that
directly convert Cal programs into efficient implementation code, guaranteeing
the correctness of data dependencies by construction without dealing with low-
level programming issues. Concurrently to this PhD work, several research
activities are well progressing in the direction of improving the efficiency of
these code generators and of generating automatically the necessary interfaces
for the target platforms.

The adoption of this new formalism by several teams worldwide shows that
there is a great interest for this new technology. The numerous successful
projects on different subjects from high level design exploration down to the
implementation level proves that Cal can effectively be the support of a new
abstraction layer for the high level design of high-demanding digital systems.
The number of applications described in Cal is growing. The most known
are MPEG-2, MPEG-4, AVC (part of the development of RVC). Libraries of
signal processing algorithms are currently under development. Industrial appli-
cations have also been modeled using Cal: a wireless device [141], a bar code
reader [163] [132] and a robot controller [142].

However, it is not enough to be able to build efficient code generators to
make the approach attractive and functional to wider use in systems design. A
meaningful breakthrough is possible only if the added value of the new approach
answers other needs of systems design that are currently not well developed in
the current practice. Indeed, Cal, by raising the abstraction level and by the na-
ture of the abstractions themselves enable new dimensions in the design space
exploration and in the development and validation of applications. Enabling
design space exploration at a higher level of abstraction and being able to im-

147

plement high level programs onto a wide range of platforms are very attractive
features for complex systems designers. Raising the level of abstraction has been
always being synonym of productivity increase.

This research work has explored the potential of dataflow programming for
supporting the design space exploration of complex digital systems. A com-
plete design exploration framework has been developed: it includes profiling
tools, partitioning and scheduling heuristics, optimization methodologies and
performance evaluation. The successful use of the developed tools and method-
ologies on real world applications has proved that Cal approach can support
efficient design exploration and portability. This research work is the starting
point for the development of advanced heuristics, methodologies and tools for
exploring the design space at high level of abstraction. The opened topics are
numerous and there is plenty of room for several research areas: partitioning
and scheduling problems, profiling tools, architecture characterization, algorith-
mic optimization and code generation. The results obtained in digital system
design are very promising, particularly if considering that are still many fore-
seen improvements and optimizations that have not been applied yet. Further
improvements in genericity, portability and efficiency can be expected for the
near future.

148

Bibliography

[1] C. Clerc, A profiling framework for high level design space exploration for
memory and system architectures. PhD thesis, Lausanne, 2006.

[2] A. Jantsch, “Models of Embedded Computation,” in Embedded Systems
Handbook, ch. 4, 2005.

[3] L. Gomes, J. Paulo Barros, and A. Costa, “Modeling Formalisms for Em-
bedded System Design,” in Embedded Systems Handbook, ch. 5, 2005.

[4] E. F. Moore, “Gedanken Experiments on Sequential Machines,” in Au-
tomata Studies, pp. 129–153, Princeton University, 1956.

[5] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin, High-level
synthesis: introduction to chip and system design. Norwell, MA, USA:
Kluwer Academic Publishers, 1992.

[6] D. Harel, “On visual formalisms,” Commununication ACM, vol. 31,
pp. 514–530, May 1988.

[7] D. Harel, “Statecharts: A visual formalism for complex systems,” Journal
of Science of Computer Programming, vol. 8, pp. 231–274, June 1987.

[8] S. Edwards, L. Lavagno, E. Lee, and A. Sangiovanni-Vincentelli, “Design
of embedded systems: formal models, validation, and synthesis,” Proceed-
ings of the IEEE, vol. 85, pp. 366 –390, mar 1997.

[9] M. Chiodo, P. Giusto, A. Jurecska, H. C. Hsieh, A. Sangiovanni-
Vincentelli, and L. Lavagno, “Hardware-Software Codesign of Embedded
Systems,” IEEE Micro, vol. 14, pp. 26–36, August 1994.

[10] F. Vahid, S. Narayan, and D. Gajski, “SpecCharts: a VHDL front-end for
embedded systems,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 14, pp. 694 –706, June 1995.

[11] “SpecC System,” http://www.cecs.uci.edu/ specc/.

[12] C. A. Petri, Kommunikation mit Automaten. Bonn: Institut für Instru-
mentelle Mathematik, Schriften des IIM Nr. 2, 1962.

149

[13] “Esterel Technologies,” http://www.esterel-technologies.com/.

[14] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language LUSTRE,” Proceedings of the IEEE,
vol. 79, pp. 1305 –1320, Sept. 1991.

[15] A. Benveniste and P. Le Guernic, “Hybrid dynamical systems theory and
the Signal language,” IEEE Transactions on Automatic Control, vol. 35,
pp. 535 –546, May 1990.

[16] G. Kahn, “The semantics of a simple language for parallel programming,”
in Information processing (J. L. Rosenfeld, ed.), pp. 471–475, 1974.

[17] E. A. de Kock, W. J. M. Smits, P. van der Wolf, J.-Y. Brunel, W. M.
Kruijtzer, P. Lieverse, K. A. Vissers, and G. Essink, “YAPI: application
modeling for signal processing systems,” in Proceedings of the 37th Annual
Design Automation Conference, DAC ’00, (New York, NY, USA), pp. 402–
405, ACM, 2000.

[18] E. Lee and T. Parks, “Dataflow process networks,” Proceedings of the
IEEE, vol. 83, pp. 773 –801, May 1995.

[19] E. Lee and D. Messerschmitt, “Synchronous Data flow,” Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235 – 1245, 1987.

[20] J. Eker and J. W. Janneck, “CAL Language Report,” Tech. Rep. ERL
Technical Memo UCB/ERL M03/48, University of California at Berkeley,
Dec. 2003.

[21] “ISO/IEC 23001-4:2009 Information technology - MPEG systems tech-
nologies - Part 4: Codec configuration representation.”

[22] D. Garlan, R. Allen, and J. Ockerbloom, “Exploiting style in architectural
design environments,” SIGSOFT Softw. Eng. Notes, vol. 19, pp. 175–188,
December 1994.

[23] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor, “Using object-
oriented typing to support architectural design in the C2 style,” SIGSOFT
Softw. Eng. Notes, vol. 21, pp. 24–32, October 1996.

[24] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, “Specifying Distributed
Software Architectures,” in Proceedings of the 5th European Software En-
gineering Conference, (London, UK), pp. 137–153, Springer-Verlag, 1995.

[25] W. Tracz, “Parametrized programming in LILEANNA,” in Proceedings
of the ACM/SIGAPP symposium on Applied computing: states of the art
and practice, SAC ’93, (New York, NY, USA), pp. 77–86, ACM, 1993.

[26] P. Binns, M. Englehart, M. Jackson, and S. Vestal, “Domain-Specific Soft-
ware Architectures for Guidance, Navigation and Control,” International
Journal of Software Engineering and Knowledge Engineering, 1993.

150

[27] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan,
and W. Mann, “Specification and analysis of system architecture using
rapide,” IEEE Transactions on Software Engineering, vol. 21, pp. 336–
355, 1995.

[28] M. Moriconi, X. Qian, and R. A. Riemenschneider, “Correct architec-
ture refinement,” IEEE Transactions on Software Engineering, vol. 21,
pp. 356–372, 1995.

[29] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Ze-
lesnik, “Abstractions for software architecture and tools to support them,”
IEEE Transactions on Software Engineering, vol. 21, pp. 314–335, 1995.

[30] M. M. Gorlick and R. R. Razouk, “Using weaves for software construction
and analysis,” in Proceedings of the 13th international conference on Soft-
ware engineering, ICSE ’91, (Los Alamitos, CA, USA), pp. 23–34, IEEE
Computer Society Press, 1991.

[31] R. Allen and D. Garlan, “A formal basis for architectural connection,”
ACM Transactions on Software Engineering and Methodology, vol. 6,
pp. 213–249, July 1997.

[32] N. Medvidovic and R. N. Taylor, “A Classification and Comparison
Framework for Software Architecture Description Languages,” IEEE
Transactions on Software Engineering, vol. 26, pp. 70–93, January 2000.

[33] “IEEE Standard for IP-XACT – Standard Structure for Packaging, Inte-
grating, and Reusing IP within Tools Flows,” http://standards.ieee.org/.

[34] “Wind River Simics,” http://www.windriver.com/products/simics/.

[35] M. Gries, C. Kulkarni, C. Sauer, and K. Keutzer, “Comparing analytical
modeling with simulation for network processors: a case study,” in Design,
Automation and Test in Europe Conference and Exhibition, 2003, pp. 256–
261 suppl., 2003.

[36] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli, “A framework for eval-
uating design tradeoffs in packet processing architectures,” in Proceedings
of the 39th annual Design Automation Conference, DAC ’02, (New York,
NY, USA), pp. 880–885, ACM, 2002.

[37] G. Ascia, V. Catania, and M. Palesi, “Design space exploration method-
ologies for IP-based system-on-a-chip,” in IEEE International Symposium
on Circuits and Systems (ISCAS), vol. 2, pp. 364–367, 2002.

[38] P. Lieverse, T. Stefanov, P. van der Wolf, and E. Deprettere, “System
level design with SPADE: an M-JPEG case study,” in IEEE/ACM In-
ternational Conference on Computer Aided Design (ICCAD), (San Jose,
California, US), pp. 31 –38, 2001.

151

[39] P. Puschner and C. Koza, “Calculating the maximum, execution time of
real-time programs,” Real-Time Systems, vol. 1, pp. 159–176, September
1989.

[40] Y.-T. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,” SIGPLAN Not., vol. 30, pp. 88–98,
1995.

[41] S. Mallat and F. Falzon, “Analysis of low bit rate image transform coding,”
IEEE Transactions on Signal Processing, vol. 46, pp. 1027–1042, 1998.

[42] M. Mattavelli and M. Ravasi, “High Level Extraction of SoC Architectural
Information from Generic C Algorithmic Descriptions,” in Proceedings
of the Fifth International Workshop on System-on-Chip for Real-Time
Applications (IWSOC), (Washington, DC, USA), pp. 304–307, 2005.

[43] “GCC online documentation - GNU Project - Free Software Foundation
(FSF),” http://www.gnu.org/software/gcc/onlinedocs/.

[44] J. R. Larus, “Abstract execution: a technique for efficiently tracing pro-
grams,” Software – Practice & Experience, vol. 20, pp. 1241–1258, 1990.

[45] P. M. Kuhn, Algorithms, Complexity Analysis and VLSI Architectures for
MPEG-4 Motion Estimation. Kluwer Academic Publishers, 1999.

[46] A. Srivastava and A. Eustace, “ATOM: a system for building customized
program analysis tools,” in Proceedings of the SIGPLAN Conference on
Programming Language Design and Implementation, (Orlando, Florida,
United States), pp. 196–205, ACM, 1994.

[47] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” in Proceedings of the SIG-
PLAN conference on Programming Language Design and Implementation,
PLDI ’05, (New York, NY, USA), pp. 190–200, ACM, 2005.

[48] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in Proceedings of the SIGPLAN con-
ference on Programming Language Design and Implementation, vol. 42,
(New York, NY, USA), pp. 89–100, ACM, June 2007.

[49] J. R. Larus and T. Ball, “Rewriting executable files to measure program
behavior,” Software – Practice & Experience, vol. 24, pp. 197–218, 1994.

[50] J. Larus, “Efficient program tracing,” Computer, vol. 26, pp. 52–61, May
1993.

[51] M. Smith, “Tracing with Pixie,” Technical Report CSL TR 91 497, Com-
puter Systems Laboratory, Stanford University, Stanford, CA, USA, 1991.

152

[52] J. R. Larus and E. Schnarr, “EEL: machine-independent executable edit-
ing,” in Proceedings of the SIGPLAN conference on Programming Lan-
guage Design and Implementation, (La Jolla, California, United States),
pp. 291–300, ACM, 1995.

[53] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph
execution profiler,” ACM SIGPLAN Notices, vol. 17, pp. 120–126, 1982.

[54] D. Sciuto, F. Salice, L. Pomante, and W. Fornaciari, “Metrics for design
space exploration of heterogeneous multiprocessor embedded systems,” in
Proceedings of the International Symposium on Hardware/Software Code-
sign, (Estes Park, Colorado, US), pp. 55–60, ACM, 2002.

[55] C. Brandolese, W. Fornaciari, L. Pomante, F. Salice, and D. Sciuto,
“Affinity-driven system design exploration for heterogeneous multiproces-
sor SoC,” IEEE Transactions on Computers, vol. 55, pp. 508–19, 2006.

[56] L. Carro, M. Kreutz, F. Wagner, and M. Oyamada, “System synthesis
for multiprocessor embedded applications,” in Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition, pp. 697–702,
2000.

[57] H. P. Peixoto and M. F. Jacome, “Algorithm and architecture-level de-
sign space exploration using hierarchical data flows,” in Proceedings of
the IEEE International Conference on Application-Specific Systems, Ar-
chitectures and Processors, p. 272, IEEE Computer Society, 1997.

[58] N. B. Amor, Y. L. Moullec, J. P. Diguet, J. L. Philippe, and M. Abid, “De-
sign of a multimedia processor based on metrics computation,” Advances
in Engineering Software, vol. 36, pp. 448–458, 2005.

[59] F. Vahid and D. Gajski, “Closeness metrics for system-level functional par-
titioning,” in Proceedings of the Design Automation Conference (DAC),
pp. 328–333, 1995.

[60] F. Vahid, “Partitioning sequential programs for CAD using a three-step
approach,” ACM Transactions on Design Automation of Electronic Sys-
tems (TODAES), vol. 7, pp. 413–429, 2002.

[61] J. Diguet, O. Sentieys, J. Philippe, and E. Martin, “Probabilistic resource
estimation for pipeline architecture,” in Workshop on VLSI Signal Pro-
cessing, pp. 217–226, IEEE Signal Processing Society, 1995.

[62] C. Haubelt, J. Teich, K. Richter, and R. Ernst, “System design for flex-
ibility,” in Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition, pp. 854–861, 2002.

[63] A. Sangiovanni-Vincentelli, “Quo Vadis, SLD? Reasoning About the
Trends and Challenges of System Level Design,” Proceedings of the IEEE,
vol. 95, pp. 467–506, 2007.

153

[64] M. Gries, “Methods for evaluating and covering the design space dur-
ing early design development,” Integration, the VLSI Journal, vol. 38,
pp. 131–183, 2004.

[65] A. Jantsch and I. Sander, “Models of computation and languages for em-
bedded system design,” IEEE Proceedings - Computers and Digital Tech-
niques, vol. 152, pp. 114–129, Mar. 2005.

[66] A. Sangiovanni-Vincentelli and M. D. Natale, “Embedded System Design
for Automotive Applications,” Computer, vol. 40, pp. 42–51, 2007.

[67] M. Duranton, “The challenges for high performance embedded systems,”
in Proceedings of the EUROMICRO Conference on Digital System Design:
Architectures, Methods and Tools, (Dubrovnik, Croatia), IEEE Computer
Society, 2006.

[68] M. Thompson, H. Nikolov, T. Stefanov, A. D. Pimentel, C. Erbas, S. Pol-
stra, and E. F. Deprettere, “A framework for rapid system-level explo-
ration, synthesis, and programming of multimedia MP-SoCs,” in Pro-
ceedings of the IEEE/ACM International Conference on Hardware/Soft-
ware Codesign and System Synthesis, (Salzburg, Austria), pp. 9–14, ACM,
2007.

[69] A. Pimentel, A. Pimentel, L. Hertzbetger, L. Hertzbetger, P. Lieverse,
P. van der Wolf, and E. Deprettere, “Exploring embedded-systems archi-
tectures with Artemis,” Computer, vol. 34, pp. 57–63, 2001.

[70] B. Kienhuis, E. Rijpkema, and E. Deprettere, “Compaan: deriving process
networks from Matlab for embedded signal processing architectures,” in
Proceedings of the International Workshop on Hardware/Software Code-
sign, pp. 13–17, 2000.

[71] A. Davare, D. Densmore, T. Meyerowitz, A. Pinto, A. Sangiovanni-
Vincentelli, G. Yang, H. Zeng, and Q. Zhu, “A next-generation design
framework for platform-based design,” in Proceedings of the Conference
on Using Hardware Design and Verification Languages (DVCon), (San
Jose, CA, US), 2007.

[72] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metropolis: An Integrated Electronic Sys-
tem Design Environment,” Computer, vol. 36, pp. 45–52, 2003.

[73] F. Balarin, L. Lavagno, C. Passerone, A. L. Sangiovanni-Vincentelli,
M. Sgroi, and Y. Watanabe, “Modeling and Designing Heterogeneous
Systems,” in Concurrency and Hardware Design, Advances in Petri Nets,
pp. 228–273, Springer-Verlag, 2002.

[74] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and

154

B. Tabbara, Hardware-software co-design of embedded systems: the POLIS
approach. Norwell, MA, USA: Kluwer Academic Publishers, 1997.

[75] A. Mihal, C. Kulkarni, M. Moskewicz, M. Tsai, N. Shah, S. Weber, Y. Jin,
K. Keutzer, C. Sauer, K. Vissers, and S. Malik, “Developing architectural
platforms: A disciplined approach,” IEEE Design & Test, vol. 19, pp. 6–
16, November 2002.

[76] “Ptolemy Project,” http://ptolemy.eecs.berkeley.edu/.

[77] “MathWorks - Simulink,” http://www.mathworks.com/products/simulink/.

[78] S. Ha, C. Lee, Y. Yi, S. Kwon, and Y.-P. Joo, “Hardware-software codesign
of multimedia embedded systems: the peace approach,” in Proceedings of
the IEEE International Conference on Embedded and Real-Time Comput-
ing Systems and Applications, (Sydney, Qld., Australia), IEEE Computer
Society, 2006.

[79] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong, “Taming heterogeneity - the Ptolemy approach,”
Proceedings of the IEEE, vol. 91, pp. 127–144, 2003.

[80] H. Hwang, T. Oh, H. Jung, and S. Ha, “Conversion of reference C code
to dataflow model: H.264 encoder case study,” in Proceedings of the Con-
ference on Asia South Pacific Design Automation, (Yokohama, Japan),
pp. 152–157, IEEE Press, 2006.

[81] A. Antola, M. Santambrogio, M. Fracassi, P. Gotti, and C. Sandionigi,
“A novel hardware/software codesign methodology based on dynamic re-
configuration with impulse C and CoDeveloper,” in Proceedings of the
Southern Conference on Programmable Logic, (Mar del Plata, Argentina),
pp. 221–4, IEEE Press, 2007.

[82] E. Khan, M. El-Kharashi, F. Gebali, and M. Abd-El-Barr, “Applying the
handel-C design flow in designing an HMAC-hash unit on FPGAs,” IEE
Proceedings – Computers and Digital Techniques, vol. 153, pp. 323–334,
2006.

[83] E. Khan, M. El-Kharashi, F. Gebali, and M. Abd-El-Barr, “Designing
an HMAC-Hash Unit on FPGAs Using Handel-C,” in Proceedings of the
IEEE International Symposium on Industrial Electronics, vol. 2, pp. 1521–
1526, 2006.

[84] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK: a high-level
synthesis framework for applying parallelizing compiler transformations,”
in Proceedings of the International Conference on VLSI Design, pp. 461–
466, 2003.

[85] M. Graphics, “Catapult Synthesis,” http://www.mentor.com/.

155

[86] Celoxica, “Handel-C Language Reference Manual,” 2003.

[87] T. Kambe, A. Yamada, K. Nishida, K. Okada, M. Ohnishi, A. Kay,
P. Boca, V. Zammit, and T. Nomura, “A C-based synthesis system, Bach,
and its application,” in Proceedings of the Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 151–155, 2001.

[88] G. D. Micheli, D. Ku, F. Mailhot, and T. Truong, “The Olympus synthesis
system,” IEEE Design & Test, vol. 7, pp. 37–53, 1990.

[89] G. D. Micheli, “Hardware synthesis from C/C++ models,” in Proceedings
of the Design, Automation and Test in Europe Conference and Exhibition,
pp. 382–383, 1999.

[90] O. Brassard, F. Rousseau, J. P. David, M. Kastle, and E. M. Aboul-
hamid, “Automatic Generation of Embedded Systems with .NET Frame-
work Based Tools,” in Proceedings of the IEEE North-East Workshop on
Circuits And Systems (NEWCAS), pp. 165 –168, 2006.

[91] Microsoft, “.NET Framework,” http://www.microsoft.com/net.

[92] “ISO/IEC 23271:2006 Information technology – Common Language In-
frastructure (CLI) Partitions I to VI.”

[93] J. David and E. Bergeron, “An Intermediate Level HDL for System Level
Design,” in Forum on specification and Design Languages (FDL), (Lille,
France), 2004.

[94] P. Paulin, C. Pilkington, and E. Bensoudane, “StepNP: A System-Level
Exploration Platform for Network Processors,” IEEE Design & Test,
vol. 19, pp. 17–26, 2002.

[95] R. Nikhil, “Bluespec System Verilog: efficient, correct RTL from high level
specifications,” in Proceedings of the IEEE International Conference on
Formal Methods and Models for Co-Design,, pp. 69–70, 2004.

[96] J. C. Hoe and Arvind, “Hardware Synthesis from Term Rewriting Sys-
tems,” in Proceedings of the IFIP International Conference on Very Large
Scale Integration: Systems on a Chip, pp. 595–619, Kluwer, B.V., 2000.

[97] R. V. Bennett, A. C. Murray, B. Franke, and N. Topham, “Combining
source-to-source transformations and processor instruction set extensions
for the automated design-space exploration of embedded systems,” SIG-
PLAN Notices, vol. 42, pp. 83–92, 2007.

[98] P. Gerin, H. Shen, A. Chureau, A. Bouchhima, and A. Jerraya, “Flexible
and Executable Hardware/Software Interface Modeling for Multiprocessor
SoC Design Using SystemC,” in Proceedings of the Conference on Asia
South Pacific Design Automation, pp. 390–395, IEEE Computer Society,
2007.

156

[99] R. Esser, J. Teich, and L. Thiele, “CodeSign: An embedded system de-
sign environment,” IEE Proceedings – Computers and Digital Techniques,
vol. 145, no. 3, pp. 171–180, 1998.

[100] Y. Moullec, J.-P. Diguet, N. Amor, T. Gourdeaux, and J.-L. Philippe,
“Algorithmic-level specification and characterization of embedded multi-
media applications with design Trotter,” Journal of VLSI Signal Process-
ing Systems for Signal, Image, and Video Technology, vol. 42, pp. 185–208,
2006.

[101] M. Raulet, M. Babel, O. Deforges, J. Nezan, and Y. Sorel, “Automatic
coarse-grain partitioning and automatic code generation for heterogeneous
architectures,” in Proceedings of the IEEE Workshop on Signal Processing
Systems, pp. 316–321, 2003.

[102] N. Pernet and Y. Sorel, “A design method for implementing specifica-
tions including control in distributed embedded systems,” in Proceedings
of the IEEE Conference on Emerging Technologies and Factory Automa-
tion (ETFA), vol. 2, 2005.

[103] Y. Sorel, “Massively parallel computing systems with real time con-
straints: the Algorithm Architecture Adequation methodology,” in Pro-
ceedings of the First International Conference on Massively Parallel Com-
puting Systems, pp. 44–53, 1994.

[104] T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hannikainen, T. D.
Hamalainen, J. Riihimaki, and K. Kuusilinna, “UML-based multiproces-
sor SoC design framework,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 5, pp. 281–320, 2006.

[105] P. Kukkala, M. Setala, T. Arpinen, E. Salminen, M. Hannikainen, and
T. D. Hamakainen, “Implementing a WLAN video terminal using UML
and fully automated design flow,” EURASIP Journal of Embedded Sys-
tems, vol. 2007, pp. 20–20, 2007.

[106] B. Hailpern and P. Tarr, “Model-driven development: the good, the bad,
and the ugly,” IBM Systems Journal - Model-driven software development,
vol. 45, pp. 451–461, 2006.

[107] “National Instruments – Labview,” http://www.ni.com/labview/.

[108] K. Shanmugan, P. Titchener, and W. Newman, “Simulation based CAAD
tools for communication and signal processing systems,” in Communica-
tions of the IEEE International Conference on World Prosperity Through
Communications, vol. 3, pp. 1454–1461, 1989.

[109] Synopsys, “Cocentric System Studio,” http://www.synopsys.com/.

[110] FP7 European Project Proposal, “CALTOOLS,” 2010.

157

[111] E. A. Lee, “The problem with threads,” Computer, vol. 39, pp. 33–42,
May 2006.

[112] C. Lucarz, P. Faure, G. Roquier, M. Mattavelli, and V. Noël, “D1A: CAL
Methodology,” ACTORS Project (http://www.actors-project.eu), 2008-
2011.

[113] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Transactions on
Computers, vol. 36, no. 1, pp. 24–35, 1987.

[114] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cyclo-
static dataflow,” IEEE Transactions on Signal Processing, vol. 44, no. 2,
pp. 397–408, 1996.

[115] J. T. Buck, Scheduling Dynamic Dataflow Graphs with Bounded Memory
Using the Token Flow Model. PhD thesis, EECS Department, University
of California, Berkeley, 1993.

[116] “The OpenDF tool,” http://opendf.sourceforge.net.

[117] “GNU Gprof,” http://sourceware.org/binutils/docs-2.16/gprof/.

[118] J. Janneck, I. Miller, and D. Parlour, “Profiling dataflow programs,”
in Proceedings of the IEEE International Conference on Multimedia and
Expo, pp. 1065–1068, 2008.

[119] L.-R. Liu, D. Du, and H.-C. Chen, “An efficient parallel critical path
algorithm,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 13, pp. 909 –919, July 1994.

[120] J. Hollingsworth, “Critical path profiling of message passing and shared-
memory programs,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 9, pp. 1029 –1040, Oct. 1998.

[121] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocat-
ing directed task graphs to multiprocessors,” ACM Computing Surveys
(CSUR), vol. 31, no. 4, pp. 406–471, 1999.

[122] A. El Guindy, “Scheduling and partitioning dataflow programs on hetero-
geneous multiprocessor platforms,” Master’s thesis, Cairo (Egypt), 2011.

[123] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman
& Co., 1990.

[124] R. Gu, J. W. Janneck, M. Raulet, and S. Bhattacharyya, “Exploiting stat-
ically schedulable regions in dataflow programs,” in IEEE International
Conference on Acoustics, Speech, and Signal Processing, Apr. 2009.

158

[125] M. Wipliez, Infrastructure de compilation pour des programmes flux de
données. PhD thesis, Rennes, 2010.

[126] M. Wipliez, G. Roquier, and J.-F. Nezan, “Software code generation
for the rvc-cal language,” Journal of Signal Processing Systems, vol. 63,
pp. 203–213, May 2011.

[127] “OpenForge,” http://openforge.sourceforge.net.

[128] J. W. Janneck, I. D. Miller, D. B. Parlour, G. Roquier, M. Wipliez, and
M. Raulet, “Synthesizing hardware from dataflow programs,” Journal of
Signal Processing Systems, vol. 63, pp. 241–249, May 2011.

[129] H. S. Prabhu and T. Sherine, “GALS design in the CAL dataflow lan-
guage,” Master’s thesis, Lund (Sweden), 2010.

[130] C. Von Platen, “D2C: CAL ARM Compiler,” ACTORS Project
(http://www.actors-project.eu), 2008-2011.

[131] R. Thavot, A. Rahman, A. A. H. Bin, R. Mosqueron, and M. Mattavelli,
“Automatic mutli-connectivity interface generation for system designs
based on a dataflow description,” in Proceedings of the 6th Conference
on Ph.D. Research in Microelectronics & Electronics, (Berlin, Germany),
2010.

[132] P. Faure, “D5C: Image Demonstrator,” ACTORS Project
(http://www.actors-project.eu), 2008-2011.

[133] M. Wipliez, G. Roquier, M. Raulet, J. Nezan, and O. Deforges, “Code gen-
eration for the MPEG reconfigurable video coding framework: From CAL
actions to C functions,” in Proceedings of the IEEE International Confer-
ence on Multimedia and Expo (ICME), (Hannover, Germany), pp. 1049–
1052, 2008.

[134] “ISO/IEC 23002-4:2010 Information technology - MPEG video technolo-
gies - Part 4: Video tool library.”

[135] M. Wipliez, G. Roquier, M. Raulet, J.-F. Nezan, and O. Déforges, “Code
generation for the MPEG reconfigurable video coding framework: from
CAL actions to C functions,” in IEEE International Conference on Mul-
timedia & Expo (ICME), (Hannover, Germany), 2008.

[136] “Graphiti Editor on Sourceforge.net : http://graphiti-editor.sf.net.”

[137] C. Timmerer et al., “Digital Item Adaptation - Coding Format Indepen-
dence,” in The MPEG-21 Book (I. Burnett et al., eds.), Chichester, UK.:
Wiley, 2006.

[138] C. Audio and V. S. (AVS), “GB/T 20090.2/-2006: Information technology
& Advanced coding of audio and video Part2: Video,”

159

[139] L. Yu, S. Chen, and J. Wang, “Overview of AVS-video coding standards,”
Image Communications, vol. 24, pp. 247–262, April 2009.

[140] M. Ferrati, “Cache-aware scheduling for a dataflow software,” Master’s
thesis, Pisa (Italy), 2010.

[141] C. Xu, C. Von Platen, and J. Eker, “D5A: Wireless Demonstrator,” AC-
TORS Project (http://www.actors-project.eu), 2008-2011.

[142] M. Kralmark and K.-E. Arzen, “D5B: Control Demonstrator,” ACTORS
Project (http://www.actors-project.eu), 2008-2011.

160

Personal Publications

[143] C. Lucarz, M. Mattavelli, M. Wipliez, G. Roquier, M. Raulet, J. Janneck,
I. Miller, and D. Parlour, “Dataflow/Actor-Oriented language for the de-
sign of complex signal processing systems,” in Conference on Design and
Architectures for Signal and Image Processing, 2008.

[144] R. Thavot, R. Mosqueron, M. Alisafaee, C. Lucarz, M. Mattavelli,
J. Dubois, and V. Noel, “Dataflow design of a co-processor architecture for
image processing,” in Conference on Design and Architectures for Signal
and Image Processing, 2008.

[145] S. S. Bhattacharyya, J. Eker, J. Janneck, C. Lucarz, M. Mattavelli, and
M. Raulet, “Overview of the MPEG Reconfigurable Video Coding Frame-
work,” Journal of Signal Processing Systems, vol. 63, pp. 251–263, May
2011.

[146] J. Boutellier, C. Lucarz, S. Lafond, V. M. Gomez, and M. Mattavelli,
“Quasi-static scheduling of cal actor networks for reconfigurable video
coding,” Journal of Signal Processing Systems, vol. 63, pp. 191–202, May
2011.

[147] J. Boutellier, V. Sadhanala, C. Lucarz, P. Brisk, and M. Marco Mattavelli,
“Scheduling of Dataflow Models Within The Reconfigurable Video Coding
Framework,” in IEEE Workshop on Signal Processing Systems, 2008.

[148] C. Lucarz, M. Mattavelli, and J. Dubois, “A HW/SW codesign platform
for Algorithm-Architecture mapping,” in Conference on Design and Ar-
chitectures for Signal and Image Processing, 2007.

[149] C. Lucarz and M. Mattavelli, “A platform for mixed HW/SW algorithm
specifications for the exploration of SW and HW partitioning,” in Proceed-
ings of the 17th International Workshop on Power and Timing Modeling,
Optimization and Simulation, vol. 4644 of Lecture Notes in Computer Sci-
ence (LNCS), pp. 485–494, 2007.

[150] C. Lucarz, M. Mattavelli, and J. Dubois, “A co-design platform for Al-
gorithm/Architecture design exploration,” in IEEE International Confer-
ence on Multimedia & Expo, 2008.

161

[151] G. Roquier, C. Lucarz, M. Mattavelli, M. Wipliez, M. Raulet, J. W. Jan-
neck, I. D. Miller, and D. B. Parlour, “An integrated environment for
HW/SW co-design based on a CAL specification and HW/SW code gener-
ators,” in IEEE International Symposium on Circuits and Systems, 2009.

[152] J. W. Janneck, I. D. Miller, D. B. Parlour, M. Mattavelli, C. Lucarz,
M. Wipliez, M. Raulet, and G. Roquier, “Translating dataflow programs
to efficient hardware: an MPEG-4 simple profile decoder case study,” in
Design, Automation and Test in Europe (DATE), 2008.

[153] C. Lucarz, G. Roquier, and M. Mattavelli, “High level design space ex-
ploration of RVC codec specifications for multi-core heterogeneous plat-
forms,” in Conference on Design and Architectures for Signal and Image
Processing, 2010.

[154] I. Amer, C. Lucarz, G. Roquier, M. Mattavelli, M. Raulet, J.-F. Nezan,
and O. Déforges, “Reconfigurable Video Coding on Multicore: The Video
Coding Standard for Multi-Core Platforms,” IEEE Signal Processing Mag-
azine, Special issue on Multicore Platforms, vol. 26, no. 6, pp. 113–123,
2009.

[155] C. Lucarz, I. Amer, and M. Mattavelli, “Reconfigurable Video Cod-
ing: Objectives and Technologies,” in IEEE International Conference on
Image Processing, 2009.

[156] C. Lucarz, M. Mattavelli, J. Thomas-Kerr, and J. Janneck, “Reconfig-
urable media coding: a new specification model for multimedia coders,”
in IEEE Workshop on Signal Processing Systems, 2007.

[157] C. Lucarz, J. Piat, and M. Mattavelli, “Automatic synthesis of parsers
and validation of bitstreams within the mpeg reconfigurable video coding
framework,” Journal of Signal Processing Systems, vol. 63, pp. 215–225,
May 2011.

[158] M. Raulet, J. Piat, C. Lucarz, and M. Mattavelli, “Validation of Bitstream
Syntax and Synthesis of Parsers in the MPEG Reconfigurable Video Cod-
ing Framework,” in IEEE Workshop on Signal Processing Systems, 2008.

[159] J. Li, D. Ding, C. Lucarz, S. Keller, and M. Mattavelli, “Efficient Data
Flow Variable Length Decoding Implementation For The Mpeg Reconfig-
urable Video Coding Framework,” in IEEE Workshop on Signal Process-
ing Systems, (Washington DC, US), 2008.

[160] D. Li, D. Ding, C. Lucarz, S. Keller, and M. Mattavelli, “Validation of
bitstream syntax and synthesis of parsers in the MPEG Reconfigurable
Video Coding Framework,” in IEEE Workshop on Signal Processing Sys-
tems, 2008.

162

[161] D. Ding, L. Yu, C. Lucarz, and M. Mattavelli, “Video decoder reconfigu-
rations and AVS extensions in the new MPEG reconfigurable video coding
framework,” in IEEE Workshop on Signal Processing Systems, 2008.

[162] C. Lucarz, M. Mattavelli, J. Thomas-Kerr, and J. Janneck, “Recon-
figurable Media Coding: A New Specification Model for Multimedia
Coders,” in IEEE Workshop on Signal Processing Systems, pp. 481–486,
2007.

[163] J. Dubois, M. Mattavelli, J. Miteran, C. Lucarz, and R. Mosqueron, “Mo-
tion estimation accelerator with user search strategy for the RVC frame-
work,” in IEEE International Conference on Image Processing, 2009.

163

164

MPEG Contributions

[164] C. Lucarz, J. Thomas-Kerr, M. Mattavelli, J. Janneck, D. Parlour, A. Ki-
nane, and R. Krisha, “Implement flexible FUs according to the processing
mechanism in CVC WD using CAL (Results of Core Experiment 1.1) and
analysis of the compactness of RVC Abstract Decoder Model (Results of
Core Experiment 1.3).” 2007.

[165] C. Lucarz and M. Mattavelli, “Compression of the RVC DDL Decoder
Description with BiM (results of Core Experiment 1.3 in RVC).” 2007.

[166] C. Lucarz, M. Mattavelli, and A. Kinane, “Report on results of RVC CE
2.2: Explore the extensibility of FUs.” 2006.

[167] M. Mattavelli, A. Kinane, C. Lucarz, J. Janneck, and D. Parlour, “Report
on results of RVC CE 2.1 reshape the current MPEG-4 SP CAL decoder
according to the current FU interface in RVC WM.” 2006.

[168] M. Mattavelli, C. Lucarz, A. Kinane, K. Radha, J. Janneck, and D. Par-
lour, “Update of the Textual specification of Functional Units, DDL and
FUs SW of the MPEG-4 SP RVC Abstract Decoder Model (Results of CE
2.1).” 2007.

[169] C. Lucarz, M. Mattavelli, A. Kinane, and R. Krisha, “A proposal for
the classification and mapping of MPEG video coding technology into
Functional Units for the RVC framework (Results of CE 2.2).” 2007.

[170] C. Lucarz, M. Mattavelli, A. Kinane, S. Lee, and S. Lee, “RVC Functional
Units naming process proposal.” 2007.

[171] D. Ding, M. Mattavelli, C. Lucarz, and L. Yu, “Update of Classification of
Tokens for FUs of MPEG-4 SP and MPEG-4/AVC in RVC Framework.”
2008.

[172] D. Ding, M. Mattavelli, C. Lucarz, and L. Yu, “Classification of Tokens
for FUs of MPEG-4 SP and MPEG-4/AVC in RVC Framework.” 2007.

[173] C. Lucarz, J. Thomas-Kerr, and M. Mattavelli, “Reconfigurability poten-
tial of the MPEG-4 SP decoder (results of CE 1.1).” 2007.

165

[174] D. Ding, C. Lucarz, M. Mattavelli, and L. Yu, “Function Units for Con-
version from Syntax to Sequence of Tokens: BTYPE.” 2008.

[175] C. Lucarz, J. Li, M. Mattavelli, and D. Ding, “Functional Units for RVC
Toolbox: Variable Length Decoding.” 2008.

[176] C. Lucarz, M. Mattavelli, and D. Parlour, “Serialized version of some
MPEG-4 SP FUs.” 2007.

[177] C. Lucarz, D. Ding, J. Li, and M. Mattavelli, “BSDL Description of
MPEG-4 SP and AVC BP Bitstream Syntax for RVC Framework.” 2008.

[178] C. Lucarz and M. Mattavelli, “Implementation of multiple reference frame
support in RVC CAL model.” 2007.

[179] C. Lucarz, J. Li, M. Mattavelli, and D. Ding, “Auto-generation of RVC
Parser from BSDL Syntax Description: Variable Length Decoding.” 2008.

[180] C. Lucarz, J. Thomas-Kerr, and M. Mattavelli, “A systematic procedure
for the generation of a CAL parser from BDSL in the RVC framework -
result CE 1.1.” 2007.

166

Biography

Christophe Lucarz received his M.Sc. degree in
electrical engineering from the Institut National
des Sciences Appliquées in Lyon (INSA Lyon -
France) in 2006. After a specialization in com-
puter systems, he worked at the Processor Archi-
tecture Laboratory (LAP) in École Polytechnique
Fédérale de Lausanne (EPFL - Switzerland) for
his diploma project (Virtual Memory support for
MPEG-4 Accelerators on FPGA) under the su-
pervision of Paulo Ienne and Marco Mattavelli.

He pursued his work as PhD student within
the Multimedia Architectures Research Group
(GRAMM) at EPFL under the supervision of
Marco Mattavelli. He has been associate editor of
a new ISO/IEC MPEG standard, Reconfigurable

Video Coding (RVC). He also contributed to its development and with 20 con-
tributions. He fully took part to the ACTORS European Project from 2008 to
2011. During his work, he was the author of 20 publications in journals and
conferences.

His interest is mainly how dataflow programming can be made more main-
stream for the development of complex digital systems. Parallel programming
is becoming compulsory for fulfilling the increasing demand of digital systems
and dataflow programming seems an intuitive way to cope with the problem.
Nowadays, the energy consumption issue is becoming very important and high
level design methodologies should also deal with this issue.

Contact
christophe.lucarz@gmail.com

167

ChristopheLucarz
PhD candidate in Computer Science

Creative, communicative, autonomous, team-worker.

Objectives
Work in a dynamic team with creativity and initiatives, brainstorm in the purpose of finding
new ideas towards a clearly identified objective.

Professional Experience
2006–2011 PhD candidate, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

My work was about using dataflow programming for the high level design space exploration
of systems targeting heterogeneous platforms. I took part in the development of a new ISO
standard, Reconfigurable Video Coding (RVC). During the European project (ACTORS), I
have developed a framework for the design space exploration of complex systems, including
profiling tools, scheduling and partitioning heuristics and performance evaluation methodology.
Even more than technical skills, my communication and collaboration skills have been really
improved. Furthermore, I have learned how not to be lost with a large set of data, how to
cross them, how to lead constructive communication among a group, how to make efficient
meetings, how to develop modular and flexible tools, how to conceptualize facts.

Mar-Oct 2010 Voluntary internship, World Wide Fund International (WWF), Switzerland.
My work consisted in finding solutions to reduce the ecological footprint of the offices.
This experience was very interesting in the sense that I met very interesting people battling
for the future of our planet. I have been also introduced to the real problems that can face a
company for reducing its footprint.

2006 Master project, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
I upgraded an existing platform with a virtual memory feature, in order to automate data
exchanges between a host PC and the co-processor based on the FPGA platform.
My adaptation skills have been greatly improved. This work was not easy because of the
novelty of the language and the concepts that were tackled. It was also a large work of
analysis, trying to find the best way to adapt the system given the constraints. Unlike my
predecessor on the same project, I have succeeded in adapting this platform with this new
feature.

2005 Engineer internship, Sedatelec, Lyon, France.
Development from scratch of the software architecture of a medical device for detecting
acupuncture points.
First responsibility in the technical domain, I have learned to be autonomous and to ask
question to my chief only if necessary. I became aware that any system must be considered
as a whole and there are interactions between the electronic and mechanical parts. Good
introduction on system design.

4, allée du stade – 25480 Pirey - France
H +33(0)6 84 54 56 85 • B christophe.lucarz@gmail.com

• http://ch.linkedin.com/in/lucarz 1/3

mailto:christophe.lucarz@gmail.com

Association Activities
2009–2010 President of Unipoly, students association for Sustainable Development , EPFL.

Responsible of a 80-members association, improvement of the internal organization of the
association thought the installation and use of a Wiki, initiator of three new projects (collab-
orative farm, mini-meeting once a month, sustainable development forum).
It was a great experience for learning how to manage and motivate people to create new
projects in sustainable development. Management and communication skills have been once
again improved thanks to the weekly meetings with members and the committee. I learned
how to convey the right message for motivating people for projects and to manage many
projects simultaneously.

2004–2005 President of the students cycling club, INSA Lyon, France.
Organization of weekly outings among the members of the club.
First experience with such responsibility. It makes me awake about additional administra-
tive aspects of the association world. I got a certain competence in organizing events and
motivating people for riding.

Education
2005–2006 École Polytechnique Fédérale de Lausanne (EPFL, Switzerland).

Master in Computer Engineering
2001–2005 Institut National des Sciences Appliquées (INSA Lyon, France).

Degree in Electrical Engineering - Graduated in 2006

Languages
French Mother tongue
English Fluent Multiple travels in English-speaking countries, daily work in English.

German Basics Capable of understanding small conversations and easy texts.

Computer skills
Frameworks Eclipse, Visual Studio, OxygenXML, Mathematica, Pin.

EDA ModelSim, Xilinx ISE, Simplicity Synplify.
Languages Java, C++, C, XML, XSLT, VHDL, assembly PIC.

Collaborative SVN, CVS, DokuWiki, CMS.
Application Microsoft Office, LATEX.

OS Windows, Linux, Cygwin.

Interests
Mountain sports Regular practice of mountain biking, ski touring and hiking.
Artistic activities Photography, web sites, drawing.

Reading Philosophy.

4, allée du stade – 25480 Pirey - France
H +33(0)6 84 54 56 85 • B christophe.lucarz@gmail.com

• http://ch.linkedin.com/in/lucarz 2/3

mailto:christophe.lucarz@gmail.com

Publications
[1] I. Amer, C. Lucarz, G. Roquier, M. Mattavelli, M. Raulet, J.-F. Nezan, and O. Deforges,

“Reconfigurable Video coding on Multicore: An overview of its main objectives,” IEEE Signal
Processing Magazine, vol. 26, pp. 113–123, 2009.

[2] C. Lucarz, G. Roquier, and M. Mattavelli, “High level design space exploration of RVC codec
specifications for multi-core heterogeneous platforms,” in Conference on Design and Architec-
tures for Signal and Image Processing, DASIP, 2010.

[3] C. Lucarz, M. Mattavelli, M. Wipliez, G. Roquier, M. Raulet, J. Janneck, I. Miller, and D. Par-
lour, “Dataflow/Actor-Oriented language for the design of complex signal processing systems,”
in Conference on Design and Architectures for Signal and Image Processing, DASIP 2008,
pp. 168–175, 2008.

A total of 20 publications in conferences and journals and 20 contributions to the
ISO/IEC MPEG Reconfigurable Video Coding standard.

4, allée du stade – 25480 Pirey - France
H +33(0)6 84 54 56 85 • B christophe.lucarz@gmail.com

• http://ch.linkedin.com/in/lucarz 3/3

mailto:christophe.lucarz@gmail.com

	Title
	Version résumée
	Abstract
	Contents
	Introduction
	Motivation of the work
	Organization of the document

	State of the art
	Application: languages and modeling formalisms
	Cal language

	Architecture: specification and simulators
	Extracting metrics
	Static analysis techniques
	Profiling tools
	Metrics guiding the design space exploration

	Existing approaches for bridging the implementation gap
	Model-driven techniques
	C-based methodologies
	Transaction Modeling and SystemC
	From graph specifications
	UML-based design flow
	Commercial tools

	Discussion

	A strategy for the algorithmic optimization of dataflow programs
	Notions on parallel programming
	Amdahl's law
	Parallelism taxonomy

	Extracting metrics from Cal programs
	Static code analysis
	Profiling

	Optimization strategy: trace critical path minimization
	Definition of the most critical action
	Critical Actions Detection algorithm
	Refactoring techniques

	Discussion
	Tools
	Cal Static Analyzer
	Cal Dynamic Analyzer
	ProfiCal
	CrossCal
	WeightCAL

	Mapping dataflow programs onto platforms
	The partitioning/scheduling problem: the case of Synchronous Dataflow
	Analyzing Synchronous Dataflow models
	Partitioning and scheduling for multiprocessors platforms

	Partitioning and scheduling Cal programs
	Round-robin load balancing
	Simulated annealing load balancing
	Causation trace scheduling
	Static regions scheduling

	Performance evaluation heuristics
	Communication model
	Scheduling model

	Code Generation
	Open RVC-Cal Compiler (ORCC)
	OpenForge
	Ericsson Code Generator
	Co-Design Tool

	Tools
	SchedulCal
	EvalCal

	A design flow for high level exploration of the design space
	How to represent the design space?
	How to evaluate the performance of a solution?
	At different levels of abstraction
	Several methodologies

	How to explore the design space?
	Tools infrastructure
	Summary

	Design case study: MPEG-4 SP
	The steps of the design space exploration
	Improving the efficiency of actions
	Removing unnecessary dependencies
	Refactoring of the most critical actions
	Searching for efficient partitioning solutions
	Splitting for better load balancing

	Results and discussion

	The shift of paradigm for systems specification: the case of Reconfigurable Video Coding
	Overview
	Normative part
	Non-normative part
	Languages defined within RVC

	Promises
	Towards portable and scalable parallelism
	Deployment of video coding technology

	Contributions
	General development of the standard
	Easing the design of parsers
	Testing the reconfigurability capabilities

	Conclusion
	Bibliography
	Personal Publications
	MPEG Contributions
	Biography
	Objectives
	Professional Experience
	Association Activities
	Education
	Languages
	Computer skills
	Interests
	Publications

