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ABSTRACT

The computing community has shown a significant interest for the analysis of social interactions in

the last decade. Different aspects of social interactions have been studied such as dominance, emotions,

conflicts, etc. However, the recognition of roles has been neglected whereas these are a key aspect of social

interactions. In fact, sociologists have shown not only that people play roles each time they interact, but

also that roles shape behavior and expectations of interacting participants. The aim of this thesis is to

fill this gap by investigating the problem of automatic role recognition in a wide range of interaction

settings, including production environments, e.g. news and talk-shows, and spontaneous exchanges, e.g.

meetings.

The proposed role recognition approach includes two main steps. The first step aims at representing

the individuals involved in an interaction with feature vectors accounting for their relationships with

others. This step includes three main stages, namely segmentation of audio into turns (i.e. time intervals

during which only one person talks), conversion of the sequence of turns into a social network, and use of

the social network as a tool to extract features for each person. The second step uses machine learning

methods to map the feature vectors into roles. The experiments have been carried out over roughly 90

hours of material. This is not only one of the largest databases ever used in literature on role recognition,

but also the only one, to the best of our knowledge, including different interaction settings. In the

experiments, the accuracy of the percentage of data correctly labeled in terms of roles is roughly 80%

in production environments and 70% in spontaneous exchanges (lexical features have been added in the

latter case). The importance of roles has been assessed in an application scenario as well. In particular,

the thesis shows that roles help to segment talk-shows into stories, i.e. time intervals during which a

single topic is discussed, with satisfactory performance.

The main contributions of this thesis are as follows: To the best of our knowledge, this is the first

work where social network analysis is applied to automatic analysis of conversation recordings. This

thesis provides the first quantitative measure of how much roles constrain conversations, and a large
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corpus of recordings annotated in terms of roles. The results of this work have been published in one

journal paper, and in five conference articles.

Keywords: Social Network Analysis, Role Recognition, Semantic Segmentation, Broad-

cast Data, Meeting Recordings, Turn-Taking Analysis, Bayes Classifiers, Hidden Markov

Models, Statistical Language Models.



RÉSUMÉ

Ces dix dernières années, la communauté scientifique a montré un certain intérêt pour l'analyse des in-

teractions sociales. Différents aspects des interactions sociales ont déjá été étudiés tels que la reconnais-

sance des personnes dominant les conversations, des émotions, et des conflits prśents lors d'interactions.

Néanmoins, bien que ce soit un aspect clé des interactions sociales, la reconnaissance des rôles a été

négligée. Les sociologues ont démontré non seulement que les gens jouaient un rôle à chaque fois qu'ils
entraient en interaction, mais également que les rôles modifiaient les comportements et les attentes des

protagonistes. Le but de cette thèse est de combler le vide existant en analysant le problème de la recon-

naissance automatique des rôles dans un large choix de types d'interactions, comprenant des informations

et des débats, ainsi que des types d'interactions plus spontanées comme par exemple les réunions.

L'approche proposée pour la reconnaissance des rôles comprend deux étapes principales. La première

vise à représenter les individus interagissant par des caractéristiques définissant leurs relations avec les

autres. Cette étape se décompose elle-même en trois sous-étapes principales: le repérage des différentes

interventions des participants, l'identification du réseau social, et l'utilisation de ce dernier en tant qu'outil

permettant d'extraire des particularités pour chacun des intervenants. La deuxième étape utilise des

méthodes de classification afin d'attribuer un rôle à chaque intervenant.

L'expérimentation a porté sur près de 90 heures de matériel audio. Il s'agit là non seulement de

l'une des bases de données les plus importantes utilisée dans la reconnaissance des rôles, mais encore la

seule, à notre connaissance, comprenant différentes formes dinteractions. Lors de nos expérimentations,

le pourcentage des données correctement étiquetées est d'environ 80% dans les informations et les débats

et de 70% dans le cas de conversations plus spontanées comme les réunions (dans ce dernier cas, des

caractéristiques lexicales ont été ajoutées).

L'importance des rôles a également été utilisée dans le développement d'une application. La thèse

montre en particulier que les rôles aident à segmenter, de manière tout à fait satisfaisante, les débats en

intervalles de temps pendant lesquels un sujet unique est abordé.
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Les contributions essentielles de cette thèse sont les suivantes: à notre connaissance, c'est la première

fois qu'un travail d'analyse de réseau sociaux porte sur l'étude de conversations. Cette thèse fournit pour

la première fois la preuve quantifiée de la façon dont les rôles modèlent les conversations. De plus, les

travaux de recherche ont porté sur un très grand nombre d'enregistrements annotés en terme de rôle.

Les résultats de ces travaux ont été publiés dans une revue ainsi que dans cinq articles de conférence.

Mots clés: Social Network Analysis, Reconnaissance des rôles, Segmentation sémantique,

Informations radiophoniques, Débats, Réunions, Analyse des interventions, Classificateurs

bayésiens, Modèles de Markov cachés, Modèles de languages statistiques.



ACKNOWLEDGMENTS

Now that the endpoint of my thesis work has been finally laid down, it’s a real pleasure for me to thank
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n(t) the average number of transitions from news to talk-show in the data

set at a given time t

4.1.2

P total number of recordings in a data set 4.1.2

ua output of the application of PCA to the tuples xa which results into

L-dimensional projections ua, where L ≤ D

4.2.1

U = (ua1, . . . ,uaN) sequence of tuples representing the actor interactions for each recording 4.2.1

H = (h1, . . . , hN ) sequence of stories of length N 4.2.1

H set of all possible story sequences H 4.2.1

S maximum number of stories 4.2.1
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Chapter 1

I NTRODUCTION

1.1 Motivation

Following one of the most famous statements of Western philosophy (Aristotle, Politika ca. 328 BC)1:

Man is by nature a social animal; an individual who is unsocial naturally and not accidentally

is either beneath our notice or more than human.

Almost twenty-five centuries after these words have been written for the first time, several disciplines

confirm the intuition of Aristotle by grounding the social nature of humans into measurable and observable

aspects of human biology, psychology and behavior. Neuroscientists have identified brain structures,

called mirror neurons [Rizzolatti 04], that seem to have no other goal than improving our awareness of

others, whether this means to share their feelings [Iacoboni 09] or to learn through imitation [Frith 07].

Biologists and physiologists have shown that our ears are tuned to human voices more than to any

other sound [Pickles 82], that the only facial muscles present in every human being (the others can

be absent) are those we use to communicate the six basic emotions [Waller 08] and, more in general,

that evolution has shaped our body and senses around social contacts. Furthermore, human sciences

(psychology, anthropology, sociology, etc.) have shown how social interactions dominate our perception

of the world [Kunda 99] and shape our daily behavior by attaching social meaning to acts as simple and

spontaneous as gestures, facial expressions, intonations, etc. [Knapp 72, Richmond 95].

The computing community could not remain immune from this wave of interest for the “social animal”.

Nowadays, computers are leaving their original role of improved versions of old tools [Vinciarelli 09a]

1At the time this thesis is being written, the sentence “Man is by nature a social animal” returns 1.6 millions of
documents when submitted to Google as a query (only documents including the whole statement are counted).

7
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and move towards a new, human-centered vision of computing [Pantic 08] where intelligent machines

seamlessly integrate and support human-human interactions [Crowley 06], embody natural modes of

human communication for interacting with their users [Bickmore 05], and are the platform through which

large scale social activities take place on-line [Wang 07]. In such a new context, the gap between social

animal and unsocial machine is no longer acceptable and social adept computers become a crucial need

and challenge for the future of computing [Pentland 05, Lazer 09].

This thesis is part of the above effort as it aims at making machines capable of understanding one

of the most important aspects of social interactions: the roles. In fact, people play roles each time they

interact:

“People do not interact with one another as anonymous beings. They come together in the

context of specific environments and with specific purposes. Their interactions involve behav-

iors associated with defined statuses and particular roles. These statuses and roles help to

pattern our social interactions and provide predictability“ [Tischler 90].

Despite its importance, the role recognition problem was still largely neglected in literature at the

beginning of this thesis. In this respect, the work presented in the next chapters has been one of the first

attempts to tackle the problem. Nowadays, the topic attracts more interest and is addressed by a larger

number of groups (see e.g. [Pianesi 07][Laskowski 08]). However, efforts so far have focused on specific

scenarios (e.g. meetings) and the problem is still open.

As roles shape behavior and allow someone to reasonably predict what others do during an interac-

tion, role recognition can be useful in any social context involving both humans and machines, like in

the following examples (the list is not exhaustive): Alex Pentland and his group at MIT have shown

that the analysis of social interactions could help for negotiating salary, hiring interviews or conducting

speed-dating conversations [Pentland 07]. In such contexts, role recognition can help to assigning spe-

cific roles to the group participants, and thus, for example, decide who is going to lead the group for

a maximal effectiveness and collaboration in a company. In human-computer interactions, roles have a

real importance either in the context of interactions with Embodied Conversational Agents (ECAs) or in

role-playing games. ECAs demonstrate many of the same properties as humans in face-to-face conversa-

tions [Bickmore 05], but further developments are still to be done and the role recognition can help to

this. In fact, the recognition of the roles played by the participants in conversations provides information
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about the nature of the social interactions and could help the agents to adopting an expected behavior.

In education, Justine Cassell and her group have shown how agents can encourage children’s active explo-

ration of narrative, linguistic creativity and verbal play with their Story Listening Systems [Cassell 04].

In health care, a study shows that embodied agents could help in improving the pupil’s way of learning

in the case of child suffering from autism [Robins 05]. In both previous examples, the recognition of the

role of the agent during the interaction is important in order to adapt it to the interlocutor and obtain a

positive collaboration. In role-playing games, it is an evidence that the recognition of the roles played by

the different participants help these lasts to perform actions respecting the system of rules and guidelines

underlying such games [Tychsen 06]. Finally, roles can be useful in several multimedia content analysis

applications: in media browsers, the role of the person speaking at a given time can help users to quickly

identify segments of interest; in summarization, the role can be used as a criterion to select representative

segments of the data; and in Information Retrieval, the role can be used as an index to enrich the content

description of the data [Laskowski 08]. In this thesis, we have addressed such an application scenario by

showing how roles can help in performing semantic segmentation. In particular, we show how roles can

be used to structure a radio program and perform story segmentation.

1.2 Contributions

The main contributions of this work, to the best of our knowledge, are as follow:� This thesis is the first work where social network analysis, i.e. Social Affiliation Networks (SAN)

[Wasserman 94], is applied to automatic analysis of conversation recordings, more particularly to

automatic role recognition.� During this thesis, extensive role recognition experiments have been performed over one of the larger

data sets ever used in literature for this task, and including for the first time, different human-human

interaction settings, i.e. production environments (news and talk-shows) and spontaneous exchanges

(meetings).� This thesis is one of the first role recognition works based on interaction features, i.e. turn-taking

(who talks when and how much) and is the first combining interaction and lexical features in

meetings.



10 CHAPTER 1. INTRODUCTION� This thesis provides for the first time a measure of how much roles constrain conversations. This

is useful for defining how likely a role recognition approach is to be effective in a given interaction

setting.� This work proposes a new approach for modeling the dependence between roles played by different

individuals in the same interaction.� This work is the first attempt of using role recognition in an application scenario, i.e. semantic

segmentation.

1.3 Organization of the Thesis

The thesis is organized as follows:� Chapter 1 introduces the problem of recognizing automatically the roles of persons interacting and

its importance in the analysis of social interactions. It also states the motivation and contributions

of this work.� Chapter 2 starts by introducing Social Network Analysis. It then provides a review of the state-

of-the-art in the role recognition task. This chapter also includes a survey of the major works

dedicated to other aspects of social interactions than just role recognition.� Chapter 3 presents approaches for the automatic detection of the roles of the persons interacting

in different situations, such as production environment contexts (e.g., news and talk-shows) and

spontaneous exchanges (e.g., meetings).� Chapter 4 shows how roles can be used to perform semantic segmentation.� Chapter 5 finally concludes this thesis by providing a summary of the performed work and obtained

results, as well as the main achievements of this thesis. Possible directions for future research are

also suggested.



Chapter 2

STATE -OF-THE -ART

This section first introduces Social Network Analysis (SNA) (Section 2.1) and then reviews the existing

literature related to the role recognition task (Section 2.2). For the sake of completeness, this section

also includes a survey of the major works dedicated to other aspects of social interactions than just role

recognition, with special attention to the analysis of meetings (Section 2.3).

2.1 Social Network Analysis

Social Network Analysis (SNA) [Wasserman 94] is a corpus of mathematical techniques used by sociolo-

gists to analyze social interactions, i.e. the analysis of relationships among social entities. The concept of

a network emphasizes the fact that individuals has ties to other individuals, each of whom in turn is tied

to a few, some, or many others, and so on. The phrase social network refers to the set of actors and the

relation defined on them. Such networks allow to extract patterns and implications of the relationships

shared by the actors.

In this thesis, we consider a particular kind of social networks, namely Social Affiliation Networks

(SAN), which is a two-mode network which represents the affililation of a set of actors with a set of social

occasions, i.e. events. The importance of studying affiliation networks is grounded in the theoretical

importance of individuals’ memberships in collectivities. In fact, multiple group affiliations (e.g. with

family, voluntary organizations, etc) are fundamental in defining social identity of individuals.

The interesting information extracted by Affiliation Networks and used in this work, is the fact that the

affiliation of actors with events constitute a direct linkage, either between the actors through memberships

in events, or between the events through common members. We are mainly interested by the former, the

11
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Tab. 2.1: Synopsis of role recognition results. The table provides a brief description of the data used in literature, as well as the performance
achieved in the different works.

Ref. Data Amount Roles Features Approach Performance

[Barzilay 00] NIST TREC SDR Corpus (35
recordings, publicly available,
3 roles)

17h.00m formal Lexical features BoosTexter and Maximum
Entropy Method

80.0% of the news stories correctly
labeled in terms of role

[Liu 06] TDT4 Mandarin broadcast
news (336 shows, 3 roles)

170h.00m formal Lexical and contextual fea-
tures

HMM and Maximum En-
tropy method

77.0% of the news stories correctly
labeled in terms of role

[Vinciarelli 07] Radio news bulletins (96
recordings, 6 roles)

25h.00m formal Turn-taking and speaking
time duration

Social Networks Analysis
and Bayes classifier

85% of the data correctly labeled in
terms of role

[Weng 09] Movies and TV shows (10
movies and 3 TV shows , 9-20
roles)

21h.00m formal Visual features (co-
occurrence of face’s
individuals in the scenes)

Social Networks Analysis 95% of leading roles correctly as-
signed and 84.3% of community
roles correctly assigned

[Raducanu 09] “The Apprentice” TV-reality-
show (14 meetings, 1 role)

1h.30m formal Nonverbal speech features Rank-based classification
method

85.0% of the meeting chairman cor-
rectly detected

[Banerjee 04] Meetings (2 recordings, 5
roles)

0h.45m informal simple speech features Decision tree 53.0% of segments (up to 60 seconds
long) correctly classified

[Zancanaro 06] The Mission Survival Corpus
(11 recordings, publicly avail-
able, 5 roles)

4h.30m informal speech and fidgeting fea-
tures

Support Vector Machines Up to 65% of analysis windows
(around 10 seconds long) correctly
classified in terms of task area roles
and 70% in terms of socio area roles

[Pianesi 07] The Mission Survival Corpus
(11 recordings, publicly avail-
able, 5 roles)

4h.30m informal speech and fidgeting fea-
tures of each participant
and of all the other partic-
ipants

Support Vector Machine 90% of analysis windows (around 10
seconds long) correctly classified in
terms of task area roles and 95% in
terms of socio area roles

[Dong 07] The Mission Survival Corpus
(11 recordings, publicly avail-
able, 5 roles)

4h.30m informal speech and fidgeting fea-
tures of each participant
and of all the other partic-
ipants

Influence Model 75% of task area roles and socio
area roles correctly assigned

[Lepri 09] The Mission Survival Corpus
(11 recordings, publicly avail-
able, 5 roles)

4h.30m informal speech honest signals Influence Model Up to 77% of analysis windows
(around 1-minute long) correctly
classified in terms of task area roles
and 74% in terms of socio area roles

[Laskowski 08] AMI Meeting Corpus (138
recordings, publicly available,
4 roles)

45h.00m informal speech features, talkspurts Maximum Likelihood crite-
ria

53% of the data correctly labeled in
terms of role

[Jayagopi 08a] AMI Meeting Corpus (subset,
1 role, publicly available)

5h.00m informal multimodal nonverbal fea-
tures

Social Networks Analysis 68.0% of the Project Manager cor-
rectly detected
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subsets of actors who participate in the same social activities (events).

In this thesis, the events correspond to time intervals and the actors (i.e. the individuals involved in the

conversations) are linked to events when they talk during the events. In this way, the events capture the

proximity in time of the actors interventions, and the direct linkage between the actors is that they are

likely to interact with one another if they talk during the same event (i.e. the same interval of time).

2.2 Role Recognition

This section reviews the existing literature related to the role recognition task after shortly introducing

the types of roles represented in this thesis.

Even if the concept of role is one of the most popular ideas in the social sciences, a formal definition is

hard to find. Some role theorists focus on the person as an individual and think of roles as the evolving,

coping strategies that are adopted by the person. Others more focus on the person as representative of a

social position and thus conceive roles as patterns of behavior that are typical of persons whose structural

positions are similar. We care about the latter in this work, and consider roles as characteristic behavior

patterns, as defined by the role theorist Biddle [Biddle 86]. We thus presume that persons are members

of social positions, and that expectations are the major generators of roles.

Most of the existing works focusing on the recognition of roles in the computing community do similar

assumptions and such works can be divided into two groups studying two types of roles: those who are

associated to a task in a specific social context, e.g. the accomplishment of specific functions such as the

moderator in a debate, and those who are associated to a position in a social system, e.g. the manager

in a company. In the rest of this thesis, we define the former as formal roles and the latter as informal

roles. In both cases, the characteristic behaviors of persons occupy social positions within a stable social

system and shared norms governing their behaviors. However, in the case of formal roles, the norms

govern the general behaviors of the persons interacting, whereas the norms govern only the relationships

between the persons in the case of informal roles, i.e. norms may vary among individuals. We find formal

roles in production environment data (movies, news, talk-shows, etc.) where people have to accomplish

specific tasks and have more or less rigorous constraints on their interactions. Informal roles are typical of

spontaneous exchanges (meetings, call center conversations, etc.) where people do not necessarily respect

predefined constraints on their interactions, but still follow the norms imposed by their social position.
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The approaches discussed in this survey are presented in two sections corresponding to the two types

of roles (Sections 2.2.1 and 2.2.2).

2.2.1 Recognition of Formal Roles

The upper part of Table 2.1 contains experimental setup and role recognition performance for each work

discussed in this section.

The work in [Barzilay 00] describes the recognition of three roles in news (anchor, journalist, and

guest) with the goal of finding the structure of English broadcast news. This work exploits the lexical

information found in the speech transcriptions and aims at recognizing speaker role without any apriori

information about the identity of the speaker. The features used as role evidence are : distribution of

terms (i.e. what is said, key words), speaking time length, and participant introductions at the beginning

of their interventions (where the speaker names were manually labeled). Contextual features are also

taken into account: the labels of the n previous segments, and all the features of n previous segments.

The ratio between the intervention length and the length of the previous intervention is shown to be

a good role predictor, as well as the presence or absence of speaker introductions. Lexical features are

selected using the BoosTexter categorization approach. Role recognition is performed with two classifiers:

Boostexter and Maximum Entropy Model.

A similar task is addressed in [Liu 06] where three roles (anchor, reporter, and other) are recognized

in Mandarin broadcast news. A new method is proposed for the role recognition: the application of a

Hidden Markov Model (HMM). The states correspond to the roles and the observations are the words

at the beginning and end of each person intervention labeled manually. This HMM method is further

combined with a Maximum Entropy classifier. Contextual information is also taken into account by

considering the roles of the persons talking before and after an individual under exam. The beginning

and the end sentences in a speaker’s intervention are shown to be good cues for role identification and

the contextual information helps in improving the role recognition performance.

The work in [Vinciarelli 07] addresses the recognition of six different roles in broadcast news: anchor-

man, second anchorman, guest, headline reader, weather man, and interview participant. The novelty of

this work consists in extracting automatically a social network from turn-taking (i.e. who talks when

and how much) and then uses it to extract features for each person. Each individual is then assigned

the role corresponding to the highest a-posteriori probability estimated with Bayesian classifier. The ad-
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vantage of using SNA [Wasserman 94] for assigning roles to individuals is that it takes into account only

relational data and is thus independent of speakers identity and recording length. The main limitation of

the approach used in [Vinciarelli 07] is that the number of individuals interacting must be high enough

(more than 8-10 persons) to build meaningful social networks. In fact, if the number of persons involved

in the conversation is small, all the nodes in the network will be connected and it will be difficult to ex-

tract characteristic patterns. The use of Social Affiliation Networks (SNA) [Wasserman 94] in this thesis

overcome this limitation as such networks represent the evidence of interactions in terms of proximity in

time and thus makes possible the analysis of small groups. Moreover, the dependence among the roles is

not modeled in [Vinciarelli 07] and each person is assigned the most probable role independently of the

role of the others.

Another approach is proposed in [Weng 09] to analyze Hollywood movies (e.g. You’ve Got Mail, Catch

Me If You Can, etc.) and TV shows (e.g. Sex and the City and Friends) from the perspective of social

relationships. Social Networks are applied to extract the leading roles (hero, heroine) and their respec-

tive communities (hero’s friends and colleagues). The approach uses the co-occurrence of the faces of

the individuals in the same scene as an evidence of the interaction between people and between roles.

A graph is constructed with two types of nodes, i.e. the scenes and the roles, and the edges between

the two types of nodes represent which role appears in which scene. The leading roles can be detected

using the Centrality measure [Wasserman 94]. The community roles are groups of nodes within which

the connections are dense but between which the connections are sparse. The results show that almost

perfect performance is achieved for the leading roles determination and is very promising for community

roles identification.

Finally, the work in [Raducanu 09] addresses the novel problem of role analysis in competitive meetings.

The work recognizes the talk-show host (i.e. meeting chairman) of a popular US reality TV show: “The

Apprentice”, where participants aim at getting a real job in a firm. Manually extracted speech features

such as the participants speaking time and turns, and interruptions are employed to this end. The cen-

trality (i.e. person’s position in a group [Wasserman 94]) is also considered. The meeting chairman role

is recognized using a rank-based classification.
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2.2.2 Recognition of Informal Roles

The lower part of Table 2.1 contains experimental setup and role recognition performance for each work

discussed in this section. The approach in [Banerjee 04] uses simple speech features to first classify the

meetings into two defined meeting states: “discussion and “information flow. Typically a discussion

between a group of persons is characterized by each person raising issues, asking questions, making

comments, etc. On the other hand, an information flow is a meeting state where essentially one person

is giving information to one or more meeting participants. Once the meeting has been segmented into

meeting states, the roles of the participants are detected for any given segment of the meeting. This

work is one of the first attempts aimed at assigning meeting roles (presenter, discussion participator,

information provider, information consumer, and undefined). The features are manually extracted and

aim at estimating the participant activities in short sliding windows: number of speaker changes, number

of meeting participants that have spoken, number of overlapping speech segments, etc. A decision tree

is then used to classify the resulting features into the different roles.

The group of researchers in [Zancanaro 06] use a similar window-based technique for the detection of

participant roles in multiparty recordings using Support Vector Machines rather than decision trees. They

develop an approach for the recognition of two types of roles appearing in the Mission Survival Corpus

(see [Pianesi 07]): task roles (follower, orienteer, giver, seeker, and recorder) and socio-emotional roles

(neutral, gate-keeper, supporter, protagonist, and attacker). Furthermore, they extract features account-

ing for participant speech (i.e. presence/absence of speech ) and body activities (i.e. fidgeting for hands

and body), as well as the number of simultaneous speakers during each window. The work proposed

in [Zancanaro 06] is further extended in [Pianesi 07] to predict the role of each individual participant

by using also features corresponding to all meeting participants. The performance improves, but the

approach suffers from curse of dimensionality and overfitting. These issues are addressed in [Dong 07]

with an influence model that reduces significantly the number of model parameters and can thus take

into account the features of the other participants in a more robust and generalizable way. In [Lepri 09]

the same relational roles are addressed using the same influence model proposed in [Dong 07], but ex-

ploiting a much larger set of features, i.e. 16 speech honest signals grouped into five classes (Consistency,

Spectral Center, Activity, Mimicry, and Influence) and two body gestures (hand and body fidgeting).

The extended set of features are part of honest signals defined by Pentland [Pentland 08] as following:

“ honest signals are behaviors that are sufficiently expensive to fake that they can form the basis for a
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reliable channel of communication”. Lepri et al. also compare the independent vs. joint classification of

tasks and socio-emotional roles, and observed that it is advantageous to model the relationship between

tasks and social roles.

The works in [Laskowski 08][Jayagopi 08a] use the AMI meeting corpus [McCowan 05a] (see Sec-

tion 3.3.1) and try to recognize different sets of predefined roles. The work in [Laskowski 08] tries to

assign each meeting participant to one of the four predefined roles (the Project Manager, the Marketing

Expert, the User Interface Expert, and the Industrial Designer). The extracted features are low-level

speech activity features, namely talkspurts defined as contiguous intervals of speech, with interval pauses

no longer than 0.3 seconds. Probabilities are estimated from different talkspurts scenarios such as the

number of talkspurts initialized during a silence, the number of talkspurts initialized when someone else

is speaking or the number of talkspurts initialized when a participant in a specific other role is speak-

ing. The classification of the four participants into one of the four possible roles is performed using a

maximization of the a-posteriori probabilities obtained by the different talkspurt scenarios. Compared

to [Vinciarelli 07], this work explores also behavior during vocalization overlap and considers the features

from all participants rather than characterizing each participant independently from the roles of the other

group participants.

The work in [Jayagopi 08a] uses nonverbal features extracted both from audio (speaking activity,

interventions length, etc.) and video (movement energy, total amount of movement, visual focus of

attention, etc.) to investigate the relationship between dominance and a specific informal role: the

project manager of the team, which is supposed to correspond to higher status. The role assignment

is performed using the Centrality measure [Wasserman 94]. The study shows that 65% of the time a

project manager was also perceived as the most dominant. Overall, features extracted from audio seem

to be more reliable than those extracted from video. This is probably because the latter depend more on

the experimental setup (lighting conditions, arrangement of cameras, etc.) and, in general, are thus less

generalizable to different data sets.

2.3 Analysis of Social Interactions in Small Groups

This section proposes a short survey of works that consider other aspects of analyzing social interactions

than performing roles recognition (see [Vinciarelli 09b][Gatica-Perez 09] for extensive reviews). Most of
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the literature in this domain is dedicated to meeting analysis not only for the availability of large annotated

corpora such as the Mission Survival Corpus [Pianesi 08] and AMI corpus [Carletta 07], but also because

most social phenomena taking place in small groups (meetings rarely involve more than 10 people) are

equivalent to those happening at any social scale, while being easier to model and analyze [Levine 98].

The literature has tackled three major problems, group action recognition, dominance detection, and

interest level measurement. The recognition of collective actions (discussions, presentations, etc.) has

been addressed, e.g., in [McCowan 05b][McCowan 03][Zhang 06][Dielmann 07][Reiter 07]. The common

aspect of these works is that they model jointly streams of features extracted from multiple modali-

ties. In [McCowan 03], hand movements and speaking activity are modeled with HMM and then fused

with different strategies (concatenation of feature vectors extracted from different streams or multi-

plication of likelihoods estimated using HMMs applied to different streams). The same approach is

applied in [McCowan 05b], where different streams are fused with coupled and asynchronous HMMs.

In [Zhang 06], the same features are classified using a hierarchic layered HMM into individual partic-

ipant actions and, at a higher level, into collective actions. A similar approach has been proposed

in [Dielmann 07], where actions are modeled with Dynamic Bayesian Networks, and in [Reiter 07], where

Hidden Conditional Random Fields are shown to improve the action recognition performance with respect

to the other approaches.

The problem of detecting the most dominant person in a group has been investigated in [Rienks 06b], and

in [Rienks 06a] [Otsuka 05] [Jayagopi 09]. The approaches in [Rienks 06a][Rienks 06b] are based on vocal

behavior (speaking time, number of turns, interruptions, etc.) and apply a Support Vector Machine

to map people into three dominance classes (low, normal and high). The other works include similar

audio features and combine them with information about gaze behavior [Otsuka 05] (Dynamic Bayesian

Networks are used to model the effect of one person on another one), or kinesics [Jayagopi 09] (people

are classified using Support Vector Machines into dominance categories).

The last topic significantly investigated in this domain is the level of interest, i.e. the degree of en-

gagement of people in interactions [Wrede 03][Gatica-Perez 05][Schuller 07][Schuller 09]. The approach

in [Gatica-Perez 05] is closely related to the one described in [McCowan 05b] (same features and same

combination approach for multiple modalities). The approaches in [Schuller 07][Schuller 09] combine

through early fusion a wide spectrum of visual and audio features, including facial expression, eyes be-

havior, non-linguistic vocalizations (e.g., laughter) and lexical information, and then use support vector
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machines to measure the interest level.

2.4 Conclusions

The main novelty of our work, according to this review, is the extensive use of social networks to perform

automatic role recognition, and more generally, automatic analysis of social interactions. An advantage

of using SAN is its independence to language and identity, and thus the fact of being suitable for different

kinds of interaction contexts. Moreover, SAN can be applied to any groups of persons interacting,

independently of the size of the group.
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Chapter 3

ROLE RECOGNITION

This chapter includes the works presented in the following papers:� “Automatic Role Recognition in Multiparty Recordings: Using Social Affiliation Networks for Fea-

ture Extraction“, H. Salamin, S. Favre and A. Vinciarelli, in IEEE Transactions on Multimedia,

2009, Volume 11, Number 7, pages 1373-1380� “Automatic Role Recognition in Multiparty Recordings Using Social Networks and Probabilistic Se-

quential Models“, S. Favre, A. Dielmann and A. Vinciarelli, in the 2009 Proceedings of International

Conference on Multimedia (ACM), pages 585-588� “Role Recognition in Multiparty Recordings using Social Affiliation Networks and Discrete Dis-

tributions“, S. Favre, H. Salamin, J. Dines and A. Vinciarelli, in the 2008 Proceedings of ACM

International Conference on Multimodal Interfaces (ICMI), pages 29-36� “Role Recognition for Meeting Participants: an Approach Based on Lexical Information and Social

Network Analysis“, N. Garg, S. Favre, H. Salamin, D. Hakkani-Tür and A. Vinciarelli, in the 2008

Proceedings of the ACM International Conference on Multimedia (ACM), pages 693-696

As mentioned in the previous chapter (see Section 2.2), we have considered the following definition for

roles provided by Biddle [Biddle 79]:

“Role theory concerns one of the most important features of social life, characteristic behavior

patterns or roles. It explains roles by presuming that persons are members of social positions

and hold expectations for their own behaviors and those of other persons“ [Biddle 86].

21
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Fig. 3.1: Role recognition approach. The picture shows the two main stages of the approach: the features
extraction and the actual role recognition.

According to this, we have developed approaches for automatic role recognition based on physical, machine

detectable characteristic behavior patterns.

The presented role recognition approach includes two main stages (see Figure 3.1): the first is the fea-

ture extraction and it involves the automatic construction of a Social Affiliation Network (SAN) [Wasserman 94]

as well as its conversion into features that represent each person in terms of their interactions with the

others. The second stage is the role recognition, i.e. the mapping of the features extracted in the first

stage into roles belonging to a predefined set.

The main contributions of this thesis with respect to the state-of-the-art in role recognition are as

follows:� We believe that this work presents the first extensive exploration of social networks as a tool for

automatic role recognition and, more generally, automatic analysis of social interactions.� This work proposes a new approach for modeling the dependence between roles played by different

individuals in the same interaction. This is important because it takes into account the constraints

that the role distribution across different interacting individuals must respect (see Section 3.2.3 for

details).� This thesis presents for the first time an approach for the role recognition in meetings combining

interaction features with lexical features. This allows to increase the role recognition performance

over the meetings.� This is the first work, to the best of our knowledge, that identifies a quantitative measure of how
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formal a role set is (see Section 2.2 for a definition of formal roles). This is important because it

assesses how much the roles under consideration constrain behavior patterns, thus how likely an

approach is to be effective in a given interaction setting.� This work is probably the first one to report experiments performed over different interaction con-

texts, i.e. production environment data involving formal roles and spontaneous exchanges involving

informal roles, (see Section 2.2 for the difference between the two types of role).

The rest of this chapter is organized as follows: Sections 3.1 and 3.2 detail the two stages of the

role recognition approach, Section 3.3 describes the data and the experiments performed, Section 3.4

presents the role recognition results, Section 3.5 details a second role recognition approach, Section 3.6

presents a specific role recognition approach for the meetings, and Section 3.7 draws some conclusions on

the presented role recognition approaches.

3.1 Feature Extraction

This section presents the feature extraction stage aimed at extracting and representing the interaction

patterns of each person (see first Stage in Figure 3.1).

The feature extraction stage includes three steps: the first is the segmentation of the conversations

into single speaker segments. This detects the persons involved in the conversations and the sequence of

their interventions, i.e. the turn-taking informing on who talks when and how much (see left side of Stage

1 in Figure 3.1). The second stage is the extraction of a Social Affiliation Network (SAN) [Wasserman 94]

from the resulting turn-taking. The SAN represents each person in terms of their interactions with the

others (see upper part of right side of Stage 1 in Figure 3.1). The third step is the extraction of the

fraction of time a person is talking, computed from the resulting turn-taking obtained at the first step

(see lower part of right side of Stage 1 in Figure 3.1).

In our experiments, we considered two kinds of data: broadcast material where there is a single audio

channel, and meeting recordings [McCowan 05a], where each participant wears a headset microphone.

This requires the application of different speaker diarization techniques: in the first case (single audio

channel), an unsupervised speaker diarization technique identifies the voices of the different persons in-

volved in the conversations (see Section 3.1.1). In the second case (headset microphones), the diarization

splits the channel of each microphone into speech and non-speech segments (see Section 3.1.2). Sec-
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tion 3.1.3 shows how the output of the speaker diarization is used to build a Social Affiliation Network

and represent the persons with n-tuples accounting for their interaction patterns. Section 3.1.4 shows

how we extract the fraction of the total time a person is talking from the output of the speaker diarization

process, and finally Section 3.1.5 summarizes the feature extraction stage.

3.1.1 Speaker Diarization for Broadcast Data

This section provides a description of the speaker diarization approach used for broadcast data, where

there is one audio channel. For a full description, see [Ajmera 04][Ajmera 03].

The diarization is performed with an unsupervised speaker clustering technique based on an ergodic

Hidden Markov Model (HMM), where each state corresponds to a cluster and, in principle, to a single

speaker voice.

The audio signal is first converted into a sequence of 12-dimensional observation vectors correspond-

ing to the Mel Frequency Cepstral Coefficients (MFCC) extracted every 10 ms from a 30 ms long win-

dow [Huang 01]. MFCC features are used because they have, on average, higher performance in speaker

recognition tasks (they are thus effective in capturing speaker voice characteristics). Furthermore, exten-

sive experiments show that they lead to good results in speaker clustering experiments. The observation

sequence is then iteratively aligned with the ergodic HMM where the emission probabilities are modeled

with Gaussian Mixture Models (GMM) [Bishop 06].

The method needs an oversegmentation of the number of states (to be sure not having an underseg-

mentation and miss some speakers) as there is no information a-priori about the number of speakers

(thus about the number of necessary states in the HMM). To this, the initial number of states is set

arbitrarily to a value significantly higher than the expected number of speakers. The process thus starts

by segmenting the audio into M uniform non-overlapping segments, where M is the initial number of

states in the HMM. The initial GMM set of parameters is defined using the Viterbi algorithm to find the

best sequence of states (i.e. speakers) given the uniform segmentation of the data:

q(0) = arg max
q∈Q

p(q |O, Θ(0)) (3.1)

where q is a specific state sequence, Q is the set of all possible state sequences, and O = {~o1, . . . , ~oK}

is the sequence of the observation vectors. The alignment results into a segmentation different from the
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uniform one used for the initialization. The HMM can thus be retrained and a new parameter set Θ(1)

is obtained:

Θ(1) = argmax
Θ

p(q(0) |O, Θ) (3.2)

where Θ = {θ1, . . . , θM}, i.e. the parameter set of the HMM, can be thought of as a set of GMM

parameters, if the transition probabilities and the initial state probabilities are kept uniform.

Since the number M is higher than the actual number of speakers, the data is oversegmented and

there are clusters that should be merged since they contain data belonging to the same voice. For this

reason, the two most similar states are merged at each iteration when the following condition is met:

log p(Om+n | θm+n) ≥ log p(Om | θm) + log p(On | θn) (3.3)

where Om, On and Om+n are the observation vectors attributed to cluster m, n and their union respec-

tively, θm and θn are the parameters of GMMs in states m and n and θm+n are the parameters of a GMM

trained with Expectation-Maximization on Om+n.

After the merging, the HMM has fewer states and it can be realigned with the data in order to obtain

a new segmentation which can be used to train again the HMM. The new states satisfying the above

condition will be thus merged again and the whole procedure will be iterated. The merging between

states is performed by keeping constant the number of parameters of the Gaussians from one iteration to

the other:

|θm+n| = |θm| + |θn| (3.4)

the above condition is achieved by setting the number of Gaussians in the state resulting from the

merging to the sum of the numbers of Gaussians in the merged states. In this way, the likelihood should

improve until the merged states actually correspond to a single voice, while the likelihood should start

decreasing when the states corresponding to different voices are merged. Reaching this likelihood peak is

the stopping criterion for the iteration process. In this way, after a sufficient number of iterations where

states corresponding to similar voices are merged, the number of states is expected to correspond to the

actual number of speakers.
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Step Parameter Setting Step Parameter Setting

Training Training examples > 22M Inference Minimum duration 20 states
Feature sampling rate 100 Hz Insertion penalty -40
Feature dimensionality 54 Silence/speech prior 0.8/0.2
Input layer 810 (54 × 15) units Silence collar 100 ms
Hidden layer 25 arctan units Silence merge 250 ms

Tab. 3.1: Summary of parameters in the training and inference steps in the automatic speech segmentation
system for meeting data.

3.1.2 Speaker Diarization for Meeting Data

In the meeting recordings, the diarization can be performed by simply segmenting the output of the

headset microphones that each of the meeting participants wears into speech and non-speech. A full

description of the approach used for this task is given in [Dines 06].

The audio frames are represented with feature vectors including 12 MF-PLP features [Hermansky 90]

and HTKBook 1, augmented by features specifically designed for the detection of cross-talk in headset

microphone recordings, as this has been found to be a major source of segmentation errors in meeting

data [Wrigley 05]. The input features are summarized as follows:� 12 Mel filterbank perceptual linear predictive coefficients (MF-PLP) [Hermansky 90] and HTKBook 1

including C0, plus normalized log-energy,� Log cross-channel normalized energy [Dines 06] which is estimated as the logarithm of the energy

of the current headset microphone minus the logarithm of the sum of energies across all headset

microphones for the current meeting,� Signal kurtosis [Wrigley 05] (i.e. the normalized fourth-order cumulant of the signal), which should

be higher during single speaker activity (since speech signals tend to be super-Gaussian) than during

cross-talk (since, in accordance with the central limit theorem, mixtures of speech signals will tend

towards a Gaussian distribution),� Mean cross-channel correlation and Maximum cross-channel correlation [Wrigley 05], where, for

a given time frame, we take the peak cross-correlation between the current headset microphone

channel and each of the other headset microphones channels and obtain the mean measure as

1http://htk.eng.cam.ac.uk/
1http://htk.eng.cam.ac.uk/
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the arithmetic mean of these cross-correlation values and the maximum measure as the maximum

cross-correlation value across all channels.

In practice, we concatenate the first and second order differences of these features, thus giving a

feature dimensionality of 54. Finally, we take several consecutive frames and provide these as input to

a Multi-Layer Perceptron (MLP) [Bishop 95] for estimating the posterior probability of audio frames

belonging to speech or non-speech classes.

The segmentation of the output of the headset microphones is carried out using HMMs where the

states correspond to speech and non-speech. Minimum duration and insertion penalty constraints are

applied to ensure that the segmentation is consistent with that observed for the ground truth. Emission

probabilities for the HMM states are estimated as scaled likelihoods in which MLP posterior probabilities

are divided by their respective prior class probability [Bourlard 93]. Table 3.1 summarizes the main

parameters in the training and inference steps.

3.1.3 Affiliation Network Extraction

The result of the speaker diarization process is that each recording is split into a sequence of turns, i.e.

into a sequence S = {(sk, tk, ∆tk)}, where k ∈ {1, . . . , N}, sk is the label corresponding to the voice

detected in the kth turn, tk is the beginning of speaker sk intervention, and ∆tk is the duration of the

kth turn. The label sk belongs to the set A = {a1, . . . , aG} of G unique speaker labels as provided by

the speaker diarization process (see lower part of Figure 3.2). G is the total number of speakers in the

conversation. The sequence of turns S extracted from the speaker diarization can be used to extract a

Social Affiliation Network (SAN), capturing the interaction patterns between the speakers. A SAN is

a bipartite graph with two types of nodes: the actors and the events [Wasserman 94]. Actors can be

linked to events, but no links are allowed between nodes of the same type, following the definition of

bipartite graphs (see upper part of Figure 3.2). In our experiments, the actors correspond to the persons

involved in the conversations, detected during the diarization process. The events correspond to uniform

non-overlapping segments spanning the whole length of the recordings (see lower part of Figure 3.2), thus

capturing the proximity in time of the persons interventions. Actors participating in the same events

(i.e. participants talking during the same interval of time) are likely to interact with one another. Each

recording is thus split into a number of D uniform, non-overlapping events. Actors are said to participate

in an event if they talk during it, and then the corresponding nodes are linked. One of the main advantages
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Fig. 3.2: Social Affiliation Network extraction. The events of the network correspond to the segments ej and
the actors are linked to the events when they talk during the corresponding segment. The actors are
represented using n-tuples xa where the components account for the links between actors and events.

of this representation is that each actor a can be represented by a n-tuple xa = (xa1, . . . , xaD), where D

is the number of events and the component xaj accounts for the participation of the actor a in the jth

event. The experiments make use of two kinds of representation. In the first one, component xaj is 1

if the actor a talks during the jth event and 0 otherwise (the corresponding n-tuples are shown at the

bottom of Figure 3.2). In the second one, xaj is the number of times that actor a talks during the jth

event. In the first case the n-tuples are binary, in the second case they have integer components higher

or equal to 0. In both cases, the persons that interact more with each other tend to talk during the same

events and are represented by similar n-tuples.

3.1.4 Duration Distribution Extraction

As explained previously, the result of the speaker diarization process is that each recording is split into

a sequence of turns S = {(sk, tk, ∆tk)}, where k ∈ {1, . . . , N}, sk is the label corresponding to the voice
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detected in the kth turn, tk is the beginning of speaker sk intervention, and ∆tk is the duration of the

kth turn.

From the turn-taking sequence S, we can easily obtain the fraction τ of the total time of a recording

attributed to each voice. In fact, τ is obtained by summing the durations ∆tk of the kth turns during

which the same voice is speaking, and dividing the sum by the total length of the recording under process

(
∑N

k=1 ∆tk).

In Section 3.1.3, we have seen that each actor a could be represented by a n-tuple xa = (xa1, . . . , xaD).

Furthermore, as every actor talks for a fraction τa of the total time of the recording, each actor corresponds

thus to a pair ya = (xa, τa) with a dimension D + 1.

3.1.5 Summary

We have defined the features representing each actor a as a n-tuple xa accounting for the interaction

patterns (see Section 3.1.3), that can have either binary or positive integer components, and a fraction

τa of the total time of a recording (see Section 3.1.4). In this way, each actor is represented by a pair

ya = (xa, τa). This last expression will be used in the rest of this chapter.

The only hyperparameter introduced in the feature extraction stage is the number of events D used

to capture the interaction patterns in the Affiliation Networks. This hyperparameter must be defined via

crossvalidation. Its influence over the role recognition performance will be studied in details later in this

chapter (see Section 3.3.2).

3.2 Role Recognition Approach based on Bayesian Classifiers

The problem of role recognition can be formalized as follows: given a set of actors A and a set of roles

R, find the function ϕ : A → R mapping the actors into their actual role. In other words, the problem

corresponds to finding the function ϕ such that ϕ(a) is the role of actor a.

Section 3.1 has shown that each actor corresponds to a pair ya = (xa, τa). Thus, given the set of

observations Y = {ya}a∈A and the function ϕ : A → R, the problem of assigning a role to each actor can

be formulated as the maximization of the a-posteriori probability p(ϕ |Y ). By applying Bayes Theorem,

and by taking into account that p(Y ) is constant during recognition, this problem is equivalent to finding



30 CHAPTER 3. ROLE RECOGNITION

ϕ̂ such that:

ϕ̂ = arg max
ϕ∈RA

p(Y |ϕ) p(ϕ) (3.5)

where RA is the set of all possible functions mapping actors into roles.

In order to simplify the problem, two assumptions are made: the first is that the observations are

mutually conditionally independent given the roles. The second is that the observation ya of actor a only

depends on its role ϕ(a) and not on the role of the other actors. Equation (3.5) can thus be rewritten as:

ϕ̂ = arg max
ϕ∈RA

p(ϕ)
∏

a∈A

p(ya |ϕ(a)) (3.6)

The above expression is further simplified by assuming that the speaking time τa and the interaction

n-tuples xa of actors a are statistically independent given the role ϕ(a), thus the last equation becomes:

ϕ̂ = arg max
ϕ∈RA

p(ϕ)
∏

a∈A

p (xa |ϕ(a)) p(τa |ϕ(a)) (3.7)

The probabilities appearing in the last equation have been estimated using different models to take

into account the two representations of xa described in Section 3.1.3 (i.e. xa can have either binary or

positive integer components). We have also considered different models accounting for the constraints in

the distribution of roles (e.g. there must be only one anchorman in a given talk-show), i.e. to explicitly

take into account the dependence between the roles.

The next sections show how p(xa |ϕ(a)), p(τa |ϕ(a)), and p(ϕ) have been estimated in the experi-

ments.

3.2.1 Modeling Interaction Patterns

When the components of the n-tuple xa are binary, i.e. xaj = 1 when actor a talks during event j and 0

otherwise, the most natural way of modeling xa is to use independent Bernoulli discrete distributions:

p(x | −→µ ) =

D
∏

j=1

µ
xj

j (1 − µj)
1−xj (3.8)
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where D is the number of events used to capture the interaction patterns in the SAN, and −→µ =

(µ1, . . . , µD) is the parameter vector of the distribution. A different Bernoulli distribution like the one

in equation 3.8 is trained for each role. The maximum likelihood estimates of the parameters −→µ r for a

given role r are as follows [Bishop 06]:

µrj =
1

|Ar|

∑

a∈Ar

xaj (3.9)

where |Ar| is the number of actors in the training set playing the role r, and xa is the n-tuple representing

the actor a.

When we considered the number of times that actor a talks during event j, the components of the n-

tuples xa are multinomial, i.e xaj are integers greater to 0 if actor a talks during event j and 0 otherwise.

In this case, each component xaj can be represented with a vector −→z j = (zj1, . . . , zjT ) where T is the

maximum number of times that an actor can talk during a given event j, zji ∈ {0, 1}, and
∑T

i=1 zji = 1

(one-out-of-K ). In other words, xaj is represented with a T -dimensional vector where all the components

are 0 except one, i.e. the component zjn = 1, where n is the number of times that the actor represented

by xa talks during event j. As a result, xa is represented as a n-tuple of vectors −→z = (−→z 1, . . . ,
−→z D) and

can be modeled as a product of independent Multinomial distributions:

p(−→z | −→µ ) =
D
∏

j=1

T
∏

i=1

µ
zji

ji (3.10)

The parameters −→µ can be estimated by maximizing the likelihood of p(−→z | −→µ ) over a training set X .

This leads to a closed form expression for the parameters:

µrji =
1

|Ar|

∑

a∈Ar

zaji (3.11)

where |Ar| is the number of actors in the training set playing the role r, and −→z j is the vector representing

the n-tuple xa composed of the interaction patterns of actor a.
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3.2.2 Modeling Durations

p(τ | r) is estimated using a Gaussian Distribution N (τ |µr, σ
2
r ), where µr and σr are the sample mean

and variance respectively, and Ar is a set of actors playing role r given a labeled training set:

µr =
1

|Ar|

∑

a∈Ar

τa (3.12)

σ2
r =

1

|Ar |

∑

a∈Ar

(τa − µr)
2 (3.13)

This corresponds to a Maximum Likelihood estimate, where a different Gaussian distribution is obtained

for each role.

3.2.3 Estimating Role Probabilities

This subsection shows how the a-priori probability p(ϕ), for each actor p(ϕ(a)), playing role ϕ(a) is

estimated. Two approaches are proposed: the first is based on the assumption that roles are independent

and does not take into account the constraints that the role distribution across different participants in a

given recording must respect, e.g. there is only one Anchorman in a talk-show, there is only one Project

Manager in a meeting, etc. The second approach considers the roles to be dependent and takes into

account the above constraints.

The first approach assumes that the roles are independent and thus that p(ϕ) is simply the product

of the a-priori probabilities of the roles assigned through ϕ to the different actors:

p(ϕ) =
∏

a∈A

p(ϕ(a)) (3.14)

The a-priori probability of observing the role r can be estimated as follows:

p(ϕ(a)) =
|Ar|

G
(3.15)

where G is the total number of actors and |Ar| the total number of actors playing role ϕ(a) in the training

set.
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Using the above approach, (3.6) boils down to

ϕ̂ = arg max
ϕ∈RA

∏

a∈A

p(xa |ϕ(a)) p(τa |ϕ(a)) p(ϕ(a)) (3.16)

and the role recognition process simply consists in assigning each actor the role ϕ(a) that maximizes the

probability p(xa |ϕ(a)) p(τa |ϕ(a)) p(ϕ(a)).

The second approach aims at modeling the constraints that the role distribution of a given recording

must respect. For example, in a talk show (i.e one kind of data considered in this thesis), some roles

must be assign only once (e.g. the Anchorman role) whereas other roles (e.g. the Guest role) can be

assigned a different number of times at each edition of the talk show (see Section 3.3.1 for a description

of the different set of roles). In this case, the roles played by the different recording participants cannot

be considered independent, and p(ϕ) cannot be written as the product of the a-priori probabilities of the

roles (like in (3.14)).

A given mapping ϕ ∈ RA corresponds to a distribution of roles across the different recording par-

ticipants where each role is played by a certain number of actors. The constraints to be respected are

expressed in terms of the number of actors that can play a given role. For some roles, the number of

actors playing them is actually predetermined (i.e. exactly nr actors must play role r). This is the case

for example in the talk show data set where only one actor can play the Anchorman role. For other roles,

the only available a-priori information is that at least one person must play the role (i.e. nr > 0). Thus,

p(ϕ) must be different from 0 only for those distributions of roles that respect the constraints.

According to the above, p(ϕ) is modeled with a product of Multinomial distributions [Bishop 06]:

p(ϕǫCg) =
∏

r∈R

p(−→z r |
−→µ r) (3.17)

which represents the probability of observing a certain class of functions, where −→z r is a one-out-of-K

representation of the number of times a role can be played in a given recording, −→µ r is the parameter

vector, and Cg is a set of functions where each role is assigned the same number of times to actor a.

We can divide the set RA in classes {Cg} where all mappings lead to a role distribution where the

same role is played always the same number of times. We assume that all mappings ϕ in the same class
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have the same probability. Thus, the probability of observing a given assignment is:

p(ϕ) =

∏

r∈R p(−→z r |
−→µ r)

|Cg|
(3.18)

Then in the second model, Equation (3.6) can be rewritten as:

ϕ̂ = arg max
ϕ∈RA

p(ϕ)
∏

a∈A

p(xa |ϕ(a)) p(τa |ϕ(a)) (3.19)

s where p(ϕ) is the expression of (3.18). Maximizing this product using a brute-force approach is not

tractable if the number of actors is high. Therefore, we used simulated annealing [Kirkpatrick 83] to

approximate the best mapping for each recording.

3.3 Databases, Experimental Protocols and Performance Mea-

sures

The three next sections describe data and roles, experimental setup, and performance measures.

3.3.1 Data and Roles

The experiments of this work have been performed over three different corpora for a total amount of

roughly 90 hours of material (one of the largest databases used for role recognition the literature). The

first, referred to as C1 in the following, contains 96 news bulletins with an average length of 11 minutes

and 50 seconds (the shortest recording is 9 minutes and 4 seconds long, while the longuest one lasts 14

minutes and 28 seconds). The total duration of C1 accounts for 18 hours and 56 minutes of material.

The corpus contains all news bulletins broadcasted by Radio Suisse Romande (the French speaking Swiss

National broadcasting service) during February 2005 and can thus be considered a representative sample

of these kind of programs. The second corpus, referred to as C2 in the following, contains 27 one

hour long talk-shows broadcasted by Radio Suisse Romande (see above) during February 2005 and thus

accounts for a total of 27 hours of material. Also in this case, the corpus can be considered a representative

sample of this specific kind of program. The third corpus, referred to as C3 in the following, is the AMI
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Fig. 3.3: Distribution of the recording lengths. The histograms show the distribution of the recording lengths
for corpora C1 and C3 (in corpus C2 each recording lasts for exactly 1 hour).

DB recs. setting tot. t avg. t avg. G

C1 96 news 18h 56m 11m 50s 12
C2 27 talk-show 27h 00m 1h 00m 30
C3 137 meeting 45h 38m 19m 50s 4

Tab. 3.2: Corpora. The table reports the main characteristics of the corpora used in the experiments. From
left to right: number of recordings, interaction setting, total time, average recording length, average
number of participants. Note that the length is the same (one hour) for all recordings in C2, and
the number of participants is constant (four) in C3. In all other cases, the figures change from one
recording to the other.

meeting corpus [McCowan 05a]1, a collection of 137 meeting recordings for a total of 45 hours and 38

minutes of material. The average length of the meetings is 19 minutes and 50 seconds (the shortest

recording is 9 minutes long, while the longest one lasts 43 minutes). The AMI meetings are based on a

scenario where the participants are playing the roles of members of a team working on the development

of a new remote control. The meetings are a simulation, the participants act roles they do not play in

their real life. The distribution of the recording lengths for C1 and C3 is shown in Figure 3.3 (in C2 all

recordings last for exactly one hour).

Figure 3.4 shows the distribution of the number of persons across different recordings for corpora C1

1The corpus is publicly available at the following URL: http://corpus.amiproject.org/
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Fig. 3.4: Distribution of recording participants. The histograms show the distribution of the number of persons
participating in each recording for corpora C1 and C2 (in corpus C3 each recording involves exactly 4
persons).

Tab. 3.3: Role distribution in broadcast data. The table reports the percentage of time each role accounts for
in C1 and C2.

Corpus AM SA GT IP HR WM
C1 41.2% 5.5% 34.8% 4.0% 7.1% 6.3%
C2 17.3% 10.3% 64.9% 0.0% 4.0% 1.7%

and C2 (in C3 the number of meeting participants is always 4). The number of persons varies from 8 to

16 with an average number of 12 for C1 and varies from 22 to 44 with an average number of 30 persons

for C2.

Table 3.2 summarizes the main characteristics of C1, C2, and C3. The roles of C1 and C2 share the

same names and correspond to similar functions: the Anchorman (AM), i.e. the person managing the

program, the Second Anchorman (SA), i.e. the person supporting the AM, the Guest (GT), i.e. the

person invited to report about a single and specific issue, the Interview Participant (IP), i.e. interviewees

and interviewers, the Headline Reader (HR), i.e. the speaker reading a short abstract at the beginning

of the program, and the Weather Man (WM), i.e. the person reading the weather forecasts. However,

even if the roles have the same name and correspond to roughly the same functions, they are played in a
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Tab. 3.4: Role distribution in meetings. The table reports the percentage of time each role accounts for in the
AMI meeting corpus (C3).

Corpus PM ME UI ID
C3 36.6% 22.1% 19.8% 21.5%

different way in C1 and C2 (e.g., consider how different is the behavior of an anchorman in news supposed

to inform and in talk-shows supposed to entertain). In C3, the role set is different and contains the Project

Manager (PM), the Marketing Expert (ME), the User Interface Expert (UI), and the Industrial Designer

(ID).

Table 3.3 shows the distribution of speaking time across the roles in C1 and C2. Even though C1 and

C2 include roles (i.e. functions) with the same name, the fraction of data each one of these accounts for

changes significantly between the two corpora. This enables one to test the robustness of the approach

with respect to changes of this aspect of the data. Table 3.4 reports the same information for corpus C3.

3.3.2 Experimental Setup

The experiments are performed using a leave-one-out approach [Bishop 06]. We have selected all the

recordings of the corpus in the training set (i.e. for training the role’s models) with the exception of

one that is used as test set. Training and test are repeated as many times as there are recordings in

the corpus, and each time a different recording is left out as test set. In this way, the whole corpus can

be used as test set while still keeping rigorously separated training and test set, as required to assess

correctly the system performance. We have chosen to left out only one recording for model selection and

classification because it implies a large training set and thus minimize the variance between the different

role’s models [Kohavi 95].

The hyperparameter of the system, i.e. the number D of events in the Social Affiliation Network, is

tuned at each iteration of the leave-one-out process. At each iteration, the hyperparameter giving the

highest role recognition results over the training set has been retained for testing. In this way, a rigorous

separation between the training and test set has been observed for the setting of the hyperparameter as

well.

Figures 3.5, 3.6 and 3.7 show the influence of the hyperparameter D. Figure 3.5 illustrates the

overall accuracy performance (see Section 3.3.3) for the role recognition process over the database C1.
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Fig. 3.5: Influence of hyperparameter D over C1 database. The curve shows the role recognition performance in
terms of accuracy for different D values.

Figure 3.6 shows the performance over C2, and Figure 3.7 shows the accuracy performance over C3.

The role recognition performance is represented for both groundtruth speaker diarization and automatic

speaker diarization. The accuracy performance estimation is accompanied with an error for a trust

interval of 95%.

The D value has been varied from 5 to 40 in our experiments, covering a large scale for the duration of

the events used to capture the interaction patterns in terms of proximity in time (see Section 3.1.3). The

maximum D value has been set to 40 corresponding to a minimum event’s duration of 20 seconds for C1,

30 seconds for C2 and 1.5 minute for C3. These duration are long enough to contain an entire person’s

intervention or to capture a short conversation. The minimum D value has been set to 5 corresponding

to maximum event’s duration of 2.4 minutes for C1, 12 minutes for C2 and 4 minutes for C3. These

duration are short enough to capture characteristical interaction patterns.

The curves representing the role recognition performance in Figures 3.5, 3.6, and 3.7 do not show

an unique maximum, but rather flat shapes. These results show that D does not influence significantly

the role recognition performance and that D can be determined by maximizing the role recognition

performance over the training set without using a validation set. In corpora C1 and C2 the selected D

is almost the same for each training set showing that the system is stable. The values are around 16

and 28 for C1 and C2 respectively, corresponding to high values of the performance in figures 3.5 and
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Fig. 3.6: Influence of hyperparameter D over C2 database. The curve shows the role recognition performance in
terms of accuracy for different D values.

3.6. D = 16 corresponds to events of 45 seconds duration in C1 (the average length duration in C1 is

12 minutes) and D = 28 corresponds to events of 2 minutes long in C2 (the duration of recordings in

C2 is one hour long). In C3, the selected D varies from 20 to 40 and changes from one training set to

another one. According to the figure 3.7, this is not a problem as the role recognition performance is not

significantly influenced by the hyperparameter D. The selected D correspond to events of 30 seconds to

1 minute long (the average length duration in C3 is 20 minutes). The overall D selected for the different

corpus correspond to events of roughly 1 minute. As suggested by Pentland [Pentland 08], one minute is

large enough to compute speech features in a reliable way, while being small enough to capture transient

nature of social behavior.

3.3.3 Performance Measures

The role recognition performance is measured with the accuracy α, i.e. with the percentage of data time

correctly labeled in terms of role. The statistical significance of performance differences presented in this

thesis is assessed with the Kolmogorov-Smirnov test [Massey Jr. 51]. The advantage of this test is that

it does not make assumptions about the distribution of the performance (unlike the t-test that assumes

the performance following a Gaussian distribution) and it is adapted to continuous distributions (unlike

the χ2-test that requires discrete distributions).
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Fig. 3.7: Influence of hyperparameter D over C3 database. The curve shows the role recognition performance in
terms of accuracy for different D values.

The role recognition performance also depends on the effectiveness of the diarization process as it is

one of the steps of the whole role recognition process. Its effects are discussed in the next paragraph.

Speaker Diarization Results

The interaction patterns used at the role recognition step are extracted from the speaker segmentation

obtained with the two different diarization processes (see Sections 3.1.1 and 3.1.2). Errors in the diariza-

tion (e.g. persons detected as speaking when they are silent, or multiple voices attributed to a single

speaker) lead to spurious interactions that can mislead the role recognition process.

The effectiveness of the diarization is measured with the Purity π, a metric showing on one hand to

what extent all feature vectors corresponding to a given speaker are detected as belonging to the same

voice, and on the other hand to what extent all vectors detected as a single voice actually correspond to

a single speaker. We choose to use the Purity measure as it is the common metric for speaker diarization

evaluation [Ajmera 02]. The Purity ranges between 0 and 1 (the higher the better) and it is the geometric

mean of two terms: the average cluster purity πc and the average speaker purity πs. The definition of πc
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is as follows:

πc =

Nc
∑

k=1

Ns
∑

l=1

nk

N

n2
lk

n2
k

(3.20)

where N is the total number of feature frames, Ns is the number of speakers, Nc is the number of voices

detected in the diarization process, nlk is the number of vectors belonging to speaker l that have been

attributed to voice k, and nk is the number of feature vectors in voice k. The definition of πs is as follows:

πs =

Ns
∑

l=1

Nc
∑

k=1

nl

N

n2
lk

n2
l

(3.21)

(see above for the meaning of the symbols).

The application of the speaker diarization process in the case of broadcast news requires the setting

of the initial number of states M in the fully connected Hidden Markov Model (see Section 3.1.1). The

value of M must be significantly higher than the number of expected speakers for the diarization process

to work correctly. In our experiments, we set a-priori M = 30 for C1 and M = 90 for C2. No other

values have been tested. The average purity is 0.81 for C1 and 0.79 for C2. The average purity for C3 is

0.99. The difference in purity is explained by the different experimental conditions and methods used to

obtain the speaker segmentation.

3.4 Role Recognition Results for Bayesian Classifiers based Ap-

proach

3.4.1 Results

Table 3.5 reports the results achieved over C1 and C2, Table 3.6 those obtained for C3. Each overall

accuracy value is accompanied by the standard deviation of the accuracies achieved over the different

recordings of each corpus. The distribution used to model the interaction patterns (see Section 3.2.1)

is indicated with B (Bernoulli) and M (Multinomial). The approach used to estimate the a-priori role

probabilities (see Section 3.2.3) is indicated with I (Independence) and D (Dependence).

For the three corpora, the differences between the performance achieved using Bernoulli and Multino-

mial distributions are not statistically significant (according to the Kolmogorov-Smirnov test [Massey Jr. 51]).
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Tab. 3.5: Role recognition performance based on Bayes classifiers for C1 and C2. The table reports both the
overall accuracy and the accuracy for each role. “B” stands for Bernoulli, “M” stands for Multinomial,
“I” stands for roles Independence, and “D” stands for roles Dependence. The overall accuracy is
accompanied by the standard deviation σ of the performance achieved over the single recordings.
The upper part of the table reports the results obtained over the output of the speaker segmentation
(diarization), the lower part reports the results obtained over the manual speaker segmentation.

all (σ) AM SA GT IP HR WM
Automatic Speaker Segmentation
C1 (B,I) 82.5 (6.9) 98.0 3.6 97.8 8.0 64.6 79.9
C1 (B,D) 53.3 (17.8) 83.6 6.4 48.6 4.6 12.8 12.7
C1 (M,I) 81.5 (7.1) 97.8 3.4 92.0 3.4 56.0 78.4
C1 (M,D) 55.2 (15.3) 87.7 8.5 48.4 2.8 13.9 13.1

C2 (B,I) 82.6 (6.8) 75.0 88.3 91.6 N/A 18.3 6.7
C2 (B,D) 86.6 (6.5) 75.3 88.5 92.8 N/A 91.3 14.8
C2 (M,I) 84.3 (6.8) 68.5 92.1 89.8 N/A 83.7 18.3
C2 (M,D) 86.5 (7.7) 73.9 92.1 91.9 N/A 98.4 18.6
Manual Speaker Segmentation
C1 (B,I) 95.2 (4.7) 100 88.5 98.0 17.1 100 97.9
C1 (B,D) 61.2 (14.3) 94.8 8.3 52.6 10.7 22.9 17.7
C1 (M,I) 97.0 (4.2) 100 84.4 98.4 72.5 98.4 96.9
C1 (M,D) 62.5 (11.2) 96.9 11.5 56.3 7.9 14.6 15.6

C2 (B,I) 96.1 (2.7) 96.3 100 96.2 N/A 100 70.4
C2 (B,D) 97.4 (2.0) 100 100 98.0 N/A 100 33.3
C2 (M,I) 95.7 (7.7) 96.3 96.3 95.7 N/A 100 85.2
C2 (M,D) 98.6 (2.1) 100 100 98.9 N/A 100 63.0

This suggests that the important information is presence/absence (conveyed by the Bernoulli distribu-

tion) and not the number of times a speaker talks during an event (conveyed by the Multinomial). This

is not surprising because the most important aspect encoded by Social Affiliation Networks (at least for

the approach proposed in this work) is who interacts with whom and not how much someone interacts

with someone else. According to this result, we will consider binary interaction patterns in the rest of

this report.

Modeling the dependence between roles leads to improvement for C3, leads to statistically significant

improvements for C2, while it decreases the performance for C1. One probable explanation for the

improved performance when considering the C2 database is that roles are very constrained in this case.

In fact, each emission contains exactly one AM, one SA, one WM, and one HR. In contrast, C1 presents

more variability in the number of persons playing a given role from one news bulletin to another one

and some roles even do not appear in every recording. It implies that a lot of role’s combinations must
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Tab. 3.6: Role recognition performance based on Bayes classifiers for C3. The table reports both the overall
accuracy and the accuracy for each role. “B” stands for Bernoulli, “M” stands for Multinomial,
“I” stands for roles Independence, and “D” stands for roles Dependence. The overall accuracy is
accompanied by the standard deviation σ of the performance achieved over the single recordings.
The upper part of the table reports the results obtained over the output of the speaker segmentation
(diarization), the lower part reports the results obtained over the manual speaker segmentation.

all (σ) PM ME UI ID
Automatic Speaker Segmentation
C3 (B,I) 43.5 (23.9) 75.3 15.1 40.0 15.1
C3 (B,D) 44.9 (29.2) 68.0 21.7 36.3 23.0
C3 (M,I) 42.9 (27.2) 64.4 26.6 30.8 28.4
C3 (M,D) 46.7 (30.9) 64.7 30.3 31.4 32.2
Manual Speaker Segmentation
C3 (B,I) 49.0 (24.5) 79.0 21.7 42.8 19.6
C3 (B,D) 51.5 (31.8) 72.5 31.2 39.1 32.6
C3 (M,I) 45.1 (27.8) 71.0 21.7 37.0 21.7
C3 (M,D) 51.8 (28.2) 76.1 30.4 29.7 36.2

be tested and complexity is added to the model. Similarly as in C2, the model for C3 is simplified as

the exactly four roles are represented during each meeting. Moreover, the errors due to the speaker

diarization process is almost negligible in the case of meetings as the process performs a purity of 0.99.

In the case of broadcast news, i.e. C1 and C2, the errors in the speaker diarization process can influence

the role recognition performance. In fact, as the role’s distributions are really narrow, an error during

the voice’s detection implies an error in the role’s assignment.

However, these results suggest that taking into account the dependence across roles is beneficial as long

as p(ϕ) (see Section 3.2.3) can be estimated reliably. To the best of our knowledge, this is the first

attempt to model explicitly the dependence between roles and the results provide a first assessment of

what can be expected, at least for the approach proposed here and the different databases used, in terms

of performance improvement.

For binary interaction patterns (corresponding to B in Tables 3.5 and 3.6), and considering indepen-

dence between the roles (I in Tables 3.5 and 3.6), the overall α is above 80% for both C1 and C2, and

around 43% for C3. The roles in meeting data (C3) are harder to model. A probable explanation is that

the roles in meetings (C3) are informal, i.e. they correspond to a position in a given social system and

do not correspond to stable behavioral patterns like in the case of the formal roles in broadcast data (C1

and C2). Moreover, the meetings in C3 are not real-world data, i.e. the participants are asked to act
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in a scenario. It can thus happen that the participants have to play roles they are not used to and this

might result into non ecologically valid data. For example, it happens during some meetings that the

participants do not remember which role they are asked to play. This implies that their social positions

in the group are not distinct anymore and that similar interaction patterns are produced for different

acted roles.

Not surprisingly, the only meeting role recognized with a high accuracy is the Project Manager (PM).

The reason is that the PM acts as a chairman, having a specific task to achieve, and thus having distinct

behavioral turn-taking patterns, comparing to the less formal roles such as the domain experts ID, ME,

and UI.

The overall accuracy α over 80% achieved for both C1 and C2 means that the role recognition

approach is robust with respect to changes in the time distribution across the roles (see Table 3.3). This

is important because it shows that the presented approach is capable of adapting automatically to the

different role scenarios.

The performance difference when passing from manual (ground truth) to automatic speaker diarization

is statistically significant for C1 and C2 (see Table 3.5). The difference is not significant for C3 because

the purity of the speaker segmentation for this corpus is 0.99 (see Section 3.3.3), i.e. it corresponds almost

perfectly to the groundtruth speaker segmentation.

In contrast, the difference is significant for C1 and C2 because in this case, the speaker diarization

process produces more errors and the purity is around 0.8 (see Section 3.3.3), i.e. the output of the

speaker diarization is significantly different from the groundtruth speaker segmentation. The difference

in accuracy is around 10% (statistically significant) and this is mostly due to the small differences (2

seconds on average) between the actual speaker changes and the changes as detected by the diarization

process. The sum of all the misalignments, on average, corresponds to roughly 10% of the recording

length and this is the probable explanation of the performance difference when passing from manual to

automatic speaker segmentations.

The rest of the role recognition errors are due to limits of the role recognition approach that cannot

distinguish between different roles when the associated interaction patterns are too similar. This is true

for example, in the case of the low performance of the IP in corpus C1. The interaction pattern of the IP

role is similar to that of the Guest, but the latter has higher a-priori probability, so it is usually favored

as the output of the recognizer. This is also true in the meetings C3 where the domain experts ID, ME,
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and UI have similar interaction patterns, and thus our approach is not able to distinguish between these

three roles.

A qualitative comparison with other approaches is possible only for some works which use parts of the

same data as ours. Both [Jayagopi 08a][Jayagopi 08b] perform experiments over a subset of the AMI

meeting corpus (around 5 hours of material). The performance in [Jayagopi 08b] is around 80%, almost

twice as much as our approach over the same data. However, as the goal is to detect the two most

dominant persons, the probability of assigning each person the correct role is 50%, while it is only 25%

in our case. The work in [Jayagopi 08a] reports a 65% recognition rate of the Project Manager, while our

work achieves, over the same role, an accuracy of 75%. Considering that our experiments are performed

over the whole AMI meeting corpus, while the experiments of [Jayagopi 08b][Jayagopi 08a] take into

account only a subset of 5 hours, our approach seems to be more effective in both cases, though the

task is not the same. The work in [Laskowski 08] uses the whole AMI corpus, but it applies a different

experimental setup. However it performs exactly the same task as this work and the role recognition rate

is around 60%.

3.4.2 Influence of interaction patterns

This section shows how the different features (interaction patterns extracted through SAN and fraction of

speaking time, see Sections 3.1.3 and 3.1.4) influence the role recognition performance. We want to com-

pare the role recognition performance achieved when considering the different types of features separately

or as a combination. The first row of Tables 3.7 and 3.8 reports the role recognition performance achieved

when considering only the interaction patterns as features extracted through SAN, i.e. p(xa |ϕ(a)) p(ϕ).

The second row reports the role recognition performance achieved with only the fraction of speaking time

as features, i.e. p(τa |ϕ(a)) p(ϕ). The last row reports the role recognition performance obtained when

combining both the SAN and speaking time features, i.e. p(xa |ϕ(a)) p(τa |ϕ(a)) p(ϕ) (see (3.16)).

For both C1 and C2, the SAN features are more effective than the speaking time features, particularly

for less frequent roles, i.e. roles accounting for a smaller percentage of time (cf Table 3.3). The com-

bination of the two types of features improve statistically significantly the role recognition performance

achieved when considering speaking time features only. These results highlight the relevance of using

interaction patterns as features when performing the role recognition task.

In C3, the SAN and the speaking time features have similar influence over the role recognition per-
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Tab. 3.7: Features comparison. Role recognition performance based on Bayes classifiers for C1 and C2. The
table reports both the overall accuracy and the accuracy for each role. “SAN” stands for interaction
features extracted through SAN, “T” stands for fraction of speaking time as features, and SNA + T
stands for the combination of both types of features.

all (σ) AM SA GT IP HR WM
Results over C1
C1 SAN 83.4 (6.2) 97.8 2.3 95.7 0.0 61.7 84.8
C1 T 73.0 (5.8) 98.0 0.0 93.5 2.4 0.0 0.0
C1 SAN + T 82.5 (6.9) 98.0 3.6 91.8 8.0 64.6 79.9
Results over C2
C2 SAN 81.3 (8.1) 72.0 88.4 90.3 N/A 22.2 0.0
C2 T 73.6 (8.6) 55.2 64.6 86.9 N/A 0.0 0.0
C2 SAN + T 82.6 (6.8) 75.0 88.3 91.6 N/A 18.3 6.7

Tab. 3.8: Features comparison. Role recognition performance based on Bayes classifiers for C3. The table
reports both the overall accuracy and the accuracy for each role. “SAN” stands for interaction features
extracted through SAN, “T” stands for fraction of speaking time as features, and SNA + T stands for
the combination of both kinds of features.

all (σ) PM ME UI ID
Results over C3
C3 SAN 43.1 (23.5) 81.9 11.5 33.7 12.5
C3 T 42.7 (27.5) 46.7 41.7 57.3 3.6
C3 SAN + T 43.5 (23.9) 75.3 15.1 40.0 15.1

formance and their combination does not improve statistically significantly the performance. The SAN

features are not relevant for the ME, UI and ID roles because they have similar interaction patterns, and

thus our system is not able to distinguish between them. The speaking time features does not improve

either the role recognition performance. It is due to the fact that the distribution of the speaking time

is similar for the PM, ME and UI roles. It seems that both types of features are not relevant enough

for the role recognition task over the meetings C3. However, it is hard to determine whether the low

performance achieved over C3 is due to the limitation of our approach, or whether it is due to the data

set itself, which is composed of acted data and not real data (see Section 3.3.1 for a description of the

metting corpus C3).
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3.5 Role Recognition Approach based on Probabilistic Sequen-

tial Models

The main limitation of the automatic role recognition approach presented in Section 3.2 is that it does

not take into account any sequential information, whereas it should be important as we consider con-

versations. In fact, the role of the person speaking at turn n is likely to have a statistical influence on

the role of the person speaking at turn n + 1. This is the reason why we have considered a second role

recognition approach modeling sequential information using probabilistic sequence models (i.e. Hidden

Markov Models (HMM) and statistical language models (SLM)).

3.5.1 Modeling Sequential Information

The core idea of the approach we propose is that the sequence of actors talking during a conversation

is the observable, machine detectable, evidence of an underlying, hidden, sequence of roles R. The role

recognition problem can thus be thought of as finding the best role sequence R∗ given the sequence of

observation features.

Section 3.1 has shown that each actor corresponds to a pair ya = (xa, τa) of dimension D+1. We have

reduced the dimensionality of the tuples representing the interaction patterns through Principal Compo-

nent Analysis (PCA) [Bishop 06]. The application of PCA to the ya tuples results into L-dimensional

projections wa, where L ≤ D + 1. Therefore, each recording can be represented through a sequence of

tuples W = (wa1, . . . ,waN), where N is the number of turns detected at the speaker diarization step,

and wak is the tuple representing the actor a talking at turn k.

Thus, given the sequence of observations W , the role recognition problem can be formulated as finding

the role sequence R∗, satisfying the following expression:

R∗ = arg max
R∈RN

p(W, R)p(R) (3.22)

where R = (r1, . . . , rN ) is a sequence of roles of length N , ri ∈ R (R is a predefined set of roles), and RN

is the set of all possible role sequences of length N . In intuitive terms, the above equation says that R∗ is

the sequence of roles that better explains the sequence of turns actually observed during a conversation.

In our experiments, the joint probability p(W, R) was estimated with a fully connected, ergodic,
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HMM [Rabiner 89] where each state corresponds to a role r ∈ R. Each state can be reached from any

other state, meaning that transitions between any pair of roles are allowed. The emission probability

function associated to each state are Gaussians.

The a-priori probability p(R) is estimated using a n-gram (n ≥ 1) statistical language model [Rosenfeld 00]:

p(R) =

N
∏

k=1

p(rk|rk−1, rk−2, . . . , rk−n+1) (3.23)

HMMs and SLMs have been implemented with two publicly available packages, the Hidden Markov Model

Toolkit (HTK) 1, and the SRI Language Model Toolkit 2.

3.5.2 Experiments and Results

The same experimental setup as the one used for the role recognition approach based on Bayes classi-

fiers (see Section 3.2) has been applied in order to compare the obtained role recognition results (see

Section 3.3.2).

Table 3.9 reports the results achieved over C1 and C2, Table 3.10 those obtained for C3. Each overall

accuracy value is accompanied by the standard deviation of the accuracies achieved over the different

recordings of each corpus. The first row (HMM) shows the results when using only HMMs, the others

show the accuracy achieved with language models of increasing order (HMM+n-gram). For each corpus,

the last row reports, for comparison purposes, the performance achieved with the Bayes approach (see

Tables 3.5 and 3.6). These results are obtained when considering independence between the roles, in

order to have similar setup and comparable results.

To reduce the dimensionality of interaction features, PCA has been applied. The amount of variance

to be retained after PCA has been selected through cross-validation over the training set. The minimum

amount of variance to be retained after PCA has been set to 70%.

We have modeled the emission probability function in the HMM using a single Gaussian, as it was

sufficient to capture the necessary information for the role recognition. Mixtures of Gaussians do not

improve the role recognition performance, but simply increase the number of parameters.

Even if the training material available is sufficient to train language models of order up to 6, no

performance improvements are observed for n > 3. This seems to suggest that higher order models do

1http://htk.eng.cam.ac.uk/
2http://www.speech.sri.com/projects/srilm/
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all (σ) AM SA GT IP HP WM
Results over C1

HMM 75.3 (9.2) 97.8 9.8 69.7 27.8 58.1 73.1
HMM + 1-gram 79.6 (8.1) 97.8 10.9 83.8 3.5 57.5 81.8
HMM + 2-gram 80.5 (9.0) 97.8 12.3 83.9 21.1 59.6 79.5
HMM + 3-gram 80.5 (8.3) 97.8 16.5 82.7 23.5 57.5 77.9
HMM + 4-gram 81.0 (8.0) 97.8 16.7 84.6 22.0 58.9 77.5

Bayes 82.5 (6.9) 98.0 3.6 97.8 8.0 64.6 79.9
Results over C2

HMM 73.5 (10.3) 60.1 88.6 78.2 N/A 22.1 72.0
HMM + 1-gram 83.8 (6.1) 74.4 91.9 91.9 N/A 25.8 32.4
HMM + 2-gram 81.3 (8.2) 70.0 88.4 90.4 N/A 22.2 9.8
HMM + 3-gram 83.3 (8.2) 70.1 89.5 90.1 N/A 58.3 27.9
HMM + 4-gram 82.1 (7.1) 67.5 88.9 89.7 N/A 47.6 24.4

Bayes 82.6 (6.8) 75.0 88.3 91.6 N/A 18.3 6.7

Tab. 3.9: Role recognition performance based on probabilistic sequential models over C1 and C2. The table
reports both the overall accuracy and the accuracy for each role. The overall accuracy is accompanied
by the standard deviation σ of the performance achieved over the single recordings.

all (σ) PM ID ME UI
Results over C3

HMM 43.2 (26.2) 60.5 27.0 26.2 44.0
HMM + 1-gram 40.5 (25.6) 56.2 27.7 27.0 36.3
HMM + 2-gram 41.5 (25.3) 58.1 27.3 24.5 38.9
HMM + 3-gram 38.5 (23.1) 52.4 28.9 17.6 35.3
HMM + 4-gram 38.0 (22.6) 51.9 29.8 13.9 37.1

Bayes 43.5 (23.9) 75.3 15.1 40.0 15.1

Tab. 3.10: Role recognition based on probabilistic sequential models over C3. The table reports both the overall
accuracy and the accuracy for each role. The overall accuracy is accompanied by the standard
deviation σ of the performance achieved over the single recordings.

not bring any information and the role observed at turn k depends at most on the last two preceding

roles.

The performance tends to be higher for those corpora where the Perplexity PP of the language models

is lower:

PP = [

N
∏

k=1

p(rk|rk−1, rk−2, . . . , rk−n+1)]
− 1

N (3.24)

where N is the length of role sequence R = {r1, . . . , rN}. The PP values are reported in Table 3.11,

together with the ratio PP/|R| of the PP to the number of roles of each corpus.
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C1 C2 C3
PP PP/|R| PP PP/|R| PP PP/|R|

1-gram 5.5 0.9 3.3 0.7 4.0 1.0
2-gram 2.1 0.4 2.5 0.5 3.0 0.8
3-gram 1.9 0.3 2.0 0.4 2.9 0.7
4-gram 1.9 0.3 2.0 0.4 2.9 0.7
5-gram 1.9 0.3 2.0 0.4 2.9 0.7
6-gram 1.9 0.3 2.0 0.4 2.9 0.7

Tab. 3.11: PP stands for the perplexity measure of the different n-gram and PP/|R| is the proportion of the
dictionary that has a probability higher than 0 to produce the n-gram sequence.

The PP is the inverse of the geometric mean of p(rk|rk−1, . . . , rk−n+1) along a sequence R, and can be

interpreted as the number of roles that, at each step rk of R, have a probability of appearing significantly

higher than 0 [Rosenfeld 00]. Thus, when PP is low, this probability is, on average, high and roles from

rk−n+1 to rk−1 influence significantly role rk. The consequence is that only few roles can have probability

significantly higher than 0 of appearing immediately after rk−1. This corresponds to say that the roles

are formal, that is the direct interaction (i.e., adjacency in R) between roles is more constrained. Thus,

the Perplexity appears to be a measure of how much a role set is formal, i.e. of how much the interactions

between its roles are constrained.

This is the first work that provides a quantitative measure of how formal a role set is, i.e. of how

much the roles under consideration constrain the interaction behavior of the persons. This is important

to assess how effectively a role recognition approach can work in different interaction settings. Moreover,

the perplexity can be applied each time roles underly a sequence of events (like the speaker turns in the

case of this work).

The role recognition accuracies suggest that the roles in the meeting corpus C3 are harder to model

than those of broadcast data C1 and C2. This was already observed with the previous approach in

Section 3.4.1, and was explained by the fact that meeting roles are informal. In fact, the meeting roles

correspond to a position in a given social system, and are not associated to stable behavioral patterns as

in the formal roles typical of broadcast material.

According to the Kolmogorov-Smirnov Test [Massey Jr. 51], the difference between the performance

achieved with HMMs and the one achieved with the Bayesian classifier described in Section 3.4.1 is not

statistically significant.

However, the two classifiers show a significant degree of diversity, i.e. they make different decisions
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C1 HMM C HMM W
Bayes C 78.0 2.2
Bayes W 4.5 15.3

C2 HMM C HMM W
Bayes C 79.4 3.9
Bayes W 3.2 13.5

C3 HMM C HMM W
Bayes C 22.3 11.3
Bayes W 15.9 50.5

Tab. 3.12: Diversity assessment. The table reports the accuracy of the percentage of data where the two ap-
proaches are both correct (C), both wrong (W), or one wrong and the other correct.

over the same sample in a relatively high percentage of cases (see Table 3.12). In particular, probabilistic

sequential approaches tend to improve the recognition of less frequent roles that are typically penalized by

Bayesian classifiers certainly because of their low a-priori probability. This suggests that the combination

of the two approaches is likely to lead to significant performance improvements. The highest possible

performance deriving from a combination corresponds to the sum of the cases where at least one of the

two approaches is right. This corresponds to 84.7% for C1, 86.6% for C2, and 49.5% for C3. In all of

the cases, this would represent a statistically significant improvement with respect to the best of the

approaches.

3.6 Combination of Interaction and Lexical Patterns

Both approaches presented in this work for the role recognition task, i.e. the role recognition approach

assigning a role to each person using Bayesian classifiers (see Section 3.2) and the role recognition approach

taking into account sequential information (see Section 3.5.1), show limitations on the meeting recordings

(C3).

One possible explanation of the lower role recognition performance over the C3 corpus may be due

to the experimental setup of the C3 corpus itself. In fact, C3 is composed by acted interactions and not

real interactions (see Section 3.3.1 for a precise definition of the C3 database).

Another possible explanation of these results could be that the social interaction based role recognition

approaches developed in this thesis are not well suited for informal roles and less constrained conversations

such as the ones represented in the C3 corpus. We were not able to verify this assumption by applying our
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Lexical Feat.
Extraction AdaBoost

Speaker Roles

Combination

SAN Bernoullian

Diarization

Fig. 3.8: Overview of the role recognition approach combining two types of behavioral cues: interaction and
lexical patterns. The two parallel paths produce separate decisions that are combined at the end of the
process.

automatic role recognition approaches over another scenario of conversations that were not constrained

by specific tasks. In fact, when I started my thesis, no other roles labeled spontaneous conversations were

available.

However, to assess the role recognition problem over the C3 meetings, we developed a new role

recognition system in which we added lexical content to our interaction features.

This section presents the new role recognition approach for the meetings C3 which combines two

behavioral cues. The first behavioral cue is the interaction pattern, i.e. the patterns representing the

tendency of each actor a to interact with certain persons rather than others in a certain proximity in time.

These features are extracted from the Affiliation Networks exactly as previously detailed in Section 3.1.3,

and are represented by binary n-tuple xa. The second behavioral cue is the lexical choice, i.e. the use of

certain words rather than others in the interventions of each person. A full description of how the lexical

features have been transcribed from the meetings can be found under [Hain 06].

An overall scheme of the approach is depicted in Figure 3.8: the first step is the application of a speaker

diarization approach that identifies the time intervals where each persons talks (see Section 3.1.2). The

subsequent steps follow two parallel paths corresponding to the two behavioral sources of information

mentioned above.

The lower path corresponds to the interaction pattern modeling and it includes two stages: extraction

of the interaction features using a Social Affiliation Network (see Section 3.1.3), and assignment of roles

to the features representing each person using a Bernoulli distribution [Bishop 06].

The upper path describes the modeling of the lexical choice and it includes two stages as well: ex-

traction of the lexical features from the automatic speech transcriptions [Hain 06], and mapping of the

lexical features into roles using the BoosTexter text categorization approach [Schapire 00].
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The next sections present the SAN based role recognition approach (see Section 3.6.1), the lexicon

based role recognition approach (see Section 3.6.2), the combination approach (see Section 3.6.3), and

finally Section 3.6.4, shows the experiments performed and the role recognition results achieved.

3.6.1 Social Affiliation Networks Based Role Recognition

This role recognition approach is based on the Affiliation Networks (see upper part of Figure 3.2 in

page 26) [Wasserman 94] described in Section 3.1.3. We have seen previously in Section 3.2.1 that the

most natural way of modeling binary features is to use independent Bernoulli discrete distributions:

p(x | −→µ ) =

D
∏

j=1

µ
xj

j (1 − µj)
1−xj (3.25)

where D is the number of events used to capture the interaction patterns, and −→µ = (µ1, . . . , µD) is the

parameter vector of the distribution. A different Bernoulli distribution is trained for each role. The

maximum likelihood estimates of the parameters µr for a given role r are as follows [Bishop 06]:

µrj =
1

|Ar|

∑

a∈Ar

xaj (3.26)

where Ar is the set of actors playing the role r in the training set, and xa is the n-tuple representing the

actor a.

Each actor will thus be assigned the role r∗ according to:

r∗ = argmax
r∈R

p(x | −→µ r) (3.27)

where R is the set of the predefined roles.

3.6.2 Lexicon Based Role Recognition

The role recognition approach based on lexical features recognizes the roles of the persons using the lexical

content of their utterances. The rationale behind this approach is that the meeting content is correlated

with the roles of its participants. Thus the lexical cues related to the topics can be useful for determining

persons roles. As an example, the person leading the discussion (i.e the Project manager (PM)), can use
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phrases to re-center the conversation to the main topic or can use phrases to shift to another topic.

Similarly to the SAN based approach (see Section 3.6.1), the goal of the role recognition task is to

assign a role to each speaker in every meeting.

For classifying the persons into one of the possible roles, we use BoosTexter, a multi-class classification

tool. Boosting aims to combine weak base classifiers to come up with a strong classifier [Schapire 00].

This is an iterative algorithm where, at each iteration, a weak classifier is learned so as to minimize the

training classification error. The algorithm begins by initializing an uniform distribution of the roles,

D1(i, r), over training examples from the meeting participants, i, and over labels (i.e., participant roles),

r. After each round, this distribution is updated so that the example-class combinations which are easier

to classify (e.g. the examples that are classified correctly with the weak learners learned so far) get lower

weights and vice versa. The intended effect is to force the algorithm to concentrate on examples and

labels that will improve the most the classification rule. To represent every example i (i.e. every meeting

participant in the training corpus), we use as features, word n-grams (n = 1, 2, and 3) from all the turns

of a same participant in a meeting.

The weak classifiers check the presence or absence of word n-grams in the participant’s turns, and can

therefore be used for analysis purposes. The final strong classifier is a linear combination of the individual

weak classifiers. We used a k−fold cross-validation method [Bishop 06] to compute the optimum number

of iterations for the classifier. The classifier outputs a probability for the presence of each class for each

person.

If di is the tuple representing the transcription of the interventions of meeting participant i, then the

BoosTexter approach estimates the probability p(di | r) of the participant playing role r by combining

the weak classifiers described above. The participant i is assigned the role r∗ according to:

r∗ = argmax
r∈R

p(di | r) (3.28)

where R is the set of the predefined roles.

3.6.3 Combination Approach

Both role recognition approaches described above (see Sections 3.6.1 and 3.6.2) estimate the probability

of a meeting participant playing a role r. The combination is performed by multiplying the two estimates
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approach all PM ME UI ID
SAN 43.1 75.7 16.4 41.2 13.4
lex. 67.1 78.3 71.9 38.1 53.0
SAN+lex. 67.9 84.0 69.8 38.1 50.1

Tab. 3.13: Role recognition results when combining interaction features (SAN) and lexical features over the
meetings C3.

as follows:

r∗ = argmax
r∈R

p(x,d | r,−→µ r)

= argmax
r∈R

β log p(d | r) + (1 − β) log p(x | ~µr) (3.29)

where the factor β ensures that both terms are of the same order of magnitude and contribute to the

final decision. The β value is selected through cross validation (see next section).

3.6.4 Experiments and Results

The role recognition approach presented in this section has been developed to improve the performance

over the AMI corpus (referred as C3 in this thesis). The description of the C3 database can be found in

Section 3.3.1.

The training of the role recognition system is performed using a leave-one-out approach (see Sec-

tion 3.3.2), i.e. using the same experimental setup as with the other role recognition approaches presented

previously in this thesis. All the recordings composed the training set (i.e. for training the role’s models)

with the exception of one that is used as test set. The hyperparameter D is set through cross-validation

over the training set (see Section 3.3.2). The other hyperparameters of the system (number of AdaBoost

iterations for the lexicon based approach, and β factor for the combination) are tuned over a subset of

20 meetings randomly selected in the training set.

The performance is measured with the accuracy α, i.e. the percentage of data time correctly labeled

in terms of role. Table 3.13 reports the accuracies obtained by using only Social Affiliation Network

Analysis, only lexical choices, and the combination of the two. The results are reported for the overall

meetings, as well as for the single roles separately.

The lexical choice appears to be a more reliable cue for the recognition of the role for the AMI

meetings. The overall accuracy of the lexicon based system is significantly higher (67.1% against 43.1%).
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A possible explanation is that the AMI corpus is particularly suitable for lexical analysis, while it is rather

unfavorable to the application of SAN. On one hand, the content of the interventions is constrained by

the role and this helps the former approach, on the other hand, the similar interaction patterns of the

participants may limit significantly the latter approach, as the social networks are not able to distinguish

between the roles.

The combination of the two systems does not improve significantly the performance of the best system

(see Table 3.13). The main reason is probably that the performance of the SAN approach is too close

to the chance (around 25%) for at least two roles (ME and ID). Thus, the SAN does not bring useful

information in the combination, but simply some random noise. This seems to be confirmed by the case

of the PM role, where the combination improves by almost 6% the performance of the best classifier.

Not surprisingly, the performance of the SAN system over the PM is significantly better than the chance

because the PM plays a formal role as we have seen previously in Section 3.4.1.

In conclusion, the interaction patterns are not enough reliable cues, and lexical content is necessary

to obtain an effective role recognition system in the AMI meetings (C3 corpus). We are not certain about

the limitation of the use of interaction features extracted with Social Affiliation Networks. In fact, we

are not able to state whether this is the proposed interaction features which are not meaningful (because

they are similar), or whether this is the C3 corpus which dos not contain relevant interaction patterns

(simulated data and not real spontaneous interactions).

Another way to improve the role recognition performance in meetings would be to use also cues

extracted from the video channel in combination with the cues extracted from the audio channel. This

possibility has not been addressed in this thesis.

3.7 Role Recognition Discussion

This chapter has presented automatic approaches for the recognition of roles in multiparty recordings.

The proposed approaches have been tested over roughly 90 hours of material, composed of broadcast

material and meeting recordings. This is one of the biggest data sets ever used in literature for this task.

Moreover, to the best of our knowledge, the data set used in this work is the only one that includes

different interaction settings and different role sets, i.e. both informal and formal roles (See Section 2.2

for the difference between the two types of role). This is important in order to show how the role
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typology influences the effectiveness of the recognition, and thus how easily an approach can be ported

from one interaction setting to another. Furthermore, the thesis has identified a quantitative measure

(the Perplexity) of how formal a role set is, i.e. of how much the roles under consideration constrain the

interaction behavior of the persons (see Section 3.5.2). The perplexity measure can be applied each time

roles underly a sequence of events (like the speaker turns in the case of this thesis).

Another novelty of the presented approaches is to use the interaction between the persons as fea-

tures. The Social Affiliation Networks (SAN) [Wasserman 94] allows one to extract these features, which

represent the evidence of interactions in terms of proximity in time, from the co-occurence turn-taking

patterns structuring the conversations. The rationale behind the SAN is that the persons speaking in

the same time intervals are likely to interact with each other.

Furthermore, this chapter has compared approaches based on Bayesian classifiers and approaches

based on probabilistic sequential models. The former assigns a specific role to each person involved in the

recordings (see Section 3.2). The latter considers the sequence of persons talking during a conversation,

and aligns the sequence of their turns with a sequence of roles (see Section 3.5). For both approaches,

the results show that the role recognition accuracy is higher than 80% in the case of broadcast data, and

it is around 45% in the case of meeting recordings.

There are several possible reasons for such a difference between the different types of data sets. The

first, and probably most important, is that broadcast data include formal roles, while meetings include

informal ones. Formal roles are easier to model because they impose constraints on the behavior of the

persons that can be detected. In contrast, informal roles do not necessarily constrain behavior and so

automatic recognition is more difficult through approaches like the ones presented in this thesis, at least

for the aspect of behavior used as role evidence in this work, i.e. who talks with whom and when.

The second reason is that the broadcast data is real, while the meeting data is acted. The meetings

do not involve persons playing the role they actually have in their life, but volunteers that simulate

an artificially assigned role they have never played before. This is likely to reduce significantly the

performance of any role recognition method.

In the case of the broadcast data, the performance should be sufficient to browse effectively the data,

or at least could help it. In fact, users should quickly find segments corresponding to a given role because

the mismatch between the ground truth and the automatic output rarely exceeds a few seconds. In the

case of meeting recordings, the approach is effective only to identify the Project Manager. However, this



58 CHAPTER 3. ROLE RECOGNITION

should allow one to effectively follow the progress of the meeting as the PM plays the chairman role and,

as such, is responsible for following the agenda through her/his interventions.

In order to improve the role recognition performance in the meeting recordings, we have proposed

another approach combining lexical patterns to the interaction patterns. The role recognition performance

is improved to 67.9%, but this is mainly due to the lexical features. In fact, the combination of the lexical

features with the interaction features significantly improves the performance for the Project Manager

role only. To our knowledge, this is the first attempt to combine approaches based on both lexical and

interaction features.



Chapter 4

SEMANTIC SEGMENTATION

The content of this chapter can be found in the following papers:� “Semantic Segmentation of Radio News Using Social Network Analysis and Duration Distribution

Modeling“, A. Vinciarelli, F. Fernandez and S. Favre, in Proceedings of the 2007 IEEE International

Conference on Multimedia and Expo (ICME), pages 779-782� “Broadcast News Story Segmentation Using Social Network Analysis and Hidden Markov Models“,

A. Vinciarelli and S. Favre, in Proceedings of the 15th international conference on Multimedia

(ACM), 2007, pages 261-264

Role recognition can have different applications (see Section 1.1) and this chapter shows how one of the

approaches presented in the previous chapter has been used to perform semantic segmentation, i.e. to

split audio recordings into segments which are meaningful from a user point of view [Koumpis 05]. In

particular, roles have been used to detect the structure of a particular radio program composed of two

parts (a news bulletin and a talk-show), and to segment the same program into stories (segments during

which single specific topic is addressed). The rationale is that different roles might characterize different

semantic segments, thus recognizing roles might allow one to identify semantic segments.

Achieved performances have not been compared to other similar semantic tasks. In fact, this chapter

shows how to use roles in an application scenario and thus presents really simple approaches for segmen-

tation. To perform role applications was a secondary task during my thesis, and for time reasons, such

approaches have not been further developped.

The main contributions of this chapter with respect to the rest of literature are as follows:

59
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(what is said), but the structure of social interactions as described by automatically extracted social

networks.� We believe that this work is one of the first attempts of using role recognition in an application

scenario.

The rest of this chapter is organized as follows: Section 4.1 details an approach for segmenting a particular

radio program into two parts corresponding to a news bulletin and a talk-show respectively, Section 4.2

presents an approach segmenting a particular radio program into stories, and Section 4.3 draws some

conclusions on the presented semantic segmentation approaches.

4.1 Structure Detection

The experiments have been performed over the recordings of C2 (see Section 3.3.1 for more details on

the concerned database).

C2 is composed of 27 one hour long recordings that can be split into two distinct parts: the first

is referred to as news and the second is referred to as talk-show. The former consists of news subjects

presented one after each other, whereas the latter consists of discussions about specific subjects by invited

speakers.

This section shows how specific roles, i.e the anchormen, can be used to identify the two distinct parts

in C2. In fact, C2 involve two anchormen with the particularity that one talks all along the program,

whereas the other talks only during the news part. In this way, identifying the two anchormen allow us

to identify the transition between the news and the talk-show parts.

We propose two approaches for the semantic segmentation: the first is based on Social Network

Analysis (SNA) (Section 4.1.1) and uses the roles to split the radio programs in two parts. The second

approach, called Duration Distribution Modeling (DDM) in the following, is based on the duration of

single stories (Section 4.1.2), and is used for results comparison.

The rest of this section is organized as follows: Section 4.1.1 presents the SNA based approach,

Section 4.1.2 presents the DDM approach, Section 4.1.3 concludes with the experiments performed and

the achieved results.
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Fig. 4.1: Social Network: this figure shows the Social Network extracted from one of the recordings in our
collection. We can see that the two speakers labeled as spk19 and spk8 are the two main central
speakers.

4.1.1 Social Network Analysis for Structure Detection

The SNA approach developed here relies on the fact that the radio programs in C2 involve two anchormen:

the first one talks all along the program, while the second talks only during the first part. By identifying

the two anchormen is then possible to identify the transition between first and second part. In fact,

the transition can be detected as the last intervention of the second anchorman, i.e. the one that stops

talking before the end of the program.

In order to extract the social networks describing the interactions between the persons, we first apply

a speaker diarization system to obtain the sequence of persons interventions (turn-taking). This step is

not detailed here as it has been done previously in this report (see Section 3.1.1).

The result of the speaker diarization process is that the audio data is converted into a sequence of

speaker ID codes ai, with i ∈ {1, . . .G} (G is the total number of detected speakers in the speaker
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diarization process described in the previous Section 3.1.1).

We use as interaction evidence between two individuals ai and aj the fact that ai talks immediately

before aj at least once. The use of the ordering includes the temporal information involved in the sequence

resulting from the speaker diarization process. This allows to build the so-called sociomatrix X , i.e. a

matrix where the element xij is the number of times speaker ai talks immediately before speaker aj . For

each sociomatrix there is an associated directed graph where each node corresponds to a speaker and

each edge corresponds to the interaction between the connected speakers: such a graph is called Social

Network (SN) and it is shown, for one of the recordings in our data set, in Figure 4.1. Sociomatrices

and SNs encode relational data, i.e. the interaction patterns involving the speakers participating in each

recording.

In this work, the most important information is the speakers centrality [Wasserman 94], i.e. the

inverse of the average geodesic distance between a given individual and the others (the geodesic distance

between two nodes is the number of edges to be traversed to go from a node to the other):

C(ai) =
G − 1

∑

j 6=i d(ai, aj)
(4.1)

where d(ai, aj) is the geodesic distance between ai and aj and G is the total number of speakers. The

reason for the name centrality is that such index is a measure of how much individuals are close to the

others on average and then of how much they are central in the interaction pattern.

In the performed experiments, we show that the two anchormen are the individuals with the highest

centrality. In other words, the extraction of the Social Network and the calculation of the centrality index

enable one to find the anchormen a∗
i and a∗

j as follows:

a∗
i , a

∗
j = arg max

ai,aj∈(1,...,G)
C(ai) + C(aj) (4.2)

If τ(ak) is the time at which the last intervention of speaker ai ends, then the approach described in

this section identifies the transition time t∗ between news and talk-show as follows:

t∗ = arg min
ak∈{a∗i ,a∗j }

τ(ak) (4.3)

in other words, the transition is considered to take place at the end of the last intervention of the
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Fig. 4.2: Average number of stories vs time. This plot shows the average number of stories (estimated at two
minutes long time steps) as a function of the time.

anchorman that disappears first from the program.

4.1.2 Duration Distribution Modeling for Structure Detection

The rationale behind such approach is that our data can be considered as a sequence of stories and that

the transition points between consecutive stories follow a Poisson Stochastic Process (PSP) [Papoulis 91].

This can be seen by observing the following: given a recording p in the collection, consider the staircase

function fp(t) which gives the number of story transitions that took place between time 0 and time t.

Such function is called staircase because it increases by one each time there is a transition and then it

remains stable until there is another transition. The average number of transitions n(t) in the data set

at a given time t can be estimated as follows:

n(t) =
1

P

P
∑

p=1

fp(t) (4.4)
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where P is the total number of recordings in the data set. The function n(t) is plotted in Figure 4.2

and it consists of two linear pieces that can be expressed as n1(t) ≃ λ1t and n2(t) ≃ λ2t. This shows

that the transitions actually follow a PSP and that the PSP underpinning the transitions changes at a

certain point of the program. The change of slope corresponds to the transition between the news and the

talk-show: the segmentation process can be thought of as finding the story in correspondence of which

the underlying PSP (and the corresponding λ parameter) changes.

Since the transition points are supposed to follow a PSP, the probability of a story being long τ can

be written as follows [Papoulis 91]:

p(τ |λ) = λe−λτ (4.5)

and the likelihood of a sequence T = {τ1, . . . , τS} of story durations in a given recording can be expressed

as follows:

p(T |λ1, λ2) =
n

∏

k=1

p(τk|λ1)
S

∏

l=n+1

p(τl|λ2) (4.6)

where n is the index of the story where the PSP underlying the story transitions changes, i.e. the index

of the story where the news end and the talk-show starts. The value of n can be found by maximizing

the logarithm of the likelihood:

n = arg maxp p log λ1 + (S − p) log λ2−

λ1

∑p
k=1 τk − λ2

∑S
k=p+1 τk

(4.7)

The last problem to be solved is the estimation of the parameters λ1 and λ2. This is performed using

a leave-one-out approach, i.e. by using all recordings except the one used for testing the algorithm (see

Section 3.3.2 for more details on the leave-one-out approach). Given a set of recordings for which n

is known, the λi values are those that maximize the likelihood of all the T sequences observed in the

training set:

λi =
Si

∑Si

k=1 τ
(i)
k

(4.8)
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Approach α

SNA 94.5%
DDM 99.8%

Tab. 4.1: Structure detection results. The table reports the accuracy (percentage of time correctly labeled in
terms of semantic class) obtained using SNA and DDM approaches.

where Si is the total number of stories following a stochastic process with parameter λi and τ
(i)
k is the

kth story following the same stochastic process.

4.1.3 Experiments and Results

The performance is measured in terms of accuracy α, i.e. in terms of the percentage of time where the

semantic class (news or talk-show) is assigned correctly. Since each recording contains only two segments,

100−α expresses the distance (in terms of percentage with respect to the total duration of the recording)

between the actual transition point and the transition point detected automatically. In other words,

if the accuracy in a recording is 95%, then the difference between the real transition and the detected

transition accounts for 5% of the total duration of the recording.

The results of the experiments are reported in Table 4.1. The method based on the story transitions

performs better than the other, but such a performance is overestimated. In fact, the results are obtained

over a manual segmentation, i.e. the story transitions have been detected by a human assessor. The

process is then not fully automatic.

On the contrary, the results obtained using the SNA based approach are realistic because the process

does not involve any manual intervention. The speaker segmentation (see Section 3.1.1) is automatic as

well as the analysis of the resulting Social Network. The average distance between the actual transition

and the transition detected automatically is around 3 minutes. This means that a potential user does not

need to listen to more than 6 minutes (3 minutes before and 3 minutes after the detected point) in order

to find the actual transition between news and talk-show. This reduces by roughly 40% the variability

range observed in our data (the transition point is between ≃ 35 and ≃ 45 minutes), then it decreases

the amount of time needed for an operator to find the real transition point.
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Fig. 4.3: Story Segmentation approach. This figure shows the three stages of the story segmentation approach:
the first splits the audio into a sequence of single speaker segments (i.e. turn-taking), the second
converts the turn-taking into features using SAN, the third maps the features into stories using HMMs.

4.2 Story Segmentation

Broadcast news data are structured by the specific issues that are presented one after each other along a

news bulletin. It implies that in the case of broadcast news, the segmentation is typically performed in

terms of stories. The stories play in broadcast news the same role that the articles play in newspapers.

The stories can be thought of as the main building block of broadcast news: any news bulletin can be

split into stories and, vice-versa, a sequence of stories can form a news bulletin.

This section presents a new approach for segmenting broadcast news into stories. The main rationale

behind the presented approach is that persons involved in the same story have a high degree of mutual

interaction. This means that the stories can be identified by grouping the persons that have a high degree

of mutual interaction.

The proposed approach is composed of three major stages: the first performs a speaker diarization

and splits the audio into segments corresponding to a single voice (Section 3.1.1). The goal of this stage

is to detect the persons involved in the radio program and the sequence of their interventions. The

second stage is the representation of social interactions by means of a SAN (see Section 3.1.3, to identify

individuals with high mutual interaction. The third step is the application of HMM [Rabiner 89] and

Statistical Language Models (SLM) [Rosenfeld 00] to map social interactions into stories.

The following two sections present the story segmentation approach (Section 4.2.1), experiments and

results achieved (Section 4.2.2).
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4.2.1 Story Segmentation Approach

This section presents in details the story segmentation approach depicted in Figure 4.3. The first stage of

the process is the speaker diarization, which is fully described in Section 3.1.1. The result of the speaker

diarization process is that each recording is split into a sequence of turns S = {(sk, tk, ∆tk)}, where

k ∈ {1, . . . , N}, sk is the label corresponding to the voice detected in the kth turn, tk is the beginning

of speaker sk intervention, and ∆tk is the duration of the kth turn. The label sk belongs to the set

A = {a1, . . . , aG} of G unique speaker labels as provided by the speaker diarization process (see lower

part of Figure 3.2 in page 26).

The second stage of the approach, as depicted in Figure 4.3, uses the sequence of turn-taking S

extracted from the speaker diarization, to build a SAN which represents the interactions between the

speakers. A SAN is a graph with two types of nodes: the actors and the events [Wasserman 94]. A

complete description of how to build SAN can be found in Section 3.1.3. The important thing is that

SANs extract the evidence of interactions in terms of who talks to whom and when, and thus capture the

mutual degree of interaction between the participants.

The events are defined using the proximity in time (see lower part of Figure 3.2 in page 26): the

news bulletins are split into D uniform non-overlapping segments, called events ej. An actor ai is said

to participate in event ej when he/she talks during it. In this way, each actor a is represented by a

n-tuple xa = (xa1, . . . , xaD), where D is the number of segments used as events and the component xaj

accounts for the participation of the actor a in the jth event. Thus, component xaj is 1 if the actor

a talks during the jth event and 0 otherwise (the corresponding n-tuples are shown at the bottom of

Figure 3.2 in page 26). Since the number of events can be rather high (up to 20 in this work), the

dimensionality of the tuples x representing the interaction patterns is reduced through PCA [Bishop 06].

The amount of variance to be retained after PCA has a minimum set to 70%. The application of PCA to

the tuples xa results into L-dimensional projections ua, where L < D. Therefore, each news bulletin can

be represented through a sequence of L-dimensional tuples U = (ua1, . . . ,uaN), where N is the number

of turns detected at the speaker diarization step, and uak is the tuple representing the actor a talking at

turn k.

The goal of the story segmentation is to assign each tuple ui a label hi which corresponds to the number

of a story (e.g. story 2, or story 7 ). Thus, given the sequence of observations U , the story segmentation
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problem can be formulated as finding the story sequence H∗, satisfying the following expression:

H∗ = arg max
H∈H

p(U, H)p(H) (4.9)

where H = (h1, . . . , hN ) is a sequence of stories of length N , and H is the set of all possible story

sequences H . In our experiments, the joint probability p(U, H) was estimated with a fully connected,

ergodic, HMM [Rabiner 89] with S states, where S is the maximum number of stories that can be

observed. The emission probability function associated to each state are Gaussians.

The a-priori probability p(H) was estimated using a 3-gram statistical language model [Rosenfeld 00]:

p(H) =

N
∏

k=3

p(hk|hk−1, hk−2) (4.10)

4.2.2 Experiments and Results

The experiments of this work have been performed over a corpus of 27 one hour long news bulletins

referred to as C2 previously in this report and in the following. The bulletins are managed by two

anchormen that starts and stops the stories by giving the floor to different persons. C2 is fully described

in Section 3.3.1.

The story segmentation results are presented in terms of purity π, a performance metric commonly

applied in segmentation problems. The purity compares the repartition in time of the stories segments

obtained with the automatic approach and the actual (i.e. groundtruth) story segmentation.

Given a recording, consider a groundtruth segmentation S = {(s1, ∆t1), . . . , (sNg
, ∆tNg

)} and an

automatic segmentation S∗ = {(s∗1, ∆t∗1), . . . , (s
∗
Na

, ∆tNa
)}. The purity π is:

π =





Ng
∑

i=1

τ(si)

T

Na
∑

j=1

τ2(si, s
∗
j )

τ2(si)



 ·





Na
∑

j=1

τ(s∗j )

T

Ng
∑

i=1

τ2(si, s
∗
j )

τ2(s∗j )





where τ(si, s
∗
j ) is the length of the intersection between the time interval corresponding to segment si

and the time interval corresponding to segment s∗j , τ(si) is the length of the time interval corresponding

to segment si, T is the total length of the segmented recording. In each parenthesis, the first term is

the fraction of recording a segment accounts for, and the second term is a measure of how much a given

segment is split into smaller fragments. The terms τ(si) at the numerator and τ2(si) at the denominator
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Tab. 4.2: Story segmentation performance. The table reports the purity as a function of the number of segments
D used to split the news bulletins and capture the interaction patterns, and of the amount of variance
retained after PCA.

variance fraction
D 70% 80% 90% 100%

10 0.74 0.76 0.76 0.78
12 0.74 0.76 0.76 0.78
14 0.74 0.76 0.76 0.77
16 0.76 0.74 0.78 0.78
18 0.74 0.78 0.78 0.79
20 0.75 0.77 0.78 0.79

are left explicit for the sake of clarity. The purity value is bounded between 0 and 1, the closer it is to 1,

the better it is the segmentation. When the segmentation is perfect, i.e. S = S∗, the value of π is 1.

The story segmentation process involves two hyperparameters, the first is the number D of segments

used to split the recordings, corresponding to the events during which the interaction patterns are cap-

tured. The second is the amount of variance retained after the application of the PCA. The experiments

have been performed using D values between 10 and 20, and keeping at least 70% of the variance. Ta-

ble 4.2 shows the performance for different values of the hyperparameters. The achieved purity is always

around 0.75 and no major changes are observed when increasing the number D or the amount of retained

variance (at least in the observed ranges). This seems to suggest that the system is stable with respect

to the choice of the above parameters.

The results of Table 4.2 have been obtained using a leave-one-out approach (see Section 3.3.2), with

all the recordings of the corpus in the training set except one which is used as test set.

On average, the number of stories in the bulletins is 25.2, but the average number of stories detected

by the system is 16.5. This means that the most common error consists in grouping different stories rather

than in splitting singles stories into smaller segments. The main reason is that the persons involved in

different stories, but talking in the same event tend to be represented with similar features, thus tend

to be attributed to the same story. This apply in particular to shorter stories (less than two minutes)

that often follow each other in some specific moments of the bulletins. Another cause of error is that

the anchormen tend to talk about different stories in the same intervention and the corresponding story

changes can thus not be detected as the system needs a change of speaker to detect a story change.

Table 4.3 shows the effect of the speaker diarization errors over the story segmentation performance.

The reported results are obtained with D = 14. The first line of Table 4.3 shows the purity achieved
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Tab. 4.3: Effect of the speaker diarization errors. The reported results have been obtained using D=14, for both
manual and automatic speaker segmentations.

variance fraction
speak. segm. 70% 80% 90% 100%

manual 0.80 0.80 0.80 0.82
automatic 0.74 0.76 0.76 0.77

using the groundtruth speaker segmentation, the second line shows the performance achieved using the

automatic speaker segmentation (see Section 3.1.1). The differences are rather low and the impact of the

diarization errors on the story segmentation performance seems to be negligible.

4.3 Semantic Segmentation Discussion

This chapter has shown that automatic role recognition approaches can be used to perform semantic

segmentation. In fact, a specific role, i.e. anchorman, enables to split radio programs into its two distinct

parts with an average error of transition of 3 minutes.

Moreover, a story segmentation has been performed using the degree of mutual interaction to identify

the different stories presented along a radio program. On a specific news bulletins corpora, the achieved

story segmentation purity is around 0.75. Such a performance can be considered satisfactory for tasks like

fast browsing (where the goal is to quickly reach a point of interest in a long recording), or semi-automatic

data editing (where the goal is to manually adjust the automatic segmentation in order to achieve fully

correct results).

This chapter finally shows that the structure of social interactions, i.e. roles in this work, can be used

to perform semantic segmentation. Existing systems rather use the content of the data such as what is

said.



Chapter 5

CONCLUSION

This chapter summarizes the work presented in this thesis and states potential future research directions.

5.1 Conclusions

In this thesis, an investigation of automatic role recognition has been performed. Research on this problem

was in its very early stages when I started my thesis and today is one of the main areas in automatic

analysis of social interactions [Vinciarelli 09b]. The presented approaches use Social Network Analysis for

representing the individuals in terms of their interactions with others, and Machine Learning approaches

for assigning roles to the individuals (Bayes classifiers and probabilistic sequential models). Experiments

have been performed over one of the largest data sets ever used in literature for role recognition, including

for the first time, to the best of our knowledge, different human-human interaction settings, i.e. production

environment contexts and spontaneous exchanges.

5.2 Future Research Directions

On the short term, this work can be further developed as follows (the list is not exhaustive):� It will be more natural to assign roles turn by turn rather than assigning roles to the persons. This

has been already implemented in the work done by Hugues and al. [Salamin 10], where they assign

a role to each turn with Conditional Random Fields in the case of broadcast data, i.e. C1 and C2.

The results show that the role recognition performance is improved. This new approach also allows

to remove the varying parameter present in this work, i.e the number D of events used in the Social

71
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Affiliation Network to capture the interaction patterns (see Section 3.1.3). Even if it works well, it

will be better to avoid such a brute segmentation of the audio for defining the events.� As shown in Table 3.12, the two role classifiers presented in this work (Bayes classifier and prob-

abilistic sequential models) tend to make different decisions over the same data. It is thus likely

that the combination of the two approaches will lead to significant performance improvements.� The approaches proposed in this work use only the turn-taking patterns as role evidence (except

in the case of combination with lexical features in meetings), while other behavioural cues can be

extracted from both audio (e.g. prosody, pitch), and video (e.g. gestures) when available as in the

case of AMI meetings.� The role recognition results over meetings show that informal roles are more difficult to recognize.

It could be interesting to implement the proposed approaches over other spontaneous data sets.

The obtained role results also suggest other possible future investigations on the long term. The

proposed role recognition approaches assume a groundtruth annotation for the roles and make use of

supervised machine learning techniques. However, it would be interesting to apply unsupervised ap-

proaches in order to detect characteristic patterns of behavior possibly corresponding to roles. To assess

the effectiveness of this approach, we can think of using human assessors to evaluate the clusters, i.e.

assess to what extent the people grouped in one cluster are playing the same role.

Moreover, the roles recognized in this thesis have characteristic patterns as they are extracted from

production environment as well as during professional meetings. Even if we have defined formal and

informal roles corresponding to the different data sets, the studied interaction settings are characterized

by role constraints. We could imagine to study new human-human interactions in private contexts, where

people interact without any constraints. In fact, it would be interesting to study wether such “social”

roles have also characteristic interaction patterns and if they are similar and can be extracted through

the same kind of approaches than the roles recognized in this thesis.
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[Raducanu 09] B. Raducanu, J. Vitrià & D. Gatica-Perez. You are Fired! Nonverbal Role Analysis

in Competitive Meetings. In Proceedings of the International Conference on Acoustics,

Speech, and Signal Processing, 2009.

[Reiter 07] S. Reiter, B. Schuller & G. Rigoll. Hidden Conditional Random Fields for Meeting

Segmentation. In Proc. IEEE ICME, pages 639–641, 2007.

[Richmond 95] V.P. Richmond & J.C. McCroskey. Nonverbal behaviors in interpersonal relations. Allyn

and Bacon, 1995.

[Rienks 06a] R. Rienks & D. Heylen. Dominance Detection in Meetings Using Easily Obtainable

Features. In Lecture Notes in Computer Science, volume 3869, pages 76–86. Springer,

2006.

[Rienks 06b] R. Rienks, D. Zhang & D. Gatica-Perez. Detection and application of influence rankings

in small group meetings. In Proceedings of the International Conference on Multimodal

Interfaces, pages 257–264, 2006.

[Rizzolatti 04] G. Rizzolatti & L. Craighero. The mirror-neuron system. Annual Reviews of Neuro-

science, vol. 27, pages 169–192, 2004.

[Robins 05] B. Robins, K. Dautenhahn, R. te Boekhorst & A. Billard. Robotic assistants in therapy

and education of children with autism: Can a small humanoid robot help encourage social

interaction skills? Access in the Information Society (UAIS), vol. 4, pages 105–120, 2005.

[Rosenfeld 00] R. Rosenfeld. Two decades of statistical language modeling: where do we go from here?

Proceedings of the IEEE, vol. 88, no. 8, pages 1270–1278, 2000.

[Salamin 10] H. Salamin, G. Mohammadi, K. Truong & A. Vinciarelli. Automatic Role Recognition

Based on Conversational and Prosodic Behaviour. In Proceedings of the ACM Interna-

tional Conference on Multimedia, pages 847–850, 2010.

[Schapire 00] R.E. Schapire & Y. Singer. BoosTexter: a boosting-based system for text categorization.

volume 39, pages 135–168, 2000.



BIBLIOGRAPHY 79
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