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Sparse image reconstruction on the sphere:
implications of a new sampling theorem
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Abstract—A new sampling theorem on the sphere has been
developed recently, reducing the number of samples required to
represent a band-limited signal by a factor of two for equiangular
sampling schemes. For signals sparse in a spatially localised
measure, such as in a wavelet basis, overcomplete dictionary, or
in the magnitude of their gradient, for example, a reduction in the
number of samples required to represent a band-limited signal
has important implications for sparse image reconstruction on
the sphere. A more efficient sampling of the sphere improves
the fidelity of sparse image reconstruction through both the
dimensionality and spatial sparsity of signals. To demonstrate
this result we consider a simple inpainting problem on the sphere
and consider images sparse in the magnitude of their gradient.
We develop a framework for total variation (TV) inpainting,
which relies on a sampling theorem to define a discrete TV
norm on the sphere. Solving these problems is computationally
challenging; hence we develop fast methods for this purpose.
Numerical simulations are performed, verifying the enhanced
fidelity of sparse image reconstruction due to the more efficient
sampling of the sphere provided by the new sampling theorem.

Index Terms—Spheres, harmonic analysis, sampling methods,
compressed sensing.

I. INTRODUCTION

IMAGES are observed on a spherical manifold in many
fields, from astrophysics (e.g. [1]) and biomedical imaging

(e.g. [2]), to computer graphics (e.g. [3]) and beyond. In many
of these settings inverse problems arise, where one seeks to
recover an unknown image from linear measurements, which
may be noisy, incomplete or acquired through a convolution
process, for example. One example where only incomplete
measurements on the sphere are available is observation of the
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cosmic microwave background (CMB) [1], which is corrupted
by foreground contamination, such as galactic emission and
point sources.

Inverse problems are typically solved by assuming some
prior on the unknown image to be recovered. Sparsity priors
have received a lot of attention recently, due to the sound
theoretical foundations provided by the emerging theory of
compressive sensing [4]–[6]. Furthermore, sparse representa-
tions have been shown to be an effective and versatile approach
for representing many real-world signals, in applications far
too numerous to name (for a general discussion and some
examples see [7]). Compressive sensing has been considered
on the sphere for signals sparse in the spherical harmonic
domain [8], however a general theoretical framework does not
yet exist for signals sparse in spatially localised representa-
tions. Nevertheless, sparse image reconstruction on the sphere
in alternative representations, such as a set of overcomplete
dictionaries, may still be considered; indeed, such an approach
has been shown to be very effective [9].

As soon as one adopts signal priors that incorporate spatially
localised information, either directly in real space, in the
magnitude of the gradient of signals, or through a wavelet
basis or overcomplete dictionary, for example, the sampling
theorem becomes increasingly important. These sparsity priors
are typically imposed through a norm, which may be defined
by an integral of the underlying continuous signal. A sampling
theorem affords a quadrature rule, which may be used to relate
the norm to discrete samples of the signal. Recently, a new
sampling theorem on the sphere was developed by two of the
authors of the current article for equiangular sampling schemes
[10], reducing Nyquist sampling on the sphere by a factor
of two compared to the canonical approach [11], [12]. The
reduction in the number of samples required to represent a
band-limited signal on the sphere has important implications
for sparse image reconstruction.

To gain some intuition regarding these implications, we
appeal to standard compressive sensing results in Euclidean
space, where the ratio of the number of measurements M
required to reconstruct a sparse image, to its dimensionality
N , goes as M/N ∝ K [5], where K is the sparsity measure
of the image (i.e. the number of non-zero coefficients in
some sparse representation). Typically the coherence of the
measurement and sparsifying operators enters this expression
[5]. However, in Euclidean space, as on the sphere, discrete
inner products can be related to the (unique) continuous
inner product (via a sampling theorem) and the measure of
coherence is thus invariant to the choice of sampling theorem;
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hence we can safely neglect the impact of coherence when
comparing sampling theorems on the sphere. If one is not
concerned with the number of measurements required to
achieve exact signal reconstruction but rather with the best
reconstruction fidelity for a given number of measurements,
then these results suggest that for a given number of measure-
ments reconstruction fidelity improves as the dimensionality
of the signal N or the sparsity measure K reduce. Both of
these quantities, dimensionality and sparsity, are related to
the number of samples required to capture all information
content of the underlying signal, as prescribed by a sampling
theorem. Spatial dimensionality is given identically by the
number of samples of the sampling theorem. For any sparse
representation of an image that captures spatially localised
information, the sparsity of the signal is also directly related
to spatial sampling. For example, in a wavelet representation,
wavelets are located on each sample point; a less dense
dictionary of wavelet atoms required to span the space will
inevitably lead to a more sparse representation of images. This
argument can be extended to sparsity in the gradient and,
in fact, all sparsity measures that capture spatially localised
signal content. Consequently, for images sparse in a spatially
localised representation, the ability to represent a band-limited
signal on the sphere with fewer samples while still capturing
all of its information content will improve the fidelity of sparse
image reconstruction by enhancing both the dimensionality
and sparsity of signals.

In this article we study the implications of a new sampling
theorem [10] for sparse image reconstruction on the sphere.
We verify the hypothesis that a more efficient sampling of
the sphere, as afforded by the new sampling theorem [10],
enhances the fidelity of sparse image reconstruction through
both the dimensionality and sparsity of signals. To demonstrate
this result we consider a simple inpainting problem, where
we recover an image on the sphere from incomplete spatial
measurements, and consider images sparse in the magnitude
of their gradient. We develop a framework for total variation
(TV) inpainting on the sphere, which relies on a sampling
theorem and its associated quadrature rule to define a dis-
crete TV norm on the sphere. Solving these problems is
computationally challenging; hence we develop fast methods
for this purpose. Our framework is general and is trivially
extended to other sparsity priors that incorporate spatially
localised information. The remainder of the article is structured
as follows. In Section II we concisely review the harmonic
structure of the sphere and corresponding sampling theorems.
We develop a framework for TV inpainting on the sphere
in Section III. In Section IV we describe algorithms for
solving these optimisation problems on the sphere. Numerical
simulations are performed in Section V, showing the enhanced
fidelity of sparse image reconstruction provided by a more
efficient sampling of the sphere. Concluding remarks are made
in Section VI.

II. SAMPLING ON THE SPHERE

A sampling theorem on the sphere states that all information
in a (continuous) band-limited signal is captured in a finite

number of samples in the spatial domain. The frequency
content of signals on the sphere is accessed through the
spherical harmonic transform; a sampling theorem on the
sphere is equivalent to an exact prescription for computing
a spherical harmonic transform, since a (continuous) band-
limited signal on the sphere may be represented by a finite
harmonic expansion. However, on the sphere, unlike Euclidean
space, the number of samples required in the harmonic and
spatial domains differ, with different sampling theorems on the
sphere requiring a different number of samples in the spatial
domain. Recently, a new sampling theorem on the sphere has
been developed by two of the authors of the current article
[10] that requires approximately half of the number of samples
of the canonical equiangular sampling theorem [11]. In this
section we review the harmonic structure of the sphere, before
discussing sampling theorems on the sphere.

A. Harmonic structure of the sphere

We consider the space of square integrable functions on the
sphere L2(S2), with the inner product of x, y ∈ L2(S2) defined
by

〈x, y〉 ≡
∫
S2

dΩ(θ, ϕ) x(θ, ϕ) y∗(θ, ϕ) ,

where dΩ(θ, ϕ) = sin θ dθ dϕ is the usual invariant measure
on the sphere and (θ, ϕ) denote spherical coordinates with
colatitude θ ∈ [0, π] and longitude ϕ ∈ [0, 2π). Complex
conjugation is denoted by the superscript ∗. The canonical
basis for the space of square integrable functions on the sphere
is given by the spherical harmonics Y`m ∈ L2(S2), with
natural ` ∈ N, integer m ∈ Z and |m| ≤ `, which arise
from the solutions to the Helmholtz differential equation on
the sphere. Due to the orthogonality and completeness of
the spherical harmonics, any square integrable function on
the sphere x ∈ L2(S2) may be represented by its spherical
harmonic expansion

x(θ, ϕ) =

∞∑
`=0

∑̀
m=−`

x̂`m Y`m(θ, ϕ) , (1)

where the spherical harmonic coefficients are given by the
usual projection onto each basis function:

x̂`m = 〈x, Y`m〉 =

∫
S2

dΩ(θ, ϕ) x(θ, ϕ) Y ∗`m(θ, ϕ) .

Throughout, we consider signals on the sphere band-limited
at L, that is signals such that x̂`m = 0, ∀` ≥ L, in which
case the summation over ` in (1) may be truncated to the
first L terms. Finally, note that the harmonic coefficients of
a real function on the sphere satisfy the conjugate symmetry
relation x̂∗`m = (−1)m x̂`,−m, which follows directly from the
conjugate symmetry of the spherical harmonics.

B. Sampling theorems on the sphere

Sampling theorems on the sphere describe how to sample
a band-limited signal x so that all information is contained in
a finite number of samples N . We denote the concatenated
vector of N spatial measurements by x ∈ CN and the
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concatenated vector of L2 harmonic coefficients by x̂ ∈ CL
2

.
Note that the number of spatial and harmonic elements, N
and L2 respectively, may differ (and in fact do differ for all
known sampling theorems on the sphere). Before discussing
different sampling theorems on the sphere, we define a generic
notation to describe the harmonic transform corresponding
to a given sampling theorem. A sampling theorem describes
how to compute the spherical harmonic transform of a signal
exactly. Since the spherical harmonic transform and inverse
are linear, we represent the forward and inverse transform by
the matrix operators Γ ∈ CL

2×N and Λ ∈ CN×L
2

respectively.
The spherical harmonic coefficients of a sampled signal (i.e.
image) on the sphere x are given by the forward transform

x̂ = Γx ,

while the original signal is recovered from its harmonic
coefficients by the inverse transform

x = Λx̂ .

Different sampling theorems then differ in the definition of
Λ, Γ and the number of spatial samples N . By definition, all
sampling theorems give exact spherical harmonic transforms,
implying ΓΛ = 1L2 , where 1k is the k × k identity matrix.
However, for all sampling theorems on the sphere the number
of samples required in the spatial domain exceeds the number
of coefficients in the harmonic domain (i.e. N > L2), hence
ΛΓ 6= 1N . Consequently, for the N sample positions of a
sampling theorem, an arbitrary set of sampled values does
not necessary define a band-limited signal (contrast this to
the discrete Euclidean setting where a finite set of samples
uniquely defines a band-limited signal). Note also that the
adjoint inverse (forward) spherical harmonic transform differs
from the forward (inverse) spherical harmonic transform.

For an equiangular sampling of the sphere, the Driscoll &
Healy (DH) [11] sampling theorem has become the standard,
requiring NDH = 2L(2L− 1) ∼ 4L2 samples on the sphere
to represent exactly a signal band-limited in its spherical
harmonic decomposition at L. Recently, a new sampling
theorem for equiangular sampling schemes has been de-
veloped by McEwen & Wiaux (MW) [10], requiring only
NMW = (L− 1)(2L− 1) + 1 ∼ 2L2 samples to represent a
band-limited signal exactly. No sampling theorem on the
sphere reaches the optimal number of samples suggested
by the L2 dimension of a band-limited signal in harmonic
space (although the MW sampling theorem comes closest to
this bound). The MW sampling theorem therefore achieves
a more efficient sampling of the sphere, with a reduction
by a factor of approximately two in the number of samples
required to represent a band-limited signal on the sphere
– this has important implications for sparse image recon-
struction on the sphere. Gauss-Legendre (GL) quadrature can
also be used to construct an efficient sampling theorem on
the sphere, with NGL = L(2L− 1) ∼ 2L2 samples (see e.g.
[10]). The MW sampling theorem nevertheless remains more
efficient, especially at low band-limits. Furthermore, it is not
as straightforward to define the TV norm on the GL grid
since it is not equiangular. Finally, algorithms implementing
the GL sampling theorem have been shown to be limited

to lower band-limits and less accurate than the algorithms
implementing the MW sampling theorem [10]. Thus, we focus
on equiangular sampling theorems only in this article.

A sampling theorem on the sphere effectively encodes an
exact quadrature rule for the integration of band-limited func-
tions [10], [11]. In the framework for the sparse reconstruction
of sampled signals on the sphere that we go on to develop,
we make a connection to the underlying continuous signal
through a sampling theorem. The sampling theorem thus plays
an integral role in our sparse image reconstruction framework
on the sphere, not only in its definition but also through the
impact of signal dimensionality and sparsity on reconstruction
fidelity. Although we defer the details of the DH [11] and MW
[10] sampling theorems to the respective articles, we give here
the sample positions and quadrature weights of each sampling
theorem for completeness. The sample positions are the same
in ϕ for both sampling theorems, with ϕp = 2πp/(2L − 1),
where p ∈ {0, 1, . . . , Nϕ − 1}, with Nϕ = 2L − 1. The
sample positions in θ for the DH sampling theorem are given
by θt = π(2t + 1)/(4L), where t ∈ {0, 1, . . . , Nθ − 1},
with Nθ = 2L, giving NDH = 2L(2L− 1) ∼ 4L2 samples
on the sphere [12]. The sample positions in θ for the MW
sampling theorem are given by θt = π(2t + 1)/(2L − 1),
where t ∈ {0, 1, . . . , Nθ − 1}, with Nθ = L, giving
NMW = (L− 1)(2L− 1) + 1 ∼ 2L2 samples on the sphere
[10]. The quadrature weights for the DH sampling theorem
are given by [11], [20]

q(θt) =
2 sin θt
L

L−1∑
k=0

sin
(
(2k + 1)θt

)
2k + 1

.

The quadrature weights for the MW sampling theorem are
given by [10]

q(θt) =
2π

L

[
v(θt) + (1− δt,L−1) v(θ2L−2−t)

]
,

where

v(θt) =
1

2L− 1

L−1∑
m′=−(L−1)

w(−m′) eim
′θt

is the (reflected) inverse discrete Fourier transform of the
weights

w(m′) =


±iπ/2, m′ = ±1

0, m′ odd, m′ 6= ±1

2/(1−m′2), m′ even
.

The quadrature weights for the MW sampling theorem are in
fact the samples of the function defined by sin θ on [0, π)
and zero on [π, 2π), band-limited at L, folded back onto the
domain [0, π). The quadrature weights for both the DH and
MW sampling theorems play a similar role in the discrete
setting to the sin θ term in the invariant measure defined on
the sphere dΩ in the continuous setting.

We close this section by noting that fast algorithms have
been developed to compute forward and inverse spheri-
cal harmonic transforms rapidly for both the DH [11],
[12] and MW [10] sampling theorems. These fast algo-
rithms are implemented, respectively, in the publicly available
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SpharmonicKit1 package and the Spin Spherical Harmonic
Transform (SSHT)2 package and are essential to facilitate the
application of these sampling theorems at high band-limits.

III. SPARSE IMAGE RECONSTRUCTION ON THE SPHERE

A more efficient sampling of a band-limited signal on the
sphere, as afforded by the MW sampling theorem, improves
the quality of sparse image reconstruction for images that are
sparse in a spatially localised measure. To demonstrate this
result we consider a simple inpainting problem on the sphere
and consider images sparse in the magnitude of their gradient.
We develop a framework for total variation (TV) inpainting
on the sphere, which relies on a sampling theorem and its
associated quadrature rule to define a discrete TV norm on the
sphere. Firstly, we define the discrete TV norm on the sphere,
before secondly defining finite difference gradient operators
on the sphere. Thirdly, we discuss the TV inpainting problem.

A. TV norm on the sphere

The continuous TV norm on the sphere is defined by

‖x‖TV ≡
∫
S2

dΩ |∇x| ,

where the magnitude of the gradient of the signal x is given
by

| ∇x | =

√√√√(∂x
∂θ

)2

+
1

sin2 θ

(
∂x

∂ϕ

)2

.

Note that we have dropped the explicit dependence of x on
(θ, ϕ) for brevity. In practice, however, we must consider
the TV norm of the sampled signal x, which we define by
approximating the continuous TV norm. We consider only
equiangular samplings of the sphere in what follows, since
sampling theorems exists on these grids and this also simplifies
the subsequent computation of finite differences on the sphere
(although a discrete TV norm on the sphere may also be
defined for other sampling schemes, either directly [13] or
through the construction of a weighted graph [14]). We first
approximate the integral of the continuous TV norm using the
quadrature rule corresponding to the sampling theorem on the
sphere adopted:

‖x‖TV '
Nθ−1∑
t=0

Nϕ−1∑
p=0

|∇x| q(θt) , (2)

where t and p denote the index of the sample points in θ and
ϕ respectively, with the number of samples in each dimension
given by Nθ and Nϕ respectively. If |∇x| were band-limited
at L, then (2) would be exact. Although this is not likely to
be the case, (2) nevertheless is a reasonable approximation of
the continuous TV norm. It remains to compute |∇x|, which
we approximate by finite differences:

| ∇x | '

√(
δθx
)2

+
1

sin2 θt

(
δϕx

)2
,

1http://www.cs.dartmouth.edu/∼geelong/sphere/
2http://www.jasonmcewen.org/

where the finite difference operators δθ and δϕ are defined
explicitly in the following subsection. We may therefore
approximate the continuous TV norm on the sphere by

‖x‖TV '
Nθ−1∑
t=0

Nϕ−1∑
p=0

√
q2(θt)

(
δθx
)2

+
q2(θt)

sin2 θt

(
δϕx

)2
≡ ‖x‖TV , (3)

which we define to be the discrete TV norm of x on the sphere.
Notice that the inclusion of the quadrature weights q(θt),
regularises the sin θt term that arises from the definition of
the gradient on the sphere, eliminating numerical instabilities
that this would otherwise cause.

Alternative choices for the definition of the discrete TV
norm on the sphere are also possible. In particular, one could
make (2) exact by applying the band-limiting operator ΛΓ to
|∇x|. However, this definition would introduce complications
when solving optimisation problems involving the discrete TV
norm and, more importantly, would also prohibit passing the
quadrature weights inside the gradient, as in (3), in order to
eliminate numerical instabilities due to the sin θt term. We
therefore adopt the definition of the discrete TV norm on the
sphere given by (3).

B. Gradient operators on the sphere

The finite difference operators δθ and δϕ defined on the
sphere appear in the definition of the TV norm, which is
then given as a weighted gradient in terms of these operators.
Furthermore, as we shall see, to solve the TV inpainting
problems outlined in the following subsection, the adjoints of
these operators are also required. We define these operators
and adjoints explicitly here.

The operator δθ is defined sample-wise by

ut,p ≡ (δθx
)
t,p

≡

{
xt+1,p − xt,p, t = 0, 1, · · · , Nθ − 2 and ∀p
0, t = Nθ − 1 and ∀p

,

with adjoint

(δ†θu
)
t,p

=


−ut,p, t = 0 and ∀p
ut−1,p − ut,p, t = 1, · · ·Nθ − 2 and ∀p
ut−1,p, t = Nθ − 1 and ∀p

.

Note that this definition is identical to the typical definition of
the corresponding operator on the plane [16]. The operator δϕ
is defined sample-wise by

vt,p ≡ (δϕx
)
t,p

≡

{
xt,p+1 − xt,p, p = 0, 1, · · · , Nϕ − 2 and ∀t
xt,0 − xt,p, p = Nϕ − 1 and ∀t

,

with adjoint

(δ†ϕv
)
t,p

=

{
vt,Nϕ−1 − vt,p, p = 0 and ∀t
vt,p−1 − vt,p, p = 1, · · ·Nθ − 1 and ∀t

.

http://www.cs.dartmouth.edu/~geelong/sphere/
http://www.jasonmcewen.org/
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Since the sphere is periodic in ϕ, we define the corresponding
finite difference operator to also be periodic. The finite differ-
ence operator and adjoint in ϕ therefore differ to the typical
definition on the plane [16].

The TV norm on the sphere may then be seen as the sum
of the magnitude of the weighted gradient

‖x‖TV =

Nθ−1∑
t=0

Nϕ−1∑
p=0

∣∣(∇̃x)
t,p

∣∣ ,
where ∣∣(∇̃x)

t,p

∣∣ = (ũ2
t,p + ṽ2t,p)

1/2 ,

for (
ũ
ṽ

)
≡ ∇̃x .

The weighted gradient operator is defined by

∇̃ ≡

(
δ̃θ
δ̃ϕ

)
,

where the weighted finite difference operators are defined by(
δ̃θ
)
t,p
≡ q(θt)

(
δθ
)
t,p

and (
δ̃ϕ
)
t,p
≡ q(θt)

sin θt

(
δϕ
)
t,p
.

If θt = π, corresponding to the South pole of the sphere,
then (δϕx

)
t,p

= 0 and thus we define (δ̃ϕx
)
t,p

= 0 to avoid
dividing by sin θt = 0. Note that the MW sampling theorem
includes a sample on the South pole, while the DH sampling
theorem does not (neither sampling theorem includes a sample
on the North pole). The adjoint weighted gradient operator is
then applied as

x′ = ∇̃†
(
ũ
ṽ

)
= δ̃†θũ+ δ̃†ϕṽ ,

where the adjoint operators δ̃†θ and δ̃†ϕ follow trivially from δ†θ
and δ†ϕ.

C. TV inpainting on the sphere

We consider the inpainting problem

y = Φx+ n ,

where M noisy real measurements y ∈ RM of the real image
on the sphere x ∈ RN are made. The matrix implementing
the measurement operator Φ ∈ RM×N represents a uniformly
random masking of the image, with one non-zero, unit value
on each row specifying the location of the measured datum.
The noise n ∈ RM is assumed to be independent and
identically distributed (iid) Gaussian noise, with zero mean
and variance σ2

n. We assume that the image x is sparse
in the norm of its gradient and thus attempt to recover x
from measurements y by solving the following TV inpainting
problem directly on the sphere:

x? = arg min
x

‖x‖TV such that ‖y − Φx‖2 ≤ ε . (4)

The square of the residual noise follows a scaled χ2 distribu-
tion with M degrees of freedom, i.e. ‖y−Φx?‖22 ∼ σ2

nχ
2(M).

Consequently, we choose ε2 to correspond to the (100α)th
percentile of this distribution, giving a probability α that pure
noise produces a residual noise equal to or smaller than the
observed residual. Note that the data constraint in (4) is given
by the usual `2-norm, which is appropriate for Gaussian noise
on a discrete set of measurements. Although we consider band-
limited signals, we have not imposed this constraint when
solving (4). Consequently, x? will not necessarily be band-
limited at L and we impose this constraint on the solution
by performing a forward and inverse spherical harmonic
transform: x?L = ΛΓx?.

As discussed already, for images sparse in a measure that
captures spatially localised information, such as the TV norm,
a more efficient sampling of the signal enhances sparsity.
Furthermore, when recovering signals in the spatial domain
directly, the dimensionality of the signal is also enhanced
by a more efficient sampling. These two effects both act to
improve the fidelity of sparse image reconstruction. Thus,
the more efficient sampling of the MW sampling theorem
when compared to the DH sampling theorem will improve
the fidelity of sparse image reconstruction when solving the
TV inpainting problem given by (4). We verify these claims
with numerical experiments in Section V.

No sampling theorem on the sphere reaches the optimal
number of samples in the spatial domain suggested by the
L2 dimensionality of the signal in the harmonic domain. We
may therefore optimise the dimensionality of the signal that
we attempt to recover by recovering its harmonic coefficients
x̂ directly. We do so by solving the following TV inpainting
problem in harmonic space:

x̂′? = arg min
x̂′

‖Λ′x̂′‖TV such that ‖y − ΦΛ′x̂′‖2 ≤ ε . (5)

We impose a reality constraint in this problem by explicitly
imposing conjugate symmetry in harmonic space through the
conjugate symmetry extension operator Π ∈ CL

2×L(L+1)/2,
where Λ′ = ΛΠ. The full set of harmonic coefficients of x are
given by x̂ = Πx̂′, where x̂′ ∈ CL(L+1)/2 are the harmonic
coefficients for the spherical harmonic azimuthal index m non-
negative only. The image on the sphere is then recovered from
its harmonic coefficients by x? = Λ′x̂′?. By solving the TV
inpainting problem directly in harmonic space, we naturally
recover a signal band-limited at L.

When solving the TV inpainting problem (5) directly in
harmonic space, the dimensionality of the recovered signal is
optimal and identical for both sampling theorems. However,
the sparsity of the signal with respect to the TV norm remains
enhanced for the MW sampling theorem when compared to
the DH sampling theorem. Consequently, the MW sampling
theorem will improve the fidelity of sparse image reconstruc-
tion when solving the TV inpainting problem given by (5),
although through sparsity only and not also dimensionality. We
verify these claims with numerical experiments in Section V.

Note that if a band-limit constraint were explicitly imposed
in problem (4), then the two problems would be equiva-
lent, however, this would involve applying the band-limiting
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operator ΛΓ, complicating the problem and increasing the
computational cost of finding a solution, while provide no
improvement over (5). In the current formulation of these
two optimisation problems, problem (4) has the advantage of
simplicity, while problem (5) is the simplest formulation that
optimises dimensionality.

IV. ALGORITHMS

We solve the TV inpainting problems on the sphere given
by (4) and (5) using iterative convex optimisation methods;
specifically, using the Douglas-Rachford proximal splitting
algorithm [19]. We describe the convex optimisation algorithm
that we apply, outlining the modifications required to solve
the optimisation problems on the sphere. Note that solving
the TV inpainting problem on the sphere in harmonic space
poses two challenges as we go to high-resolution, which we
then address in turn. Firstly, we require as an input to the
convex optimisation algorithm an upper bound on the inverse
transform operator norm, which is challenging to compute at
high-resolution. We give a method for computing the operator
norm at high-resolution, which, crucially, does not require
an explicit computation of Λ. Secondly, the inverse spherical
harmonic transform Λ and its adjoint operator Λ† must be
applied repeatedly in the iterative algorithm that is described
above. Fast algorithms are essential to perform forward and
inverse spherical harmonic transforms at high-resolution and
have been developed for both the DH [11], [12] and MW [10]
sampling theorems. To solve the inpainting problem at high-
resolution we also require a fast adjoint inverse transform. We
thus develop fast algorithms to perform the adjoint forward and
adjoint inverse spherical harmonic transforms corresponding
to the MW sampling theorem. Since we predict the MW
sampling theorem to be superior to the DH sampling theorem
for sparse image reconstruction on the sphere (a prediction
that is validated by low-resolution numerical experiments
in Section V), we develop fast adjoint algorithms for the
MW sampling theorem only; the development of fast adjoint
algorithms for the DH sampling theorem is beyond the scope
of this article. These methods then render the calculation
of solutions to the TV inpainting problems feasible at high-
resolution for the MW sampling theorem.

A. Convex optimisation

We apply the Douglas-Rachford proximal splitting algo-
rithm [19] to solve the convex optimisation problems (4) and
(5). Note that, in the following, we describe only how to solve
problem (5) as problem (4) can be solved in the same way by
replacing Λ′ with the identity matrix 1N and by replacing
x̂′ with x. The Douglas-Rachford algorithm [19] is based
on a splitting approach that requires the computation of two
proximity operators [15]. In our case, one proximity operator
is based on the TV norm ‖Λ′ ·‖TV and the other on the data
constraint ‖y − ΦΛ′ ·‖2 ≤ ε. In the case of an image on the
plane, the proximity operator based on the TV norm may be
computed using, for example, the method described in [16] or
in [17]. For an image on the sphere, the same methods can be
used after introducing the following slight modifications. In

[17], the authors describe their algorithm in terms of a linear
operator L, its adjoint L†, and two projections onto a set P
and a set C. In our case, the linear operator L and its adjoint
L† may be redefined as

L :

(
ũ
ṽ

)
7−→ −Λ′†∇̃†

(
ũ
ṽ

)
and

L† : x̂′ 7−→ −∇̃Λ′x̂′ = −

(
δ̃θΛ
′x̂′

δ̃ϕΛ′x̂′

)
,

where the set P is the set of weighted gradient-pairs (ũ, ṽ)
such that ũ2

t,p + ṽ2t,p ≤ 1 and C is simply given by the space of
the recovered vector x̂. The second proximity operator, related
to the data constraint ‖y − ΦΛ′ ·‖2 ≤ ε, is computed using
the method described in [18] directly.

B. Operator norm bound

This convex optimisation algorithm requires as input upper
bounds for the norms of the operators that appear in the
problem. The calculation of these norms is in most cases
straightforward, however the calculation of the inverse spher-
ical harmonic transform operator norm, defined by

‖Λ‖2 ≡ max
‖x̂‖2=1

‖Λx̂‖2 ,

can prove problematic. At low-resolution ‖Λ‖2 may be com-
puted explicitly, however this is not feasible at high-resolution
since even computing and storing Λ explicitly is challenging.
We develop a method here to estimate this norm for the MW
sampling theorem without computing Λ explicitly. We seek
a sampled function on the sphere x = Λx̂ that maximises
‖x‖2, while satisfying the constraint ‖x̂‖2 = 1. By the
Parseval relation and the sampling theorem on the sphere, this
constraint may be rewritten:

‖x̂‖2 = 1 ⇒
Parseval

〈x, x〉 = 1

⇒
Sampling theorem

xu
†Qxu = 1 ,

where xu ∈ RNu contains samples of x, sampled at a
resolution sufficient to represent x2, i.e. corresponding to
band-limit 2L−1 (so that an exact quadrature may be used to
evaluate 〈x, x〉 from a discrete set of samples), Q ∈ RNu×Nu

is the matrix with corresponding quadrature weights along its
diagonal, and where Nu ∼ 2(2L−1)2. Since we know that the
quadrature weights for the MW sampling theorem are closely
approximated by sin θ [10], the signal that maximises ‖x‖2
while satisfying the constraint xu

†Qxu = 1 has its energy
centred as much as possible on the South pole since this is
where the quadrature weights are smallest (recall that the MW
sampling scheme does not contain a sample on the North pole).
This signal is given by the closest signal to the Dirac delta
function centred on the South pole, that is also band-limited
at L. The spherical harmonic coefficients of this band-limited
Dirac delta function δL ∈ L2(S2) are given by

δ̂L`m = κ (−1)`
√

2`+ 1

4π
δm0 ,
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Fig. 1. Explicit calculation of the inverse spherical harmonic transform
operator norm ‖Λ‖2 and estimation by the method outlined in the text, at
low-resolution. The solid red line shows the estimated norm for all band-
limits L, while the solid blue circles show the values computed explicitly for
L ∈ {2, 4, 8, 16, 32}. The estimated norm agrees with the actual norm very
well.

where κ is a normalisation factor chosen to ensure ‖δ̂L‖2 = 1
and δij is the Kronecker delta symbol. The norm of the inverse
spherical harmonic transform operator may then be computed
by ‖Λ‖2 ' ‖Λδ̂L‖2, which, crucially, does not require an
explicit computation of Λ, merely its application. In Figure 1
we compute ‖Λ‖2 by the method outlined here and from
Λ explicitly, for low-resolution. We find that the method to
estimate the norm of the inverse spherical harmonic transform
operator outlined here estimates the actual norm very well. We
also derived an upper bound for the norm of this operator for
the MW sampling theorem. However, the bound we derived is
not tight and we found empirically that the method outlined
here to estimate the norm itself, rather than a bound, is very
accurate and improved the performance of the optimisation
algorithm considerably when compared to a non-tight bound.
Although we do not prove so explicitly, we conjecture that
the method outlined here gives the inverse transform operator
norm exactly.

C. Fast adjoint spherical harmonic transforms

Standard convex optimisation methods require not only the
application of the operators that appear in the optimisation
problem but often also their adjoints. Moreover, these methods
are typically iterative, necessitating repeated application of
each operator and its adjoint. Thus, to solve optimisation
problems that incorporate harmonic transform operators, like
the harmonic space TV inpainting problem given by (5), fast
algorithms to apply both the operator and its adjoint are
required to render high-resolution problems computationally
feasible. Here we develop fast algorithms to perform adjoint
forward and adjoint inverse spherical harmonic transforms
for the MW sampling theorem. Although we only require
the adjoint inverse transform in this article, for the sake of
completeness we also derive a fast adjoint forward transform.
These fast adjoint algorithms are implemented in the publicly

available SSHT3 package [10].
The fast adjoint inverse spherical harmonic transform for the

MW sampling theorem follows by taking the adjoint of each
stage of the fast inverse transform [10] and applying these
in reverse order. Note that we consider spin signals sf , with
integer spin s ∈ Z; the standard scalar case follows simply
by setting s = 0. The final stage of the fast inverse transform
involves discarding out-of-domain samples and has adjoint

sf̃
†(θt, ϕp) =

{
sf(θt, ϕp) , t ∈ {0, 1, . . . , L− 1}
0 , t ∈ {L, . . . , 2L− 2}

.

The second stage of the fast adjoint inverse transform is given
by

sFmm′
† =

2L−2∑
t=0

2L−2∑
p=0

sf̃
†(θt, ϕp) e−i(m

′θt+mϕp) ,

which may be computed rapidly using fast Fourier transforms
(FFTs). The final stage of the fast adjoint inverse transform is
given by

sf̂`m
† = (−1)s im+s

√
2`+ 1

4π

×
L−1∑

m′=−(L−1)

∆`
m′m ∆`

m′,−s sFmm′
† ,

where ∆`
mn ≡ d`mn(π/2) are the Wigner d-functions evalu-

ated for argument π/2 (see e.g. [21]). This final calculation
dominates the overall asymptotic complexity of the fast adjoint
inverse transform, resulting in an algorithm with complexity
O(L3).

The fast adjoint forward spherical harmonic transform for
the MW sampling theorem follows by taking the adjoint of
each stage of the fast forward transform [10] and applying
these in reverse order. The first stage of the fast adjoint forward
transform is given by

sGmm′
† = (−1)s i−(m+s)

×
L−1∑
`=0

√
2`+ 1

4π
∆`
m′m ∆`

m′,−s sf̂`m ,

The next stage is given by the (reflected) convolution

sFmm′′
† = 2π

L−1∑
m′=−(L−1)

sGmm′
† w(m′ −m′′) ,

which is self-adjoint, followed by the inverse Fourier transform
in θ

sF̃m
†(θt) =

1

2L− 1

L−1∑
m′=−(L−1)

sFmm′
† eim

′θt ,

which may be computed rapidly using FFTs. The next stage
consists of the adjoint of the periodic extension of a function

3http://www.jasonmcewen.org/

http://www.jasonmcewen.org/
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on the sphere performed in the forward transform and is given
by

sFm
†(θt) =
sF̃m

†(θt)

+(−1)m+s
sF̃m

†(θ2L−2−t) , t ∈ {0, 1, . . . , L− 2}
sF̃m

†(θt) , t = L− 1

.

The final stage consists of the Fourier transform in ϕ

sf
†(θt, ϕp) =

1

2L− 1

L−1∑
m=−(L−1)

sFm
†(θt) eimϕp ,

which may be computed rapidly using FFTs. The first cal-
culation dominates the overall asymptotic complexity of the
fast adjoint forward transform, resulting in an algorithm with
complexity O(L3).

V. SIMULATIONS

We perform numerical experiments to examine the impact
of a more efficient sampling of the sphere when solving the
TV inpainting problems defined in Section III. Firstly, we
perform a low-resolution comparison of reconstruction fidelity
when adopting the DH and MW sampling theorems, where the
predicted improvements in reconstruction fidelity provided by
the MW sampling theorem are verified in practice. Secondly,
we perform a single simulation to illustrate TV inpainting at
high-resolution.

A. Low-resolution comparison

A test image is constructed from Earth topography data.
The original Earth topography data are taken from the Earth
Gravitational Model (EGM2008) publicly released by the U.S.
National Geospatial-Intelligence Agency (NGA) EGM Devel-
opment Team.4 To create a band-limited test signal sparse in
its gradient, the original data are thresholded at their midpoint
to create a binary Earth map (scaled to contain zero and unit
values), which is then smoothed by multiplication in harmonic
space with the Gaussian Ĝ`m = exp(−`2σs), with σs = 0.002,
to give a signal band-limited at L = 32. The resulting test
image is displayed in Figure 2. Measurements of the test image
are taken at uniformly random locations on the sphere, as
described by the measurement operator Φ, in the presence
of Gaussian iid noise with standard deviation σn = 0.01.
Reconstructed images on the sphere are recovered by solving
the inpainting problems in the spatial and harmonic domains,
through (4) and (5) respectively, using both the DH and MW
sampling theorems, giving four reconstruction techniques. The
bound ε is determined from α = 0.99. We consider the mea-
surement ratios M/L2 ∈ {1/4, 1/2, 1, 3/2, NMW/L

2 ∼ 2}
(recall that L2 is the dimensionality of the signal in harmonic
space). The measurement ratio M/L2 = NMW/L

2 ∼ 2 corre-
sponds to complete coverage for the MW sampling theorem,
i.e. Nyquist rate sampling on the MW grid.

4These data were downloaded and extracted using the tools available from
Frederik Simons’ webpage: http://www.frederik.net.

Fig. 2. Test image of Earth topographic data constructed to be sparse in its
gradient and band-limited at L = 32. This image constitutes the ground truth
in our numerical experiments. Here and subsequently data on the sphere are
displayed using the Mollweide projection, with zero values shown in black,
unit values shown in yellow, and the colour of intermediate values interpolated
between these extremes.

Typical reconstructed images are shown in Figure 3 for
the four reconstruction techniques. For each reconstruction
technique and measurement ratio M/L2, we perform ten
simulations for random measurement operators and noise. To
quantify the error of reconstruction, we compute the signal-to-
noise-ratio SNR = 20 log(‖x̂‖2/‖x̂? − x̂‖2) (defined in har-
monic space to avoid differences due to the number of samples
of each sampling theorem). Note that the standard `2-norm is
used in the definition of the SNR given the discrete nature of
harmonic space on the sphere. Reconstruction performance,
averaged over these ten simulations, is shown in Figure 4.
When solving the inpainting problem in the spatial domain
through (4) we see a large improvement in reconstruction
quality for the MW sampling theorem when compared to the
DH sampling theorem. This is due to the enhancement in both
dimensionality and sparsity afforded by the MW sampling
theorem in this setting. When solving the inpainting problem
in the harmonic domain, we see a considerable improvement
in reconstruction quality for each sampling theorem, since
we optimise the dimensionality of the recovered signal by
going to harmonic space. For harmonic reconstructions, the
MW sampling theorem remains superior to the DH sampling
theorem due to the enhancement in sparsity (but not dimen-
sionality) that it affords in this setting. All of the predictions
made in Section III are thus exhibited in the numerical
experiments performed in this section. In all cases, the superior
performance of the MW sampling theorem is clear.

B. High-resolution illustration

In this section we perform a single simulation to illustrate
TV inpainting at high resolution. Since we develop fast adjoint
algorithms for the MW sampling theorem only (due to its
superiority), we therefore use only the MW sampling theorem
for the high-resolution inpainting simulation performed here.

A high-resolution test image is constructed from the same
Earth topography data and using the same procedure as
described in Section V-A. The original data are smoothed in
harmonic space with a Gaussian with σs = 0.0002, to give a
signal band-limited at L = 128. The resulting test image is
displayed in Figure 5 (a). The same measurement procedure as
outlined previously is applied to take noisy, incomplete mea-
surements of the data for the measurement ratio M/L2 = 1/4,

http://www.frederik.net
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(a) DH spatial for M/L2 = 1/4 (b) DH harmonic for M/L2 = 1/4 (c) MW spatial for M/L2 = 1/4 (d) MW harmonic for M/L2 = 1/4

(e) DH spatial for M/L2 = 1/2 (f) DH harmonic for M/L2 = 1/2 (g) MW spatial for M/L2 = 1/2 (h) MW harmonic for M/L2 = 1/2

(i) DH spatial for M/L2 = 1 (j) DH harmonic for M/L2 = 1 (k) MW spatial for M/L2 = 1 (l) MW harmonic for M/L2 = 1

(m) DH spatial for M/L2 = 3/2 (n) DH harmonic for M/L2 = 3/2 (o) MW spatial for M/L2 = 3/2 (p) MW harmonic for M/L2 = 3/2

(q) DH spatial for M/L2 ∼ 2 (r) DH harmonic for M/L2 ∼ 2 (s) MW spatial for M/L2 ∼ 2 (t) MW harmonic for M/L2 ∼ 2

Fig. 3. Inpainted images on the sphere recovered by solving the TV inpainting problems for a range of measurement ratios M/L2. The first and second
columns of panels show the inpainted images recovered using the DH sampling theorem, while the third and fourth columns show the inpainted images
recovered using the MW sampling theorem. The first and third columns of panels show inpainted images recovered by solving the inpainting problem in
the spatial domain, while the second and fourth columns show images recovered by solving the inpainting problem in the harmonic domain. The final row
of panels corresponds to measurement ratio M/L2 = NMW/L2 ∼ 2. The quality enhancements due to the MW sampling theorem and by solving the
inpainting problem in harmonic space are both clear.

corresponding to measuring one-eighth of the samples on the
sphere (recall that the number of samples required by the MW
sampling theorem is given by NMW ∼ 2L2). The measured
data are displayed in Figure 5 (b). The inpainted image is
recovered by solving the inpainting problem in harmonic space
through (5) using the MW sampling theorem. To solve the
inpainting problem for this high-resolution simulation we use
the estimator of the inverse transform norm ‖Λ‖2 described
in Section IV-B and the fast adjoint harmonic transform
algorithms defined in Section IV-C. The inpainted image is
recovered with SNR = 29dB and is shown in Figure 5 (c).
Note that for the given measurement ratio, reconstruction
fidelity is improved when high-resolution data are considered
(as seen from a comparison with Figure 3).

VI. CONCLUSIONS

The MW sampling theorem, developed only recently,
achieves a more efficient sampling of the sphere than the
standard DH sampling theorem: without any loss to the
information content of the sampled signal, the MW sampling
theorem reduces the number of samples required to represent
a band-limited signal by a factor of two for an equiangular
sampling. For signals sparse in a spatially localised measure,
such as in a wavelet basis, overcomplete dictionary, or in
the magnitude of their gradient, for example, a more efficient
sampling enhances the fidelity of sparse image reconstruction
through both dimensionality and sparsity. When a signal is
recovered directly in the spatial domain, the MW sampling
theorem provides enhancements in both dimensionality and
sparsity when compared to the DH sampling theorem. By
recovering the signal directly in harmonic space it is possible
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Fig. 4. Reconstruction performance for the DH (green/diamonds) and MW
(red/circles) sampling theorems, when solving the TV inpainting problem in
the spatial (dot-dashed line) and harmonic domain (solid line). The MW
sampling theorem provides enhancements in reconstruction quality when
compared to the DH sampling theorem, due to dimensionality and sparsity
improvements in spatial reconstructions, and due to sparsity (but not dimen-
sionality) improvements in harmonic reconstructions.

(a) Ground truth

(b) Measured data

(c) Inpainted signal

Fig. 5. Inpainting illustration at high-resolution using the MW sampling
theorem. This simulation is performed at harmonic band-limit L = 128 for
measurement ratio M/L2 = 1/4, corresponding to measuring one-eighth of
the samples on the sphere (recall that the number of samples required by the
MW sampling theorem is given by NMW ∼ 2L2). The inpainted image is
recovered by solving the inpainting problem in harmonic space using the MW
sampling theorem, resulting in a recovered signal with SNR = 29dB.

to optimise its dimensionality, in which case the MW sampling
theorem still provides an enhancement in sparsity but not in
dimensionality. We verified these statements through a simple
inpainting problem on the sphere, where we considered images
sparse in their gradient. We built a framework and fast methods
for total variation (TV) inpainting on the sphere, which relies
on a sampling theorem and its associated quadrature rule to
define a discrete TV norm on the sphere. Using this framework
we performed numerical experiments which confirmed our
predictions: in all cases, the more efficient sampling provided
by the MW sampling theorem improved the fidelity of sparse
image reconstruction on the sphere.
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