
Tuning Paxos for high-throughput with batching and pipelining

Nuno Santos, André Schiper
Ecole Polytechnique F́ed́erale de Lausanne (EPFL)

Email: firstname.lastname@epfl.ch

Abstract—Paxos is probably the most popular state ma-
chine replication protocol. Two optimizations that can greatly
improve its performance are batching and pipelining. Nev-
ertheless, tuning these two optimizations to achieve optimal
performance can be challenging, as their effectiveness depends
on many parameters like the network latency and bandwidth,
the speed of the nodes, and the properties of the application.
We address this question, by first presenting an analytical
model of the performance of Paxos that can be used to obtain
values for tuning batching and pipelining. We then present
experiments validating the model and investigating how these
two optimizations interact in both a LAN and a WAN setting.
The results show that although batching by itself is usually
sufficient to maximize the throughput in a LAN environment,
in a WAN it must be complemented with pipelining.

I. I NTRODUCTION

State machine replication is a technique commonly used
by fault tolerant systems. This technique allows the repli-
cation of any service that can be implemented as a deter-
ministic state machine,i.e., where the state of the service
is determined only by the initial state and the sequence
of commands executed. Given such a service, we need a
protocol ensuring that each replica of the service executes
the requests received from the clients in the same order.

Paxos is probably the most popular of such protocols. It
is designed for partially synchronous systems with benign
faults. In Paxos, a distinguished process, the leader, receives
the requests from the clients and establishes a total order,
using a series of instances of an ordering protocol.

In the simplest Paxos variant, the leader orders one
client request at a time. In general, this is very inefficient
for two reasons. First, since ordering one request takes at
least one network round-trip between the leader and the
replicas, the throughput is bounded by12L whereL is the
network latency. This dependency between throughput and
latency is undesirable, as it severely limits the throughput
in moderate to high latency networks. Second, if the request
size is small, the fixed costs of executing an instance of
the ordering protocol can become the dominant factor and
quickly overload the CPU of the replicas.

In this paper, we study two optimizations to the basic
Paxos protocol that address these limitations: batching and
pipelining. Batching consists of packing several requests
in a single instance of the ordering protocol. The main
benefit is spreading the fixed per-instance costs over several
requests, which results in a smaller per-request overhead

and potentially in a higher throughput. Batching can easily
be implemented on top of Paxos, as it does not require
any changes to the ordering protocol.Pipelining [1] is an
extension of the basic Paxos protocol where the leader
initiates new instances of the ordering protocol before the
previous ones have completed. This optimization is particu-
larly effective when the network latency is high, as it allows
the leader to pipeline several instances on the slow link.

Batching and pipelining are used by most replicated state
machine implementations, as they usually provide perfor-
mance gains between one and two orders of magnitude.
Nevertheless, in order to achieve the best throughput, they
must be carefully tuned. For batching, it is necessary to
choose the bound on the size of batches, in order to strike
a balance between the size of batches and how long the
leader has to wait for client requests. For pipelining, it is
necessary to set a limit on the number of instances that can
be in execution simultaneously, as a value that is too high
may lead to a significant degradation in performance due
to the increased overhead of managing multiple instances.
Moreover, the optimal choice for the bounds on the batch
size and number of parallel instances depends on the proper-
ties of the system and of the application, mainly on process
speed, bandwidth, latency, and size of client requests.

We begin by studying analytically what are the com-
binations of batch size and number of parallel instances
that maximize throughput for a given system and workload.
We express this relationship in terms of a functionw =
f(Sbatch), whereSbatch is a batch size andw is a number of
parallel instances (also denoted by window size). This result
can be used to tune batching and pipelining, for instance,
by setting the bounds on the batch and window size to
one of the optimal combinations, so that given enough load
the system will reach maximum throughput. To obtain the
relation above, we developed an analytical model for Paxos,
which predicts several performance metrics, including the
throughput of the system, the CPU and network utilization
of an instance, as well as its wall-clock duration. We then
present the results of an experimental study comparing
batching and pipelining in two settings, one representing
a WAN and the other a cluster. We show which gains are
to be expected by using either of the optimizations alone
or combined, the results showing that although in some
situations batching by itself is enough, in many others it
must be combined with parallel instances. We contrast these



p1

p2

p3

1a 1b

Phase 1

Req.1 Req.2

2a 2b

Answer 1

Phase 2

2a 2b

Answer 2

Phase 2

Figure 1. Basic MultiPaxos (n = 3, f = 1)

results with the prediction of our model, showing that the
model is effective at predicting several performance metrics,
including the throughput and optimal window size for a
given batch size.

The rest of the paper is organized as follows. Section II
provides the background for our work, describing in more
detail the batching and pipelining optimizations in Paxos,
Section III presents an analytical model of Paxos, Section IV
presents the experimental evaluation of these two optimiza-
tions on a LAN (a cluster) and on a WAN, Section VI
discusses the results of the paper, Section VII presents the
related work, and Section VIII concludes the paper.

II. BACKGROUND

Paxos, or more precisely MultiPaxos, is a state machine
replication protocol, which at its core uses the Synod con-
sensus algorithm [1]. If the replication degree isn, andf out
of then replicas may fail by crashing, the protocol requires
n ≥ 2f + 1. MultiPaxos can be seen as asequencer-based
atomic broadcast protocol [2], where the sequencer orders
requests received from the clients. In the Paxos terminology,
the sequencer is calledleader. Paxos is usually described in
terms of proposers, acceptors and learners, which are the
roles each process can play. Here we ignore the different
roles by assuming that every node plays all three roles.

For the purpose of the paper we describe only the relevant
details of the Paxos protocol. Figure 1 shows the message
pattern of Paxos for the casen = 3, f = 1. Once a
process becomes leader (p1 in Figure 1), it executes Phase 1
only once for all future instances. Afterwards, for each new
request received from the clients, it only needs to execute
Phase 2 (a request is ordered at the leader upon reception
of enough Phase 2b messages), thereby saving two message
delays per consensus instance. Therefore, in our analysis
we ignore Phase 1 messages and use the terminstanceas
an abbreviation forone instance of Phase 2.

In the simplest version of MultiPaxos, the leader proposes
one request per instance and executes one instance at a time.

A. Pipelining

MultiPaxos can be extended to allow the leader to execute
several instances in parallel [1]. In this case, when the leader

p1

p2

p3

i

i+ 1

(a) Paxos with pipelining

p1

p2

p3

Instancei

(b) Paxos with batching.

Figure 2. Paxos optimizations.

receives a new request, it can start a new instance at once,
even if there are other that are still undecided, as shown in
Figure 2a.

Executing parallel instancesimproves the utilization of
resourcesby pipelining the different instances. This opti-
mization is especially effective in high-latency networks, as
the leader might have to wait a long time to receive the
Phase 2b messages.

The main drawback is that each instance requires addi-
tional resources from the system. If too many instances are
started in parallel, they may overload the system, either
by maxing out the leader’s CPU or by causing network
congestion, resulting in a more or less severe performance
degradation. For this reason, the number of parallel instances
that the leader is allowed to start is usually bounded.
Choosing a good bound requires some careful analysis. If set
too low, the network will be underutilized. If set too high,
the system might become overloaded resulting in a severe
performance degradation, as shown by the experiments in
Section IV. The best value depends on many factors, in-
cluding the network latency, the size of the requests, the
speed of the replicas, and the expected workload.

B. Batching

Batching is a common optimization in communication
systems, which generally provides large gains in perfor-
mance [3]. It can also be applied to Paxos, as illustrated by
Figure 2b. Instead of proposing one request per instance, the
leader packs several requests in a single instance. Once the
order of a batch is established, the order of the individual
requests is decided by a deterministic rule applied to the
request identifiers.

The gains of batching come from spreading the fixed costs
of an instance over several requests, thereby decreasing the
average per-request overhead. For each instance, the system
performs several tasks that take a constant time regardless
of the size of the proposal, or whose time increases only
residually as the size of the proposal increases. These include
interrupt handling and context switching as a result of read-
ing and writing data to the network card, allocating buffers,
updating the replicated log and the internal data structures,
and executing the protocol logic. In [4], the authors show
that the fixed costs of sending a packet over a Ethernet
network are dominant for small packet sizes, and that for



larger packets the total processing time grows significantly
slower than the packet size. In the case of Paxos, the fixed
costs of an instance are an even larger fraction of the total
costs because, in addition to processing individual messages,
processes also have to execute the ordering algorithm. Ad-
ditionally, batching decreases dramatically the cost of using
stable storage, because a single stable storage access is
enough to log the state of all requests in a batch.

Batching is fairly simple to implement in Paxos: the leader
waits until having ”enough” client requests and proposes
them as a single proposal. The difficulty is deciding what is
”enough”. In general, the larger the batches, the bigger the
gains in throughput. But in practice, there are several reasons
to limit the size of a batch. First, the system may have
physical limits on the maximum packet size (for instance, the
maximum UDP packet size is 64KB). Second, larger batches
take longer to build because the leader has to wait for more
requests, possibly delaying the ones that are already waiting
and increasing the average time to order each request. This
is especially problematic with low load, as it may take
a long time to form a large batch. Finally, a large value
takes longer to transfer and process, further increasing the
latency. Therefore, a batching policy must strike a balance
between creating large batches (to improve throughput) and
deciding when to stop waiting for additional requests and
send the batch (to keep latency within acceptable bounds).
This problem has been studied in the general context of
communication protocols by [4]–[6]. In the rest of the
paper, we study it in the context of Paxos, and analyze its
interaction with the pipelining optimization.

III. A NALYTICAL MODEL OF PAXOS PERFORMANCE

We consider the Paxos variant described in Section II
with point-to-point communication. There are other variants
of Paxos that use different communication schemes, like
IP multicast and chained transmission in a ring [7]. We
chose the basic variant for generality and simplicity, but this
analysis can be easily adapted to other variants. We further
assume full duplex links and that no other application is
competing for bandwidth or CPU time.1 Also for simplicity,
we focus on the best case, that is, we do not consider
message loss or failures. We also ignore mechanisms internal
to a full implementation of Paxos, like failure detection.
On a finely tuned system, these mechanisms should have
a minimal impact on throughput.

Finally, we assume that execution within each process is
sequential. The model can be extended to account for multi-
core or SMP machines, but this is a non-trivial extension
which, for the sake of simplicity, we do not explore here.

Symbol Description
n Number of replicas
B Bandwidth
L One way delay (latency)
Sreq Size of request
k Number of requests in a batch
w Number of parallel instances
S2a Size of a Phase 2a message (batch)
S2b Size of ack
Sans Size of answer sent to client
φexec CPU-time used to execute a request
WND Bound on maximum number of parallel instances (Con-

figuration parameter)
BSZ Bound on batch size (Configuration parameter)

Table I
NOTATION.

A. Quantitative analysis of Phase 2 of Paxos

Table I shows the parameters and the notation used in
the rest of the paper. We focus on the two resources that
are typically the bottleneck in a Paxos deployment,i.e., the
leader’s CPU and its outgoing channel.

Our model takes as input the system parameters (n, B,
L, and four constants defined later that model the speed
of the nodes), the workload parameters (Sreq , Sans and
φexec), and the batching level (k). From these parameters, the
model characterizes how an instance utilizes the two critical
resources, by determining the duration of an instance (wall-
clock time), and the busy time of each resource, that is,
the total time during which the resource is effectively used.
With these two values, we can then determine the fraction
of idle time of a resource, and predict how many additional
parallel instances are needed to reach maximum utilization.
The resource that reaches saturation with the lowest number
of parallel instances is effectively the bottleneck, so it is this
resource that determines the maximum number of parallel
instances that can be executed in the system.

The model also provides estimations for the throughput
and latency with a given configuration, which can be used to
study how different batch sizes affect the performance and
the optimal number of parallel instances for each batch size.

For simplicity, we assume that all requests are of similar
size. Since the bulk of the Phase 2a message is the batch
being proposed, in the following we useS2a = kSreq + c
to denote the batch size, wherec represents the protocol
headers.

1) Network busy time:The outgoing network channel of
the leader is busy for the time necessary to send all the data
related to an instance, which consists ofn − 1 Phase 2a
messages, one to every other replica, andk answers to the
clients.

Because of differences in topology, we consider the cases
of a LAN and a WAN separately. On a LAN, the replicas are
typically on the same network, so the effective bandwidth

1The presence of other applications can be modeled by adjusting the
model parameters, to reflect the competition for network resources.



available between them is the bandwidth of the network.
Therefore, the leader has a total bandwidth ofB to use for
all the messages it has to send, and we can compute the
time the network is used for an instance as follows:

φLAN
inst = ((n− 1)S2a + kSans)/B

On a WAN environment, however, the replicas are in
different data centers, so the connection between them is
composed of a fast segment inside the replica’s data center
(bandwidthBL), and of another comparatively slow segment
between the different data centers (bandwidthBW ). Since
usuallyBW ≪ BL, in the following analysis we consider
BW to be the effective bandwidth between the replicas,
ignoring BL, i.e., we takeB = BW . Moreover, while in
LAN a replica has a total bandwidth ofB to share among all
other replicas, on a typical WAN topology each replica has a
total of BW bandwidth to every other replica. The reason is
that the inter-data center section of the connection between
the replicas will likely be different for each pair of replicas,
so that after leaving the data center, the messages from a
replica will follow independent paths to each other replica.
Thus, contrary to the case of a LAN, every message sent by
the leader uses a separate logical channel of bandwidthB.
By the same reasoning, the messages from the leader to the
clients also use separate channels. Since sending the answers
to the client does not delay executing additional instances,
the network bottleneck are the channels between the leader
and the other replicas. Therefore, we get:

φWAN
inst = S2a/B

In both cases, the per request time is given byφNET
req =

φNET
inst/k, where NET stands for eitherLAN or WAN. The

maximum network throughput of instances and requests is
given by1/φNET

inst and1/φNET
req , respectively.

2) CPU time: During each instance, the leader uses the
CPU to perform the following tasks: read the requests from
the clients, prepare a batch containingk requests, serialize
and sendn − 1 Phase 2a message, receiven − 1 phase 2b
messages, execute the requests and send the answers to the
clients (in addition to executing the protocol logic whenever
it receives a message).

These tasks can be divided in two categories: interaction
with clients and with other replicas. The CPU time required
to interact with clients depends mainly on the size of the
requests (Sreq ) and the number of requests that must be
read to fill a batch (k), while the interaction with replicas
depends on the number of replicas (n) and the size of
the batch (S2a ). Since these two interactions have distinct
parameters, we model them by two functions:φcli(x) and
φrep(x). The functionφcli(x) represents the CPU time used
by the leader to receive a request from a client and send
back the corresponding answer, withx being the sum of the
sizes of the request and the answer. Similarly,φreq(x) is
the CPU time used by the leader to interact with another

replica, wherex is the sum of the sizes of the Phase 2a
and 2b messages. Both functions are linear, which models
the well-known [4] behavior where the time to process a
message consists of a constant plus a variable part, the
later increasing linearly with the size of message2. The
values of the parameters of these two functions must be
determined experimentally for each system, as they depend
both on the hardware used to run the replicas and on
the implementation of Paxos. We show how to do so on
Sections IV-A2 and IV-B2.

Therefore, we get the following for an instance CPU time:

φCPU
inst =kφcli(Sreq + Sans)+

(n− 1)φrep(S2a + S2b) + kφexec

The first term models the cost of receivingk requests from
the clients and sending back the corresponding answers, the
second term represents the cost of processingn − 1 Phase
2a and 2b messages, finally, the last term is the cost of
executing thek requestskφexec .

The time per request is given byφCPU
req = φCPU

inst/k. and the
throughput in instances and request per seconds by1/φCPU

inst

and1/φCPU
req , respectively.

3) Wall-clock time:Estimating the wall-clock duration of
an instance is more challenging than estimating the network
and CPU utilization, because some operations that must
complete for the instance to terminate are done in parallel.
As an example, once the leader finishes sending⌊n/2⌋
messages to the other replicas, the execution splits into two
separate sequence of events. In one of them, the leader sends
the remaining phase 2a messages. On the other, it waits for
enough phase 2b messages to decide and start executing the
requests. If after executing the first request in the batch, the
leader did not finish sending all the Phase 2a messages, it
may have to wait for the outgoing link to be free before
sending the answers to the clients.

Therefore, the exact sequence of events that leads to
completion depends on the workload and the characteristics
of the system. In a fast LAN the wall-clock duration is
likely to be limited by the CPU speed, while in high-latency
WAN the latency is likely the dominant factor. Similarly,
if the workload consists of large requests and answers, the
bandwidth is more likely to be the bottleneck than the CPU
or the latency.

Therefore we model the wall-clock time by considering
three different cases, each corresponding to a different
bottleneck: CPU, bandwidth or latency. For each case, we
compute the duration of an instance, which gives us three
formulas:T CPU

inst , T
band
inst andT lat

inst . The instance time is the

2We chose to use a single function to represent sending and receiving a
pair of related messages, instead of one function per message type. Since
the model is linear, this reduces the number of parameters that have to be
estimated to half without losing any expressiveness.



CPU

netout

leader

p

kφ(Sreq ) (n − 1)φ(S2a)

(n − 1)
S2a
B

k(φexec + φ(Sans))

k
Sans
B

(a) CPU is the bottleneck

CPU

netout

leader

p

(n − 1)
S2a
B

k(φexec + φ(Sans))

k
Sans
B

(b) Bandwidth is the bottleneck

CPU

netout

leader

p

(n − 1)
S2a
B

k(φexec + φ(Sans))

k
Sans
B

(c) Latency is the bottleneck

Figure 3. Utilization of the CPU and outgoing link of the leader during
an instance.

maximum of the three:

Tinst = max(T CPU
inst ,T

band
inst ,T lat

inst ) (1)

Once again, due to the differences in topology, we model
the LAN and the WAN cases differently. For the LAN case,
we have:

T
CPU
inst = φCPU

inst + ⌊n/2⌋S2a/2B (2)

T
band
inst = ((n− 1)S2a + kSans)/B (3)

T
lat
inst = ⌊n/2⌋S2a/B + 2L+ kφexec + kSans/B (4)

Figure 3 illustrates the three cases. Each sub-figure rep-
resents an instance. The two lines at the bottom represent
the leader and one other replica, the one whose Phase 2b
message triggers the decision at the leader, and the two bars
at the top represent the busy/idle periods of the CPU and
of the outgoing link of the leader. The arrows above the
leader line represent messages exchanged with the clients
(their time-lines are not represented) and the arrows below
are messages exchanged with the other replicas.

If the CPU is the bottleneck (Equation (2) and Figure 3a),
the wall-clock time of an instance is dominated by the CPU
time of this instance, which we have previously computed
(formula φCPU

inst in Section III-A2). Additionally, the wall-
clock time must also include the time during which the
leader is sending the Phase 2a messages to other replicas,

because its CPU will be partially idle as it waits for the
answers. This difference between CPU and wall clock time
increases with the size of the batch (See Figure 5). This idle
time is represented by⌊n/2⌋S2a/2B.

If the bandwidth is the bottleneck (Equation (3) and
Figure 3b), the wall-clock time of an instance is the total
time needed by the leader to send all the messages of that
instance through the outgoing channel,i.e., n− 1 Phase 2a
messages andk answers.

Finally, if the latency is the bottleneck (Equation (4) and
Figure 3c), the wall-clock time of an instance corresponds to
the time needed to send the first⌊n/2⌋ phase 2a messages
to the replicas, plus the round-trip time required to receive
enough Phase 2b messages from the replicas, followed by
the execution time of the requests and the time to send the
answers back to the clients.

For the WAN case, the formulas are as follow:

T
CPU
inst = φCPU

inst + S2a/B (5)

T
band
inst = S2a/B (6)

T
lat
inst = S2a/B + 2L+ kφexec (7)

The difference is that messages can be send in parallel,
because of the assumption that each pair of processes has
exclusive bandwidth. Therefore, the time to send a message
to the other replicas does not depend onn and sending the
answers to the clients does not affect the duration of an
instance (separate client-leader and leader-replica channels).

B. Maximizing resource utilization

If the leader’s CPU and outgoing channel are not com-
pletely busy during an instance, then the leader can execute
additional instances in parallel. The idle time of a resource
R (CPU or outgoing link) is given byTinst − φR

inst and
the number of instances that a resource can sustain,wR,
is Tinst/φ

R
inst . From these, we can compute the maximum

number of parallel instances that the system can sustain as:

w = min(w CPU,w NET) (8)

This value can be used as a guideline to configure
batching and pipelining. In theory, setting the window size
to any value equal or higher to this lower bound results
in optimal throughput, but as shown by the experiments in
Section IV-B, increasing the window size too much may
result in congestion of the network or saturation of the CPU,
and reduce performance. Therefore, the window size should
be set to the lowest value suggested by the analytical model.

IV. EXPERIMENTAL STUDY

In this section we study the batching and pipelining
optimizations from an experimental perspective, and validate
the analytical model. Section IV-A shows the results in a
Cluster and Section IV-B the results in a WAN environment



emulated using Emulab [8]. For each environment, we first
present the experimental results. Then we determine the
parameters of the model that represent the process speed
(parameters ofφcli(x) and φrep(x)), and finally compare
the predictions for the throughput and optimal window size
of the model with the values obtained experimentally.

We performed the experiments using JPaxos [9], a full-
feature implementation of Paxos in Java, which supports
both batching and pipelining.

Implementing batching and pipelining in Paxos is fairly
straightforward: batching has a trivial implementation and
pipelining was described in the original Paxos paper [1].
To control these optimizations,i.e., decide when to create
a new batch and initiate a new instance, we use a simple
algorithm with three parameters:WND , BSZ and∆B . The
parameterWND is the maximum number of instances that
can be executed in parallel,BSZ is the maximum batch size
(in bytes), and∆B is the batch timeout. The timeout∆B is
reset whenever the leader opens a new batch, which happens
when it receives the first request that will go in the batch.
The leader then waits until either it has enough requests to
fill the batch or the timeout∆B expires. It then proposes
the batch by starting a new instance as soon as the number
of active instances is underWND . In the experiments we
vary BSZ andWND while keeping∆B set to 50ms. This
timeout has no impact on the results, as the load on the
system is high enough for the leader to form a batch before
the timeout expires.

We consider a system with three replicas. In order to stress
the batching and pipelining mechanisms, all the experiments
were performed with the system under high load. We used
900 clients in the cluster and 1200 in Emulab, which is
enough for the leader to form new batches without having
to wait for additional requests.

The replicated service keeps no state. It receives requests
containing an array ofSreq bytes and answers with an 8
bytes array. We chose a simple service as this puts the most
stress on the replication mechanisms. JPaxos adds a header
of 16 bytes per request and 4 bytes per batch of requests. The
analytical results reported below take the protocol overhead
in consideration.

All communication is done over TCP. We did not use
IP multicast because it is not generally available in WAN-
like topologies. Initially we considered UDP, but rejectedit
because in our tests it did not provide any performance ad-
vantage over TCP. TCP has the advantage of providing flow
and congestion control, and of having no limits on message
size, therefore saving us the tedious work of reimplementing
these features. The replicas open the connections at startup
and keep them open until the end of the run. Each data
point in the plots corresponds to a 3 minutes run, excluding
the first 10%. For clarity, the plots below do not include
error bars for the 95% confidence interval, as the errors are
usually very small.

0 100 200 300 400 500 600
0

10

20

30

40

50

Batch Size (KB)

T
im

e 
(m

s)

 

 

model−128
exp−128
model−1KB
exp−1KB
model−8KB
exp−8KB

Figure 5. Experimental versus model results for the CPU time of
an instance in the cluster. Model parameters:φcli (x) = 0.005x +
0.08, φrep(x) = 0.0035x+ 0.22.

A. Cluster

The following experiments were run on a cluster of
Pentium 4 at 3GHz with 1GB memory connected by a
Gigabit Ethernet. The effective bandwidth of a TCP stream
between two nodes measured bynetperf is 940 Mbit/s.

1) Experimental results:Figure 4 shows the request
throughput as a function of batch size, for request sizes of
128 bytes, 1KB and 8KB, and for maximum window sizes
of 1, 2 and 5.

Batching provides a major improvement in performance in
all cases, ranging from an almost 10 times improvement with
128 bytes requests to a little over 4 times with 8KB requests.
The batch size where the system reaches optimal throughput
varies depending on the request size: around 10KB, 64KB
and 128KB for request sizes of 128 bytes, 1KB and 8KB,
respectively. On the other hand, increasingWND does not
improve performance. During each run the average CPU
utilization of the leader’s CPU is above 90%, suggesting
that the leader is CPU-bound and, therefore, is not able to
execute additional instances.

The performance does not drop if theBSZ or WND

are increased past their optimal values. This is a desirable
behavior, because the system will perform optimally with a
wide range of configuration parameters, making it easier to
tune. As Section IV-B shows, this is not always the case.

2) Setting model parameters:To estimate the parameters
φcli and φrep we used the Java Management interfaces
(ThreadMXBean) to measure the total CPU time used
by the leader process during a run. Dividing this value
by the total number of instances executed during the run
gives the average per-instance CPU time. To prevent the
JVM warm-up period from skewing the results, we ignore
the first 30 seconds of a run (for a total duration of 3
minutes). We repeat the measurements for several request
and batch sizes, and then adjust the parameters of the model
manually until the model’s estimation for the CPU time
(φCPU

inst ) fits the training data. Figure 5 shows the training
data together with the results of the model, for the final fit of
φcli(x) = 0.005x+0.08 andφrep(x) = 0.0035x+0.22. The
Figure shows that the CPU time measured experimentally



20 40 60
0

5000

10000

15000

Max. Batch Size (KB) (BSZ)

R
eq

ue
st

s/
se

c

(a) Sreq = 128

100 200 300 400 500
0

5000

10000

15000

Max. Batch Size (KB) (BSZ)

R
eq

ue
st

s/
se

c

(b) Sreq = 1KB

100 200 300 400 500
0

1000

2000

3000

4000

5000

Max. Batch Size (KB) (BSZ)

R
eq

ue
st

s/
se

c

(c) Sreq = 8KB

Figure 4. Cluster. Experimental results: throughput as a function of batch size.

S2a φCPU
req φCPU

inst φNET
inst Tinst wCPU wNET

128 0.52 0.52 0.00 0.52 1.00 211.73
256 0.30 0.60 0.00 0.60 1.00 124.18
512 0.19 0.77 0.01 0.77 1.00 79.52

1KB 0.14 1.09 0.02 1.10 1.00 56.97
2KB 0.11 1.75 0.04 1.76 1.01 45.63
4KB 0.10 3.06 0.08 3.07 1.01 39.95
8KB 0.09 5.67 0.15 5.71 1.01 37.11

16KB 0.09 10.90 0.31 10.98 1.01 35.68
32KB 0.08 21.36 0.62 21.51 1.01 34.97
64KB 0.08 42.28 1.23 42.58 1.01 34.62

Table II
ANALYTICAL RESULTS FOR CLUSTER, Sreq = 128 (TIMES IN

MILLISECONDS)

increases roughly linearly with the size of the batch, which
validates our choice of a linear model.

3) Comparison of analytical and experimental results:
All the analysis below is done withφexec = 0, since the
request execution time of the service used in the experiments
is negligible (recall that the service simply answers with a
8 byte array).

Table II shows detailed results for the caseSreq = 128,
while Table III shows a summary of the analytical results for
all request sizes and compares them with the experimental
results.

With Sreq = 128, the CPU time used by an instance
(column φCPU

inst ) is an order of magnitude larger than the
network busy time (columnφNET

inst ). As a result, the wall-
clock time of an instance (columnTinst ) is dominated by the
CPU time. Although the network could sustain many parallel
instances (columnw NET), the CPU cannot sustain more than
one (columnw NET) and therefore the system as a whole has
no capacity to execute additional instances. The situation
is similar for larger requests sizes (Tables IIIb and IIIc),
although the CPU becomes less of a bottleneck as the size
of the requests increases. A similar pattern occurs as the
batch size increases, with the load shifting from the CPU
to the network. But even with the largest messages tested,
i.e., Sreq = 8KB and S2a = 512KB, the CPU is still the
bottleneck, being able to sustain only 1.17 parallel instances
as compared to 1.63 of the network. Such a situation is

Model Experiments
S2a wCPU wNET Max Thrp w Max Thrp
128 1 211.73 1916 1 ≈ 1895
256 1 124.18 3313 1 ≈ 3126

1KB 1 56.97 7313 1 ≈ 7745
32KB 1 34.97 11983 1 ≈ 12488
64KB 1 34.62 12108 1 ≈ 12100

(a) Sreq = 128

Model Experiments
S2a wCPU wNET Max Thrp w Max Thrp
1KB 1.01 31.54 1878 1 ≈ 1850
2KB 1.01 18.64 3202 1 ≈ 3380
8KB 1.03 8.93 6791 1 ≈ 7050

256KB 1.04 5.79 10644 1 ≈ 10680
512KB 1.05 5.74 10742 1 ≈ 10400

(b) Sreq = 1KB

Model Experiments
S2a wCPU wNET Max Thrp w Max Thrp
8KB 1.05 4.92 1625 1 ≈ 1634

16KB 1.08 3.25 2530 1 ≈ 2687
64KB 1.14 2 4344 1 ≈ 4328

256KB 1.17 1.68 5293 1-2 ≈ 4900
512KB 1.17 1.63 5493 1-2 ≈ 4900

(c) Sreq = 8KB

Table III
CLUSTER: COMPARISON OF ANALYTICAL AND EXPERIMENTAL

RESULTS. PREDICTION FOR OPTIMALw IS IN BOLD.

typical of systems where the network is comparatively faster
than the process3, which is typical on a cluster.

The model also captures the effect of batching on per-
formance. As the size of the batches increases, the total
instance time increases, as expected, reflecting the larger
size, but the average time per request (φCPU

req ) decreases. This
is very noticeable for 128 bytes requests, with the average
time per request dropping from 0.52ms down to 0.08ms for
the largest batches.

Table III shows that the predicted optimal window size
matches closely the value obtained in the experiments. The
predicted throughput is also close to the experimental results,

3The speed of the process depends not only on the CPU speed but also
on the efficiency of the implementation.



Figure 6. Topology used for Emulab experiments

with less than 5% error for 128 bytes and 1KB requests, and
at most 20% for 8KB requests 512KB batch size.

B. Emulab

Figure 6 shows the topology used for the Emulab ex-
periments, which represents a typical WAN environment
with the geographically distributed nodes. We modeled this
scenario with an emulated topology where the replicas are
connected point-to-point by a 10Mbits link with 50ms of
latency. Since the goal is to keep the system under high
load, the clients are connected directly to each replica and
communicate at the speed of the physical network. The
physical cluster used to run the experiments consisted of
nodes of Pentium III at 850MHz with 512MB of memory,
connected by a 100Mbps Ethernet.

1) Experimental results:Figures 7 and 8 show results.
Contrary to the cluster environment, batching alone (i.e.,
WND = 1) does not suffice to achieve maximum through-
put. Although larger batches improve performance signifi-
cantly, batching falls short of the maximum that is achieved
with larger window sizes. The difference is greater with
large request sizes (1KB and 8KB), where it achieves only
half of the maximum, than for small sizes (128 bytes),
where batching on its own reaches almost the maximum.
The reason is that with small request sizes the leader is
CPU-bound, so it cannot execute more than one parallel
instance, while with larger requests the bottleneck is the
network latency. Increasing the window size to 2 is enough
for the system to reach maximum throughput in all scenarios
if the batch size is large enough (40KB withSreq = 128 and
around 140KB withSreq = 1KB and Sreq = 8KB). If the
window size is further increased, the maximum throughput
is achieved with smaller batch sizes.

The experiments also show that increasing the window
size too much results in a performance collapse, with the
system throughput dropping to around 10% of the maximum.
This collapse happens when the leader tries to send more
data than the capacity of the network, resulting in packet loss
and retransmissions. The point where it happens depends on
the combination ofSreq , WND andBSZ , which indirectly
control how much data is sent by the leader; the larger their
values, the higher the change of performance collapse. With
Sreq = 128 there is no performance degradation, because the

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

Batch Size (KB)

T
im

e 
(m

s)

 

 

model−128
exp−128
model−1KB
exp−1KB
model−8KB
exp−8KB

Figure 9. Experimental versus model results for the CPU time of an
instance in Emulab. Fit values:φcli (x) = 0.28x + 0.2, φrep(x) =
0.002x+ 1.5.

CPU is the bottleneck limiting the throughput. With larger
request sizes, the network becomes the bottleneck and there
are several cases of performance collapse. Looking at the
window size, the first case occurs withWND = 5 with a
sharp drop atBSZ = 256KB (Fig. 7). For largerWND , the
performance collapse happens with smaller values ofBSZ :
with WND = 10 at 130KB, and at less than 64KB for
larger window sizes. Similarly, as the batch size increases
performance collapse occurs at smaller and smaller window
sizes (Fig. 8).

These results show that CPU and the network may react
to saturation very differently. In this particular system,the
CPU deals gracefully with saturation (also observed in the
cluster experiments), showing almost no degradation as the
load increases past the point where the system reaches
maximum throughput, while network saturation leads to
performance collapses. The behavior may differ signifi-
cantly in other implementations, because the behavior of
the CPU or network when under load (graceful degradation
or performance collapse) depends on the implementation of
the different layers of the system, mainly application and
replication framework (threading model, flow-control) but
also operating system and network stack.

2) Setting model parameters:Following the same pro-
cedure as in the case of the cluster, we have determined
the following parameters for the Emulab model:φcli(x) =
0.28x + 0.2, φrep(x) = 0.002x + 1.5. Figure 9 shows
the training data and the corresponding model results when
parametrized with the values above.

3) Comparison of analytical and experimental results:
Table IV shows the results of the model for the optimal
window size of the CPU and network for several batch
sizes, and compares them with the experimental results. The
analytical results show that the bottleneck with 128 bytes
requests is the CPU (w CPU is smaller thanw NET) while for
8KB requests it is the network. With 1KB requests, the
behavior is mixed, with the CPU being the bottleneck with
small batch sizes and the network with larger batch sizes.
These results quantify the common sense knowledge that
smaller requests and batches put a greater load on the CPU
in comparison to the network. Moreover, as the request size



20 40 60
0

1000

2000

3000

4000

Max. Batch Size (KB) (BSZ)

R
eq

ue
st

s/
se

c

(a) Sreq = 128

50 100 150 200 250
0

500

1000

1500

Max. Batch Size (KB) (BSZ)

R
eq

ue
st

s/
se

c

(b) Sreq = 1KB

50 100 150 200 250
0

50

100

150

Max. Batch Size (KB) (BSZ)

R
eq

ue
st

s/
se

c

(c) Sreq = 8KB

Figure 7. Experimental results in Emulab: throughput with increasing batch size.

10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

Window Size (WND)

R
eq

ue
st

s/
se

c

(a) Sreq = 128

10 20 30 40 50
0

200

400

600

800

1000

1200

Window Size (WND)

R
eq

ue
st

s/
se

c

(b) Sreq = 1KB

5 10 15 20 25 30
0

50

100

150

Window Size (WND)

R
eq

ue
st

s/
se

c

(c) Sreq = 8KB

Figure 8. Experimental results in Emulab: throughput with increasing window size.

or batch size increase, the optimal window size decreases,
because if each instance contains more data, the network
will be idle for less time.

The experimental results in Table IV are obtained from
Figure 8. From this Figure we can determine, for each batch,
the maximum throughput and the smallestw where this
maximum is first achieved.

In all cases the prediction forw is in between the range
where the experiments first achieve maximum throughput,
showing that the model provides a good approximation.
Concerning the throughput, the model is accurate with
Sreq = 8KB across all batch sizes. WithSreq = 128, it
is accurate for the smallest batches but overestimates the
throughput for the larger batches. The reason is that the
network can be modeled more accurately than the CPU, as
it tends to behave in a more deterministic way4. The CPU
exhibits a more non-linear behavior, especially when under
high load as is the case when the number of requests in a
single batch increase to more than hundreds.

V. A DDITIONAL EXPERIMENTAL RESULTS

Figures 10 to 18 in the appendix show the detailed ex-
perimental results for both the cluster and Emulab. For each
experiment, we show six metrics: client latency, instance

4This is true only until reaching a level of saturation where packets are
dropped, after which it becomes difficult to model

latency, request throughput, instance throughput, average
batch size and average number of parallel instances. The
client latencyis the time the client waits for the reply to
one request, which includes the transmission time from the
client to the leader, the queuing time of the request at the
leader, the time to order the request, and the time to send
the answer back to the client.

The latency per instanceis the time elapsed at the leader
from proposal to decision of an instance,i.e., from sending
the Phase 2a message to receiving a majority of Phase
2b messages. It corresponds toTinst (Formula 1) in the
analytical model.

The throughput of instancesis the number of Phase 2
executed per second, and thethroughput of requestsis
the number of requests ordered per second. Note that the
throughput of requests is equal to the throughput of instances
multiplied by the average number of requests per instance.
These metrics correspond to the throughput formulas of
the analytical model given at the end of sections III-A1
and III-A2.

The average batch size(bsz ) and average window size
(w ) show how well the system is taking advantage of the
optimizations. As mentioned previously, the leader might
not always fill the batches completely (i.e., up toBSZ ) or
to execute the maximum number of parallel instances. This
can happen either because of the lack of sufficient client
requests queued for ordering or because the leader is not fast



Model Experiments
S2a wCPU wNET Max Thrp w Max Thrp
128 30.88 833.48 308 30-35 ≈ 330
256 28.77 422.94 574 25-30 ≈ 550

1KB 20.45 107.58 1620 20-25 ≈ 1800
16KB 3.38 7.68 3765 2-5 ≈ 3100
32KB 1.47 3.12 4032 1-2 ≈ 3300

(a) Sreq = 128

Model Experiments
S2a wCPU wNET Max Thrp w Max Thrp
1KB 28.89 119.01 286 30-40 ≈ 310
2KB 25.54 60.12 502 30-40 ≈ 600
8KB 15.42 15.8 1155 15-20 ≈ 1030

128KB 3.16 1.93 1184 1-2 ≈ 1120
256KB 2.68 1.6 1184 1-2 ≈ 1100

(b) Sreq = 1KB

Model Experiments
S2a wCPU wNET Max Thrp w Max Thrp
8KB 19.47 16 150 15-20 ≈ 144

16KB 14.24 8.5 150 5-10 ≈ 144
64KB 6.72 2.88 150 2-5 ≈ 144

128KB 4.84 1.94 150 1-2 ≈ 144
256KB 3.8 1.47 150 1-2 ≈ 144

(c) Sreq = 8KB

Table IV
EMULAB : COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS.

PREDICTION OF OPTIMALw IS IN BOLD.

enough to executeWND parallel instances simultaneously
(previous instances finish before the leader is able to start
additional ones). Therefore, we measured the average size of
the batches and the average number of parallel instances and
show the results below, in order to evaluate the effectiveness
of the optimizations in each scenario. Formula (8) of the
analytical model gives an estimation for the average window
size for the case when the batches are full (i.e., bsz = BSZ ),
and can be compared with the results below.

For the cluster experiments, we only show the plots with
the metrics as a function of maximum batch size (Figures 10
to 12), while for the emulab experiments we show them both
as a function of maximum batch size (Figures 13 to 15) and
of maximum window size (Figures 16 to 18). The reason is
that in the cluster increasing the window size does not affect
performance significantly, so the corresponding plots would
not provide any additional information.

A. General comments

Client versus instance latency:In most experiments,
the client latency is generally one or two orders of magnitude
higher than the instance latency: while the instance latency is
usually below 5ms in the cluster and 500ms in Emulab, the
client latency is usually above 100ms and 1s, respectively.
This is explained by the high load created by the clients,
which surpasses by far the capacity of the system. The
requests received by the leader are first put on a waiting
queue until the leader is ready to propose it. This might
take a long time since the leader is limited in how many

requests it can propose by the boundsWND and BSZ ,
as well as by its speed. This queuing time before proposal
is what explains the difference between client and instance
latency. In most cases, increasingBSZ andWND improves
the request throughput, which in turn decreases the client
latency (see for instance, Figures 13a and 13d). This happens
in spite of the instance latency also increasing (Figure 13b),
because when the system is under heavy load, the instance
latency is just a small part of the total latency experienced
by the clients, with the queuing delays being the major cause
of delay.

Instance versus request throughput:A common pattern
is that larger batch sizes result in lower instance throughput
but higher request throughput (See, as an example, Fig-
ures 13c, 13e and 13d). A larger batch size increases the
number of requests ordered per instance, which potentially
improves request throughput. On the other hand, larger
batches increase the time necessary to order an instance,
which decreases the instance throughput, potentially de-
creasing request throughput. But as the results show, the
gains from the additional requests in each batch are greater
than the losses from the lower instance throughput, so overall
there is a net improvement in request throughput.

B. Cluster

Effectiveness of batching:Figures 10c, 11c and 12c
show that the leader is always able to fill up the batches
to their maximum size, thereby taking full advantage of the
batching optimization. This increase in batch size translates
initially into an improvement in request throughput, and then
a stabilization when the CPU is saturated. After this point,
although the batches are still full, the instance time increases,
canceling out the gains in batch size.

Effectiveness of parallel instances:On the other hand,
increasingWND does not improve throughput in the cluster
because the leader is CPU bound. The plots with the average
number of instances (w) (Figures 10f, 11f and 12f) show
what happens: for request sizes of 128 and 1KB, the leader
is not able to execute more than one instance in parallel,
as it does not have time to start more instances before the
previous one finish. For request sizes of 8KB, the leader
executes an average of two instances in parallel, but the
gains here are offset by a corresponding increase in instance
latency (Fig. 12b), and therefore have no impact on overall
throughput.

Instance latency:The instance latency (Fig. 10b, 11b
and 12b) increases linearly with the batch size, since the
larger batch size requires longer to process and transmit.
The only exception is with small batch sizes (< 512 bytes),
where the curves forWND = 2 and WND = 5 peak at
around 4ms as compared to 0.4ms for larger batch sizes.
This additional overhead is because the system is executing
multiple instances in parallel (Fig. 10f, 11f and 12f).
Notice that withWND = 1 this peak does not occur. For



larger values ofBSZ , the system is only able to execute one
instance at a time, and therefore the instance latency drops.

Behavior under saturation:As BSZ and WND in-
crease, the system reaches the maximum capacity, which
corresponds to the saturation of the leader’s CPU. We have
concluded this by measuring the average CPU utilization
of the leader, which is well over 90% in the experiments
where the system is at maximum capacity. However, we can
reach the same conclusion by observing that the network is
not saturated. Considering requests of 8KB, the maximum
throughput of 5000 req/sec corresponds to around 40MB/sec
of requests ordered, which translate to a total network traffic
on the outgoing link of the leader of 80MB/sec, as each
request has to be sent to the two other replicas. This is below
the maximum data rate supported by the cluster, which is
approximately 117.5MB/sec (=940Mbits). For 1KB request
sizes, the total data sent on the outgoing link of the leader
peaks at around 20MB, and for requests of 128 bytes at
3MB, so the network is mostly idle.

An important observation is that the system behaves
gracefully after reaching maximum capacity, with no ob-
servable drop in performance. This is highly desirable, as it
simplifies choosing values forBSZ andWND . Neverthe-
less, these results should not be used to conclude that setting
a very high value for these parameters is safe. For instance,
increasing the batch size too much may introduce delays if
the arrival rate of client requests is not high enough to fill
the batches quickly.

C. Emulab

Figures 13, 14 and 15 show the experimental results
in Emulab as a function of maximum batch size, while
Figures 16, 17 and 18 show the same metrics as a function
of maximum window size.

Effectiveness of batching:Batching by itself (Series
WND = 1 in Figures 13, 14 and 15) increases the through-
put significantly but, contrary to the cluster environment,it
falls short of the maximum throughput, which is reached
by a combination of batching and parallel instances. With
request size of 1KB and 8KB, the best that is reached with
batching alone is about half of the maximum throughput
and the shape of the curve ofWND = 1 suggests that
further increasing the batch size would not lead to any
more significant increases in throughput. With a request
size of 128 bytes a batch size of around 70KB is almost
enough to reach the maximum of 3200 requests/sec, and the
suggests that further increasing the batching would reach the
maximum. But even in this case, batching by itself might be
a bad choice, as filling up a batch of 70KB with requests of
128 bytes, requires a little over 500 client requests, which
might not be a practical number.

With requests sizes of 128 bytes and 1KB, the leader
is not able to completely fill the batches ifWND > 1
(Figures 13c and 14c). In these cases, the average batch size

stabilizes at around 30KB and 100KB, respectively, even as
BSZ is increase well past these values. This is caused by
insufficient client requests to fill the batch completely within
the batching delay, which is set to 50ms (see description of
batching algorithm in Section IV).

Effectiveness of parallel instances:The parallel in-
stance optimization is not enough by itself to reach the
maximum throughput of the system with request sizes of 128
bytes and 1KB, but with 8KB requests it does reach the max-
imum throughput whenWND > 15 (SeriesBSZ = 128,
BSZ = 1KB, and BSZ = 8KB of Figures 16d, 17d
and 18d).

With request sizes of 128 bytes the improvement in
throughput from this optimization alone is modest. Although
the leader is always able to execute up toWND parallel
instances (Figure 16f), withWND > 35 the instance latency
starts increasing (Figure 16b), leading to a stabilizationin
request throughput. This shows one of the limitations of
the parallel instances optimization, which imposes additional
overhead on the CPU of the leader and limits its effec-
tiveness to the cases where there are spare CPU resources.
When the CPU becomes saturated, the leader takes longer to
process the messages received which increases the instance
latency.

Combining batching and parallel instances:The high-
est throughput is reached when batching and parallel in-
stances are used in combination. There are several optimal
combinations ofBSZ and WND , with the optimal value
of one of the parameters being inversely proportional to the
optimal of the other. As an example, with 128 byte requests
(Figure 13d), whenWND = 2 the highest throughput is
reached withBSZ = 40, but whenWND = 10 a maximum
batch size of 10KB is already enough.

Network congestion:As mentioned previously, for re-
quest sizes of 1KB and 8KB, the performance collapses
when BSZ and WND are increases past certain values
due to network saturation. This is clearly visible in Fig-
ures 14b and 15b, which show that as the request throughput
collapses, the instance latency increases substantially.The
increased latency is the result of packet loss, whose effect
is particularly significant in high latency network, as is the
case in these experiments.

VI. D ISCUSSION

The experiments show clearly that batching by itself
provides the largest gains both in high and low latency
networks. Since it is fairly simple to implement, it should
be one of the first optimizations considered in Paxos and,
more generally, in any implementation of a replicated state
machine.

Pipelining is useful only in some systems, as its potential
for throughput gains depends on the ratio between the speed
of the nodes and the network latency: the more time the
leader spends idle waiting for messages from other replicas,



the greater the potential for gains of executing instances in
parallel. Thus, in general, it will provide minimal perfor-
mance gains over batching alone in low latency networks,
but it provides substantial gains when latency is high.

While batching decreases the CPU overhead of the repli-
cation stack, executing parallel instances has the opposite
effect because of the overhead associated with switching
between many small tasks. This reduces the CPU time
available for the service running on top of the replication
task and, in the worst case, can lead to a performance
collapse if too many instances are started simultaneously
(see Emulab experiments). This problem can be avoided
by carefully setting the limit on the number of parallel
instances, taking in consideration the available CPU time
on the leader. The analytical model in this paper helps in
choosing this value, by providing the minimal window size
that results in optimal throughput for a given batch size.

The paper has focused on throughput because as long
as latency is kept within an acceptable range, optimizing
throughput provides greater gains in overall performance.A
system tuned for high-throughput will have higher capacity,
therefore being able to serve a higher number of clients with
an acceptable latency, whereas a system tuned for latency
will usually reach congestion with fewer clients, at which
point its performance risks collapsing to values well below
the optimal.

VII. R ELATED WORK

The two optimizations to Paxos studied in this paper
are particular cases of general techniques widely used in
distributed systems. Batching is an example of message
aggregation, which has been previously studied as a way
of reducing the fixed per-packet overhead by spreading it
over a large number of data or messages, see [3]–[6]. It
is also widely deployed, with TCP’s Nagle algorithm [10]
being a notable example. Pipelining is a general optimization
technique, where several requests are executed in parallel
to improve the utilization of resources that are only par-
tially used by each request. One of the main examples of
this technique is HTTP pipelining [11]. The work in this
paper looks at these two optimizations in the context of
state machine replication protocols, studying how to adapt
them and combine them in Paxos. Most implementations
of replicated state machines use batching and pipelining to
improve performance, but as far as we are aware, there is
no detailed study on combining these two optimizations.

In [3], the authors use simulations to study the impact
of batching on several group communication protocols. The
authors conclude that batching provides one to two orders
of magnitude gains both on latency and throughput. A more
recent work [5] proposes an adaptive batching policy also
for group communication systems. In both cases the authors
look only at batching. In this paper, we have shown that

pipelining should also be considered, as in some scenarios
batching by itself is not enough for optimal performance.

Batching has been studied as a general technique by [4]
and [6]. In [4] the authors present a detailed analytical
study, quantifying the effects of batching on reliable mes-
sage transmission protocols. One of the main difficulties in
batching is deciding when to stop waiting for additional data
and form a batch. This problem was studied in [6], where
the authors propose two adaptive batching policies. The
techniques proposed in these papers can easily be adapted
to improve the batching policy used in our work, which was
kept simple on purpose as it was not our main focus.

There are a few experimental studies showing the gains
of batching in replicated state machines. One such example
is [12], which describes an implementation of Paxos that
uses batching to minimize the overhead of stable storage.

Batching is especially important in Byzantine systems, as
these protocols are more expensive than the corresponding
protocols for benign faults due to a higher message complex-
ity and the use of cryptographic operations. Two examples
are PBFT [13] and Zyzzyva [14], both of which use batch-
ing and pipelining. The corresponding publications contain
experimental studies that, among other factors, evaluate the
effects of batching. But these studies have a limited scope,
focusing only on a narrow range of settings and ignoring
the interplay with pipelining.

There has been a lot of work on other optimizations for
improving the performance of Paxos-based protocols. LCR
[15] is an atomic broadcast protocol based on a ring topology
and vector clocks that is optimized for high throughput.
Ring Paxos [7] is a variant of the Paxos protocol, that com-
bines several techniques, like IP multicast, ring topology,
and using a minimal quorum of acceptors, to maximize
network utilization. These two papers consider only a LAN
environment and, therefore, use techniques that are only
available on a LAN (IP multicast) or that are effective only
if network latency is low (ring-like organization). We make
no such assumptions in our work, so our work applies both
to WAN and LAN environments. In particular, pipelining is
a especially effective technique in medium to high-latency
networks, so it is important to understand its behavior.

VIII. C ONCLUSION

In this paper we have studied two important optimizations
to Paxos, batching and pipelining. The analytical model pre-
sented in the paper is effective at predicting the combinations
of batch size and number of parallel instances that result in
optimal throughput in a given system, and therefore can be
used to assist in tuning a Paxos deployment for maximum
throughput.

Additionally, we have shown that batching produces the
largest gains, both in a cluster and a WAN environment. To-
gether with its simplicity, these results suggest that batching
should be the first optimization considered in such a system.



Interestingly, in systems with moderate to high network
latency, batching by itself is no longer enough to achieve the
best throughput. In this case, the use of pipelining provides
a significant improvement in performance. The results show
that as the network latency increases, the gains of pipelining
become more significant.

ACKNOWLEDGMENT

The authors would like to thank Paweł T. Wojciechowski,
Jan Kónczak and TomasżZurkowski for their work on
JPaxos.

REFERENCES

[1] L. Lamport, “The part-time parliament,”ACM Transactions
on Computer Systems, vol. 16, no. 2, May 1998.

[2] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast
and multicast algorithms: Taxonomy and survey,”ACM Com-
put. Surv., vol. 36, Dec. 2004.

[3] R. Friedman and R. Renesse, “Packing messages as a tool
for boosting the performance of total ordering protocols,”
Department of Computer Science, Cornell University, Tech.
Rep. TR95-1527, 1995.

[4] B. Carmeli, G. Gershinsky, A. Harpaz, N. Naaman,
H. Nelken, J. Satran, and P. Vortman, “High throughput
reliable message dissemination,” inProceedings of the 2004
ACM Symposium on Applied Computing, NY, USA, 2004.

[5] A. Bartoli, C. Calabrese, M. Prica, E. Di Muro, and A. Mon-
tresor, “Adaptive message packing for group communication
systems,” inOTM 2003 Workshops, ser. LNCS. Springer,
2003.

[6] R. Friedman and E. Hadad, “Adaptive batching for replicated
servers,” in Symposium on Reliable Distributed Systems,
SRDS’06, Oct. 2006.

[7] P. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring paxos:
A high-throughput atomic broadcast protocol,” inDependable
Systems and Networks (DSN’10), Jun. 2010.

[8] B. White and J. L. et al, “An integrated experimental en-
vironment for distributed systems and networks,” inProc.
of the Fifth Symposium on Operating Systems Design and
Implementation, Boston, MA, Dec. 2002.

[9] N. Santos, J. Konczak, T. Zurkowski, P. Wojciechowski, and
A. Schiper, “Jpaxos - state machine replication in java,”
EPFL, Tech. Rep. to appear, 2011.

[10] J. Nagle, “Congestion control in ip/tcp internetworks,” IETF,
Tech. Rep. RFC 896, Jan. 1984.

[11] V. N. Padmanabhan and J. C. Mogul, “Improving http la-
tency,” Computer Networks and ISDN Systems, vol. 28, no.
1-2, 1995.

[12] Y. Amir and J. Kirsch, “Paxos for system builders,” Johns
Hopkins University, Tech. Rep. CNDS-2008-2, 2008.

[13] M. Castro, “Practical byzantine fault tolerance,” Ph.D. disser-
tation, Laboratory for Computer Science, MIT, 2001.

[14] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,
“Zyzzyva: speculative byzantine fault tolerance,” inProceed-
ings of twenty-first ACM SIGOPS SOSP, NY, USA, 2007.

[15] R. Guerraoui, R. R. Levy, B. Pochon, and V. Quéma,
“Throughput optimal total order broadcast for cluster envi-
ronments,”ACM Trans. Comput. Syst., vol. 28, no. 2, 2010.



APPENDIX

A. Cluster: additional experimental results

20 40 60
0

100

200

300

400

500

600

Max. Batch Size (KB) (BSZ)

La
te

nc
y 

(m
s)

 

 

WND=1
WND=2
WND=5

(a) Client latency

20 40 60
0

1

2

3

4

Max. Batch Size (KB) (BSZ)
La

te
nc

y 
(m

s)
(b) Instance latency

20 40 60
0

20

40

60

80

Max. Batch Size (KB) (BSZ)

B
at

ch
 S

iz
e 

(K
B

)

(c) Avg batch size (bsz )

20 40 60
0

5000

10000

15000

Max. Batch Size (KB) (BSZ)

R
eq

ue
st

s/
se

c

(d) Requests/sec

20 40 60
0

500

1000

1500

2000

Max. Batch Size (KB) (BSZ)

In
st

an
ce

s/
se

c

(e) Instances/sec

20 40 60
0

1

2

3

4

5

Max. Batch Size (KB) (BSZ)
#I

ns
ta

nc
es

(f) Avg window size (w )

Figure 10. Cluster, experimental results withSreq = 128.



100 200 300 400 500
0

100

200

300

400

Max. Batch Size (KB) (BSZ)

La
te

nc
y 

(m
s)

 

 

WND=1
WND=2
WND=5

(a) Client latency

100 200 300 400 500
0

2

4

6

8

10

12

Max. Batch Size (KB) (BSZ)

La
te

nc
y 

(m
s)

(b) Instance latency

100 200 300 400 500
0

100

200

300

400

500

600

Max. Batch Size (KB) (BSZ)

B
at

ch
 S

iz
e 

(K
B

)

(c) Avg batch size (bsz )

100 200 300 400 500
0

5000

10000

15000

Max. Batch Size (KB) (BSZ)

R
eq

ue
st

s/
se

c

(d) Requests/sec

100 200 300 400 500
0

500

1000

1500

2000

Max. Batch Size (KB) (BSZ)

In
st

an
ce

s/
se

c

(e) Instances/sec

100 200 300 400 500
0

1

2

3

4

5

Max. Batch Size (KB) (BSZ)

#I
ns

ta
nc

es

(f) Avg window size (w )

Figure 11. Cluster, experimental results withSreq = 1KB.

100 200 300 400 500
0

100

200

300

400

Max. Batch Size (KB) (BSZ)

La
te

nc
y 

(m
s)

 

 

WND=1
WND=2
WND=5

(a) Client latency

100 200 300 400 500
0

5

10

15

20

Max. Batch Size (KB) (BSZ)

La
te

nc
y 

(m
s)

(b) Instance latency

100 200 300 400 500
0

100

200

300

400

500

600

Max. Batch Size (KB) (BSZ)

B
at

ch
 S

iz
e 

(K
B

)

(c) Avg batch size (bsz )

100 200 300 400 500
0

1000

2000

3000

4000

5000

Max. Batch Size (KB) (BSZ)

R
eq

ue
st

s/
se

c

(d) Requests/sec

100 200 300 400 500
0

500

1000

1500

2000

Max. Batch Size (KB) (BSZ)

In
st

an
ce

s/
se

c

(e) Instances/sec

100 200 300 400 500
0

1

2

3

4

5

Max. Batch Size (KB) (BSZ)

#I
ns

ta
nc

es

(f) Avg window size (w )

Figure 12. Cluster, experimental results withSreq = 8KB.



B. Emulab: additional experimental results

20 40 60
0

2000

4000

6000

8000

10000

Max. Batch Size (KB) (BSZ)

La
te

nc
y 

(m
s)

 

 

WND=1
WND=2
WND=5
WND=10
WND=20
WND=30

(a) Client latency

20 40 60
100

110

120

130

140

150

160

170

Max. Batch Size (KB) (BSZ)

La
te

nc
y 

(m
s)

(b) Instance latency

20 40 60
0

20

40

60

80

Max. Batch Size (KB) (BSZ)

B
at

ch
 S

iz
e 

(K
B

)

(c) Avg batch size (bsz )

20 40 60
0

1000

2000

3000

4000

Max. Batch Size (KB) (BSZ)

R
eq

ue
st

s/
se

c

(d) Requests/sec

20 40 60
0

50

100

150

200

250

300

Max. Batch Size (KB) (BSZ)

In
st

an
ce

s/
se

c

(e) Instances/sec

20 40 60
0

5

10

15

20

25

30

Max. Batch Size (KB) (BSZ)

#I
ns

ta
nc

es

(f) Avg window size (w )

Figure 13. Emulab, experimental results withSreq = 128.

50 100 150 200 250
0

2000

4000

6000

8000

10000

Max. Batch Size (KB) (BSZ)

La
te

nc
y 

(m
s)

 

 

WND=1
WND=2
WND=5
WND=10
WND=20
WND=30

(a) Client latency

50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

Max. Batch Size (KB) (BSZ)

La
te

nc
y 

(m
s)

(b) Instance latency

50 100 150 200 250
0

50

100

150

200

250

300

Max. Batch Size (KB) (BSZ)

B
at

ch
 S

iz
e 

(K
B

)

(c) Avg batch size (bsz )

50 100 150 200 250
0

500

1000

1500

Max. Batch Size (KB) (BSZ)

R
eq

ue
st

s/
se

c

(d) Requests/sec

50 100 150 200 250
0

50

100

150

200

250

300

Max. Batch Size (KB) (BSZ)

In
st

an
ce

s/
se

c

(e) Instances/sec

50 100 150 200 250
0

5

10

15

20

25

30

Max. Batch Size (KB) (BSZ)

#I
ns

ta
nc

es

(f) Avg window size (w )

Figure 14. Emulab, experimental results withSreq = 1KB.



50 100 150 200 250
0

2

4

6

8

10

12x 10
4

Max. Batch Size (KB) (BSZ)

La
te

nc
y 

(m
s)

 

 

WND=1
WND=2
WND=5
WND=10
WND=20
WND=30

(a) Client latency

50 100 150 200 250
0

0.5

1

1.5

2

2.5

3x 10
4

Max. Batch Size (KB) (BSZ)

La
te

nc
y 

(m
s)

(b) Instance latency

50 100 150 200 250
0

50

100

150

200

250

300

Max. Batch Size (KB) (BSZ)

B
at

ch
 S

iz
e 

(K
B

)

(c) Avg batch size (bsz )

50 100 150 200 250
0

50

100

150

Max. Batch Size (KB) (BSZ)

R
eq

ue
st

s/
se

c

(d) Requests/sec

50 100 150 200 250
0

50

100

150

Max. Batch Size (KB) (BSZ)

In
st

an
ce

s/
se

c

(e) Instances/sec

50 100 150 200 250
0

5

10

15

20

25

30

Max. Batch Size (KB) (BSZ)

#I
ns

ta
nc

es

(f) Avg window size (w )

Figure 15. Emulab, experimental results withSreq = 8KB.

10 20 30 40 50 60 70
0

2000

4000

6000

8000

10000

Max. Window Size (WND)

La
te

nc
y 

(m
s)

 

 

MBSZ=194
MBSZ=338
MBSZ=1KB
MBSZ=5KB
MBSZ=18KB
MBSZ=72KB

(a) Client latency

10 20 30 40 50 60 70
100

150

200

250

Window Size (WND)

La
te

nc
y 

(m
s)

(b) Instance latency

10 20 30 40 50 60 70
0

100

200

300

400

500

600

Window Size (WND)

#R
eq

ue
st

s

(c) Avg batch size (bsz )

10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

Window Size (WND)

R
eq

ue
st

s/
se

c

(d) Requests/sec

10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

Window Size (WND)

In
st

an
ce

s/
se

c

(e) Instances/sec

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Window Size (WND)

#I
ns

ta
nc

es

(f) Avg window size (w )

Figure 16. Emulab, experimental results withSreq = 128.



10 20 30 40 50
0

2000

4000

6000

8000

10000

Max. Window Size (WND)

La
te

nc
y 

(m
s)

 

 

MBSZ=1KB
MBSZ=2KB
MBSZ=8KB
MBSZ=17KB
MBSZ=33KB
MBSZ=260KB

(a) Client latency

10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

Window Size (WND)

La
te

nc
y 

(m
s)

(b) Instance latency

10 20 30 40 50
0

50

100

150

200

250

300

Window Size (WND)

#R
eq

ue
st

s

(c) Avg batch size (bsz )

10 20 30 40 50
0

200

400

600

800

1000

1200

Window Size (WND)

R
eq

ue
st

s/
se

c

(d) Requests/sec

10 20 30 40 50
0

50

100

150

200

250

300

350

Window Size (WND)

In
st

an
ce

s/
se

c

(e) Instances/sec

10 20 30 40 50
0

10

20

30

40

50

Window Size (WND)

#I
ns

ta
nc

es

(f) Avg window size (w )

Figure 17. Emulab, experimental results withSreq = 1KB.

5 10 15 20 25 30
0

2

4

6

8

10

12x 10
4

Max. Window Size (WND)

La
te

nc
y 

(m
s)

 

 

MBSZ=8KB
MBSZ=17KB
MBSZ=34KB
MBSZ=68KB
MBSZ=137KB
MBSZ=264KB

(a) Client latency

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3x 10
4

Window Size (WND)

La
te

nc
y 

(m
s)

(b) Instance latency

5 10 15 20 25 30
0

5

10

15

20

25

30

35

Window Size (WND)

#R
eq

ue
st

s

(c) Avg batch size (bsz )

5 10 15 20 25 30
0

50

100

150

Window Size (WND)

R
eq

ue
st

s/
se

c

(d) Requests/sec

5 10 15 20 25 30
0

50

100

150

Window Size (WND)

In
st

an
ce

s/
se

c

(e) Instances/sec

5 10 15 20 25 30
0

5

10

15

20

25

30

Window Size (WND)

#I
ns

ta
nc

es

(f) Avg window size (w )

Figure 18. Emulab: experimental results withSreq = 8KB.


