Tuning Paxos for high-throughput with batching and pipelining

Nuno Santos, Andr Schiper
Ecole Polytechnique &terale de Lausanne (EPFL)
Email: firsthame.lasthame@epfl.ch

Abstract—Paxos is probably the most popular state ma- and potentially in a higher throughput. Batching can easily
chine replication protocol. Two optimizations that can greatly be implemented on top of Paxos, as it does not require
improve its performance are batching and pipelining. Nev- any changes to the ordering protocBlipelining [1] is an
ertheless, tuning these two optimizations to achieve optimal . .
performance can be challenging, as their effectiveness depends .e>$t.enS|on of .the basic Paxos prot.ocol where the leader
on many parameters like the network latency and bandwidth, initiates new instances of the ordering protocol before the
the speed of the nodes, and the properties of the application. previous ones have completed. This optimization is patticu
We address this question, by first presenting an analytical |arly effective when the network latency is high, as it alfow
model of the performance of Paxos that can be used to obtain the leader to pipeline several instances on the slow link.

values for tuning batching and pipelining. We then present . T .
experiments validating the model and investigating how these Batching and pipelining are used by most replicated state

two optimizations interact in both a LAN and a WAN setting. ~ machine implementations, as they usually provide perfor-
The results show that although batching by itself is usually —~mance gains between one and two orders of magnitude.

sufficient to maximize the throughput in a LAN environment, Nevertheless, in order to achieve the best throughput, they
in a WAN it must be complemented with pipelining. must be carefully tuned. For batching, it is necessary to
choose the bound on the size of batches, in order to strike
|. INTRODUCTION a balance between the size of batches and how long the
State machine replication is a technigue commonly usedeader has to wait for client requests. For pipelining, it is
by fault tolerant systems. This technique allows the repli-necessary to set a limit on the number of instances that can
cation of any service that can be implemented as a detebe in execution simultaneously, as a value that is too high
ministic state maching,e., where the state of the service may lead to a significant degradation in performance due
is determined only by the initial state and the sequencéo the increased overhead of managing multiple instances.
of commands executed. Given such a service, we need Moreover, the optimal choice for the bounds on the batch
protocol ensuring that each replica of the service executesize and number of parallel instances depends on the proper-
the requests received from the clients in the same order. ties of the system and of the application, mainly on process
Paxos is probably the most popular of such protocols. Ispeed, bandwidth, latency, and size of client requests.
is designed for partially synchronous systems with benign We begin by studying analytically what are the com-
faults. In Paxos, a distinguished process, the leaderivesce binations of batch size and number of parallel instances
the requests from the clients and establishes a total ordethat maximize throughput for a given system and workload.
using a series of instances of an ordering protocol. We express this relationship in terms of a function=
In the simplest Paxos variant, the leader orders ong(Spaicr), WhereSy.:cn is @ batch size and is a number of
client request at a time. In general, this is very inefficientparallel instances (also denoted by window size). Thislresu
for two reasons. First, since ordering one request takes &ian be used to tune batching and pipelining, for instance,
least one network round-trip between the leader and théy setting the bounds on the batch and window size to
replicas, the throughput is bounded By where L is the one of the optimal combinations, so that given enough load
network latency. This dependency between throughput anthe system will reach maximum throughput. To obtain the
latency is undesirable, as it severely limits the throughpurelation above, we developed an analytical model for Paxos,
in moderate to high latency networks. Second, if the requesthich predicts several performance metrics, including the
size is small, the fixed costs of executing an instance ofhroughput of the system, the CPU and network utilization
the ordering protocol can become the dominant factor andf an instance, as well as its wall-clock duration. We then
quickly overload the CPU of the replicas. present the results of an experimental study comparing
In this paper, we study two optimizations to the basicbatching and pipelining in two settings, one representing
Paxos protocol that address these limitations: batchimy ana WAN and the other a cluster. We show which gains are
pipelining. Batching consists of packing several requeststo be expected by using either of the optimizations alone
in a single instance of the ordering protocol. The mainor combined, the results showing that although in some
benefit is spreading the fixed per-instance costs over deversituations batching by itself is enough, in many others it
requests, which results in a smaller per-request overheamust be combined with parallel instances. We contrast these

Req.1 Req.2 Answer 1 Answer 2
NN

NN S

\/W S A

: b p3
g f—t——— fe——
: t+1 Instance:
E h N
bs : (a) Paxos with pipelining (b) Paxos with batching.
! Phase 1 Lo Phase 2 k Phase 2 ! Figure 2. Paxos optimizations.
Figure 1. Basic MultiPaxosn(= 3, f = 1) receives a new request, it can start a new instance at once,

even if there are other that are still undecided, as shown in
results with the prediction of our model, showing that theFigure 2a.
model is effective at predicting several performance rogtri Executing parallel instanceisnproves the utilization of
including the throughput and optimal window size for aresourcesby pipelining the different instances. This opti-
given batch size. mization is especially effective in high-latency netwqrks
The rest of the paper is organized as follows. Section lithe leader might have to wait a long time to receive the
provides the background for our work, describing in morePhase 2b messages.
detail the batching and pipelining optimizations in Paxos, The main drawback is that each instance requires addi-
Section Il presents an analytical model of Paxos, Sectibn | tional resources from the system. If too many instances are
presents the experimental evaluation of these two optimizastarted in parallel, they may overload the system, either
tions on a LAN (a cluster) and on a WAN, Section VI by maxing out the leader's CPU or by causing network
discusses the results of the paper, Section VII presents thengestion, resulting in a more or less severe performance
related work, and Section VIII concludes the paper. degradation. For this reason, the number of parallel icgtsn
that the leader is allowed to start is usually bounded.
Choosing a good bound requires some careful analysis. If set
Paxos, or more precisely MultiPaxos, is a state machin¢oo low, the network will be underutilized. If set too high,
replication protocol, which at its core uses the Synod conthe system might become overloaded resulting in a severe
sensus algorithm [1]. If the replication degreerisand f out ~ performance degradation, as shown by the experiments in
of the n replicas may fail by crashing, the protocol requires Section IV. The best value depends on many factors, in-
n > 2f + 1. MultiPaxos can be seen assaquencer-based cluding the network latency, the size of the requests, the
atomic broadcast protocol [2], where the sequencer orderspeed of the replicas, and the expected workload.
requests received from the clients. In the Paxos terminplog)
the sequencer is callddader Paxos is usually described in B- Batching
terms of proposers, acceptors and learners, which are the Batching is a common optimization in communication
roles each process can play. Here we ignore the differergystems, which generally provides large gains in perfor-
roles by assuming that every node plays all three roles. mance [3]. It can also be applied to Paxos, as illustrated by
For the purpose of the paper we describe only the relevarfigure 2b. Instead of proposing one request per instanee, th
details of the Paxos protocol. Figure 1 shows the messageader packs several requests in a single instance. Once the
pattern of Paxos for the case = 3, f = 1. Once a order of a batch is established, the order of the individual
process becomes leadey (n Figure 1), it executes Phase 1 requests is decided by a deterministic rule applied to the
only once for all future instances. Afterwards, for each newrequest identifiers.
request received from the clients, it only needs to execute The gains of batching come from spreading the fixed costs
Phase 2 (a request is ordered at the leader upon receptiofi an instance over several requests, thereby decreasing th
of enough Phase 2b messages), thereby saving two messagerage per-request overhead. For each instance, thensyste
delays per consensus instance. Therefore, in our analysgerforms several tasks that take a constant time regardless
we ignore Phase 1 messages and use the iestanceas of the size of the proposal, or whose time increases only
an abbreviation foone instance of Phase 2 residually as the size of the proposal increases. Thesgdacl
In the simplest version of MultiPaxos, the leader proposesnterrupt handling and context switching as a result of read
one request per instance and executes one instance at a tinmgy and writing data to the network card, allocating buffers
o updating the replicated log and the internal data strusture
A. Pipelining and executing the protocol logic. In [4], the authors show
MultiPaxos can be extended to allow the leader to executéhat the fixed costs of sending a packet over a Ethernet
several instances in parallel [1]. In this case, when thédea network are dominant for small packet sizes, and that for

II. BACKGROUND

Symbol

Description

larger packets the total processing time grows signifigantl
slower than the packet size. In the case of Paxos, the fixedp
costs of an instance are an even larger fraction of the total L
costs because, in addition to processing individual messag fmq
processes also have to execute the ordering algorithm. Ad-y,
ditionally, batching decreases dramatically the cost aigis Sza
stable storage, because a single stable storage access %b
enough to log the state of all requests in a batch. o

¢E.Te{:
Batching is fairly simple to implement in Paxos: the leader WND
waits until having "enough” client requests and proposes BsZ

Number of replicas

Bandwidth

One way delay (latency)

Size of request

Number of requests in a batch

Number of parallel instances

Size of a Phase 2a message (batch)

Size of ack

Size of answer sent to client

CPU-time used to execute a request

Bound on maximum number of parallel instances (Con-
figuration parameter)

Bound on batch size (Configuration parameter)

them as a single proposal. The difficulty is deciding what is

Table |

"enough”. In general, the larger the batches, the bigger the NOTATION.
gains in throughput. But in practice, there are severabmas
to limit the size of a batch. First, the system may have
physical limits on the maximum packet size (for instance, th A- Quantitative analysis of Phase 2 of Paxos
maximum UDP packet size is 64KB). Second, larger batches Table | shows the parameters and the notation used in
take longer to build because the leader has to wait for moréhe rest of the paper. We focus on the two resources that
requests, possibly delaying the ones that are alreadyngaiti are typically the bottleneck in a Paxos deploymést, the
and increasing the average time to order each request. Thisader's CPU and its outgoing channel.
is especially problematic with low load, as it may take Our model takes as input the system parametersi
a long time to form a large batch. Finally, a large valuer, and four constants defined later that model the speed
takes longer to transfer and process, further increasiag thof the nodes), the workload parameter$,..{, S..s and
latency. Therefore, a batching policy must strike a balancey,,..), and the batching levek]. From these parameters, the
between creating large batches (to improve throughput) anghodel characterizes how an instance utilizes the two atitic
deciding when to stop waiting for additional requests andresources, by determining the duration of an instance {wall
send the batch (to keep latency within acceptable boundsglock time), and the busy time of each resource, that is,
This problem has been studied in the general context ofhe total time during which the resource is effectively used
communication protocols by [4]-[6]. In the rest of the with these two values, we can then determine the fraction
paper, we study it in the context of Paxos, and analyze it$f idle time of a resource, and predict how many additional
interaction with the pipelining optimization. parallel instances are needed to reach maximum utilization
The resource that reaches saturation with the lowest number
of parallel instances is effectively the bottleneck, s ithis
resource that determines the maximum number of parallel
instances that can be executed in the system.

The model also provides estimations for the throughput
and latency with a given configuration, which can be used to

We consider the Paxos variant described in Section Iftudy how different batch sizes affect the performance and
with point-to-point communication. There are other vatsan the optimal number of parallel instances for each batch size
of Paxos that use different communication schemes, like For simplicity, we assume that all requests are of similar
IP multicast and chained transmission in a ring [7]. Wwesize. Since the bulk of the Phase 2a message is the batch
chose the basic variant for generality and simplicity, big t Peing proposed, in the following we usg, = kSre, + ¢
analysis can be easily adapted to other variants. We furthdp denote the batch size, wheeerepresents the protocol
assume full duplex links and that no other application isheaders.
competing for bandwidth or CPU tirdeAlso for simplicity, 1) Network busy timeThe outgoing network channel of
we focus on the best case, that is, we do not considdne leader is busy for the time necessary to send all the data
message loss or failures. We also ignore mechanisms ihterneelated to an instance, which consistsof- 1 Phase 2a
to a full implementation of Paxos, like failure detection. messages, one to every other replica, &nghswers to the

On a finely tuned system, these mechanisms should ha@ients. _ _ .
a minimal impact on throughput. Because of differences in topology, we consider the cases

.of a LAN and a WAN separately. On a LAN, the replicas are

Flnally, we assume that execution within each process If’ypically on the same network, so the effective bandwidth
sequential. The model can be extended to account for multi-

core or SMP machines, but this is a non-trivial extension 1tpe presence of other applications can be modeled by adjuthia
which, for the sake of simplicity, we do not explore here. model parameters, to reflect the competition for network resesur

I1l. ANALYTICAL MODEL OF PAXOS PERFORMANCE

available between them is the bandwidth of the networkreplica, wherex is the sum of the sizes of the Phase 2a
Therefore, the leader has a total bandwidthBofo use for and 2b messages. Both functions are linear, which models
all the messages it has to send, and we can compute thiee well-known [4] behavior where the time to process a
time the network is used for an instance as follows: message consists of a constant plus a variable part, the
LAN later increasing linearly with the size of messag&he

Ginst = (0 = 1)S20 + kSans)/ B values of the garametgrs of these two functionsgmust be
On a WAN environment, however, the replicas are indetermined experimentally for each system, as they depend
different data centers, so the connection between them isoth on the hardware used to run the replicas and on
composed of a fast segment inside the replica’s data cent#ihe implementation of Paxos. We show how to do so on
(bandwidthB), and of another comparatively slow segmentSections IV-A2 and I1V-B2.

between the different data centers (bandwidty). Since Therefore, we get the following for an instance CPU time:
usually By < By, in the following analysis we consider

By to be the effective bandwidth between the replicas, o =kdcti(Sreq + Sans)+

ignoring Bz, i.e, we take B = Byy. Moreover, while in (n = 1)rep (Sza + Sop) + kpegee

LAN a replica has a total bandwidth &f to share among alll

other replicas, on a typical WAN topology each replica has @ The first term models the cost of receivihgequests from
total of By bandwidth to every other replica. The reason isthe clients and sending back the corresponding answers, the
that the inter-data center section of the connection betWeesecond term represents the cost of procesaingl Phase

the replicas will likely be different for each pair of re@s, 23 and 2b messages, finally, the last term is the cost of
so that after leaving the data center, the messages from gecuting the: requestsigeec.

replica will follow independent paths to each other replica pe time per request is given by~ = ¢¢°Y /k. and the

inst

Thus, contrary to the case of a LAN, every message sent bﬁﬁroughput in instances and request per seconds/b§Y,
the leader uses a separate logical channel of bandwidth 541 /¢CPY, respectively.

By the same reasoning, the messages from the leader to the el

lients al te ch s. Si dina th 3) Wall-clock time:Estimating the wall-clock duration of
clients aiso use separate channeis. since Sending Ie@nSWE, j,qrance js more challenging than estimating the network
to the client does not delay executing additional instances

and CPU utilization, because some operations that must
the network bottle_neck are the channels between the Ieadg{)mplete for the instance to terminate are done in parallel.
and the other replicas. Therefore, we get As an example, once the leader finishes sending2]
PN = Sy, /B messages to the other replicas, the execution splits irto tw
separate sequence of events. In one of them, the leader sends
the remaining phase 2a messages. On the other, it waits for
enough phase 2b messages to decide and start executing the

In both cases, the per request time is givend)j =

nel/k, where NET stands for eithe,AN or wWAN. The
maximum network throughput of instances and requests i?equests If after executing the first request in the bate, t

H NET NET H - '
given by1/¢5.;, and1/¢;;;, respectively. leader did not finish sending all the Phase 2a messages, it

2) CPU time: During each instance, the leader uses themay have to wait for the outgoing link to be free before

CPU to perform the following tasks: read the requests fromsending the answers to the clients
the clients, prepare a batch containihgequests, serialize Therefore, the exact sequence of events that leads to

and sendr — 1 Phase 2a message, receive- 1 phase 2b : "y
mpletion depends on the workload and the characteristics
messages, execute the requests and send the answers to%ﬁﬁ o
. of the system. In a fast LAN the wall-clock duration is
clients (in addition to executing the protocol logic wheaev - S
it receives a message) likely to be limited by the CPU speed, while in high-latency
) . WAN the latency is likely the dominant factor. Similarly,
i the workload consists of large requests and answers, the

Wlth clients a_nd W!th other replicas. '!'he cPU tlme_ reqUIredbandwidth is more likely to be the bottleneck than the CPU
to interact with clients depends mainly on the size of the

requests §,,) and the number of requests that must beor_;?]e Iaftency. del th ll-clock fi b ideri
read to fill a batch X), while the interaction with replicas erefore we model the wall-clock time by considering

depends on the number of replicas) (and the size of Lhrele dlﬁsr%ﬂéucasesa ?Zcr:] colrresponc'i:mg to ha different
the batch §2,). Since these two interactions have distinct ottlenec h q » oan V¥' t or atency. h'OL eac case,hwe
parameters, we model them by two functioris;, (x) and compute the duration of an instance, which gives us three

- MCPU band lat H H H
®rep(x). The functiong.;; (z) represents the CPU time used formulas: Ti7', Tinsi® and Ty, The instance time is the
by the leader to receive a request from a client and send
back the Corresponding answer, W:htkbeing the sum of the 2_We chose to use a sing_le function to represent sending aed/im_iy,a

. f th t d th Simil . pair of related messages, instead of one function per mesgpgeSince
Sizes or the request and the answer. simi a‘ﬂ%q(f) IS" the model is linear, this reduces the number of parameters évat to be
the CPU time used by the leader to interact with anotheestimated to half without losing any expressiveness.

CPU o) (1= D9 (820) kl(derc t (Su) because its CPU will be partially idle as it waits for the
: answers. This difference between CPU and wall clock time

n— 1) 52 Sans

netout :&&I-: increases with the size of the batch (See Figure 5). This idle
time is represented byn/2|Sz,/2B.

teader —a a0 } I\' H L7 T If the bandwidth is the bottleneck (Equation (3) and

Figure 3b), the wall-clock time of an instance is the total
time needed by the leader to send all the messages of that
instance through the outgoing chanried,, n — 1 Phase 2a
messages ank answers.

p

(a) CPU is the bottleneck

k(¢evec + d(Sans))

CPU | i E— Finally, if the latency is the bottleneck (Equation (4) and
(n—1)3z k Sane Figure 3c), the wall-clock time of an instance corresponds t
netout ; the time needed to send the filst/2| phase 2a messages
. . . . ' YV to the replicas, plus the round-trip time required to regeiv
leader —} \){ IASNUBLER enough Phase 2b messages from the replicas, followed by
» the execution time of the requests and the time to send the

answers back to the clients.

(b) Bandwidth is the bottleneck
For the WAN case, the formulas are as follow:

k(¢eace + #(Sans))

CPU | e Tir = inst + S2a/B ®)
S2a ans
netout (-1 k% Til;Las:ELd = SQG/B (6)
|/|// Tilszt = SQa/B +2L + k¢ezec (7)
lead L] L1 1) . . .
s W' o The difference is that messages can be send in parallel,
P because of the assumption that each pair of processes has
() Latency is the bottleneck exclusive bandwidth. Therefore, the time to send a message
Figure 3. Utilization of the CPU and outgoing link of the leadluring to the other repllcgs does not dependroand sendlpg the
an instance. answers to the clients does not affect the duration of an

instance (separate client-leader and leader-replicanetsin
maximum of the three:
B. Maximizing resource utilization
Tinst = max(T, Toen®, T, 1)

wnsty) ~inst) T anst

If the leader's CPU and outgoing channel are not com-

Once again, due to the differences in topology, we modeP!€tely busy during an instance, then the leader can execute
the LAN and the WAN cases differently. For the LAN case, @dditional instances in parallel. The idle time of a reseurc

we have: R (CPU or outgoing link) is given byT},s; — ¢% ., and
the number of instances that a resource can sustaih,
Tirt = Ginst + [1/2]S24/2B (2) is Tine/0R,,. From these, we can compute the maximum
Tbnd — ((n —1)Ssq + kSqans)/B (3) number of parallel instances that the system can sustain as:

T/t = |n/2]S24/B + 2L + kdegec + kSans/B (4)

. . . — mi cpu7 NET)
Figure 3 illustrates the three cases. Each sub-figure rep- w = min(w™, w™) ®)

resents an instance. The two lines at the bottom represent This value can be used as a guideline to configure
the leader and one other replica, the one whose Phase Patching and pipelining. In theory, setting the window size
message triggers the decision at the leader, and the two baws any value equal or higher to this lower bound results
at the top represent the busy/idle periods of the CPU anth optimal throughput, but as shown by the experiments in
of the outgoing link of the leader. The arrows above theSection IV-B, increasing the window size too much may
leader line represent messages exchanged with the clientssult in congestion of the network or saturation of the CPU,
(their time-lines are not represented) and the arrows belowind reduce performance. Therefore, the window size should

are messages exchanged with the other replicas. be set to the lowest value suggested by the analytical model.
If the CPU is the bottleneck (Equation (2) and Figure 3a),
the wall-clock time of an instance is dominated by the CPU IV. EXPERIMENTAL STUDY

time of this instance, which we have previously computed In this section we study the batching and pipelining
(formula ¢$7%, in Section 11I-A2). Additionally, the wall- optimizations from an experimental perspective, and eadid

clock time must also include the time during which thethe analytical model. Section IV-A shows the results in a
leader is sending the Phase 2a messages to other replic&uster and Section IV-B the results in a WAN environment

emulated using Emulab [8]. For each environment, we first A

present the experimental results. Then we determine the 20 e

parameters of the model that represent the process speed

(parameters ofp.;(x) and ¢, (x)), and finally compare 230

the predictions for the throughput and optimal window size ® A

of the model with the values obtained experimentally. E 20 _-é-_fenxf;d_el';;%
We performed the experiments using JPaxos [9], a full- 0 ‘,4}:" B e-;%d_eﬁm

feature implementation of Paxos in Java, which supports A T model-8KB

both batching and pipelining. el - exp_BKB

- 0 100 200 300 400 500 600
Implementing batching and pipelining in Paxos is fairly Batch Size (KB)

straightforward: batching has a trivial implementatiordan _) _
L Figure 5. Experimental versus model results for the CPU time of

pipelining was described in the original Paxos paper [1]'an instance in the cluster. Model parametefs;;(x) = 0.005z +

To control these optimizationg,e., decide when to create 0.08, ¢, () = 0.0035z + 0.22.

a new batch and initiate a new instance, we use a simple

algorithm with three parameter§ND, BSZ andAz. The ~ A. Cluster

parameterWND is the maximum number of instances that The following experiments were run on a cluster of

can be executed in parallebSZ is the maximum batch size Pentium 4 at 3GHz with 1GB memory connected by a

(in bytes), andA is the batch timeout. The timeoutz is Gigabit Ethernet. The effective bandwidth of a TCP stream

reset whenever the leader opens a new batch, which happebstween two nodes measured gt per f is 940 Mbit/s.

when it receives the first request that will go in the batch. 1) Experimental results:Figure 4 shows the request

The leader then waits until either it has enough requests tthroughput as a function of batch size, for request sizes of

fill the batch or the timeoutAp expires. It then proposes 128 bytes, 1KB and 8KB, and for maximum window sizes

the batch by starting a new instance as soon as the numbef 1, 2 and 5.

of active instances is undé’ND. In the experiments we Batching provides a major improvement in performance in

vary BSZ and WND while keepingAp set to 50ms. This all cases, ranging from an almost 10 times improvement with

timeout has no impact on the results, as the load on th&28 bytes requests to a little over 4 times with 8KB requests.

system is high enough for the leader to form a batch befor@he batch size where the system reaches optimal throughput

the timeout expires. varies depending on the request size: around 10KB, 64KB

We consider a system with three replicas. In order to stresand 128KB for request sizes of 128 bytes, 1KB and 8KB,
the batching and pipelining mechanisms, all the experimentrespectively. On the other hand, increasiigvD does not
were performed with the system under high load. We usedmprove performance. During each run the average CPU
900 clients in the cluster and 1200 in Emulab, which isutilization of the leader's CPU is above 90%, suggesting
enough for the leader to form new batches without havinghat the leader is CPU-bound and, therefore, is not able to
to wait for additional requests. execute additional instances.

The replicated service keeps no state. It receives requestsThe performance does not drop if theSZ or WND
containing an array ofS,., bytes and answers with an 8 are increased past their optimal values. This is a desirable
bytes array. We chose a simple service as this puts the mobghavior, because the system will perform optimally with a
stress on the replication mechanisms. JPaxos adds a head#de range of configuration parameters, making it easier to
of 16 bytes per request and 4 bytes per batch of requests. Tingne. As Section IV-B shows, this is not always the case.
analytical results reported below take the protocol ovathe 2) Setting model parameter§o estimate the parameters
in consideration. ¢ and ¢, we used the Java Management interfaces

All communication is done over TCP. We did not use (Thr eadMXBean) to measure the total CPU time used
IP multicast because it is not generally available in WAN-by the leader process during a run. Dividing this value
like topologies. Initially we considered UDP, but rejecied by the total number of instances executed during the run
because in our tests it did not provide any performance adgives the average per-instance CPU time. To prevent the
vantage over TCP. TCP has the advantage of providing floldVM warm-up period from skewing the results, we ignore
and congestion control, and of having no limits on messag¢he first 30 seconds of a run (for a total duration of 3
size, therefore saving us the tedious work of reimplemegntin minutes). We repeat the measurements for several request
these features. The replicas open the connections atfstartand batch sizes, and then adjust the parameters of the model
and keep them open until the end of the run. Each dataanually until the model’s estimation for the CPU time
point in the plots corresponds to a 3 minutes run, excludind¢$’s,) fits the training data. Figure 5 shows the training
the first 10%. For clarity, the plots below do not include data together with the results of the model, for the final fit of
error bars for the 95% confidence interval, as the errors are;(z) = 0.005x+0.08 and¢,, (x) = 0.00352+0.22. The
usually very small. Figure shows that the CPU time measured experimentally

15000

=
o
o
o
o

Requests/sec
Requests/sec
Requests/sec

a
o
o
R

0 20 40 60 0 100 200 300 400 500 0 100 200 300 400 500
Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ)
(@) Sreq = 128 (b) Sreq = 1KB (€) Sreq = 8KB

Figure 4. Cluster. Experimental results: throughput as a&tfan of batch size.

Soa | ¢SV @Y ML Ty | wCPY wMET Model Experiments
128 | 0.52 0.52 0.00 052/ 1.00 211.73 Soq | wCPY wNET Max Thrp | w Max Thrp
256 | 0.30 0.60 0.00 0.60 1.00 124.18 128 1 211.73 1916 1 ~ 1895
512 | 019 077 001 077 100 79.52 256 1 124.18 3313| 1 ~ 3126
1KB | 014 1.09 0.02 110 100 56.97 1KB 1 56.97 7313| 1 ~ 7745
2KB | 011 175 004 176 1.01 4563 32KB 1 3497 11983| 1 =~ 12488
4KB | 0.10 3.06 008 3.07 1.01 39.95 64KB 1 3462 12108| 1 & 12100
8KB | 009 567 015 571 1.01 37.11 @) Svoy — 128
16KB | 0.09 10.90 0.31 1098 1.01 35.68 req =
32KB | 0.08 21.36 0.62 2151 1.01 34.97 ,
64KB | 0.08 42.28 123 425§ 101 34.62 Model Experiments
Soq | wY wNET Max Thrp | w Max Thrp
Table Il 1KB | 1.01 3154 1878 1 ~ 1850
ANALYTICAL RESULTS FOR CLUSTER qu =128 (TIMES IN 2KB 1.01 18.64 3202 1 ~ 3380
MILLISECONDS) 8KB 1.03 8.93 6791 1 ~ 7050
256KB | 1.04 5.79 10644| 1 ~ 10680
512KB | 1.05 5.74 10742| 1 ~ 10400
increases roughly linearly with the size of the batch, which (b) Sreq = 1KB
validates our choice of a linear model. Vodel Experiments
3) Comparison of analytical and experimental results: Sga | wY wMT MaxThrp | w Max Thrp
; : ; _ ; 8KB | 1.05 492 1625 1 ~ 1634
All the analy3|§ bglow is done W.Iﬂd)wec = 0, since the 16kB | 108 308 ses0| 1 ~ 2087
request execution time of the service used in the expergnent 64KB | 1.14 2 4344 | 1 ~ 4328
is negligible (recall that the service simply answers with a 256KB | 1.17 1.68 5293 | 1-2 ~ 4900
8 byte array). 512KB | 1.17 1.63 5493 | 1-2 ~ 4900
Table 1l shows detailed results for the caSg, = 128, (C) Sreq = 8KB
while Table Il shows a summary of the analytical results for Table 11l

all request sizes and compares them with the experimental CLUSTER COMPARISON OF ANALYTICAL AND EXPERIMENTAL
re5u|ts RESULTS PREDICTION FOR OPTIMALw IS IN BOLD.

With S,., = 128, the CPU time used by an instance

(column ¢773) is an order of magnitude larger than the typical of systems where the network is comparatively faste
network busy time (columrii}). As a result, the wall- than the procedswhich is typical on a cluster.

clock time of an instance (columfi;,,;) is dominated by the The model also captures the effect of batching on per-
CPU time. Although the network could sustain many paralleformance. As the size of the batches increases, the total
instances (columm™7), the CPU cannot sustain more than jnstance time increases, as expected, reflecting the larger
one (columnw"ET) and therefore the system as a whole hassize, but the average time per requestf) decreases. This

no capacity to execute additional instances. The situatiog very noticeable for 128 bytes requests, with the average
is similar for larger requests sizes (Tables Illb and llic), time per request dropping from 0.52ms down to 0.08ms for
although the CPU becomes less of a bottleneck as the sizge largest batches.

of the requests increases. A similar pattern occurs as the Tapie 111 shows that the predicted optimal window size

batch size increases, with the load shifting from the CPUyniches closely the value obtained in the experiments. The

to the network. But even with the largest messages testedyyqgicted throughput is also close to the experimentaltgsu
i.e, Srq = 8KB and Sy, = 512KB, the CPU is still the

bottleneck, being able to sustain only 1.17 parallel_ imn ~ 3The speed of the process depends not only on the CPU speetsbut a
as compared to 1.63 of the network. Such a situation i®n the efficiency of the implementation.

)
E X X
o &
10Mbits, 50ms = ‘ -“[—+model-128
i rid -EJ-exp-128
100Mbits, Oms > - A model-1KB
X exp-1KB
model-8KB|
Y- exp-8KB

100 150 200 250 300
Batch Size (KB)

Figure 6. Topology used for Emulab experiments]
Figure 9. Experimental versus model results for the CPU timerof a

. inst in Emulab. Fit valuesp.;(z) = 0.28z + 0.2, ¢re =
with less than 5% error for 128 bytes and 1KB requests, ang _(S)(?Qnii '1n_5_ mulab. Fit valuespey (z) v drep ()

at most 20% for 8KB requests 512KB batch size.
CPU is the bottleneck limiting the throughput. With larger
B. Emulab request sizes, the network becomes the bottleneck and there
Figure 6 shows the topology used for the Emulab ex-are several cases of performance collapse. Looking at the
periments, which represents a typical WAN environmentwindow size, the first case occurs witlyND = 5 with a
with the geographically distributed nodes. We modeled thisharp drop aiBSZ = 256KB (Fig. 7). For largeriWND, the
scenario with an emulated topology where the replicas arperformance collapse happens with smaller valueS&¥%:
connected point-to-point by a 10Mbits link with 50ms of with WND = 10 at 130KB, and at less than 64KB for
latency. Since the goal is to keep the system under higharger window sizes. Similarly, as the batch size increases
load, the clients are connected directly to each replica angerformance collapse occurs at smaller and smaller window
communicate at the speed of the physical network. Thaizes (Fig. 8).
physical cluster used to run the experiments consisted of These results show that CPU and the network may react
nodes of Pentium Il at 850MHz with 512MB of memory, to saturation very differently. In this particular systethe
connected by a 100Mbps Ethernet. CPU deals gracefully with saturation (also observed in the
1) Experimental resultsFigures 7 and 8 show results. cluster experiments), showing almost no degradation as the
Contrary to the cluster environment, batching alone,(load increases past the point where the system reaches
WND = 1) does not suffice to achieve maximum through-maximum throughput, while network saturation leads to
put. Although larger batches improve performance signifiperformance collapses. The behavior may differ signifi-
cantly, batching falls short of the maximum that is achievedcantly in other implementations, because the behavior of
with larger window sizes. The difference is greater withthe CPU or network when under load (graceful degradation
large request sizes (1KB and 8KB), where it achieves onlyor performance collapse) depends on the implementation of
half of the maximum, than for small sizes (128 bytes),the different layers of the system, mainly application and
where batching on its own reaches almost the maximumreplication framework (threading model, flow-control) but
The reason is that with small request sizes the leader ialso operating system and network stack.
CPU-bound, so it cannot execute more than one parallel 2) Setting model parameterd=ollowing the same pro-
instance, while with larger requests the bottleneck is theedure as in the case of the cluster, we have determined
network latency. Increasing the window size to 2 is enougtthe following parameters for the Emulab model;; (x) =
for the system to reach maximum throughput in all scenario®.28z + 0.2, ¢,,(z) = 0.002z + 1.5. Figure 9 shows
if the batch size is large enough (40KB with,, = 128 and the training data and the corresponding model results when
around 140KB withS,., = 1KB and S,., = 8KB). If the parametrized with the values above.
window size is further increased, the maximum throughput 3) Comparison of analytical and experimental results:
is achieved with smaller batch sizes. Table IV shows the results of the model for the optimal
The experiments also show that increasing the windowvindow size of the CPU and network for several batch
size too much results in a performance collapse, with thesizes, and compares them with the experimental results. The
system throughput dropping to around 10% of the maximumanalytical results show that the bottleneck with 128 bytes
This collapse happens when the leader tries to send momequests is the CPUw("" is smaller thanw™E™) while for
data than the capacity of the network, resulting in packet lo 8KB requests it is the network. With 1KB requests, the
and retransmissions. The point where it happens depends d&ehavior is mixed, with the CPU being the bottleneck with
the combination ofS,.,, WND and BSZ, which indirectly ~ small batch sizes and the network with larger batch sizes.
control how much data is sent by the leader; the larger theiThese results quantify the common sense knowledge that
values, the higher the change of performance collapse. Witemaller requests and batches put a greater load on the CPU
Sreq = 128 there is no performance degradation, because thi& comparison to the network. Moreover, as the request size

4000 1500 15Q5
i L . 2 S R i

R - et
B0 e SRS s N
P LANSEEPS

o

/B,

Requests/sec
N
o
o
o

._\
1)
IS}
[5%;‘
SN

=

o

\ :

IS
Requests/sec
o

te]

DS

a7

20 40 60 50 100 150 200 250 50 100 150 200 250
Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ)
() Sreq = 128 (b) Sreq = 1KB (C) Sreq = 8KB

Figure 7. Experimental results in Emulab: throughput withréasing batch size.

3500*%* &
3000, DS el . e b2
XXX x x
5o " g @ 100p%
@ 2000 2] L
% Dree A Aoeees A B oeo0 |t S i n g
21500 x i g g
N e g
& 1000 K]
A
5005 x” E.B—EHE—E}-E]—B-EH}{J .

10 20 30 40 50 60 70

10 20 30 40 50 10 15 20 25 30
Window Size (WND) Window Size (WND) Window Size (WND)
(@) Sreq = 128 (b) Sreq = 1KB (C) Sreq = 8KB

Figure 8. Experimental results in Emulab: throughput withréasing window size.

or batch size increase, the optimal window size decreasefatency, request throughput, instance throughput, aeerag
because if each instance contains more data, the netwoblatch size and average number of parallel instances. The
will be idle for less time. client latencyis the time the client waits for the reply to

The experimental results in Table IV are obtained fromone request, which includes the transmission time from the
Figure 8. From this Figure we can determine, for each batchslient to the leader, the queuing time of the request at the
the maximum throughput and the smallestwhere this leader, the time to order the request, and the time to send
maximum is first achieved. the answer back to the client.

In all cases the prediction fap is in between the range Thelatency per instancés the time elapsed at the leader
where the experiments first achieve maximum throughputfrom proposal to decision of an instandg,, from sending
showing that the model provides a good approximationthe Phase 2a message to receiving a majority of Phase
Concerning the throughput, the model is accurate witi2b messages. It corresponds 14,s; (Formula 1) in the
Sreq = 8KB across all batch sizes. With,., = 128, it analytical model.
is accurate for the smallest batches but overestimates the The throughput of instancess the number of Phase 2
throughput for the larger batches. The reason is that thexecuted per second, and tiieroughput of requestss
network can be modeled more accurately than the CPU, d§e number of requests ordered per second. Note that the
it tends to behave in a more deterministic wiayhe CPU throughput of requests is equal to the throughput of inganc
exhibits a more non-linear behavior, especially when undemultiplied by the average number of requests per instance.
high load as is the case when the number of requests in Bhese metrics correspond to the throughput formulas of

single batch increase to more than hundreds. the analytical model given at the end of sections IlI-Al
and IlI-A2.
V. ADDITIONAL EXPERIMENTAL RESULTS The average batch siz€bsz) and average window size

Figures 10 to 18 in the appendix show the detailed ex-(w) show how well the system is taking advantage of the

perimental results for both the cluster and Emulab. For eacﬁpt'ml'zat'onf"?‘l'l ’I;\]S bmen::oned preIV|o?st, the I%a;iztar might
experiment, we show six metrics: client latency, instancd'0t a@ways fill the .atc es completelye(, up t'o) or .
to execute the maximum number of parallel instances. This

4This is true only until reaching a level of saturation wheeekets are €N happen either becau_se of the lack of sufﬁment client
dropped, after which it becomes difficult to model requests queued for ordering or because the leader is not fas

Model Experiments .
Ssa | wCPY wMET Max Thrp w Max Thrp requests it can propose by the bound&VD and BSZ,
128 | 30.88 833.48 308 30-35 ~ 330 as well as by its speed. This queuing time before proposal
1?(556 gg-g ‘llg;-gg 12;?) gggg %lggg is what explains the difference between client and instance
16KB | 3.38 768 3765| 2.5 ~ 3100 latency. In most cases, mcrgasﬁ@‘Z and WND improves .
32KB | 1.47 3.12 4032 1-2 ~ 3300 the request throughput, which in turn decreases the client
(@) Syeq = 128 !aten_cy (see fo_r instance, Figures 13{:1 and 1_3d). T_his happen
in spite of the instance latency also increasing (Figure),13b
S - “ﬂgglel Ve Th EXper’iAmenﬁ] because when the system is under heavy load, the instance
20 | w w ax Thrp w ax Thrp .. .
KB | 2889 119.01 2861 30-20 ~ 310 latency is just a small part pf the total Iqtency expgrlenced
2KB | 2554 60.12 502 | 30-40 ~ 600 by the clients, with the queuing delays being the major cause
8KB | 1542 158 1155| 1520 ~ 1030 of delay.
128KB | 3.16 1.93 1184 1-2 ~ 1120 .
256KB | 2.68 16 1184 10 ~ 1100 Instance versus request throughpét:common pattern

is that larger batch sizes result in lower instance throughp

() Sreq = 1KB but higher request throughput (See, as an example, Fig-

Model Experiments ures 13c, 13e and 13d). A larger batch size increases the
ngg 1wg°2“7 w“‘; Max T1h5r8 - zwo Max Tlhiz number of requests ordered per instance, which potentially
16KB | 1424 85 150 | 5-10 ~ 144 improves request throgghput. On the other handz larger
64KB | 6.72 2.88 150 25 ~ 144 batches increase the time necessary to order an instance,
128KB | 4.84 194 150 | 12 ~ 144 which decreases the instance throughput, potentially de-

256KB 38 147 150 1-2 ~ 144

creasing request throughput. But as the results show, the
gains from the additional requests in each batch are greater
Table IV than the losses from the lower instance throughput, so bvera

EMULAB : COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS there is a net improvement in request throughput.
PREDICTION OF OPTIMAL w IS IN BOLD.

(c) Sreq =8KB

B. Cluster

enough to executd’ND parallel instances simultaneously Effectiveness of batchingFigures 10c, 11c and 12c
(previous instances finish before the leader is able to stafhow that the leader is always able to fill up the batches
additional ones). Therefore, we measured the average fsize & their maximum size, thereby taking full advantage of the
the batches and the average number of parallel instances aRatching optimization. This increase in batch size traesla
show the results below, in order to evaluate the effectisene initially into an improvement in request throughput, anelrth
Of the Optimizations in each Scenario_ Formu|a (8) Of thea Stabi”zation When the CPU iS Saturated. After th|S pOint,
analytical model gives an estimation for the average windov@lthough the batches are still full, the instance time iases,
size for the case when the batches are fidl,(bsz = BSZ), ~ canceling out the gains in batch size.
and can be compared with the results below. Effectiveness of parallel instance®n the other hand,
For the cluster experiments, we only show the plots withincreasingWND does not improve throughput in the cluster
the metrics as a function of maximum batch size (Figures 1@ecause the leader is CPU bound. The plots with the average
to 12), while for the emulab experiments we show them botHiumber of instancesu() (Figures 10f, 11f and 12f) show
as a function of maximum batch size (Figures 13 to 15) andvhat happens: for request sizes of 128 and 1KB, the leader
of maximum window size (Figures 16 to 18). The reason ig/S not able to execute more than one instance in parallel,
that in the cluster increasing the window size does not aiffecas it does not have time to start more instances before the
performance significantly, so the corresponding plots woul Previous one finish. For request sizes of 8KB, the leader
not provide any additional information. executes an average of two instances in parallel, but the
gains here are offset by a corresponding increase in instanc
latency (Fig. 12b), and therefore have no impact on overall
Client versus instance latencyin most experiments, throughput.
the client latency is generally one or two orders of magratud Instance latency:The instance latency (Fig. 10b, 11b
higher than the instance latency: while the instance Ilgtenc and 12b) increases linearly with the batch size, since the
usually below 5ms in the cluster and 500ms in Emulab, thdarger batch size requires longer to process and transmit.
client latency is usually above 100ms and 1s, respectivelyThe only exception is with small batch sizes {12 bytes),
This is explained by the high load created by the clientswhere the curves foWWND = 2 and WND = 5 peak at
which surpasses by far the capacity of the system. Tharound 4ms as compared to 0.4ms for larger batch sizes.
requests received by the leader are first put on a waitinghis additional overhead is because the system is executing
gueue until the leader is ready to propose it. This mightmultiple instances in parallel (Fig. 10f, 11f and 12f).
take a long time since the leader is limited in how manyNotice that with WND = 1 this peak does not occur. For

A. General comments

larger values o357, the system is only able to execute one stabilizes at around 30KB and 100KB, respectively, even as
instance at a time, and therefore the instance latency drop®S5Z is increase well past these values. This is caused by
Behavior under saturation:As BSZ and WND in- insufficient client requests to fill the batch completelyhirit
crease, the system reaches the maximum capacity, whidhe batching delay, which is set to 50ms (see description of
corresponds to the saturation of the leader's CPU. We haviatching algorithm in Section 1V).
concluded this by measuring the average CPU utilization Effectiveness of parallel instancesthe parallel in-
of the leader, which is well over 90% in the experimentsstance optimization is not enough by itself to reach the
where the system is at maximum capacity. However, we camaximum throughput of the system with request sizes of 128
reach the same conclusion by observing that the network ibytes and 1KB, but with 8KB requests it does reach the max-
not saturated. Considering requests of 8KB, the maximunimum throughput whenWND > 15 (SeriesBSZ = 128,
throughput of 5000 reg/sec corresponds to around 40MB/seBSZ = 1K B, and BSZ = 8K B of Figures 16d, 17d
of requests ordered, which translate to a total networki¢craf and 18d).
on the outgoing link of the leader of 80MB/sec, as each With request sizes of 128 bytes the improvement in
request has to be sent to the two other replicas. This is belo#hroughput from this optimization alone is modest. Althbug
the maximum data rate supported by the cluster, which ishe leader is always able to execute up HQVD parallel
approximately 117.5MB/sec (=940Mbits). For 1KB requestinstances (Figure 16f), with’ND > 35 the instance latency
sizes, the total data sent on the outgoing link of the leadestarts increasing (Figure 16b), leading to a stabilization
peaks at around 20MB, and for requests of 128 bytes atequest throughput. This shows one of the limitations of
3MB, so the network is mostly idle. the parallel instances optimization, which imposes aodéti
An important observation is that the system behavesverhead on the CPU of the leader and limits its effec-
gracefully after reaching maximum capacity, with no ob-tiveness to the cases where there are spare CPU resources.
servable drop in performance. This is highly desirabletas iWhen the CPU becomes saturated, the leader takes longer to
simplifies choosing values foBSZ and WND. Neverthe- process the messages received which increases the instance
less, these results should not be used to conclude thatgsettilatency.
a very high value for these parameters is safe. For instance, Combining batching and parallel instance$he high-
increasing the batch size too much may introduce delays iést throughput is reached when batching and parallel in-
the arrival rate of client requests is not high enough to fillstances are used in combination. There are several optimal
the batches quickly. combinations ofBSZ and WND, with the optimal value
of one of the parameters being inversely proportional to the
C. Emulab optimal of the other. As an example, with 128 byte requests
Figures 13, 14 and 15 show the experimental result§Figure 13d), whenWND = 2 the highest throughput is
in Emulab as a function of maximum batch size, whilereached withBSZ = 40, but whenWND = 10 a maximum
Figures 16, 17 and 18 show the same metrics as a functiopatch size of 10KB is already enough.
of maximum window size. Network congestionAs mentioned previously, for re-
Effectiveness of batchingBatching by itself (Series quest sizes of 1KB and 8KB, the performance collapses
WND =1 in Figures 13, 14 and 15) increases the throughwhen BSZ and WND are increases past certain values
put significantly but, contrary to the cluster environméht, due to network saturation. This is clearly visible in Fig-
falls short of the maximum throughput, which is reachedures 14b and 15b, which show that as the request throughput
by a combination of batching and parallel instances. Withcollapses, the instance latency increases substanfidiby.
request size of 1KB and 8KB, the best that is reached witlincreased latency is the result of packet loss, whose effect
batching alone is about half of the maximum throughputis particularly significant in high latency network, as igth
and the shape of the curve d¥ND = 1 suggests that case in these experiments.
further increasing the batch size would not lead to any
more significant increases in throughput. With a request VI. DISCUSSION
size of 128 bytes a batch size of around 70KB is almost The experiments show clearly that batching by itself
enough to reach the maximum of 3200 requests/sec, and thovides the largest gains both in high and low latency
suggests that further increasing the batching would rdaeh t networks. Since it is fairly simple to implement, it should
maximum. But even in this case, batching by itself might bebe one of the first optimizations considered in Paxos and,
a bad choice, as filling up a batch of 70KB with requests ofmore generally, in any implementation of a replicated state
128 bytes, requires a little over 500 client requests, whichmachine.
might not be a practical number. Pipelining is useful only in some systems, as its potential
With requests sizes of 128 bytes and 1KB, the leadefor throughput gains depends on the ratio between the speed
is not able to completely fill the batches WND > 1 of the nodes and the network latency: the more time the
(Figures 13c and 14c). In these cases, the average batch sieader spends idle waiting for messages from other replicas

the greater the potential for gains of executing instanoes ipipelining should also be considered, as in some scenarios
parallel. Thus, in general, it will provide minimal perfor- batching by itself is not enough for optimal performance.
mance gains over batching alone in low latency networks, Batching has been studied as a general technique by [4]
but it provides substantial gains when latency is high. and [6]. In [4] the authors present a detailed analytical
While batching decreases the CPU overhead of the replistudy, quantifying the effects of batching on reliable mes-
cation stack, executing parallel instances has the opposisage transmission protocols. One of the main difficulties in
effect because of the overhead associated with switchinfatching is deciding when to stop waiting for additionaledat
between many small tasks. This reduces the CPU timand form a batch. This problem was studied in [6], where
available for the service running on top of the replicationthe authors propose two adaptive batching policies. The
task and, in the worst case, can lead to a performanctechniques proposed in these papers can easily be adapted
collapse if too many instances are started simultaneouslip improve the batching policy used in our work, which was
(see Emulab experiments). This problem can be avoide#lept simple on purpose as it was not our main focus.
by carefully setting the limit on the number of parallel There are a few experimental studies showing the gains
instances, taking in consideration the available CPU timeof batching in replicated state machines. One such example
on the leader. The analytical model in this paper helps iris [12], which describes an implementation of Paxos that
choosing this value, by providing the minimal window size uses batching to minimize the overhead of stable storage.
that results in optimal throughput for a given batch size. Batching is especially important in Byzantine systems, as
The paper has focused on throughput because as lorigese protocols are more expensive than the corresponding
as latency is kept within an acceptable range, optimizingorotocols for benign faults due to a higher message complex-
throughput provides greater gains in overall performance. ity and the use of cryptographic operations. Two examples
system tuned for high-throughput will have higher capacityare PBFT [13] and Zyzzyva [14], both of which use batch-
therefore being able to serve a higher number of clients withng and pipelining. The corresponding publications cantai
an acceptable latency, whereas a system tuned for laten@xperimental studies that, among other factors, evalinate t
will usually reach congestion with fewer clients, at which effects of batching. But these studies have a limited scope,
point its performance risks collapsing to values well belowfocusing only on a narrow range of settings and ignoring
the optimal. the interplay with pipelining.
There has been a lot of work on other optimizations for
VIl. RELATED WORK improving the performance of Paxos-based protocols. LCR
[15] is an atomic broadcast protocol based on a ring topology
The two optimizations to Paxos studied in this paperand vector clocks that is optimized for high throughput.
are particular cases of general techniques widely used iRing Paxos [7] is a variant of the Paxos protocol, that com-
distributed systems. Batching is an example of messageines several techniques, like IP multicast, ring topology
aggregation, which has been previously studied as a wagind using a minimal quorum of acceptors, to maximize
of reducing the fixed per-packet overhead by spreading ihetwork utilization. These two papers consider only a LAN
over a large number of data or messages, see [3]-[6]. knvironment and, therefore, use techniques that are only
is also widely deployed, with TCP’s Nagle algorithm [10] available on a LAN (IP multicast) or that are effective only
being a notable example. Pipelining is a general optinozati if network latency is low (ring-like organization). We make
technique, where several requests are executed in parallgb such assumptions in our work, so our work applies both
to improve the utilization of resources that are only par-to WAN and LAN environments. In particular, pipelining is
tially used by each request. One of the main examples o4 especially effective technique in medium to high-latency
this technique is HTTP pipelining [11]. The work in this networks, so it is important to understand its behavior.
paper looks at these two optimizations in the context of
state machine replication protocols, studying how to adapt VIII. CONCLUSION
them and combine them in Paxos. Most implementations In this paper we have studied two important optimizations
of replicated state machines use batching and pipelining tto Paxos, batching and pipelining. The analytical model pre
improve performance, but as far as we are aware, there isented in the paper is effective at predicting the combinati
no detailed study on combining these two optimizations. of batch size and number of parallel instances that result in
In [3], the authors use simulations to study the impactoptimal throughput in a given system, and therefore can be
of batching on several group communication protocols. Thaised to assist in tuning a Paxos deployment for maximum
authors conclude that batching provides one to two orderthroughput.
of magnitude gains both on latency and throughput. A more Additionally, we have shown that batching produces the
recent work [5] proposes an adaptive batching policy alsdargest gains, both in a cluster and a WAN environment. To-
for group communication systems. In both cases the authoigether with its simplicity, these results suggest that Hiatg
look only at batching. In this paper, we have shown thatshould be the first optimization considered in such a system.

Interestingly, in systems with moderate to high network [7] P. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring paxos:
latency, batching by itself is no longer enough to achieee th
best throughput. In this case, the use of pipelining pravide
a significant improvement in performance. The results show[8]
that as the network latency increases, the gains of pipefini
become more significant.

ACKNOWLEDGMENT

The authors would like to thank Pawet T. Wojciechowski, [©]
Jan Kaczak and TomasZurkowski for their work on
JPaxos.

(1]

(2]

(3]

(4]

10
REFERENCES [10]
L. Lamport, “The part-time parliamentACM Transactions

on Computer Systemegol. 16, no. 2, May 1998. (11]
X. Défago, A. Schiper, and P. Uah, “Total order broadcast

and multicast algorithms: Taxonomy and survéyCM Com-

put. Surv, vol. 36, Dec. 2004. (12]

R. Friedman and R. Renesse, “Packing messages as a tool
for boosting the performance of total ordering protocols,”[
Department of Computer Science, Cornell University, Tech.
Rep. TR95-1527, 1995.

13]

(14]

B. Carmeli, G. Gershinsky, A. Harpaz, N. Naaman,
H. Nelken, J. Satran, and P. Vortman, “High throughput
reliable message dissemination,” foceedings of the 2004
ACM Symposium on Applied Computjridly, USA, 2004.

[5] A. Bartoli, C. Calabrese, M. Prica, E. Di Muro, and A. Mon-

(6]

tresor, “Adaptive message packing for group communication
systems,” inOTM 2003 Workshopsser. LNCS. Springer,
2003.

R. Friedman and E. Hadad, “Adaptive batching for replicated
servers,” in Symposium on Reliable Distributed Systems,
SRDS’06 Oct. 2006.

(15]

A high-throughput atomic broadcast protocol,"Dependable
Systems and Networks (DSN’10un. 2010.

B. White and J. L. et al, “An integrated experimental en-
vironment for distributed systems and networks,” Rmoc.

of the Fifth Symposium on Operating Systems Design and
ImplementationBoston, MA, Dec. 2002.

N. Santos, J. Konczak, T. Zurkowski, P. Wojciechowski, and
A. Schiper, “Jpaxos - state machine replication in java,”
EPFL, Tech. Rep. to appear, 2011.

J. Nagle, “Congestion control in ip/tcp internetworks,” IETF,
Tech. Rep. RFC 896, Jan. 1984.

V. N. Padmanabhan and J. C. Mogul, “Improving http la-
tency,” Computer Networks and ISDN Systemwsl. 28, no.
1-2, 1995.

Y. Amir and J. Kirsch, “Paxos for system builders,” Johns
Hopkins University, Tech. Rep. CNDS-2008-2, 2008.

M. Castro, “Practical byzantine fault tolerance,” Ph.D. disser-
tation, Laboratory for Computer Science, MIT, 2001.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,
“Zyzzyva: speculative byzantine fault tolerance,”"Rnoceed-
ings of twenty-first ACM SIGOPS SQ3WyY, USA, 2007.

R. Guerraoui, R. R. Levy, B. Pochon, and V. &ua,
“Throughput optimal total order broadcast for cluster envi-
ronments,”ACM Trans. Comput. Syswol. 28, no. 2, 2010.

600
—+WND=1
50 -5-WND=2
£ WND=5

Latency (ms)
RIS

o o

o

n
o
O

A. Cluster: additional experimental results

APPENDIX

Latency (ms)

fec}
o

Batch Size (KB)
N o
S S

N
o

10 “~ ?
0 0
20 40 60 20 40 60 20 40 6
Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ)
(a) Client latency (b) Instance latency (c) Avg batch size fsz)
15000 2000
______ 150
& 10000 2 9
Y o o
2 2 g
@ S 1000, %
= s =
& s00 2
500 ~ T
0
0 20 40 60 0 20 40 60 20 40 60
Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ)
(d) Requests/sec (e) Instances/sec (f) Avg window size @)
Figure 10. Cluster, experimental results wih,, = 128.

400

600,
—+WND=1
-z-WNDZZ 500
20 WND=5 =
é é % 400
320 g & 300
=4
& & 5
3 3 T 200
100 @
A T 100
0
0 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ)
(a) Client latency (b) Instance latency (c) Avg batch size §sz)
2000 ‘ ‘ ‘ ‘
. ., 150
0
2 2 3
2] g
@ S 1000 %
2 IS} £
3 b ®
i3 £
500, . T
0 0 £
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ)
(d) Requests/sec (e) Instances/sec (f) Avg window size)
Figure 11. Cluster, experimental results wit., = 1KB.
400 20 600,
—+WND=1
-E-WND=2 A
500
30 £x WND=5 15 A
— o - m
@ ié), L ‘_I: < 400
N 5 3
3200 210 & 300
<
g & 5
S 3 F 200
100 5 o
100
0
0 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ)
(a) Client latency (b) Instance latency (c) Avg batch size fsz)
2000 ﬁ“
at
150 |
(] (5] 1%} .
8 8 83 A
2 2 S .
@ 2 1000 b .
2 IS} £z
5 B ®
iz £
500 4
b
0 100 200 300 400 500 0 100 200 300 4 500 100 200 300 400 500
Max. Batch Size (KB) (BSZ)

(d) Requests/sec

00
Max. Batch Size (KB) (BSZ)
(e) Instances/sec

Figure 12. Cluster, experimental results wih., = 8KB.

Max. Batch Size (KB) (BSZ)
(f) Avg window size @)

B. Emulab: additional experimental results

80
—+WND=1 L
-E-WND=2
X WND=5 ~60
- x WND=10 <
£ WND=20 e
3 [4-WND=30) o &
5 b 2
© =3
- ©
@ 20
1 A
B (&
20 40 60 20 40 60
Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ)

20 40 60
Max. Batch Size (KB) (BSZ)

(c) Avg batch size §sz)

(b) Instance latency

(a) Client latency

Requests/sec
Instances/sec
#Instances

20 40 60
Max. Batch Size (KB) (BSZ)

20 40 60
Max. Batch Size (KB) (BSZ)
(f) Avg window size)

20 40 60
Max. Batch Size (KB) (BSZ)
(e) Instances/sec

(d) Requests/sec
Figure 13. Emulab, experimental results wih., = 128.

6000 300
—~WND=1 R b
-E-WND=2
5000 -~ 250
A WND=5 ¥ ~
z XWND=10F 7 4000 ! X 2 200
£ | o wnp=20] E) <
3 FWND=30) 3000 S 150
o g A 5
g S 2000 ' -1 2100
:’ Pid -7 @
1000 | o 50
I S AT
¢ 150 200 250

250 50 100
Max. Batch Size (KB) (BSZ)

(c) Avg batch size fsz)

250 50 100 150 200
Max. Batch Size (KB) (BSZ)

(b) Instance latency

50 100 150 200
Max. Batch Size (KB) (BSZ)

(a) Client latency

1500

N w
(o)) o
o o
N w
) [$))
ziE
s

2 $ 2004 @ 2080H0—0
o € 8 ' / .
§2} a c |) N
z g 150 g15 .
> ‘
53 ic] £ Vo
¢ 210 1000 xx
*
5 Bevobon
TP & e
50 100 150 200 250 0 50 100 150 200 250 50 100 150 200 250
Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ)

(d) Requests/sec (e) Instances/sec (f) Avg window size)

Figure 14. Emulab, experimental results wih., = 1KB.

x10

3 300
%
25 250 A
& 315 w % 150
o . y N ~
5 5 X A2 A
T i R S »'
5 S Pt .- 7 100
;‘{' ,’f m }*/’"
0.5 50 g""
% - e
ol) ey] cﬁt
50 100 150 200 50 50 100 150 200 250 50 100 150 250
Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ)
(a) Client latency (b) Instance latency (c) Avg batch size fsz)
30fk—H#——k a #
25
%} Q 20
8 8 g
a 8 c
] 3 815
S = 0
= < £
e é’ F 10kx X X x X
g
o
50 100 150 250 100 15 50 100 150 200 250
Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ) Max. Batch Size (KB) (BSZ)
(d) Requests/sec (e) Instances/sec (f) Avg window size @)
Figure 15. Emulab, experimental results whh., = 8KB.
250, 600
—+MBSZ=194 g *
-E-MBSZ=338 ’ 500
A MBSZ=1KB 1
& “ x MBSZ=5KB % 200 » 400}
£ o] MBSZ=18KBl E 2
> *-MBSZ=72KB|| > 2 300
5 b, i N Bl SRR SRR
g " 515 * 200
‘B G- 8-
A Er BO-848-8 100
*\(*&é—.'.:&:.::: SIS é § 10
10 20 30 40 50 60 70 10 20 50 60 70 10 20 40 60 70
Max. Window Size (WND) Wlndow S|ze (WND) W|ndow Size (WND)
(a) Client latency (b) Instance latency (c) Avg batch size fsz)
3500, 350, 70
30005 A Ak gy e
.go-8-g-O-8-84-9
XXX X b © 250 50
3 SAcee Aommmimn Aeimmmie A D
@ 200 2 40
AefsenAees Anniy A3 8
. & 150 230
A @ ® [Acene A
= 100 20
X X
BE_B-E-E-D-E!-G-E-'E-EJ 50 10 XXX x X
g Rk CREhtt He-oo - % s e il deele il K== %
10 20 30 40 50 60 70 10 20 30 40 50 60 70 10 20 30 40 50 60 70
Window Size (WND) Window Size (WND) Window Size (WND)
(d) Requests/sec (e) Instances/sec (f) Avg window size @)
Figure 16. Emulab, experimental results wih., = 128.

10000 6000 300
- —+MBSZ=1KB % I
. T S fe-----k
B -B-MBSZ=2KB 5000 k Yoo 250X
80007 N\ --- AMBSZ=8KB |k |
n LT X MBSZ=17KB || G4000f o 200t ¥
E 6000f' M MBSZ=33KB || £ ; 2
S VAN A-MBSZ=260KB| %3000l Sis0l
5 s0007t/ B g * g ol NS
ki &) [S2000 | # 100 THe
2000:&& AL o a A X x 1000 50
- - oo - Tho---- N v < ST ST - G
0 20 30 50 © 0 20 30 40 50 10 20 _ 30 _ 40 50
Window Size (WND) Window Size (WND)

Max. Window Size (WND)
(a) Client latency

(b) Instance latency

(c) Avg batch size §sz)

30

1200 50
1000 40
[$]
g 800 %30
@2 R <
2 600 g
El £20
& 400 £
200 10
10 20 30 40 50 10 20 30 40 50 o 10 20 30 40 50
Window Size (WND) Window Size (WND) Window Size (WND)
(d) Requests/sec (e) Instances/sec (f) Avg window size)
Figure 17. Emulab, experimental results wih.; = 1KB.
10 ¢
12% gx 10 5 35
——MBSZ=8KB FoooTT R [ARREEEEEEE * LR SEEEE CEERERERR *
-E-MBSZ=17KB o5 30
£x MBSZ=34KB ’ J
& x MBSZ=68KB | , 22
£ MBSZ=137KB|| £ ; %40
% L= A MBSZ=264KB| 3 ! Ed
) 2 15 J g
] 3] * & 15
S 4 S * 10
f ! X X X
o 05 V.Y NS Y A
0 - S
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Max. Window Size (WND) Window Size (WND) Window Size (WND)
(a) Client latency (b) Instance latency (c) Avg batch size fsz)
150, 3 30 /*
25
8 8 100 020 A
@ @ 8 x
a 2 < ”/
3 2 o----- E----- [R L L 0 % 15 e
z IS £ e
c 2 50 ® 10 P
A A AL
x R N
e~ N % #
5 5 25 30 5 10 15 20 25
Window Size (WND)

10 15 20
Window Size (WND)
(d) Requests/sec
Figure 18.

(e) Instances/s

1 1! 20
Window Size (WND)

ec

Emulab: experimental results with.,

=38

(f) Avg window size)
KB.

