000165369 001__ 165369
000165369 005__ 20190316235102.0
000165369 020__ $$a978-1-4577-0513-7
000165369 02470 $$2ISI$$a000299427700022
000165369 037__ $$aCONF
000165369 041__ $$aeng
000165369 245__ $$aChebyshev Polynomial Approximation for Distributed Signal Processing
000165369 269__ $$a2011
000165369 260__ $$c2011
000165369 336__ $$aConference Papers
000165369 520__ $$aUnions of graph Fourier multipliers are an important class of linear operators for processing signals defined on graphs. We present a novel method to efficiently distribute the application of these operators to the high-dimensional signals collected by sensor networks. The proposed method features approximations of the graph Fourier multipliers by shifted Chebyshev polynomials, whose recurrence relations make them readily amenable to distributed computation. We demonstrate how the proposed method can be used in a distributed denoising task, and show that the communication requirements of the method scale gracefully with the size of the network.
000165369 6531_ $$aChebyshev polynomial approximation
000165369 6531_ $$adenoising
000165369 6531_ $$adistributed optimization
000165369 6531_ $$aregularization
000165369 6531_ $$asignal processing on graphs
000165369 6531_ $$aspectral graph theory
000165369 6531_ $$awireless sensor networks
000165369 700__ $$0242930$$g201233$$aShuman, David I.
000165369 700__ $$0240428$$g120906$$aVandergheynst, Pierre
000165369 700__ $$aFrossard, Pascal$$g101475$$0241061
000165369 7112_ $$dJune 27-29, 2011$$cBarcelona, Spain$$aIEEE International Conference on Distributed Computing in Sensor Systems (DCOSS)
000165369 773__ $$tProceedings of IEEE International Conference on Distributed Computing in Sensor Systems
000165369 8564_ $$uhttps://infoscience.epfl.ch/record/165369/files/Shuman_et_al_DCOSS_2011_1.pdf$$zn/a$$s590538
000165369 909C0 $$xU10851$$0252393$$pLTS4
000165369 909C0 $$pLTS2$$xU10380$$0252392
000165369 909CO $$qGLOBAL_SET$$pconf$$pSTI$$ooai:infoscience.tind.io:165369
000165369 917Z8 $$x201233
000165369 917Z8 $$x201233
000165369 917Z8 $$x201233
000165369 917Z8 $$x201233
000165369 917Z8 $$x120906
000165369 917Z8 $$x101475
000165369 917Z8 $$x148230
000165369 917Z8 $$x101475
000165369 937__ $$aEPFL-CONF-165369
000165369 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000165369 980__ $$aCONF