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In spite of an immense interest from both the academic anththsstrial communities, a practical multiple-
input multiple-output (MIMO) transceiver architectur@pable of approaching channel capacity boundaries
in realistic channel conditions remains largely an opemblem. Consequently, in this treatise | derive an ad-
vanced iterative, so callagdrbo multi-antenna-multi-carrier (MAMC) receiver architestu Following the
philosophy of turbo processing [26], our turbo spacial sl multiplexed (SDM)-orthogonal frequency
division multiplexed (OFDM) receiver comprises a sucamssif soft-input-soft-output detection modules,
which iteratively exchange soft bit-related informatiardahus facilitate a substantial improvement of the
overall system performance. In this treatise, | explorenvagor aspects of the turbo wireless mobile receiver
design. Firstly, | consider the problem of soft-decisieedback aided acquisition of the propagation con-
ditions experienced by the transmitted signal and secphdiplore the issue of the soft-input-soft-output

detection of the spatially-multiplexed information-gang signals.

More specifically, in Chapter 2 | derive an advanced decigioacted channel estimation (DDCE)
scheme, which is suitable for employment in a wide range dfirantenna multi-carrier systems as well
as over the entire range of practical channel conditiongalticular, | consider mobile wireless multipath
channels, which exhibit fast Rayleigh frequency-selecfading and are typically characterized by time-
variant power delay profile (PDP). Furthermore, | developedhod of parametric tracking of the channel
impulse response (CIR) taps, which facilitates low-comipfechannel estimation in realistic channel con-
ditions characterized by time-variant fractionally-spagower delay profile. More specifically | employ
the Projection Approximation Subspace Tracking (PAST)hoetfor the sake of recursive tracking of the
channel transfer function’s (CTF) covariance matrix arfasggjuent tracking of the corresponding CIR taps.
| demonstrate that the PAST-aided decision directed chastination scheme proposed exhibits good per-
formance over the entire range of practical conditions. dsecourse evolves further with a discussion of
an adaptive CIR tap prediction method, which is based orrsemuleast squares (RLS) filtering. | analyse
the achievable performance of the prediction method pexgb@hd demonstrate that the RLS prediction

technique outperforms the so-called robust predictiorragah discussed in the literature. Additionally, |



explore a family of recursive MIMO-CTF tracking methods,ighin conjunction with the aforementioned
PAST-aided CIR-tracking method as well as the RLS CIR tagdipte®n method, facilitate an effective chan-
nel estimation scheme in the context of a MIMO-OFDM systenord/specifically, |1 consider both hard-
and soft-feedback assisted least mean squares (LMS) amdikecleast squares (RLS) tracking algorithms
as well as the modified RLS algorithm, which is capable of immpd utilization of the soft information
associated with the decision-based estimates. Subséquaticument the achievable performance of re-
sultant MIMO-DDCE scheme employing the recursive CTF tiagKkollowed by the parametric CIR tap
tracking and CIR tap prediction. | demonstrate that the SOMBM system employing the MIMO-DDCE
scheme proposed exhibits a BER performance, which is wihdB from the corresponding performance

exhibited by the system assuming a perfect channel knowledg

In Chapter 3 | investigate the attainable performance kisnefiemploying multiple-antenna archi-
tectures in wireless communication systems. | explore tkétmof a family of space-time processing
methods reminiscent of multi-user detection employechidti-usersystems and apply them in the context
of a BLAST-type MIMO architecture with the aim of maximisirige overall capacity of the system. |
demonstrate that the linear capacity increase, predigtedebinformation-theoretic analysis can indeed be
achieved by employing a relatively low-complexity lineatelction technique, such as the Minimum Mean

Square Error (MMSE) detector.

In Chapter 4 | propose a novel SDM detection method, whicHdrr® as the Soft-output OPtimized
HIErarchy (SOPHIE) Spatial Division Multiplexing (SDM) tétor. The proposed method may be regarded
as an advanced extension of the Sphere Decoder method. pexiiclly, our method can be employed
in the rank-deficient scenario, where the number of tranamtitnna elements exceeds that of the receive
antenna elements. Furthermore our scheme is suitablegiotthfoughput modulation schemes such as 16-
and 64-QAM. | introduce a list of optimization rules, whidcilitate the achievement of the near optimum
BER performance of a Log-MAP detector at a relatively low pomational complexity. The trade-off
between the achievable BER performance and the assoc@atgoutational complexity is controlled using
two parameters. The proposed detection method exhibitsntajor advantages over all previously proposed
techniques. Firstly, the bit-related soft information,igbhfacilitates the achievement of near-optimum Log-
MAP performance, is attained at the expense of a modest empincrease over that of hard-decision
ML detection. Secondly, our method exhibits a particuldoky polynomial complexity in both the low-
and high-SNR regions. In the critical range of SNR valuesictvltorresponds to the “waterfall” region
of the BER versus SNR curve, the detection complexity vetsasnumber of transmit antennas remains
exponential. Nevertheless, | demonstrate that the contylean be dramatically reduced at the cost of a
minor BER degradation. Namely, in 8x8 SDM-OFDM system a BERgmance within 1 dB from that

exhibited by the exhaustive Log-MAP search may be achievild avcomplexity which idour orders of



magnitude lower than the complexity imposed by the exhaagtbg-MAP search.

Finally, in Chapter 5 | explore the performance trends eixdiibby the resultant turbo SDM-OFDM
receiver, which comprises three major components, narmel\soft-feedback decision-directed channel es-
timator derived in Chapter 2, followed by the soft-inpuftsmutput OHRSA Log-MAP SDM detector of
Chapter 4 as well as a soft-input-soft-output serially ebdecated turbo code [27]. | analyze the achievable
performance of each individual constituent of our turbaereer, as well as the achievable performance of
the entire iterative system. Our aim is to identify the opiimsystem configuration, while considering var-
ious design trade-offs, such as achievable error-rat@pesance, achievable data-rate as well as associated

computational complexity.

We demonstrate that the turbo SDM-OFDM system employingtidO-DDCE scheme of Chapter 2
as well as the OHRSA Log-MAP SDM detector of Chapter 4 remaffective in channel conditions asso-
ciated with high terminal speeds of up to 130 km/h, which egponds to the OFDM-symbol normalized
Doppler frequency of 0.006. Additionally, | report a virtlyaerror-free performance of a rate/2 turbo-
coded 8x8-QPSK-OFDM system, exhibiting a total bit rate dfit8/s/Hz and having a pilot overhead of
only 10%, at SNR of 7.5dB and normalized Doppler frequenc§.@®3, which corresponds to the mobile
terminal speed of roughly 65 knih

1Additional system parameters are characterized in Tadle 1.
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Chapter

Introduction

1.1 Outline

The ever-increasing demand for high data-rates in wirglesgorks requires the efficient utilisation of the
limited bandwidth available, while supporting a high gradenobility in diverse propagation environments.
Correspondingly, the aim of this thesistie development of novel mobile wireless transceivers, wtti

are capable of satisfying these requirementsThe specific objective of the researchtgsaddress two
major components of the transceiver architecture, namely lte channel estimation module as well
as the data detection schemeConsequently, in Chapter 2, we develop an advanced chastigla¢gion
scheme suitable for employment in a wide range of multivamemulti-carrier transceivers. In Chapters 3
and 4 we review several state-of-the-art data detectiomadstas well as propose a novel detector, which
combines high performance with a relatively low computadiocomplexity. Finally, in Chapter 5, we
propose an advanced turbo-detected multi-antenna nauliiec receiver architecture, which employs joint

iterative channel estimation and data detection.

1.2 Channel Estimation for Multicarrier Systems

Orthogonal Frequency Division Multiplexing (OFDM) and MieCarrier Code Division Multiple Access (MC-
CDMA) techniques [28] exhibit a high potential to satisfyetbhallenging requirements imposed by the
rapidly evolving wireless communications technologiekisTis a benefit of their ability to cope with highly

time-variant wireless channel characteristics. Howeagpointed out in [29], the capacity and the achiev-
able integrity of communication systems is highly dependsmthe system’s knowledge concerning the
channel conditions encountered. Thus, the provision oftanrate and robust channel estimation strategy

is a crucial factor in achieving a high performance.



1.2. Channel Estimation for Multicarrier Systems 2

Table 1.1: Major contributions addressing channel estimation in iradtrier systems.

[35, 36] Hoheret. al, 1997 Cascaded 1D-FIR Wiener filter based channel interpolation.

[37] Edforset al,, 1998 Detailed analysis of SVD-aided CIR-related domain noisiction for
DDCE.

[38] Li, 1998 DDCE using DFT-based 2D interpolation and robust predictio

[31] Li, 2000 2D pilot pattern aided channel estimation using 2D robusgjdency

domain Wiener filtering.

[33] Yanget al,, 2001 Detailed discussion of parametric, ESPRIT-assisted aklastimation.

[39] Muinster and Hanzo, 2008 RLS-adaptive PIC assisted DDCE for OFDM.

[40] Otnes and Tuchler, 2004, Iterative channel estimation for turbo equalization.

Well-documented approaches to the problem of channel astimare constituted bpilot assisted

decision directechindblind channel estimation methods [28, 30].

The family ofpilot assistecchannel estimation methods was investigated for example[Bit], Morelli
and Mengali [32], Yangt al.[33] as well as Chang and Su [34], where the channel parasnatettypically
estimated by exploiting the channel-sounding signal. kangle, in OFDM and MC-CDMA often a set of
frequency-domain pilots are transmitted for estimating Finequency-Domain Channel Transfer Function
(FD-CTF), which are known at the receiver [28]. The main draek of this method is that the pilot symbols

do not carry any useful information and thus they reduce yatem'’s effective throughput.

By contrast, in Decision Directed Channel Estimation (DD @tethods both the pilot symbols as well
as all the information symbols are utilised for channeleation [28]. The simple philosophy of this method
is that in the absence of transmission errors we can berafittiie availability of 100% pilot information by
using the detected subcarrier symbols as grosteriorireference signal. The employment of this method
allows us to reduce the number of pilot symbols required.s Tachnique is particularly efficient under
benign channel conditions, where the probability of a dexigrror is low, but naturally, this approach is
also prone to error propagation effects. The family of DD€@&hhiques was investigated for example by
van de Beelet al.[41], Mignone and Morello [42], Edforst al.[37], Li et al.[38], Li and Sollenberg [43]
as well as Miunster and Hanzo [30, 39, 44, 45].

The class of iterative DDCE scemes, where the channel ggtima carried out through a series of
iterations utilizing the increasingly-refined soft-desisbased feedback, was explored by Sandellal.

[46], Valenti [47], Yeapet. al.[48], Songet. al.[49,50], as well as by Otnes and Tuchler [40, 51].

The closely related class of joint receivers, where the sbgparameters and the transmitted information-

carrying symbols are estimated jointly was explored forneple by Seshadri [52], Baccarelli and Cu-
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sani [53], developed further by Knickenberg al.[54] recently revisited by Cozzo and Hughes [55] as well
as Cui and Tellambura [56, 57].

Finally, the class oblind estimation methods eliminates all redundant pilot symb&fost of these
methods rely on the employment of decision feedback and erexiploitation of the redundancy often
found in the structure of the modulated signal, as exemglifig the techniques described for example by
Antén-Haroet. al. [58], Bosset. al.[59], Endreset. al. [60], Giannakis and Halford [61], Zhou and
Giannakis [62] as well as by Necker and Stiiber [63].

Additional major subject, closely related to channel eation, namely the prediction of fast fading
channels was extensive studied by Haykin [64]. A so-caltdalist predictor was proposed by Li [38] and
revised by Munster and Hanzo [45]. An adaptive RLS channadliptor was proposed by Schafhuber and
Matz [65].

Subsequently, in this treatise we propose a DDCE schemehvidisuitable for employment in both
OFDM and MC-CDMA systems. We analyse the achievable pedoga of the estimation scheme con-
sidered in conjunction with a realistic dispersive Raytefgding channel model having a Fractionally-

Spaced (FS) rather than Symbol-Spaced (SS) Power DelayeRRiiP).

A basic component of the DDCE schemes proposed in the literég ara posterioriLeast Squares (LS)
temporal estimator of the OFDM-subcarrier-related Frequedomain Channel Transfer Function (FD-
CTF) coefficients [28, 38]. The accuracy of the resultantgeral FD-CTF estimates is typically enhanced
using one- or two-dimensional interpolation exploitingtbthe time- and the frequency-domain correlation
between the desired FD-CTF coefficients. The LS-based tahp®-CTF estimator was shown to be
suitable for QPSK-modulated OFDM systems [28, 38], where ghergy of the transmitted subcarrier-
related information symbols is constant. However, as it belpointed out in Section 2.4.1 of this treatise,
the LS method cannot be readily employed in MC-CDMA systeni®re — in contrast to OFDM systems
— the energy of the transmitted subcarrier-related infdionasymbols fluctuates as a function of both the
modulated sequence and that of the choice of the potentalhtconstant-modulus modulation scheme
itself. Thus we propose a Minimum Mean Square Error (MMSH)rettion based DDCE method, which

is an appropriate solution for employment in both OFDM and-RIBMA systems.

The system model and the channel model considered arelukxén Section 1.7 of this treatise. The
difficulty of employing the LS approach to the problem of ewtting the OFDM-subcarrier-related FD-
CTF coefficients is described in Section 2.4.1. The altereMMSE FD-CTF estimator circumventing the
problem outlined in Section 2.4.1 is analyzed in Section2.@ur discourse evolves further by proposing
a MMSE CIR estimator exploiting the frequency-domain clatien of the FD-CTF coefficients in Section
2.5.1 and a reduced-complexity version of the CTF MMSE estomconsidered is proposed in Section
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2.5.2. The computational complexity of both methods is caraeg in Section 2.5.3.

In Section 2.5 we continue our discourse with the derivatidnoth sample-spaced as well as fractionally-
spaced Channel Impulse Response (CIR) estimator. In 860 we then perform a comparison between
the two methods considered and demonstrate the advanthtfeslater,i. e. fractionally-spaced scheme.
Subsequently, in Section 2.6 we develope a method of parartracking of the fractionally-spaced channel
impulse response (CIR) taps, which facilitates low-comipfechannel etimation in realistic channel con-
ditions characterized by time-variant fractionally-spai@ower delay profile. More specifically we employ
the Projection Approximation Subspace Tracking (PAST)hmeétfor the sake of recursive tracking of the
channel transfer function’s (CTF) covariance matrix anasgguent tracking of the corresponding CIR taps.
We demonstrate that the PAST-aided decision directed ehastimation scheme proposed exhibits good

performance over the entire range of practical conditions.

In Section 2.7 we discuss two major CIR tap prediction sgiate Specifically, In Section 2.7.2 the
so-calledrobust implementation of the stationary Minimum Mean Square E(MMSE) CIR predictor
is considered. TheobustCIR predictor [38] assumes a constant-valued, limitecpsupchannel scatter-
ing function [28] during the design of the CIR tap predictidter and hence relies on the assumption of
encountering the worst possible channel conditions. Orother hand, in Section 2.7.4 we discuss the
adaptive Recursive Least Squares (RLS) method of CIR predif65]. As opposed to the robust CIR
predictor of [38], the RLS CIR predictor does not require arplicit information concerning the channel
conditions encountered. Consequently, in Section 2.7.8haeacterize and compare the achievable perfor-
mance of both methods considered and draw conclusions mongedheir relative merits. Specifically, we
demonstrate that the RLS prediction technique outperfotsn®bust counterpart over the entire range of

the relevant channel conditions.

In Section 2.8 we characterize the achievable performahtiteegesultant PAST-aided DDCE scheme.
We report an estimation efficiency &f = —184B exhibited by a system employing 10% of pilots and
communicating over a dispersive Rayleigh fading channeingaa Doppler frequency ofp = 0.003.
Furthermore, we report a BER performance, which is only 3rd#nfthe corresponding BER performance

exhibited by a similar system assuming perfect channel letye.

1.3 Channel Estimation for MIMO-OFDM

In spite of an immense interest from both the academic anththestrial communities, a practical multiple-
input multiple-output (MIMO) transceiver architectur@pable of approaching channel capacity boundaries
in realistic channel conditions remains largely an opeibler. In particular, a robust and accurate channel

estimation in MIMO systems constitutes a major issue, prévg us from achieving the high capacities
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Table 1.2: Major contributions addressing the problem of channehesion in MIMO systems.

[66] Li et. al, 2002 MIMO-OFDM for wireless communications: signal detectioithmwen-

hanced channel estimation.

[67] Stuberet. al, 2004 An important overview encompassing most of the major aspafcthe
broadband MIMO-OFDM wireless communications includinguchel

estimation, signal detection as well as time and frequepngreniza-

tion.

[68] Denget. al, 2003 Decision directed iterative channel estimation for MIMGtgms.

[55] Cozzo and Hughes, 2003 Joint channel estimation and data detection in space-tonerwnica-
tions.

[69] Miinster and Hanzo,2005 Parallel-interference-cancellation-assisted decisioacted channel

estimation for OFDM systems using multiple transmit angesin

[70] Yatawatta and Petropulu, 2006 Blind channel estimation in MIMO-OFDM systems with multarsn-

terference.

predicted by the relevant theoretical analysis.

Some of the major contributions addressing the problem ahighl estimation in MIMO systems are
summarized in Table 1.2. More specifically, a combined OFBBMA approach was discussed by Vande-
nameeleet. al.[71]. A pilot-based approach to the problem of MIMO chanrstireation has been explored
by Jungnickelet. al. in [72], by Bolcskeiet. al.[73] as well as by Zhwet. al.[74]. On the other hand,
decision directed iterative channel estimation for MIMGtgyns was addressed byétial [66, 75, 76] as
well as Denget al [68]. Furthermore, parallel interference cancellatissisted decision-directed channel
estimation scheme for MIMO-OFDM systems was proposed bpdtr and Hanzo [69,77]. Joint decoding
and channel estimation for MIMO channels was consideredrayni378] and further investigated by Cozzo
and Hughes [55]. Iterative channel estimation for spate-thlock coded systems was addressed byd#lai
al [79], while joint iterative DDCE for turbo coded MIMO-OFDMystems was investigated by Qiao [80].
Blind channel estimation in MIMO-OFDM systems with multarsnterference was explored by Yatawatta

and Petropulu [70].

Other closely related issues, namely the iterative trackihthe channel-related parameters using soft
decision feedback was studied by Sanéellal[46], while the iterative channel estimation in the contakt

turbo equalization was considered by Satgal. [50], Mai et. al.[81], as well as Otnes and Tichler [40].

Finally, an important overview publication encompassingstrmajor aspects of broadband MIMO-
OFDM wireless communications including channel estinmaimd signal detection, as well as time and

frequency syncronization was contributed by Stidterl.[67].
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Agains this background, in this treatise we propose a detidirected channel estimation (DDCE)
scheme, which is suitable for employment in a wide range dfirantenna multi-carrier systems as well as
over the entire range of practical channel conditions. miqdar, we consider mobile wireless multipath
channels, which exhibit fast Rayleigh frequency-selectading and are typically characterized by time-

variant power delay profile (PDP).

We consider a generic MIMO-OFDM system employikgorthogonal frequency-domain subcarriers
and havingm; andn, transmit and receive antennas, respectively. Conseguenti MIMO channel esti-
mation scheme comprises an arraykoper-subcarrier MIMO-CTF estimators, followed by(®a. x m;)-
dimensional array of parametric CIR estimators and a cporeding array of n, x m; x L) CIR tap pre-

dictors, wherd. is the number of tracked CIR taps per link for the MIMO channel

In Section 2.9.1 we explore a family of recursive MIMO-CTRdking methods, which in conjunction
with the aforementioned PAST-aided CIR-tracking metho&e¢tion 2.6 as well as the RLS CIR tap pre-
diction method of Section 2.7.4, facilitate an effectivaichel estimation scheme in the context of a MIMO-
OFDM system. More specifically, in Section 2.9.1 we conshigth hard- and soft-feedback assisted least
mean squares (LMS) and recursive least squares (RLS)igaekgorithms as well as the modified RLS al-
gorithm, which is capable of improved utilization of thetsioformation associated with the decision-based

estimates.

Finally, in Section 2.9.1.5 we document the achievableguarince of resultant MIMO-DDCE scheme
employing the recursive CTF tracking followed by the parameCIR tap tracking and CIR tap prediction.
We demonstrate that the MIMO-DDCE scheme proposed extgbibtsl performance over the entire range

of practical conditions.

Both the bit error rate (BER) as well as the correspondingmsspare error (MSE) performance of
the channel estimation scheme considered is characterizée context of a turbo-coded MIMO-OFDM
system. We demostrate that the MIMO-DDCE scheme proposeding effective in channel conditions
associated with high terminal speeds of up to 130 km/h, wbizhesponds to the OFDM-symbol normal-
ized Doppler frequency of 0.006. Additionally, we reportigually error-free performance of a ratg'2
turbo-coded 8x8-QPSK-OFDM system, exhibiting a total &ierof 8 bits/s/Hz and having a pilot overhead
of only 10%, at SNR of 10dB and normalized Doppler frequerfdy.@03, which corresponds to the mobile
terminal speed of roughly 65 kni/h

1Additional system parameters are characterized in Tale 1.
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1.4 Signal Detection in MIMO-OFDM Systems

The demand for both high data-rates, as well as for improratsinission integrity requires an efficient
utilisation of the limited system resources, while supipgraa high grade of mobility in diverse propagation
environments. Consequently, the employment of an ap@tapmodulation format, as well as an efficient

exploitation of the available bandwidth constitute cruators in achieving a high performance.

The OFDM modulation scheme employed in conjunction with dtidie-Input Multiple-Output (MIMO)
architecture [28], where multiple antennas are employdxbtit the transmitter and the receiver of the com-
munication system, constitutes an attractive solutiorerms of satisfying these requirements. Firstly, the
OFDM modulation technique is capable of coping with the hidrequency selective, time-variant channel
characteristics associated with mobile wireless comnatiaic channels, while possessing a high grade of

structural flexibility for exploiting the beneficial progirs of MIMO architectures.

It is highly beneficial that OFDM and MIMOs may be convenigritbmbined, since the information-
theoretical analysis predicts [82] that substantial cepa@ins are achievable in communication systems
employing MIMO architectures. Specifically, if the fadingopesses corresponding to different transmit-
receive antenna pairs may be assumed to be independentlgid®eglistributed, the attainable capacity
was shown to increase linearly with the smaller of the numloéithe transmit and receive antennas [82].
Additionally, the employment of MIMO architectures alloia the efficient exploitation of the spatial
diversity available in wireless MIMO environments, thuspimving the system’s BER, as well as further

increasing the system’s capacity.

The family of space-time signal processing methods, whildwafor the efficient implementation of
communication systems employing MIMO architectures amaroonly referred to in parlance asnart
antennasIn recent years, the concept of smart antennas has attiatémsive research interest in both the
academic and the industrial communities. As a result, aipticity of smart antenna-related methods has

been proposed. These include methods implemented at tisertitéer, the receiver or both.

The classification of the smart-antenna techniques igriited in Figure 1.1. It should be noted, how-
ever, that the classification presented here is somewhatniaf and its sole purpose is to appropriately

position the content of this treatise in the context of thieesive material available on the subject.

Two distinctive system scenarios employing smart antecaase identified. The first is the so-called
Space Devision Multiplexing (SDM)-type scenario [83], whévopeerterminals each employing multiple
antennas, communicate with each other over a MIMO chanmettenmultiple antennas are primarily used

for achieving a multiplexing gain,e. a higher throughput [84]. The second scenario correspantiset

2This assumption is typically regarded as valid, if the appisde antenna spacing is larger thamof2, whereA is the corre-

sponding wavelength.
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Figure 1.1: Classification of space-time processing techniques.

Space Devision Multiple Access (SDMA) configuration [28heve a singldase-stationemploying mul-
tiple antennas communicates simultaneously using a saagleer frequency with multipleiserterminals,

each employing one or several antennas.

The variouspoint-to-multipointsmart antenna applications can be further subdivideduptimk- and
downlinkrelated applications. Theplink-related methods constitute a set of techniques, which ean b
employed in thébase statiorin order to detect the signals simultaneously transmitiechbltiple userter-
minals. More specifically, provided that the Channel ImpuResponse (CIR) of all users is accurately
estimated, it may be used as their unique, user-specifiabgagnature for differentiating them, despite
communicating within the same frequency band [28]. Henle,dorresponding space-time signal pro-
cessing problem is commonly referred to as Multi-User Diatac(MUD) [28], while the multi-antenna
multi-user systems employingplink space-time MUD are commonly referred to as SDMA systems. [28]
In contrast to the SDM-type systems designed for achievireghtighest possible multiplexing gain, the
design objective of the SDMA techniques is the maximizabbthe number of users supported. By con-
trast, the class of beamformers [85] creates angularlctetebeams for both the up-link and down-link
in the direction of the desired user, while forming nulls &wds the interfering users. Finally, the family
of Space-Time Codes (STC) [26] was optimized for achievirghighest possible transmit diversity gain,
rather than for multiplexing gain or for increasing the n@nbf users supported. At the time of writing

new research is aiming for achieving both the maximum atdendiversity and multiplexing gain with the
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aid of eigen-value decomposition [86].

As stated above, two benefits of employing smart antennahargystem’s improved integrity, as well
as the increased aggregate throughput. Hence an adequiema@ce criterion of the particular smart
antenna implementation is a combination of the systemérathle aggregate data-throughput, as well as
the corresponding data integrity, which can be quantifiadrims of the average Bit Error Rate (BER). Con-
sequently, in the context of point-to-multipoint-relatschart antenna applications the achievable capacity
associated with the particular space-time processing adetbnsidered may be assessed as a product of
the simultaneously supported number of individual usetstha attainable data-rate associated with each
supported user. The measure of data-integrity may be thagay@®ER of all the users supported. Thus, the
typical objective of the multi-user-related smart antemnglementations, such as that of an SDMA scheme
is that of increasing the number of the simultaneously sttpdaisers, while sustaining the highest possible

integrity of all the data communicated.

In this treatise, however, we would like to focus our attemton the family of space-time processing
methods associated with tip@int-to-pointsystem scenario. The main objective of point-to-point spac
time processing is to increase the overall throughput ojtséem considered, as opposed to increasing the
number of individual users simultaneously supported bystrstem, which was the case in the multi-user
SDMA scenario described above. As illustrated in Figure thé family of time-space processing methods
associated with thpoint-to-pointrelated smart antenna applications entail two differgptreaches, namely
that of Space-Time Codes (STC) [26] as well as various layspace-time architectures, best known from

Bell Labs Layered Space-Time (BLAST) scheme [84].

The STC methods may be classified in two major categorieselyaghe Space-Time Block Codes (STBC)
and the Space-Time Trellis Codes (STTC). A simple methodTB& was first presented by Alamouti
in [87]. Various STBC techniques were then extensivelyistlith a series of major publications by Tarokh
et al. in [88—-94] as well as by Ariyavistakudt al. in [95, 96]. On the other hand, the original variant of
BLAST, known as the Diagonal BLAST (D-BLAST) scheme, wastfindroduced by Foschini in [84]. A
more generic version of the BLAST architecture, the soecaWertical BLAST (V-BLAST) arrangement
was proposed by Goldest al. in [97]. Furthermore, the comparative study of the D-BLA&3 well as the
V-BLAST systems employing various detection techniquehsas Least Squares (LS) and Minimum Mean
Square Error (MMSE)-aided Parallel Interference CantieiaPIC), as well as the LS- and MMSE-aided
Successive Interference Cancellation (SIC) was carriethpSweatmaret al. in [98]. Typically, however,
the term BLAST refers to the point-to-point single-carfiéiMO architecture employing the SIC detection

method, as it was originally proposed in [84].

For the sake of accuracy, in this work we employ the altevaatirminology of Space Division Mul-

tiplexing (SDM) in order to refer to a generic MIMO architect. The corresponding detection methods
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are referred to as SDM Detection (SDMD) techniques, as amptisthe MUD techniques employed in the
context of SDMA systems [28]. Naturally, however, the SDMilaMUD schemes share the same signal
detection methods, regardless, whether the signal arfieea multiple antennas of the same or different
users. The classification of the most popular SDMD/MUD saéeia depicted in Figure 1.2. The methods
considered include the linear LS and MMSE techniques, akasahon-linear techniques, such as Maxi-
mum Likelihood (ML), Successive Interference Cancellaf81C), Genetic Algorithm-aided MMSE (GA-

MMSE) [99, 100] as well as the novel Optimized Hierarchy Rextli Search Algorithm (OHRSA)-aided

methods proposed in this treatise.

SDMD/MUD

N

Linear Detection Non-Linear Detection

e

LS MMSE ML SIC GA-MMSE OHRSA-ML
Log-MAP OHRSA-Log-MAP SOPHIE

Figure 1.2: SDM detection methods classification.

In the course of this treatise both the MIMO channel modelsered as well as the SDM-OFDM
system model are described in Section 1.8. The various SD&ttien methods considered are outlined in
Chapter 3. Specifically, in Section 3.3.1 we demonstratetti@linear increase in capacity, predicted by
the information-theoretic analysis [29], may indeed beiead by employing a relatively low-complexity
linear SDM detection method, such as the MMSE SDM detectohrtique [101]. Secondly, in Section
3.4.1 we show that a substantially better performance caclhieved by employing a non-linear Maximum
Likelihood (ML) SDM detector [83,102,103], which constis the optimal detection method from a prob-
abilistic sequence-estimation point of view. To elabogalitle further, the ML SDM detector is capable of
attaining transmit diversity ifully-loaded systems, where the number of transmit and receive anteanas i
equal. Moreover, as opposed to the linear detection scheaomsidered, the ML SDM detector is capable
of operating in theank-deficientsystem configuration, when the number of transmit antenxaeeels that
of the receive antennas. Unfortunately, however, the aigegomputational complexity associated with
the exhaustive search employed by the ML detection methudkrs it inapplicable to practical implemen-

tation in systems having a large number of transmit anter@alsequently, in Sections 3.4.2 and 3.4.3 we
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Table 1.3: Major Contributions Addressing the Sphere Decoder-Aideac8-Time Processing.

[104] Finckeet. al, 1985 Sphere decoder technique introduced.

[105] Dameret. al, 2000 Sphere decoder was first proposed for employment in the xioofe
space-time processing, where it is utilized for computhng ML esti-
mates of the modulated symbols transmitted simultanedtsty mul-

tiple transmit antennas.

[106] Hochwald and Brink, 2003 Thecomplexversion of the sphere decoder.

[107] Dameret. al, 2003 Further results on SD.
[108] Phamet al,, 2004 Improved version of the complex sphere decoder.
[109] Tellambureet al., 2005 Multistage sphere decoding was introduced.

explore a range of advanced non-linear SDM detection methwaimely the SIC and Genetic Algorithm-
aided MMSE detection, respectively, where the latter magmt@lly constitute an attractive compromise
between the low complexity of the linear SDM detection aralhigh performance of the ML SDM detec-
tion schemes. Indeed, we will demonstrate in Section 3#aBthe SDM detection method based on the

SIC as well as on the GA-MMSE detector [100] are both capabéatisfying these requirements.

In Section 3.5 our discourse evolves further by proposingrdrancement of the SDMD schemes consid-
ered by employing both Space-Frequency Interleaving (&f)Space-Frequency Walsh-Hadamard Trans-
form (SFWHT)-aided spreading. The performance benefitemfl@ying SFl and SFWHT are quantified in

Section 3.5. Finally, our conclusions are summarized ini@e8.7.

Recently, a family of potent Reduced Search Algorithm (R&8led Space-Time processing methods
has been explored. These new methods utilize the SpheredBre®D) technique introduced by Fincke
et al. [104]. The SD was first proposed for employment in the contéspace-time processing by Damen
et. al. in [105], where it is utilized for computing the ML estimatetthe modulated symbols transmitted
simultaneously from multiple transmit antennas. Thenplexversion of the sphere decoder was proposed
by Hochwald and Brink in [106]. The subject was further irtigegted by Dameret al. in [107]. Subse-
quently, an improved version of the Complex Sphere Decdd8E) was advocated by Phagnal. in [108].
Furthermore, CSD-aided detection was considered by Cuilalambura in a joint channel estimation and
data detection scheme explored in [56], while a revisediaersf the CSD method, namely the so-called
Multistage Sphere Decoding (MSD) was introduced in [109he Teneralized version of the sphere de-
coder, which is suitable for employment in rank-deficient systems supporting more transmitters than
the number of receive antennas was introduced by Dashah in [110] and further refined by Cui and
Tellambura in [111]. The so-callef@st generalized sphere decoding was introduced by Yara]. [112].

Yet another variant of sphere decoder algorithms with imgdaradius search was introduced by Zhao and
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Giannakis [113]. The subject of approaching MIMO channgagcity using soft detection on hard sphere
decoding was explored by Wang and Giannakis [114]. Itezalistection and decoding in MIMO systems
using sphere decoding was considered by Vildlal. [115].

Consequently, a set of novel Optimized Hierarchy ReducedcBeAlgorithm (OHRSA)-aided SDM
detection methods are outlined in Section 4.2. Specificallection 4.2.1 we derive the OHRSA-aided
ML SDM detector, which benefits from the optimal performamméehe ML SDM detector [28], while
exhibiting a relatively low computational complexity, whiis only slightly higher than that required by
the low-complexity MMSE SDM detector [28]. To elaborate tfidi further, in Section 4.2.2 we derive a
bit-wise OHRSA-aided ML SDM detector, which allows us to pihe OHRSA method of Section 4.2 in
high-throughput systems, which employ multi-level modiola schemes, such ad4-QAM [28].

In Section 4.2.3 our discourse evolves further by dedudmgg@HRSA-aided Max-Log-MAP SDM
detector, which allows for an efficient evaluation of thetdwnf information and therefore results in highly
efficient turbo decoding. Unfortunately however, in conigam to the OHRSA-aided ML SDM detector
of Section 4.2.2 the OHRSA-aided Max-Log-MAP SDM detectbBection 4.2.3 exhibits a substantially
higher complexity. Consequently, in Section 4.2.5 we deair approximate Max-Log-MAP method, which
we refer to as Soft-output OPtimized HIErarchy (SOPHIE) SDéfector. The SOPHIE SDM detector
combines the advantages of both the OHRSA-aided ML and OH&8&d Max-Log-MAP SDM detec-
tors of Sections 4.2.2 and 4.2.3, respectively. Specijicdlexhibits a similar performance to that of the
optimal Max-Log-MAP detector, while imposing a modest céexfay, which is only slightly higher than
that required by the low-complexity MMSE SDM detector [28he computational complexity as well as
the achievable performance of the SOPHIE SDM detector ofi@ed.2.5 are analysed and quantified in
Sections 4.2.5.1 and 4.2.5.2, respectively.

Our conclusions are summarized in Section 4.3. Specificalyreport achieving a BER df0o—* at
SNRs ofy = 4.2,9.2 and14.5 in high-throughput 8x8 raté-turbo-coded\/l = 4,16 and64-QAM systems
communicating over dispersive Rayleigh fading channeldif\@hally, we report achieving a BER @)~
at SNRs ofy = 9.5,16.3 and22.8 in high-throughput rank-deficient 4x4, 6x4 and 8x4 rétturbo—coded
16-QAM systems, respectively.

1.5 Iterative Signal Processing for SDM-OFDM

In spite of an immense interest from both the academic anththsestrial communities, a practical multiple-
input multiple-output (MIMO) transceiver architectur@pable of approaching channel capacity boundaries
in realistic channel conditions remains largely an operbl@m. An important overview publication en-

compassing most major aspects of broadband MIMO-OFDM egsetommunications including channel
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Figure 1.3: Schematic of a joint iterative receiver comprising charestimator, SDM detector, as well as

turbo decoder employing two RCS serially-concatenatecphmorant codes.

estimation and signal detection, as well as time and fregyueyncronization was contributed by Stiiletr
al. [67]. Other important publications considering MIMO sysis in realistic conditions include those by
Munster and Hanzo [69], Lat. al.[66], Mai et. al.[81], Roneret. al.[116] as well as Qiaet. al.[80]. Nev-
ertheless, substantial contributions addressing all thAmissues inherent to MIMO transceivers, namely
error correction, space-time detection as well as charstghation in realistic channel conditions remain

scarce.

Against this background, in Chapter 5.1 we derive an itezatso calledurbo multi-antenna-multi-
carrier (MAMC) receiver architecture. Our turbo receivgillustrated in Figure 1.3. Following the philoso-
phy of turbo processing [26], our turbo SDM-OFDM receivemgrises a succession of detection modules,
which iteratively exchange soft bit-related informatiardahus facilitate a substantial improvement of the

overall system performance.

More specifically, our turbo SDM-OFDM receiver compriseethmajor components, namely, the soft-
feedback decision-directed channel estimator, discusseetail in Section 2.9, followed by the soft-input-
soft-output OHRSA Log-MAP SDM detector derived in Sectia2.8 as well as a soft-input-soft-output
serially concatenated turbo code [27]. Consequently,isndimapter we would like to analyze the achievable
performance of each individual constituent of our turbcereer, as well as the achievable performance of
the entire iterative system. Our aim is to identify the opimsystem configuration, while considering var-
ious design trade-offs, such as achievable error-rat@pesance, achievable data-rate as well as associated

computational complexity.

In Section 5.4.2.4 we demonstrate that our turbo SDM-OFDBtesy employing the MIMO-DDCE
scheme of Section 2.9 as well as the OHRSA Log-MAP SDM detauftGection 4.2.3 remains effec-
tive in channel conditions associated with high terminaesfs of up to 130 km/h, which corresponds to
the OFDM-symbol normalized Doppler frequency of 0.006. iiddally, we report a virtually error-free
performance for a raté/2 turbo-coded 8x8-QPSK-OFDM system, exhibiting an effectivroughput of
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8 MHz - 8 bits/s/Hz=64 Mbps and having a pilot overhead of only 10%MNR of 7.5dB and a normalized

Doppler frequency 08.003, which corresponds to a mobile terminal speed of about 6Bkm/

1.6 Novel Contributions of the Thesis

In order to build on top of the state-of-the-art results k@é in the literature, this treatise presents a
rigorous derivation of an iterative turbo receiver arottilee suitable for employment in a wide range of
multi-antenna multi-carrier systems operating in realisapidly-fluctuating channel conditions. In this

thesis we address the following open problems:

1. Channel estimation for multi-antenna multi-carrierteyss in dispersive fast-fading channels.
2. Computationaly efficient signal detection in multi-amta systems.

3. Error propagation in decision directed channel estomasiided systems.

More specifically, we would like to highlight the followingagor findings:

¢ In Chapter 2 we derive an advanced decision directed chastielation (DDCE) scheme, which is
capable of recursive tracking and prediction of the rapftilgtuating channel parameters, character-
ized by time-variant statistics. More specifically, we eayph Projection Approximation Subspace
Tracking (PAST) [117] technique for the sake of tracking d@imannel transfer function’s low-rank
signal subspace and thus fascilitating a high accurackitrgoof the channel’'s transfer function,
while imposing a relatively low computational complexityhe corresponding results are summa-

rized in [4, 15] as well as [23].

e Additionally, in Chapter 2 we introduce an advanced MIMO &l estimation scheme for multi-
antenna multi-carrier systems. Our method comprises thremmientioned PAST aided subspace tech-
nique in conjunction with an enhanced soft-decision aide8 RIIMO-CTF estimator, which utilizes
a modified RLS tracking technique outlined in [40]. We dentmate that our soft-decision aided
MIMO-DDCE scheme is suitable for multi-carrier systems éogimg any practical number of trans-

mit and receive antennas. The results discussed in Chapterrported in [24] and [10].

¢ In Chapter 4 we explore a family of novel Optimized Hierarétsduced Search Algorithm (OHRSA)-
aided space-time processing methods, which may be regasdad advanced extension of the Com-
plex Sphere Decoder (CSD) method, portrayed in [108]. Therdthm proposed extends the potential
application range of the CSD methods of [106] and [108], dtagereduces the associated computa-

tional complexity. Moreover, the OHRSA-aided SDM detegiooposed exhibits the near-optimum
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performance of the Log-MAP SDM detector, while imposing ésantially lower computational
complexity, which renders it an attractive design altéweator practical systems. Our findings are

extensively documented in [1, 16, 19, 20] as well as [7].

e Finally, in Chapter 5 we discuss an iterative turbo recearehitecture, which utilises both the soft
decision feedback aided MIMO channel estimation schemehaipt&r 2 as well as the Log-MAP
SDM detection method derived in Chapter 4. Additionally, saery out an analysis of the associated

design trade-offs. The results outlined in Chapter 5 arerted in [11, 25].

1.7 System Model

1.7.1 Channel Statistics

00 0mn

Figure 1.4: lllustration of a wireless multi-path communication linKote that the non-line of sight paths

are randomly faded as a result of the diffraction induceddagtering surfaces.

A Single Input Single Output (SISO) wireless communicatiiok is constituted by a multiplicity of
statistically independent components, termegaths Thus, such a channel is referred to amnaltipath
channel. Amultipath channel is typically characterized by its Power Delay Pedi#DP), which is a set
of parameters constituted by the paths’ average pomfeaznd the corresponding relative delays Some
examples of the commonly used PDPs are illustrated in Fi@j6e The physical interpretation of each
individual path is a single distortionless ray between tla@dmitter and the receiver antennas. While
the term PDP corresponds to the average power values assbeidh the different multi-path channel
components, the term CIR refers to the instantaneous dttte dispersive channel encountered and corre-
sponds to the vector of the instantaneous amplitagleg associated with different multi-path components.
Thus, the statistical distribution of the CIR is determirgdthe channel's PDP. In the case of indepen-
dently Rayleigh fading multiple paths we havgn] € CN(0,07), I =1,2,--- ,L, whereCN (0,0?) is a

complex-Gaussian distribution having the m@aand the variance af?.

The individual scattered and delayed signal componentsllysarise as a result of refraction or diffrac-
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Figure 1.5: lllustration of a wireless multi-path communication linkote that the non-line of sight paths

are randomly faded as a result of the diffraction induceddajtering surfaces.

tion from scattering surfaces, as illustrated in Figure ddd are termed as Non-Line-Of-Sight (NLOS)
paths. In most recently proposed wireless mobile channelelsceach such CIR component associ-
ated with an individual channel path is modelled by a WidesBeStationary (WSS) narrow-band complex

Gaussian process [120] having correlation propertiesaci@nised by the cross-correlation function
ra[m, j] = E{ai[n]aj [n —m]} = ryi[m]o[i —j], (1.1)

wheren is a discrete OFDM-block-related time-domain index and is the Kronecker delta function.
The above equation suggests that the different CIR comperega assumed to be mutually uncorrelated
and each exhibits time-domain autocorrelation propedefed by the time-domain correlation function
rr.;{m]. The Fourier transform pair of the correlation functigp| associated with each CIR tap corresponds
to a band-limited Power Spectral Density (PSB)f), such that we have;(f) = 0, if |f| > fp, where

Fd is termed as thenaximum Doppler frequencyrhe time period / fp is the so-callecdoherence timef

the channel [120] and usually we have’ fp > T, whereT is the duration of the OFDM block.

A particularly popular model of the time-domain correlatifunctionr;[n] was proposed by Jakes in
[121] and is described by

re[n] = ry[n] = Jo(nwy), (1.2)
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Figure 1.6: Power Delay Profiles (PDP) corresponding to three diffeddr@nnel models, namely (a)
the Short Wireless Asynchronous Transfer Mode (SWATM) dehmmodel of [28], (b) Bug's channel
model [118] and (c) the COST-207 Bad Urban (BU) channel madéihed for UMTS-type system, as

characterized in [119].

whereJy(x) is a zero-order Bessel function of the first kind ang = 27T f1 is the normalised Doppler

frequency. The corresponding U-shaped PSD function, wesahe Jakes-spectrum is given by [121]

2 1 ;
= = fflwl<w
pr(w) = Wi \/1—(w/wy)? i a
0, otherwise

Generally speaking the Doppler frequencfgscan assume different values for different signal paths.
However, as it was advocated in [38], for the sake of expilgithe time-domain correlation in the context
of channel parameters estimation and prediction, it is dafft to make a worst-case assumption about
the nature of time-domain correlation of the channel patarseencountered. The associated worst-case
channel time-domain correlation properties can be chaized by an ideally band-limited Doppler PSD
function given by [28, 38]

o IfI < fp
0, otherwise,

pi(f) = PBunif(f) = (1.3)

wherefp is the assumed value of the maximum Doppler frequency ovehahnel paths. The correspond-
ing time-domain correlation function can be described as

_ sin2mfpm

re[m| = rg[m| = 2 fom (1.4)

We adopt the complex baseband representation of the consriime Channel Impulse Response (CIR),

as given by [120]

ht, 1) =) a(t)e(t — 1), (1.5)



1.7.1. Channel Statistics 18

10 0.3
0 0.25
0.2
-10
@ \ 0.15
— (]
3 20 <
2 = 01
S -30 g
= 0.05
-40 \/ 0 ? T (f (f T? P90
l l J) a
50 -0.05
-60 -0.1
0 0.2 0.4 0.6 0.8 1 0 5 10 15 20 25 30
Normalized Frequency tap index

(a) (b)

Figure 1.7: (a) Frequency response and (b) impulse response of an ordese8l cosine shaping filter with

the oversampling rate of 4, the roll-off factor of 0.2 and tletay of 3 samples.

wherew; (t) is the time-variant complex amplitude of thé path and the; is the corresponding path delay,
while ¢(7) is the aggregate impulse response of the transmittervexcpair, which usually corresponds
to the raised-cosine Nyquist filter. From (1.5) the contimi&Channel Transfer Function (CTF) can be

described as in [76]

H(t, f) = [ Y h(t 1) e P
=C(f

)Yy (t)e 7T, (1.6)

1

whereC(f) is the Fourier transform pair of the transceiver impulsg@oesec(t) characterized in Figure
1.7.

As it was pointed out in [38], in OFDM/MC-CDMA systems usinguficiently long cyclic prefix and

adequate synchronisation, the discrete subcarrieeel@@ F can be expressed as

Hln, k] = H(nT,kAf) = C(kAf) ile (Wit /T (1.7)
o =1
= Y hln,mwg", (1.8)
m=0

whereT; = T /K is the baseband sample duration, wikilgis the length of the cyclic prefix, which normally

corresponds to the maximum delay spread encountered, Isaicive haveKg > Tmax/ Ts. Subsequently

=~

h[n,m) = h(nT,mT,) = Y a[n]c(mT; — 1) (1.9)
=1
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is the Sample-Spaced CIR (SS-CIR) dtg = exp(—;271/K). Note, that in realistic channel conditions

associated with non-sample-spaced time-variant patydej () the receiver will encounter dispersed

received signal components in several neighbouring sampléng to the convolution of the transmitted

signal with the system’s impulse response, which we refemstdeakage. This phenomenon is usually
unavoidable and therefore the resultant SS-G|R m| will be constituted of numerous correlated non-
zero taps described by Equation (1.5) and illustrated imfeid..8. By contrast, the Fractionally-Spaced
CIR (FS-CIR)x; [n] = a;(nT) will be constituted by a lower number 6f< Ky < K non-zero statistically

independent taps associated with distinctive propagataihs, as depicted in Figure 1.8.
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Figure 1.8: The FS-CIR (top) and the effectiv&sS-CIR (bottom) resulting from the convolution of the
original FS-CIR with the raised cosine filter impulse respoof Figure 1.7 for the cases of (a) sample-

spaced and (b) fractionally-spaced power delay profiles.

As it was shown in [38], the crosscorrelation functiom|m, [], which characterized both time- and
frequency-domain correlation properties of the discrefé CoefficientsH|[n, k] associated with different

OFDM blocks and subcarriers can be described as

ru[m, 1) = E{H[n+m,k+1]|H*[n,k|}

= o1y [m]rs[l], (1.10)

wherer;[m] is the time-domain correlation function described by Emuegl.4), whiler 1] is the frequency-
domain correlation functions, which can be expressed &snsl[31]

L 02 ‘
rill] = [CUAf)? Y —ge 2T, (1.11)

i=1"H

2 _vyvL 2
whereoy; =) 4 07
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1.7.2 Realistic Channel Properties

The majority of existing advanced channel estimation nashely on thea priori knowledge of the channel
statistics commonly characterized by the channel’'s PovedayDProfile (PDP) for the sake of estimating the
instantaneous Channel Impulse Response (CIR) and thesporrding Channel Transfer Function (CTF).
It is evident however, that in realistic wireless mobile mhels, where at least one of the communicating
terminals is in motion, the channel's PDP will also becomeetivariant and thus may not beoriori known

at the receiver.

For the sake of designing as we as characterizing the peafarenof an efficient and robust channel
estimation scheme, which will be suitable for realistic el conditions, we propose a channel model,
which sustains the important characteristics of the réahgireless mobile channels. More specifically, as
opposed to the conventional constant PDP, our channel neodedracterized by a time-variant PDP, where
both the relative delays as well as the corresponding average powérsf different PDP taps vary with

time.

Our channel model is dynamically generated using a geomstettering model illustrated in Figure
1.9. More specifically, the individual scatterers asseciawith different propagation paths are randomly
generated using a Marcov statistical model. The correspgneélative delays; and powerszr,2 associated
with each propagation path are calculated based on the gecamhocation of each of the scatterers. Corre-
spondingly, the rate of change in the values of the PDP tagydel is determined by the speed of the mobile
wireless terminal and is characterized by the R&#drift rate parametew,. The specific assumptions re-
garding the practical range of values of the parametés discussed in the next chapter. Furthermore, each
propagation path experiences independent fast RayletfjingfaFinally, the set of parameters characterizing
the Marcov model employed is chosen such that the averagmehatatistics corresponds to the desired

static-PDP channel model.

1.7.3 Baseline Scenario Characteristics

As a baseline scenario we consider a mobile wireless conuation system utilizing a frequency bandwidth
of B = 10 MHz at a carrier frequency of. = 2.5 GHz. Furthermore, we assume an OFDM system having
K = 128 orthogonal subcarriers. The corresponding FFT-frametidurés T, = K/B = 16 us. We assume
having a cyclic prefix ofl /4T; = 4 us and thus the total OFDM symbol duration®f= 20 us.

Some other important system-related assumptions inchalectative speed of the communicating ter-

minals, which we assume not to exceed= 130 km/h = 36 m/s. Furthermore, the OFDM-symbol-
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1.7.4. MC Transceiver

Figure 1.9: PDP examples corresponding.

normalized Doppler frequencfp relates to the relative speed of the communicating termiasifollows
(1.12)

vfc

—_ 1Y
fp o

wherec = 3 - 10% m/s denotes the speed of light. The actual Doppler frequépgyl’ encountered in the
mobile wireless environment is assumed to be in the rangem880 Hz, where the maximum value3tf0

Hz correponds to the relative terminal speed of 130 km/h and the carrier frequency ¢f = 2.5 GHz.

Finally, the OFDM-symbol-normalized PDP tap drift speednay be calculated as follows
vy = T%, (1.13)

which suggests the that value of the PDP tap drift speed mesrdoes not exceed the maximum value of

Ve =24-107% us = T-0.12 us/s.
The resultant baseline scenario system characterisecsuanmarized in Table 1.4

1.7.4 MC Transceiver
The transmitter part of the system is typically constitusédn OFDM / MC-CDMA Encoder and Modula-

tor, the output of which is a complex-valued base-band tilmerain signal. The resultant base-band signal
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Table 1.4: Baseline scenario system characteristics.

Parameter Value
Carrier frequencyf. 2.5 GHz
Channel bandwidtiB 8 MHz
Number of carrier 128
FFT frame duratiorf 16 us
OFDM symbol duratioril” 20 pus @ us of cyclic prefix)
Max. delay spread,, 4 us
Max. terminal speed 130 km/h
Norm. Max. Doppler spreafi, 0.006 =T - 300 Hz
Norm. Max. PDP tap drift/; 24-10%us =T-0.12 us/s

is oversampled and pulse-shaped using a Nyquist filter, @sidlor example, a root-raised-cosine filter char-
acterized in Figure 1.7. The resultant oversampled signtlen converted into an analog pass-band signal
using a D/A converter and upconverted to the Radio FrequéREY band. At the receiver side a reciprocal
process is taking place, where the received RF signal isifi@ibby the RF frontend and downconverted
to an intermediate frequency pass-band, then sampled b&/teonverter, downconverted to the base-
band, filtered by a matched Nyquist filter and finally decirdat€he resultant complex-valued base-band
signal is processed by the corresponding OFDM / MC-CDMA Deufator and Decoder block, where the

transmitted information symbols are detected.

In this treatise we consider the link between the output efMtC Modulator and the input of the MC
Demodulator of Figure 1.10 as &ffective Base-Band Channdlhe proof of feasibility for this assumption

is beyond the scope this contribution, however it can beddonexample in [120, 122].

The discrete frequency-domain model of the OFDM/MC-CDMAteyn illustrated in Figure 1.10 can
be described as in [76]

y[n, k| = H(n, k]x[n, k| + wn, k|, (1.14)

fork =0,...,K—1and alln, wherey[n, k], x[n, k] andw|n, k] are the received symbol, the transmitted
symbol and the Gaussian noise sample respectively, comdsm to thekth subcarrier of theith OFDM
block. FurthermoreH [n, k] represents the complex-valued CTF coefficient associaitidthe kth subcar-
rier and time instance. Note that in the case of ai-QAM modulated OFDM systenx|[#, k] corresponds
to the M-QAM symbol accommodated by tHegh subcarrier, while in a MC-CDMA system, such as a
Walsh-Hadamard Transform (WHT) assisted OFDM scheme uShagip WH spreading code and hence
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Figure 1.10: Schematic illustration of a typical OFDM/MC-CDMA systeniP$1Y layer.

capable of supporting users [28] we have
G-1
x[n, k)l =) clk plsln, pl, (1.15)
p=0

wherec[k, p] is thekth chip of thepth spreading code, whilgn, p| is the M-QAM symbol spread by the
pth code. Each of th& spreading codes is constituted Gychips.

1.8 SDM-OFDM System Model

1.8.1 MIMO Channel Model

We consider a MIMO wireless communication system employigtransmit andn, receive antennas,
hence, the corresponding MIMO wireless communication obhis constituted byn, x m;) propagation
links, as illustrated in Figure 1.11. Furthermore, eachhefc¢orrespondingn, x m;) Single Input Single
Output (SISO) propagation links comprises a multiplicifystatistically independent components, termed
aspaths Thus, each of these SISO propagation links can be chasstdess amultipath SISO channel
discussed in detail in Section 1.7.1. Similarly to the SISBe; the multi-carrier structure of our SDM-
OFDM transceiver allows us to characterise the broadbaeguéncy-selective channel considered as an
OFDM subcarrier-related vector of flat-fading Channel Bfan Function (CTF) coefficients. However, as
opposed to the SISO case, for each OFDM symbahd subcarriek the MIMO channel is characterized
by a (n, x m;)-dimensional matri|[n, k] of the CTF coefficients associated with the different pr@pag

tion links, such that the elemei;;[n, k| of the CTF matrixH[n, k] corresponds to the propagation link
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connecting theth transmit andth receive antennas.
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Figure 1.11: lllustration of a MIMO channel constituted by transmit andn, receive antennas. The

corresponding MIMO channel is characterized by thex m.)-dimensional matriH of CTF coefficients.

Furthermore, the correlation properties of the MIMO-OFDIMionel can be readily derived as a gener-
alisation of the SISO-OFDM channel scenario discussedtailde Section 1.7.1. As it was shown in [38],
the crosscorrelation functian; [, I], which characterizes both the time- and frequency-domairetation
properties of the discrete CTF coefficiert;[n, k] associated with the particul&f, j)th propagation link
of the MIMO channel, as well as with the different OFDM symbold subcarrier indices andk can be

described as

VH;Z']'[}’I’I,Z] =E {H:;[Tl +m,k+l],H,-]-[n,k]}

= (szirt[m]rf 1], (1.16)

wherer;[m] is the time-domain correlation function, which may be chtedzed by a time-domain corre-

lation model proposed by Jakes in [121], where we have
re[m] = ry[m] = Jo(nwy), (1.17)

andJy(x) is a zero-order Bessel function of the first kind, whilg = 27tT fpp is the normalised Doppler
frequency. On the other hand, the frequency-domain cmelmnctionrf[l] can be expressed as follows
[31]

L g2

re[l] = |CUAS)[P Y e 8T, (1.18)

i=19H
whereC(f) is the frequency response of the pulse-shaping filter eragldy the particular systervf,.2 and
17, i=1,---,Lare the average power and the corresponding delay df-tap Power Delay Profile (PDP)

encountered, while?, is the average power per MIMO channel link, such that we ledve= Y- ; 0?2
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In this report we assume the different MIMO channel links ¢éonutually uncorrelated. This common
assumption is usually valid, if the spacing between thecadinantenna elements exceéd&®, whereA
is the wavelength corresponding to the RF signal employdualus;Tthe overall crosscorrelation function

between théi, j)th and(’, j')th propagation links may be described as
rH;ij;i/j/ [m, l] =E {H;]/ [71 + ﬂ’l,k + l], Hl‘]‘[i/l, k]}
= ari[mlr[loli — '16[j — f'], (1.19)

whered|i] is the discrete Kronecker Delta function.

1.8.2 Channel Capacity

Whilst most of the multi-path NLOS channel models can beectiVely categorized as Rayleigh fading,
different channel models characterized by different PDsbét substantial differences in terms of their
information-carrying capacityand potential diversity gain The channel’'s capacity determines the upper-
bound for the overall system’s throughput. On the other htrelavailable diversity gain allows the com-
munication system to increase its transmission integhfgtious modulation and coding schemes can be
employed by the communication system in order to increasgpictral efficiency and also to take advan-
tage of diversity. Some of these methods are widely discusséhe literaturege.g. in [123], and include

the employment of antenna arrays, space-time coding, amefrequency-domain spreading, channel cod-
ing, time- and frequency-domain repetitietc. The theoretical performance boundaries of such methods
are discussed in [29, 124]. Furthermore, the trade-offad@t the attainable system capacity gain and the

corresponding diversity gain are addressed in [125].

Consequently, the unrestricted capacity of a generic singirier ergodic-flat-fading MIMO channel

can be expressed as in [106], where we have
1
C=E {logdet [USUI + ;HHH] } , (1.20)
t
whereH is a(n, x m;)-dimensional matrix with independent complex Gaussiatritliged entries.

In realistic communication system, however, the achievabioughput is limited by the modulation
scheme employed. Some examples of such modulation scheenekagy PSK orMary QAM constellation
schemes, wher#/ is the number of complex symbols constituting the condtetlamap corresponding to
the particular modulation scheme employed. The upper bdafiding the maximum throughput achievable
by a particular discrete modulation scheme was first disclfgy Shannon in [126] and was shown to be
determined by the mutual informatidits; y) exhibited by the modulation scheme employed. The mutual

information can be calculated using the following exprassi

I(s;y) = H(y) — H(yls), (1.21)
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Figure 1.12: CapacityC of Equation (1.20) as well as mutual informatib(s; y) of Equation (1.21) versus
SNR for (a) 1x1 and (2) 2x2 systems in Rayleigh uncorrelatddiding.

whereH(-) = —Elog p(-) denotes the entropy function [126]. In the case of havingas&ian i.i.d. noise
sample vectow with the corresponding covariance matrix given®y = ¢21, the constrained entropy

constituentH (y|s) of Equation (1.21) is may be expressed as follows [106]
H(y|x) = n;log2nc2e, (1.22)

whereas the unconstrained entropy constité€fy) can be approximated numerically using a Monte-Carlo

simulation as in [106], where we have

1
MRy LOP |5l - HSHZD, (1.23)
S w

where the expectation is taken over the three sources obnamekss in the choice af H andw. Moreover,

the summation in Equation (1.23) is carried out ove\dft possible values of.

Figures 1.12(a) and 1.12(b) characterize both the capécitiyEquation (1.20) as well as the mutual
information I(s;y) of Equation (1.21) for SISO and 2x2-MIMO systems, respetyivThe mutual infor-
mation plots depicted in both figures correspond to systamdaying QPSK as well as 16- and 64-QAM

modulations.

1.8.3 SDM-OFDM Transceiver Structure

The schematic of a typical SDM-OFDM system’s physical lagatepicted in Figure 1.13. The transmitter
of the SDM-OFDM system considered is typically constitubydhe Encoder and Modulator seen in Figure

1.13, generating a set of, complex-valued base-band time-domain signals [28]. Theutated base-band
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Figure 1.13: Schematic of a typical SDM-OFDM system'’s physical layer.

signals are then processed in parallel. Specifically, theygersampled and shaped using a Nyquist filter,
such as for example a root-raised-cosine filter. The redgutigersampled signals are then converted into
an analog pass-band signal using a bank of D/A convertersipoohverted to the Radio Frequency (RF)
band. At the receiver side of the SDM-OFDM transceiver thverise process takes place, where the set of
received RF signals associated with theeceive antenna elements are amplified by the RF amplifier and
down-converted to an intermediate frequency pass-band.rdgultant pass-band signals are then sampled
by a bank of A/D converters, down-converted to the base-bfikered by a matched Nyquist filter and
finally decimated, in order to produce a set of discrete cemiphlued base-band signals. The resultant set
of discrete signals is processed by the corresponding Delatod and Decoder module seen in Figure 1.13,

where the transmitted information-carrying symbols anected.

In this treatise we consider the link between the output ef S DM-OFDM Modulator and the input
of the corresponding SDM-OFDM Demodulator of Figure 1.1am@Effective Base-Band MIMO Channel
The proof of feasibility for this assumption is beyond these this contribution, however it can be found for
example in [120, 122]. The structure of the resultant basetSDM-OFDM system is depicted in Figure
1.14, where the bold grey arrows illustrate subcarrieatel signals represented by the vectgrandy;,

while the black thin arrows accommodate scalar time-dorsiginals.

The discrete frequency-domain model of the SDM-OFDM systi#lostrated in Figure 1.14, may be
characterised as a generalisation of the SISO case dabanibéSection 1.7.1. Namely, we have
M
yi[n, k| = Z H;j[n, k]x;j[n, k] 4+ w;[n, k], (1.24)
j=1

wheren =0,1,--- andk = 0,...,K—1 are the OFDM symbol and subcarrier indices, respectiveijlen
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Figure 1.14: Schematic of a generic SDM-OFDM BLAST-type transceiver.

viln, k], x;[n, k] andw;[n, k] denote the symbol received at tik receive antenna, the symbol transmitted
from thejth transmit antenna and the Gaussian noise sample encediatietheth receive antenna, respec-
tively. Furthermore H;; [n, k] represents the complex-valued CTF coefficient associaitdthe propaga-
tion link connecting thgth transmit andth receive antennas at thkth OFDM subcarrier and time instance
n. Note that in the case of abl-QAM modulated OFDM systemy;[n, k] corresponds to tha1-QAM
symbol accommodated by tik¢h subcarrier of theith OFDM symbol transmitted from thgh transmit

antenna element.

The SDM-OFDM system model described by Equation (1.24) @ainterpreted as the per OFDM-

subcarrier vector expression of
yln, k| = H[n, Kx[n, K| + wn, K], (1.25)

where we introduce the space-devision-related vecgdnsk|, x[n, k] and w(n, k|, as well as a space-
devision-related(n, x m;)-dimensional matrix of CTF coefficientH[n, k|. Note that similarly to the
SISO case, the multi-carrier structure of the SDM-OFDM d$@miver allows us to represent the broad-
band frequency-selective MIMO channel as a subcarrietedlvector of flat-fading MIMO-CTF matrices

Hn, k|.
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1.9 Motivation of This Thesis

Historically speaking, OFDM research was inspired by tHelmated paper conceived by Chang in 1966
[127]. Initially the developments were relatively slow ogito implementational difficulties. More sub-
stantial developments were stimulated by Cimini [128] i83.9In the late 1990s OFDM was adopted by
numerous standartization bodies, such as Digital Vide@a@casting (DVB), Digital Audio Broadcasting
(DAB), as well as by the IEEE 802.11 Wireless Local Area Netw@AN) - aka WiFi - standard. Dur-
ing the most recent decade further interest was stimulagetidointroduction of multiple antennas in the
context of both SDM and SDMA. The culmination of this process that OFDM is now considered to be
the strongest candidate for the 3GPP LTE initiative and riigivated the research reported in this thesis.
The development of an entire MIMO-OFDM system requires tivestigation of numerous system com-
ponents, most importantly sophisticated channel estimatnulti-antenna signal detection as well as their

interactions with the channel decoder.



Chapter

Channel Estimation for OFDM and
MC-CDMA

2.1 Outline

In this chapter we develop an advanced decision directednehastimation scheme suitable for employ-
ment in a wide range of multi-antenna multi-carrier systefmisstly, both pilot-aided as well as decision
directed channel estimation are briefly discussed and cardpa Section 2.2. We conclude that decision
directed approach exhibits substantial benefits over itt-pased counterpart. Correspondingly, in this
chapter we focus our attention on the family of decisionaded methods. Specifically, the difficulty of
employing the LS approach to the problem of estimating thBRfsubcarrier-related FD-CTF coefficients
is described in Section 2.4.1. The alternative MMSE FD-C8tineator circumventing the problem outlined
in Section 2.4.1 is analyzed in Section 2.4.2. Our discoavadves further by proposing an MMSE CIR
estimator exploiting the frequency-domain correlatiorttaf FD-CTF coefficients in Section 2.5.1 and a
reduced-complexity version of the CTF MMSE estimator ispmsed in Section 2.5.2. The computational

complexity of both methods is compared in Section 2.5.3.

In Section 2.5 we continue our discourse with the derivatidooth sample-spaced as well as fractionally-
spaced Channel Impulse Response (CIR) estimators. Ino&eeh.5 we then perform a comparison be-
tween the two methods considered and demonstrate the adeantf the latter.e. of the fractionally-
spaced scheme. Subsequently, in Section 2.6 we develohadratparametric tracking of the fractionally-
spaced CIR taps, which facilitates low-complexity charestimation in realistic channel conditions charac-
terized by time-variant fractionally-spaced power delegfite. More specifically, we employ the Projection
Approximation Subspace Tracking (PAST) method for the sdikecursive tracking of the channel transfer

function’s (CTF) covariance matrix and for the subsequestking of the corresponding CIR taps. We
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demonstrate that the PAST-aided decision directed chaesiehation scheme proposed exhibits a good

performance over the entire range of practical conditions.

In Section 2.7 we discuss two major CIR tap prediction sfriake Specifically, in Section 2.7.2 the
so-calledrobust implementation of the stationary Minimum Mean Square E(MMSE) CIR predictor
is considered. Theobust CIR predictor [38] assumes a constant-valued, limitedpsupchannel scatter-
ing function [28] during the design of the CIR tap predictidter and hence relies on the assumption of
encountering the worst possible channel conditions. Orother hand, in Section 2.7.4 we discuss the
adaptive Recursive Least Squares (RLS) method of CIR predif65]. As opposed to the robust CIR
predictor of [38], the RLS CIR predictor does not require arplicit information concerning the channel
conditions encountered. Consequently, in Section 2.7.Bhaeacterize and compare the achievable perfor-
mance of both methods considered and draw conclusions rmongedheir relative merits. Specifically, we
demonstrate that the RLS prediction technique outperfotsn®bust counterpart over the entire range of

the relevant channel conditions.

In Section 2.9.1 of this chapter we explore a family of reme$1IMO-CTF tracking methods, which
in conjunction with the aforementioned PAST-aided CIR:krag method of Section 2.6 as well as the RLS
CIR tap prediction method of Section 2.7.4, facilitate tesign of an effective channel estimation scheme in
the context of a MIMO-OFDM system. More specifically, in Sewt2.9.1 we consider both hard- and soft-
feedback assisted least mean squares (LMS) and recurastesiguares (RLS) tracking algorithms as well
as the modified RLS algorithm, which is capable of improvalization of the soft information associated

with the decision-based estimates.

Finally, in Section 2.9.1.5 we document the achievableqguarince of the resultant MIMO-DDCE
scheme employing the recursive CTF tracking of SectiorRZellowed by the parametric CIR tap tracking
and CIR tap prediction. We demonstrate that the MIMO-DDCEeste proposed exhibits good perfor-

mance over the entire range of practical conditions.

2.2 Pilot-Assisted Channel Estimation

In this treatise we concentrate our attention on both thevatesn and on the performance analysis of
decision-directed channel estimation methods, addifyppaoviding a brief performance comparison be-
tween Decision-Directed and Pilot-Aided channel estiorathethods. Our motivation is that any technique
applicable to DDCE can be equally employed in the contextilof-pided schemes and the difference be-

tween their attainable performance can be predicted amedtbelow.

The attainable performance of both the Decision-Direci2d)(and Pilot-Assisted (PA) channel esti-
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mation methods can be compared in the following simple way.

The performance of any pilot-assisted channel estimatiethau expressed in terms of the achievable
Mean Square Error (MSE) is upper-bounded by the expression
NoL

MSEpp > —, (2.1)
EP

whereE,, is the total power associated with the transmitted pildisjs the Gaussian noise variance dnd

is the number of non-zero CIR components.

On the other hand, in the case of DD channel estimation thesmonding performance bound, using
the assumption of error-free decisions, can be described by

Ny L
MSE ——, 2.2
DD > E. K (2.2)

whereE; is the average signal energy per transmitted complex baseé-fample and is the number of

OFDM subcarriers, whilé&Vy andL are as defined previously.

Thus the resultant performance gain may be quantified as

MSEps  EK’

(2.3)

We would also like to emphasize the trade-off between thethel estimator’s performance and the
system’s spectral-efficiency loss associated with thecatlon of valuable signal power to pilot symbols.
The corresponding data-rate loss can be quantified by aesiexpression similar to that of Equation (2.3):

E
Tloss = Es;;(

(2.4)

2.3 Decision Directed Channel Estimation

The schematic of the channel estimation method considsmebicted in Figure 2.1. The symbayig:] and
§[n] in the figure represent the received vector of the subcaelated samples and thgposterioridecision-
based estimated vector of the transmitted informationyo@ay symbolss|n], respectively. Furthermore,
symbolsH|[n + 1], a[n] anda[n + 1] represent the CTF and the CIR vectors corresponding to tistarits
n andn + 1, respectively. Finally, the accentsand £ represent the priori predicted andh posteriori
estimated values of the variabie respectively. Figure 2.1 corresponds to the general chffeecCIR

estimation and both sample-spaced as well as fractiospliged cases may be considered.

For the sake of clarity, we would like to emphasis the notatialifference between the Sample Spaced
CIR vectorh[n] and the Fractionally Spaced CIR vectdr|. Specifically, we would like to commence by
considering the simpler case of the SS-CIR. Thus, the Clfovegn| in Figure 2.1 may be substituted by
its sample-spaced projectidrin] described by Equation (1.8).
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Figure 2.1: Schematics of a generic receiver employing Decision Dée€thannel Estimator constituted by

ana posterioridecision-directed CTF Estimator, followed by a CIR Estionand ara priori CIR predictor.

Our channel estimator is constituted by what we refer to as posterioridecision-directed CTF esti-
mator followed by a CIR estimator and arpriori CIR predictor [28]. As seen in Figure 2.1, the task of the
CTF estimator is to evaluate the tentative values of theauiee-related CTF coefficiets of Equation (1.14).
Correspondingly, the task of the CIR estimator is to estrihe SS-CIR taps of Equation (1.8). In the
case of the sample-spaced CIR aided channel estimatiausgisd in this section, the Inverse Fast Fourier
Transform (IFFT) based transformation from the subcargéated frequency domain to the sample-spaced
CIR-related time domain is invoked in order to exploit theguency-domain correlation of the subcarrier-
related CTF coefficients as well as to reduce the computtmomplexity associated with the CTF predic-
tion process, because the SS-CIR typically has a lower nuofli€) < K taps, which have to be predicted,
than theK number of FD-CTF coefficients. Hence the overall channeinagion complexity is reduced,

even when the complexity of the FD-CTF to CIR transformation its inverse are taken into account

As can be seen in Figure 2.1, taposterioriCTF estimator inputs are the subcarrier-related sighd|
and the decision-based estimafe|. The transformation from the frequency to time domain igered
within the CIR estimator of Figure 2.1 and its output isaposterioriestimatei[n, k] of the CIR taps of
Equation (1.8), which is fed into the low-rank time-domailRQGap predictor of Figure 2.1 for the sake of
producing ara priori estimateﬁ[n +1,1],1=0,1,--- ,Ky — 1 of the next SS-CIR on a SS-CIR tap-by-tap
basis [28]. Finally, the predicted SS-CIR is converted mghbcarrier-related CTF estimates with the aid
of the FFT. The resultant FD-CTF is employed by the receigettfe sake of detecting and decoding of the
next OFDM symbol. Note, that this principle requires thasmission of a pilot-based channel sounding

sequence, such as for example pilot-assisted OFDM bloclygithe initialisation stage.

1The computational complexity associated with the pregiicof theK CTF coefficients is of orde@(Kszrd), whereN, 4
is the order of the prediction filter. On the other hand, th& @tediction combined with the FFT and IFFT operations can
be associated with the computational complexity of o@éKéNprd + 2Klog, K). It is evident, that in the typical case of

N,

prd < Ko < K the overall estimation complexity is reduced if the aforati@ed method of the CIR prediction is employed.
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2.4 A Posteriori FD-CTF Estimation

In order to emphasize the major difference between the OFB#IMIC-CDMA systems in the context of
the associated channel estimation scheme, first we wowdddilanalyze the performance of the temporal
estimator of the subcarrier-related FD-CTF coefficieHis:, k] based on the posteriori decision-aided
estimates of the transmitted subcarrier-related sansptes| of Equation (1.14). In Section 2.4.1 we will
show that the LS approach typically employed in DDCE-aidétD® systems [28, 38] is not applicable
in the case of MC-CDMA systems. In Section 2.5.1 we propos®BSE estimator, which renders the
DDCE philosophy discussed in [28,38] suitable for MC-CDMA®ms. However, the estimator introduced
in Section 2.5.1 exhibits a computational complexity, whig significantly higher than the computational
complexity of the conventional LS-based estimator of [}, Ihus a reduced-complexity approximation

of the MMSE estimator of Section 2.5.1 is proposed in Se@i&2.

2.4.1 Least Squares CTF Estimator

Following Equation (1.14), the Least Squares (LS) appr¢a@h] to the problem of estimating the discrete-
abscissa FD-CTF coefficient$[n, k|, based on the knowledge of the decision-aided estindatek| of the
transmitted frequency-domain sampé¢s, k| of Equation (1.14) can be expressed as

s[n, k] win, k|

~ _ yn, k]
Him k=% Ak T EmA

$[n, k]

= Hin, k] -

(2.5)

where H|n, k] represents the Rayleigh-distributed FD-CTF coefficieragiry a variance of?, while
s[n, k] denotes the transmitted subcarrier-related samples dy@éro mean and a variance @f. The
distribution of the samples{n, k] is dependent on the particular modulation scheme employeHebsys-
tem. For instance, in a MC-CDMA system using an arbitrary ofaiibn scheme, the samplgls:, k] are
complex-Gaussian distributed, having a Rayleigh-distetd amplituddx[#, k|| and uniformly-distributed
phased[n, k|. By contrast, in aM-PSK-modulated OFDM system the sampé¢s, k| are uniformly dis-
tributed within the set oM-PSK symbols having a constant amplitydp:, k|| = o5 and a discrete-uniform
distributed phasé(n, k| = 2w 4;,m = 0,1,--- , M — 1. Finally, the noise samples[n, k| are independent

identically distributed (i.i.d.) complex-Gaussian véiizs having a zero mean and a variancef

Under the assumption of carrying out error-free decisioashewes[n, k| = s[n, k| and Equation (2.5)
may be simplified to

[, k]

S[n K]~

1
=
S
Kan
g

(2.6)

The Mean Square Error (MSE) associated with the LS FD-CTimastr of (2.6) is given by

MSE;s = E{(H[n,k] - H[n,k](z} - E{ zs"[%] ‘2} , @2.7)
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The less ambiguous measure of the estimator’s performanteiNormalized MSE (NMSE), which is
defined as the MSE normalized by the variance of the pararbeieg estimated. The NMSE corresponding

to the estimator of Equation (2.6) is given by

2
NMSE; g = ;—éE { ‘ ZS"[E/[”,’:]] ‘ } : (2.8)

The AWGN samplesv|n, k] are known to be i.i.d. complex-Gaussian and hence the MSHuaétion (2.7)
is determined by the statistical distribution of the traitsed subcarrier-related samplg#, k|. The NMSE
encountered assumes its minimum value, wisém, k]|> = ¢2 is constant, as in the case of Af-PSK-

modulated OFDM system. Thus, we have

1 o2 1
NMSE( s min = ——E KPPy = = = — 2.9
LS,min 012_10_52 {|w[n ” } (712—1052 ¥ ( )
where
1 o202
Y= _ZE{|H[n/k]S[n/k]|2} - st (210)
o3, oS

is the average SNR level. On the other hand, the NMSE valueingilease substantially, if the energy
of the transmitted samplesn, k| varies as in the case dfl-ary Quadrature Amplitude ModulatiorV(-
QAM)-based OFDM or MC-CDMA. In fact, in the case of strictlyaGssian-distributed sampleps, k|,
which corresponds to encountering a MC-CDMA system havirsyifficiently long spreading code, the
NMSE value of Equation (2.8) does not exist, since the vadaf the resultant Cauchy distributed variable
associated with the ratio of two Gaussian-distributedaldeiss |, k| andw(n, k] of Equation (2.8) cannot
be defined [129]. The NMSE of the LS estimator of Equation)(8&¥ived for QPSK, 16-, 64- and 256-
QAM-modulated OFDM, as well as QPSK-modulated MC-CDMA ipidéed in Figure 2.2(a). The solid
line in Figure 2.2(a) corresponds to the lower NMSE boundidlesd by Equation (2.9).

The performance degradation of the LS estimator of Equéfid) was imposed by the energy-fluctuation
of the near-Gaussian distributed subcarrier-related Esmfys, k|, which renders the LS estimator inap-
plicable for employment in MC-CDMA systems. Therefore, foe sake of mitigating this performance

degradation we would like to turn our attention to the MMSEneation approach.

2.4.2 MMSE CTF Estimator

In order to derive a FD-CTF estimator, which is suitable fmpéoyment in a MC-CDMA system, where the
energy-fluctuation of the subcarrier-related samglesk| is near-Gaussian, we turn to the MMSE approach.
Following the Bayesian linear model theory of [101], the MEI8stimator of the FD-CTF coefficients

Hin, k] of the scalar linear model described by Equation (1.14),revkiee parameterl |1, k] are assumed
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Figure 2.2: NMSE associated with (a).east Squares (LS)and (b) Minimum Mean Square Error
(MMSE) estimators of the uncorrelated Rayleigh-distributed autier-related CTF coefficient& [n, k|

of Equation (1.14) corresponding to the various statibticgtributions of the transmitted subcarrier-related
samplesk[n, k]. The markers on the plot correspond to the simulated cas#$BSK, 16-, 64- and 256-
QAM modulated OFDM as well a&1-QAM modulated MC-CDMA, while the lines correspond to theaan
lytically calculated performance recorded for the case®le?SK OFDM (solid) and MC-CDMA (dashed),
which represent the lower and the upper NMSE bounds, ragpictNote that the upper bound for the LS

estimator in conjunction with MC-CDMA does not exist.

to be complex-Gaussian distributed with a zero mean andiancar ofalzi, is given by [101]:

Annvise[1, k] = <M+ 1 >1

2 %
x*[n,Kly[n, k] _ s*[nkly[n k| ' 2.11)
0% |s[n, k]|> + Z—j”
H
The corresponding NMSE can be expressed as [101]
1 /1 s, K12\
NMSEMMSE =7 <—2 + 7| [ > ]| )
o5 \ 0% 0%
2
Tw - L (2.12)

) 2 2 2 ’
o |s|n, k|2 + o s[n,k]
H| [ ]| w Zx ‘ 1

Y

where+y is the average SNR level defined by Equation (2.10). As we baea previously in the context
of Equation (2.12), the NMSE is determined by the statiktiistribution of the transmitted subcarrier-
related samplesn, k] and assumes its minimum value, when the energy of these safwjpl, k]|> = 02 is

constant. On the other hand, in contrast to the NMSE of thedtighator of Equation (2.5), the NMSE of
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the MMSE estimator of Equation (2.11) is upper-boundedciviis evidenced by Figure 2.2(b). The NMSE
assumes its maximum value, when the samplesk| are complex-Gaussian distributed, as in the case of
a MC-CDMA system having a sulfficiently high spreading factexplicitly, the maximum NMSE may be
derived as follows:

MMﬂmmaW)zﬂw%ﬁﬁNM$%%XH

= E  {NMSE(vy,r)}

r=l&Pex

© 1 1 1
= / e Tdr = = e7E4 <—> , (2.13)
o yr+1 Y Y

where we integratee. average the first multiplicative term upon weighting it bg f?-distributed Proba-

bility Density Function (PDF) of the NMSE described By:(r) = e~ over its entire range spanning from
0 to oo and define thexponential integrafunction as:

00 e—t

m@:A-Tm. (2.14)

2.4.3 A Priori Predicted Value Aided CTF Estimator

In MC-CDMA systems employing spreading codes having aivelgt low spreading factof, there is a
finite probability of encountering zero-energy subcasredated samples[n, k| = 0 when superimpos-
ing the chips of various users corresponding to the sulecazansidered. This probability decreases with
increasing spreading fact@f as the corresponding power distribution function appreadhaussian distri-
bution. As can be seen from Equation (2.11), this will result corresponding the CTF coefficient MMSE
estimate[n, k] = 0, which is unrelated to the actual value Hifn, k] encountered. This problem can
be circumvented in the context of the DDCE scheme of Figute\#here thea priori predicted estimate
of the subcarrier-related coefficieRt|n, k| is readily available, by performing a Maximum Ratio Combin-
ing (MRC) of thea posterioriMMSE estimatef{[n, k] of Equation (2.11) and the correspondiagriori
estimateH [, k]. It can be shown that the resultant MRC-aided CTF estimatorbe expressed as
Hin, k| + & [n, k]y[n, k]
1+ [8[n, K][2 + Ko g

2
K g2

Hln, k| =

(2.15)

In the following section we employ the following vectoriadtationv[n| = (v[n,1],- - - ,v[n, K])*.
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2.5 A Posteriori CIR Estimation

2.5.1 MMSE SS-CIR Estimator

We would like to commence our portrayal of the proposed cbbegtimation philosophy rendering the
DDCE OFDM scheme of [28, 38] also applicable to employmentid-CDMA with the derivation of the
a posterioriMMSE SS-CIR estimator of Figure 2.1.

By substituting the FD-CTF of Equation (1.7) into (1.14) we\ee at

Kop—1
y[n,k = Y W¢h[n, 1|x[n, k] + w(n,k|, (2.16)
1=0

which can be expressed in a matrix form as
y[n] = diag (x[n,k]) Wh{n] + win], (2.17)

where we define théK x K)-dimensional matrixliag (v[k]) as a diagonal matrix having the corresponding
elements of the vectar[k] on the main diagonal, as well as thE x Kj)-dimensional Fourier Transform
matrix W, which corresponds to the Fourier transform of the zeradpdBS-CIR vectadk[n] and is defined

by Wy = Wk fork =0,1,--- ,K—1andl =0,1,--- ,Ko — 1.

As before, the SS-CIR tags!]| are assumed to be uncorrelated complex-Gaussian distlivariables

having a zero mean and a covariance matrix given by
Cy = diag (o7) . (2.18)

The MMSE estimator of the SS-CIR tap§s, [] of the linear vector model described by Equation (2.17) is
given by [101]
1 1 B
h = | diag | — | + - W"diag (|2[k]|*) W
of 0%

1 . o
X U—ZWHdlag (2*[k]) y, (2.19)

w
where we omit the time-domain OFDM-block-spaced inddrr the sake of notational simplicity. Follow-
ing the assumptions made in Section 1.7.1 about the natute athannel model considered, some of the
parametergf may assume a zero value. Hence for the sake of avoiding dewsi zero, we would like to

rewrite the Equation (2.19) in a more practical form as foo

= (o3I + diag (o7) Widiag (|2[k]?) W)

x diag (07) Wdiag (£*[k]) y. (2.20)
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The covariance matrix of the vecthrof the MMSE SS-CIR estimates can be expressed as [101]

2

-1
C’;‘A = <I—|—diag (Z—é) WHdiag (|3?[k”2) W)

w

x diag (07) . (2.21)

The corresponding NMSE associated with fieMMSE SS-CIR tap estimaﬁa[l] can be found be approx-
imating thelth diagonal element of the covariance matﬁ;q(‘f of Equation (2.21) and normalising it by
the average channel output povwéf. The above-mentioned approximation is performed by repdathe
matrix diag (|£[k]|?) in Equation (2.21) by its average valugl. Thus, we arrive at

2 2
7] O

NMSEMMSEZ = 55—
, 2 2

05 0% + Kofo?
2

2
47 ]

1 1
2 42 02 v 02 ’
007 “w 2 w

HYx a§+KUl ,)/(T%Uf—i_K

(2.22)

The overall NMSE corresponding to the MMSE SS-CIR estimafoEquation (2.20) may be found by
summing all thdth NMSE contributions in Equation (2.22) over tKg taps of the CIR encountered, which
can be expressed as

NMSEnvise = (2.23)

where, as beforeK is the number of OFDM subcarriers andis the average SNR value, whileis the
number of non-zero SS-CIR taps encountered. The resultd®ENdescribed by Equation (2.23) is depicted
in Figure 2.3.

2.5.2 Reduced Complexity SS-CIR Estimator

As it is seen from Equation (2.19), the direct MMSE approacthé problem of estimating the SS-CIR taps
h[n,1] involves a time-variant matrix inversion, which introdscrelatively high computational complex-
ity [28]. In order to reduce the associated computation derity, we introduce a two-step low-complexity
SS-CIR estimator invoking an approach, which bypasses dhguatationally intensive matrix inversion
operation encountered in Equation (2.19). We will show thatmethod proposed first employs a scalar
MMSE estimator of the subcarrier-related FD-CTF coeffitse [, k| of Equation (2.11), followed by
employing a simplified MMSE SS-CIR estimator, which expdlie average MSE expression of Equation
(2.13) associated with the scalar MMSE FD-CTF estimatoheffirst processing step.

Following the Bayesian estimation theory of [101] the MMSERCestimatesdynvsg[, k] of Equation
(2.11) may be modelled as complex Gaussian-distributeédhlas having a mean identical to thattdfn, k],

which represents the actual FD-CTF coefficients encoutianel a variance af? = 02 NMSEmax, Where
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Figure 2.3: NMSE associated with both thdinimum Mean Square Error (MMSE) and theReduced-
Complexity (RC) MMSE SS-CIR estimators described be Equations (2.20) and (28€)ectively. The
markers on the plot correspond to the simulated cas#$-BfSK, 16-, 64- and 256-QAM modulated OFDM,
as well asM-QAM modulated MC-CDMA in conjunction with MMSE (bold) andRMMSE (hollow) SS-
CIR estimators, while the lines correspond to the analiiyicalculated NMSE lower-bounds for the cases
of MC-CDMA in conjunction with both the MMSE (solid) and th&RMMSE (dashed) estimators evaluated
using Equations (2.23) and (2.32), respectively. Notd,ttlmmarkers associated with different modulation

schemes and RC-MMSE estimator coincide.

(712{ is the average channel output power &MlSE .. is the average NMSE quantified in Equation (2.13).
Thus we can write
Hyvse[n, k] = Hin, k] + o[n, k], (2.24)

wherev[n, k| represents the i.i.d. complex-Gaussian noise samplesdavkero mean and a variance of

2

5.

By substituting (1.8) into (2.24) we arrive at

Ko—1
Aypvise [, k] = Z K hin, k| + v[n, k|, (2.25)

whereWg = e—ﬂ”%, which can be rewritten in matrix form as
Hypvse[n] = Whn] + v[n], (2.26)

where theg K x Kp)-dimensional matri¥V corresponds to the Fourier transform of the zero-padde@IRS-

vectorh[n] and is defined bV, = WX fork =0,1,--- ,K—1andl =0,1,--- Ko — 1.
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The MMSE estimator of the SS-CIR tapBi, k] of the linear vector model described by Equation (2.26)
is given by [101]
h=(c,'+wic,'w) 'Wic,  Hyse, (2.27)

where we omit the time-domain OFDM-block-spaced indéar the sake of notational simplicity and define
C;, andC, as the covariance matrices of the SS-CIR veétand the scalar MMSE FD-CTF estimator’s
noise vector, respectively. The elements of the noise veet@re assumed to be complex-Gaussian i.i.d.
samples and therefore we hae = ¢21. On the other hand, as follows from the assumption of having
uncorrelated SS-CIR taps, the SS-CIR taps’ covariancebmsta diagonal matrixCj, = diag (¢7), where

o7 = E{|h[n,1]|*}. SubstitutingC;, andC, into Equation (2.27) yields [101]

h = (dlag ( !
-1
o2 N
= (diag <0—2> —|—KI> WHHMMSE
1

02
= di T \wWiA , 2.28
1ag ((75 +Ko? MMSE ( )

-1
1 1 .
) + WHW> WHEHMMSE

%

N

where we have exploited the fact that

H o K-1 7]27_[k(1—1’)
[W W]l,l’ = Z e K
k=0

= Ké[1 - 1] (2.29)

and therefordV*W = KI, wherel is a(Ky x Kp)-dimensional identity matrix.

Finally, upon substituting Equation (2.11) into Equati@i28) we arrive at a scalar expression for the

Reduced-Complexity (RQG) posterioriMMSE SS-CIR estimator in the form of:

~

i, 1] = klx [n, k| [nk]

02+K 02 + Ko? ; %1, K]]2 + (2.30)

The corresponding NMSE associated with itileRC-MMSE SS-CIR tap estimaffil] is given by [101]

2
NMSERcMMSE, = 0—3071
* 0% 02+ Ko?
2
S L (2.31)
o=} Ty _|_K

wherec? = UIZ_INMSEH,maX is the variance of the noise sampték] in Equation (2.24), WhilNMSE max

is the maximum NMSE of the scalar MMSE FD-CTF estimator of &@n (2.11). The overall NMSE cor-
responding to the MMSE SS-CIR estimator of Equation (2.20)lwe found similarly to Equation (2.23) by
summing all of thdth contributions quantified by Equation (2.31) over Kgetaps of the CIR encountered,
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which can be expressed using Equation (2.13) as

NMSE 1exp<1>E'1KOZ:l !
RCMMSE — — - 1—
¥ A §_§+K
1
1 1 1\ L
~ —exp—Ei <—> — (2.32)
04 0 v) K

where, as beforeK is the number of OFDM subcarriers andis the average SNR value, whileis the
number of non-zero SS-CIR taps encountered. The resultd®BNdescribed by Equation (2.32) represents
the lower-bound of the NMSE exhibited by the RC-MMSE SS-CéRreator in conjunction with complex-
Gaussian distributed transmitted sampt¢s, k| typically encountered in a MC-CDMA system having a
high spreading factor. The resultant NMSE performance fisotied in Figure 2.3 using a dashed line.

2.5.3 Complexity Study

As it was shown in Section 2.4, the LS approach to the problEDDCE-aided OFDM schemes [28] is
not suitable in the case of MC-CDMA systems. The MMSE appraHSection 2.5.1 constitutes an appro-
priate solution, however it exhibits a relatively high camgtional complexity imposed by the evaluation
and inversion of théKy x Ko)-dimensional matriX A + W"diag (|x[k]|*) W) in Equation (2.20). More
explicitly, the MMSE SS-CIR estimator of Equation (2.20)sha computational complexity, which is of
the order ofO(K?Ky + KKZ + K3), whereK is the number of OFDM subcarriers aig is the number of
SS-CIR taps encountered. By contrast, the reduced-coitpRR-CIR estimator of Equation (2.30), which
avoids the matrix inversion operation, has a complexityhef érder ofO(K + Klog, K + Kj), which is
similar to the complexity associated with the conventidnglestimator employed in [28]. It can be seen
that the difference between the proposed estimation metbgdressed in terms of the associated com-
putational complexity is substantial. In the next sectiom wwould like to derive an alternative Reduced
Complexity (RC) MMSE estimator, which is capable of estimgtthe Fractionally-Spaced (FS) CIR taps

of Equation (1.7) using an approach similar to that desdrédsove.

2.5.4 MMSE FS-CIR Estimator

As was advocated in Section 1.7.1, realistic mobile wiseldgnnel may be characterized by a fractionally
spaced PDP, constituded by a relatively small number ofstatlly independent multipath components.
Correspondingly, the FS-CIR based channel estimationedetikhibits the potential to improve the achiev-
able system’s performance as well as to reduce the assb@ateputational complexity. In this section

we derive a MMSE FS-CIR estimator. The achievable perfonaar decision-directed channel estimation

(DDCE) methods employing both the SS- and the FS-CIR estim& analyzed in the context of an OFDM
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system. The performance of the two estimation methods igpaosad and it is shown that the DDCE scheme

employing the FS-CIR estimator outperforms its SS-CIRmstibr-based counterpart.

The first constituent component of our estimator, namelystaar MMSE CTF estimator is identical
to that derived in Section 2.5.2 and described by Equatiohlj2 Furthermore, our approach used for
deriving the MMSE FS-CIR estimator is similar to that ulizin Section 2.5.2, however it exhibits several

substantial differences, as detailed bellow.

By substituting the FD-CTF of Equation (1.7) into (2.24) we\ee at

Hln, k] = C(kAf) i a [n]WE T 1 oln, k], (2.33)
I=1

where, as previously;( f) is the frequency response of the transceiver’s pulse-sbdibier, Wx = e‘Jzﬂ%,
while a;[1n] andT; are the amplitudes and the relative delays of the FS-CIR tapgectively. Equation (2.33)

can be expressed in a matrix form as

H[n] = diag (C[k]) Wa[n] + v[n]

= Tuan] + v[n], (2.34)

where we define théK x L)-dimensional matrixT £ diag (C[k]) W, in which diag (C[k]) is a (K x K)-
dimensional diagonal matrix with the corresponding eletmefthe vectoC[k| on the main diagonal, while

. . . ! kL
W is the Fourier Transform matrix defined by, £ WKTS fork = —%,- . % —landl=1,---,L.

The MMSE estimator of the FS-CIR tapg[n] of the linear vector model described by (2.34) is given
by [101]
&= (c;t+T1ictT)"'TiC, 'H, (2.35)

where we omit the time-domain OFDM-block-spaced indefor the sake of notational simplicity and
defineC, and C, as the covariance matrices of the FS-CIR veat@and CTF-estimator noise vector
respectively. The elements of the noise veatoare assumed to be independent identically distributed
(i.i.d.) complex-Gaussian-distributed samples and foezewe haveC, = ¢2I. On the other hand, as
follows from Equation (1.1), the FS-CIR taps’ covariancetnmas a diagonal matrixC;, = diag (012),

whereo? £ E {|a;[n]|?}. SubstitutingC, andC; into (2.35) yields

-1
A (1)1 o1

= (021 + diag (¢?) T"T) " diag (07) T"H = AH. (2.36)

The matrix inversion operation associated with the prooé®valuating the estimator matrig in Equa-

tion (2.36) cannot be avoided as opposed to the case of tHel®stimation scheme of Section 2.5.2.
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However, the estimator matriA is data-independent and may be calculated only once fordbe af en-
countering Wide Sense Stationary (WSS) channel statisticthe case of non-WSS channels, where the
average FS-CIR taps’ magnitudq%and the corresponding relative delayare time variant, the estimator
matrix A can be tracked using the low complexity Projection Appradion Subspace Tracking (PAST)

techniques discussed for example in [117] and [130].

The corresponding covariance matrix associated with th€ FSestimate vectok can be expressed as
in [101]

Cy = 02 (021 + diag (o) T"T) ' diag (¢?) (2.37)
and the resultant Normalized Mean Square Error (NMSE) oRB8eMMSE FS-CIR estimator proposed is
given by

o2 -1 )
NMSE, = 7% tr ((e21+ diag (o7) T*T) " diag (e7) ), (2.38)
H
wheretr(A) is thetrace of the matrixA.

The performance criteriA’MSE;, and NMSE, of Equations (2.32) and (2.38) respectively cannot be
compared directly, since they refer to the estimation @meses of different sets of parameters, namely the
SS-CIR tapsi[n, k|, k = 0,...,Ko — 1 and the FS-CIR taps;[n], | = 1,...L. In order to perform a
meaningful comparison of the methods considered we usedMt&E between the two CTFs corresponding

to the encountered CIR and the estimated CIR, thus we have
NMSEy £ E{|H[n,k] — H[n,k]|*} . (2.39)
In the case of the SS-CIR estimator we have
NMSEss5 = %E {tr ((H— H)(H - "))
- K1712_1tr (We {(hn—hy(n — )"} w¥)
— NMSE,, (2.40)

where the Discrete Fourier Transform (DFW) of Equation (2.25) is a unitary matrix. On the other hand,

for the case of the FS-CIR estimator we have

NMSEjps = %E {tr (H-H)(H-H)")}
— K%'Izitr (TE{(a — &)(x — &)"} T")
0-2

— Kavﬁ tr (TC,T"), (2.41)

whereC, is the covariance matrix of the FS-CIR taps’ estimates desty Equation (2.37).

The NMSEy performances of both the SS-CIR and the FS-CIR RC-MMSE e#tira discussed in
Sections 2.5.2 and 2.5.4 and described by Equations (2cDj2a41) respectively are depicted in Figure
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2.4. As is suggested by Figure 2.4, the NMSE performancebgghi by the SS-CIR estimator of Sec-
tion 2.5.2 is highly sensitive to the particular delay pefilas well as to the RMS delay spreagd,s. More
specifically, the NMSE becomes better when the channel agimencounters near sample-spaced delays
77, which results in a minimum leakage of the FS-CIR taps’ power the neighbouring SS-CIR taps. On
the other hand, the NMSE exhibited by the SS-CIR estimattarideates when the delays depart from
sample-spaced values and thus the leakage of the FS-CIFptapsr is maximised. As expected, the FS-
CIR estimator exhibits a lower NMSE over the whole range efdklay spread RMS valuesg,s, which

demonstrates its robustness in severe channel conditkbilsiteng time-variant delay spread.

-16 S SR
SS-CIR :
FS-CIR

SNR=10dB

MSE [dB]

-30 —
01 1 10

Trms/Ts

Figure 2.4: Mean Square Error exhibited by ara posterioriSS- and FS-CIR-based CTF estimators as
a function of the channel’'s sample-rate-normalized RM&wyehkluet,,s/Ts. The channel encountered
corresponds to the eight-path Rayleigh-fading Bug’s ckbmodel characterized in [118] having a Gaussian
noise variance of 10 dB. The results were avaluated from iapg(2.40) and (2.41).

2.5.5 Performance Analysis

In this section, we present our simulation results for bbeh®@FDM and the MC-CDMA systems employing

the channel estimation schemes considered.

Our simulations were performed in the base-band frequeanyaih and the system configuration char-
acterised in Table 2.1 is to a large extent similar to thatusg38]. We assume having a total bandwidth
of 800kHz. In the OFDM mode, the system utilises 128 QP SK-utaidd orthogonal subcarriers. In the
MC-CDMA mode we employ eight concatenated of 16-chip Walstdamard (WH) codes for frequency-
domain interleaved spreading of the QPSK-modulated bigs the8 - 16 = 128 orthogonal subcarriers.

All the 128 WH spreading codes, each constituted8oyterleaved groups of6 codes, are assigned to a
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Table 2.1: System parameters.

Parameter OFDM MC-CDMA

Channel bandwidth 800 kHz

Number of carrierK 128

Symbol duratioril 160us

Max. delay spread,, 40 us

Channel interleaver WCDMA [131] -
248 bit

Modulation QPSK

Spreading scheme - WH

FEC Turbo code [26] , rate 1/2

component codes RSC, K=3(7,5)

code interleaver WCDMA (124 bit)

single user and hence the effective data-rate is similaoth the OFDM and the MC-CDMA modes. For
forward error correction (FEC) we u%erate turbo coding [26] employing two constraint-length= 3 Re-
cursive Systematic Convolutional (RSC) component coddglam standard24-bit WCDMA UMTS code

interleaver of [131]. The octally represented RCS geneaitynomials of (7,5) were used.

Firstly, we would like to demonstrate the achievable penfamce of the system considered under the
assumption of perfect channel knowledge, where the knaeled the frequency-domain subcarrier-related
coefficientsH|[n, k] is available in the receiver. Figure 2.5 characterizes athhe uncoded and (b) the
Turbo-coded Bit Error Rate (BER) exhibited by the QPSK-mathd OFDM and MC-CDMA systems
in conjunction with the three different channel models dssed in Section 1.7.1, namely, the SWATM
channel [28], the COST-207 BU channel [119] and Bug’s chbcimeracterized in [118]. As expected, in the
uncoded OFDM scenario the achievable BER is similar to th® BEsociated with a flat Rayleigh-fading
channel, regardless of the actual channel model encodntdrkis can be explained by the fact that the
uncoded OFDM system effectively experiences flat Rayleggting on each frequency-domain subcarrier.
In an uncoded OFDM system the adjacent information-cagrgymbols are demodulated independently
and thus the associated system’s BER performance is dadirat the error rates associated with the
severely faded subcarriers. In other words, such a systeroapable of exploiting the potential frequency-
domain diversity gains available in the dispersive chanagldiscussed in Section 1.8.2. By contrast, the
uncoded MC-CDMA system avoids this phenomenon with the &idleguency-domain spreading of the

information-carrying symbols. Furthermore, differenanhel models characterized by different PDPs result
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Figure 2.5: Bit Error Rate (BER) exhibited by the (auncodedand (b)Turbo-coded QPSK-modulated
OFDM and MC-CDMA systems under channel conditions desdrine SWATM, COST-207 Bad-Urban

(BU) and Bug channel models.

in different potential frequency-domain diversity gaimss illustrated in Figure 1.6, the SWATM channel
model is characterized by a CIR having three taps, where ofdsie signal power is accommodated by
the first tap, hence it behaves similar to a non-dispersieamél and results in a relatively low potential
frequency diversity gain, as confirmed by the results degdiab Figure 2.5. By contrast, both the COST-
207 BU and Bug's channel models, have 7- and 8-tap CIRs régplgcand hence allow for the MC-CDMA
system to benefit from a relatively high frequency divergigyn. Similar conclusions can be inferred from
Figure 2.5(b), where both the OFDM and MC-CDMA systems béfrefin the available frequency diversity
gain with the aid of turbo-coding. It can be seen in Figurg®).5hat the MC-CDMA system slightly
outperforms its OFDM counterpart as a result of averagiegetior effects with the aid frequency-domain

spreading of the information-carrying symbols.

2.5.5.1 Reduced Complexity MMSE SS-CIR Estimator Performace

Here we employed the eight-path Rayleigh-fading Bug chiammalel characterised in [118], using the
delay spread of;,,; = 1us and the OFDM-symbol-normalized Doppler frequencyef= 0.01.

Figure 2.6(a) characterizes the Normalized Mean Squame ENMSE) exhibited by the DDCE scheme
of Figure 2.1 using both the full-complexity MMSE SS-CIRiggitor and the Reduced Complexity MMSE
SS-CIR estimator of Sections 2.5.1 and 2.5.2, respectivlythermore, the achievable turbo-coded BER
of the corresponding QPSK-modulated OFDM and MC-CDMA systés depicted in Figure 2.6(b). The
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Figure 2.6: (a) Normalised Mean Square Error (NMSE) and (b)Bit Error Rate (BER) exhibited by

the channel estimator which follows the philosophy of Fegrl and employs the Minimum Mean Square
Error (MMSE) and the Reduced-Complexity MMSEposterioriSS-CIR estimators of Equations (2.19)
and (2.27), respectively. Theepriori prediction is performed using the robust SS-CIR predi@8t pssum-

ing matching propagation conditions described by the CQSMTBU channel model having a normalised
Doppler frequency ofp = 0.01. The turbo-coded QPSK-modulated OFDM and MC-CDMA modes are

identified using the ando markers, respectively.

simulations were carried out over the period of 100,000 QP&KlulatedK = 128-subcarrier OFDM/MC-
CDMA symbols. It can be seen in Figure 2.6(a), that the RC-NBwisethod outperforms its MMSE coun-
terpart in the context of both the OFDM and MC-CDMA systemssidered. This result can be explained
by the fact that in our RC-MMSE CIR estimator we employ the M&Ged MMSE CTF estimator of Equa-
tion (2.15), which takes advantage of the availabjeiori predicted CTF estimatefi[n, k] and enhances the
performance of the RC-MMSE CIR estimator in comparison éothrea posteriorifull-complexity MMSE
CIR estimator of Section 2.5.1. Moreover, as it becomesastitom Figure 2.6(b), the MMSE/RC-MMSE
SS-CIR operating in the context of the MC-CDMA system ouipens its OFDM counterpart.

2.5.5.2 Fractionally-Spaced CIR Estimator Performance

In this section we consider the achievable performance oD®RCE scheme employing both the Sample-
Spaced CIR RC-MMSE estimator of Section 2.5.2 and the Fnaaliy-Spaced RC-MMSE CIR estimator
advocated in Section 2.5.4 in the context of both OFDM and ®@MA systems communicating over

Bug’s eight-path dispersive Rayleigh fading channel otterized in [118]. Here we employ a fractionally-
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Figure 2.7: (a) MSE exhibited by the decision-directed channel estimator @tiSe 2.3 in the context of
QPSK-modulated OFDM and MC-CDMA systems and (b) the coordmg achievablBER performance.
Both performance curves are shown as a function of the age3alR at the receiver antenna. Tihame-
variantfading channel characterized by Bug’s channel model [1E8] associated with the OFDM symbol-

normalized Doppler frequency ¢f, = 0.01.

spaced CIR as opposed to the sample-spaced CIR conside3edtion 2.5.5.1.

Figure 2.7(a) portrays the NMSE exhibited by the DDCE schemEigure 2.1 employing both the
SS-CIR estimator described in Section 2.5.2 and that of 8« R estimator derived in Section 2.5.4 in
the context of both the OFDM and the MC-CDMA systems considerThe corresponding achievable
BER performance is depicted in Figure 2.7(b). The simutetiwere carried out over the period of 100,000
QPSK-modulateK = 128-subcarrier OFDM/MC-CDMA symbols. Comparing the result§mures 2.6
and 2.7 we may conclude that the DDCE employing dahgosteriori SS-CIR RC-MMSE method suffers
from a substantial performance degradation when assessmmhjunction with the channel characterized
by a FS-CIR. Furthermore, the DDCE scheme utilising the #8-&3timator for communicating over a
channel characterized by a FS-CIR exhibits an irreducilbisasfloor at high SNR values. In order to
explain this result we would like to refer to tieakageeffect discussed in Section 1.7.1 and illustrated in
Figure 1.8. Let us recall that a channel characterized by-RBB results in numerous correlated non-zero
SS-CIR taps. As a result, tlzepriori CIR predictor of Section 2.7 designed to track and predielaively
low number of non-zero uncorrelated CIR taps fails to exploe leakage-intuced correlation observed
between the adjucent SS-CIR taps. Furthermore, the coorelaf the SS-CIR taps becomes different from

the time-domain correlation model assumed during the predidesign and described in Section 1.7.1,
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Figure 2.8: (a) NMSE exhibited by the decision-directed channel estimator ctiSe 2.3 as a function of

the sample-period-normalized RMS delay spregg, and (b) the corresponding achievaBER perfor-
mance of the MC-CDMA system employing the aforementionezhalel estimation scheme. Both curves
correspond to Bug’s channel model associated with the OERRiMbol-normalized Doppler frequency of

0.01 and the average SNR &0 dB recorded at the receive antenna.

which results in a biased channel estimation process. Oattiex hand, as can be seen in Figure 2.7, the
DDCE employing thea posteriori FS-CIR RC-MMSE method of Section 2.5.2 does not experiemge a
performance degradation and outperforms its SS-CIR esiirbased counterpart over the entire range of
the SNR values considered. In addition, the achievable NbISEke DDCE employed in an OFDM system
is slightly lower than that exhibited by its MC-CDMA counpairt. This effect is caused by the energy

distribution of the subcarrier-related sampigs, k| used in the channel estimation process. This effect was

discussed in Section 2.5 and is illustrated in Figure 2.3.
This conclusion is further substantiated by Figure 2.8, re@lmth the NMSE performance of the chan-

nel estimator schemes considered and the correspondigyable BER performance of the MC-CDMA
system are plotted as a function of the channel’s Root Mearat®g(RMS) delay spread valug,s. It
can be seen in Figure 2.8(a) that the NMSE performance of h€IR estimator-based DDCE scheme ex-
hibits substantial sensitivity to the channel’s delay agdravhich is also confirmed by the theoretical results
depicted in Figure 2.4. This effect can be explained by thetfeat the SS-CIR estimator estimates the pro-
jections of the actual FS-CIR taps encountered onto theeanis5S-CIR taps. As can be seen in Figure 2.4,
the accuracy of this process is highly sensitive to the detad the amplitudes of the actual FS-CIR taps

encountered. Furthermore, as the channel's RMS delay&pmeseases the number of effective non-zero
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SS-CIR taps increases and hence the associated estimetiora@y degrades. On the other hand, ahe
posterioriFS-CIR estimator exhibits a higher robustness againstttherel’'s delay spread variations, since
the channel estimator tends to estimate only the actual IRS#&ps encountered regardless of the specific
values of the RMS delay spread. Additionally, as expectied,cbrresponding BER of the MC-CDMA
system increases upon increasing the RMS delay sprgadbecause the frequency-diversity rank tends to

increase, whem,,,s increases.

2.6 Parametric FS-CIR Estimation

2.6.1 Projection Approximation Subspace Tracking

Let H[n] € CX be the vector of the subcarrier-related CTF coefficientscated with the channel model
of Equation (1.14). As described in Section 1.7.1, the Ckdaisited with the CTF coefficient vectéf|n|

is constituted by a relatively low number 6f < K statistically-independent Rayleigh fading paths. The
corresponding CIR components are related to the CTF casftiei [1, k] by means of Equation (1.7). The
motivation for employing the so-called subspace techn[@3&] here is that usually we have <« K and
thus it is more efficient to estimate a low number of CIR-mditiaps in the low-dimensional signal subspace

than estimating all th& FD-CTF coefficients.

Let A; andu; be the eigenvalues and the corresponding eigenvectors &ffR’s covariance matri€y;,

which is defined as follows
Cy= E {H[n]H"[n]} . (2.42)
Then, we haveC; = ULU", whereX = diag (A;) andU = [u; - - - ug].
The eigenvalues aligned in a descending order may be exgress
M> - 2AL> A= =Ag =02, (2.43)

where the first. dominant eigenvaluedq, - - - , Ay in conjunction with thel. corresponding eigenvectors
uy, - - - ,ur may be termed as th&gnal eigenvalues and eigenvectors, respectively [117]. Theirng
eigenvalues\; 1, - - - , Ax and eigenvectors; .1, - - - , ux are termed th@oiseeigenvalues and eigenvec-
tors. The resultant sets afgnal and noise eigenvectors, which are column vectors, span the mutually

orthogonalsignalandnoisesubspacesls andUy;, such that we have
Us = [u, - ,u] and Uy = [up41,--- ,ukl. (2.44)

The corresponding time-domain-relateeap estimate of the FS-CIR vectefn] may be obtained as fol-
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lows
& = Ui[n]H|n). (2.45)
Furthermore, the reduced-noise estimate of the CTF vé£{at may reconstructed using
H[n] = Us[n]a[n). (2.46)

For the sake of evaluating and tracking the potentially fimgant signal subspadds|[n] we employ sub-
space tracking method developed by Yang [117]. More spadifjove consider the following real-valued

scalar objective function having the matrix argumenidfc CK*L

JW) =e{|H - WW'H|?}

= tr (Cp) — 2 tr (WICHW) + tr (WECHW - WHIW) (2.47)

As demonstrated by Yang in [117], the objective functjg®V) of Equation (2.47) exhibits the following

important properties

1. W is a stationary point of (W) if and only if we haveW = U Q, whereU; € CX*L contains
any L distinct eigenvectors of ; andQ € CL*L is an arbitrary unitary matrix. Furthermore, at each
stationary pointJ(W) equals the sum of these particular eigenvalues, whoseweigiens are not

involved inU;y, [117, Theorem 1].

2. All stationary points off (W) are local saddle points except, wheh contains theL. dominant

eigenvectors o€y. In this case] (W) attains the global minimum [117, Theorem 2].

3. The global convergence W is guaranteed by using iterative minimization/¢#V/) and the columns

of the resultant value divV will span the signal subspace 6f;.

4. The use of an iterative algorithm to minimize ) will always converge to an orthonormal basis of

the signal subspace @fy without invoking any orthonormalization operations dgrihe iterations.

5. The global minimum of (W), W does not necessarily contain the signal eigenvectors,rbatla-
trary orthogonal basis of the signal subspacé& gfas indicated by the unitary matri@ introduced
in Property 1. In other words, we ha¥® = argmin J(W) if and only if W = UgQ, whereQ is an

arbitrary unitary matrix.

6. For the simple scalar case bf= 1, the solution minimizing/ (W) is given by the most dominant

normalized eigenvector @ y.
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Subsequently, Yang [117] proposes an iterative RLS algoritor tracking of the signal subspace of the
channel’s covariance matriky. Specifically, upon replacing the expectation value in Equa2.47) by

the exponentially weighted sum of the RLS algorithm, wevargt the following new objective function

JWinl) = Y| HIil - WnIWHn HE 2

I
ot

r (Cy) — 2 tr (W¥[n]Cy[n]W(n))

+

tr (WH[n|Cy[n|Wn] - Win]|W(n]), (2.48)

wherey € (0, 1) is the so-calledorgetting factor which accounts for possible deviations of the actual chan-
nel statistics encountered from the WSS assumption. Obskeat the sole difference between the objective
functions of Equations (2.47) and (2.48) is the introduttd the time-variant exponentially weighted sam-

ple covariance matrix [117], which may be expressed as
n
Z "M Hm)HY m] = yCxln — 1] + H[n]H"[n] (2.49)

instead of the time-invariant matriy; = E { HH" } of Equation (2.42).

The Projection Approximation Subspace Tracking (PASToaigm may be derived by approximating
the expressiomV" ] H [m] in Equation (2.48), which may be interpreted as a projeaticthe vectorH [m]
onto the column space of the mat#¥[n], by the readily availabla posteriorivectora [m] = W [m]H[m].
The resultant modified cost function may be formulated as

n

Z "M H[m] — W n]a[m]]|. (2.50)

Asis argued in [117], for stationary or slowly varying si¢gyahe aforementioned projection approximation,
hence the name PAST, does not substantially change thesemface associated with the corresponding
cost function of Equation (2.50) and therefore does notifsagmtly affect the convergence properties of the

derived algorithm.

Similarly to other RLS estimation schemes [64, 101], the tasction J'(W [n]) is minimized if
W = Cra[n]Cl[n], (2.51)
where we have
Chaln Z’?” "H[i] = 11Cha[n — 1] + H[n]a"[n] (2.52)
and

Cun[n] = Xn: 1" wfi)ef]i] = 5Couln — 1] + a[n]al[n]. (2.53)
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Algorithm 1 Projection Approximation Subspace Tracking

&[n] = WHi[n — 1]H|[n] (2.58a)

g[n] = Pln — 1]&[n] (2.58b)
g = 8l

K = e gl (2580

P[] = %Tri (P[n—1] — k[n]g"[n]} (2.58d)

e[n] = H[n] — W[n — 1]&[n — 1] (2.58€)

Win] = Wn — 1] + e[n]k"[n] (2.58f)

Following the RLS approach [117], a low-complexity solutiof the computational problem associated with
minimizing the cost functiorj’(W{n]) of Equation (2.50) may be obtained using recursive upddtéseo

matrix W[n]. More specifically, we have
Win] = Wn — 1] + e[n]k"[n], (2.54)
wheree[n] is the estimation error vector, which may be recursivelyatgtd as
e[n] = Hn| — Win —1la[n — 1], (2.55)

while

B Pln — 1]a[n]
K] = oA [alPln — 1Jan] (2.56)
denotes the RLS gain vector. Furthermore, the mafix is the inverse of the CIR-related tafgd x L)-

dimensional covariance matr&,,, which can be recursively calculated as follows
1
Pln] = ETri{(I — k[n]a[n])P[n — 1]}, (2.57)

where the operatdrri{-} indicates that only the upper triangular parf¥f:] is calculated and its Hermitian
conjugate version is copied to the lower triangular par7[1The resultant PAST algorithm is summarized
in Algorithm 1, where we introduced an additional quangty:] = P[n — 1]H[n]| for the sake of further

reducing the associated complexity.

2.6.2 Deflation PAST

In this work, however, we aim for maintaining the lowest plolescomplexity hence we are particularly
interested in thaleflationbased version of the PAST algorithm derived in [117], whigheferred to as

the PASD algorithm. The simple philosophy of traeflationmethod is the sequential estimation of the
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Algorithm 2 Deflation PAST

H1[n] = H[n] (2.60a)
for 1=1,2,...,L do
a[n] = wi[n — 1]H;[n] (2.60b)
M[n] = BAy[n — 1] + |ag[n] |2 (2.60c)
ei[n] = H,[n] — wy[n — 1]a[n] (2.60d)
w[n) = w[n — 1] + ey[n) (&} [n] / s n]) (2.60€)
H)y1[n] = H[n] — wj[n]a;[n] (2.60f)
end for

principal components of the CTF covariance maffly [133]. Consequently, we first update the most
dominant eigenvectow [n] by applying the PAST method of Algorithm 1 in conjunction it = 1.
Subsequently, the projection of the current sample veEkpr] onto the updated eigenvectar; [1] is
subtracted from itself, resulting in a modified (deflatedjsi@ of the CTF vector in the following form
H,[n] = H[n| — w1 [n]wY[n|H|[n]. The second most dominant eigenvectes|n| has now become the
most dominant one and therefore may be updated similarty,fa]. By repeatedly applying this proce-

dure, all the desired eigencomponents may be estimated.

The resultant PASD method is summarized in Algorithm 2. Observe that Equat{@80b-f) of Algo-
rithm 2 constitute the PAST estimation procedure of Aldomtl in conjunction withL = 1. Note that the
vector expressions of Equations (2.58b-d) in Algorithmd substituted by the simple scalar expression of
Equation (2.60c), where the new quantity{n| constitutes an exponentially weighted estimate of the cor-
respondingth eigenvalue and can be identified as a scalar version dflthe L)-dimensional covariance

matrix Cyy[n1] = P~ ![n] of Algorithm 1.

A particularly important property of the PA®Tmethod of Algorithm 2 is that as opposed to the PAST
method of Algorithm 1, it enables the explicit tracking oéttime-variant eigencomponents of the channel
covariance matriXCy[n], namely the eigenvectors,[n] as well as of the corresponding eigenvaligs:|

according to

a; [n]

wl[n] - wl[n_l] + A l’l]

(Hj[n] — wy[n — 1a;[n]), (2.59)

where we have [n] = wi[n — 1]H[n] andA[n] = BA;[n — 1] + |ay[n]|%.

2.6.3 PASTD -Aided FS-CIR Estimation

In this section we would like to utilize the PA®Tmethod detailed in Section 2.6.2 in the context of the

channel estimation scheme characterized by Figure 2.1e glpecifically, we consider a PAST-aideda
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posteriori FS-CIR estimator, which corresponds to the CIR Estimatoduteof Figure 2.1. In order to
analyze the achievable performance of the CIR estimatdvadernwe conceive a channel estimation scheme
comprising the MMSE CTF estimator of Section 2.4.2 followsdthe PASD aided CIR Estimator of
Section 2.6.2.
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Figure 2.9: TheMean Square Error exhibited by thelQAM-OFDM system employing theASTD CIR

-35

estimator of Algorithm 2 and tracking = 2,4, 6 and8 CIR taps. The value of the PASTD forgetting factor
wasy = 0.95. We considered the scenarios of encountering the Doppgquéncies of (ajp = 0.001 and
(b) fp = 0.005. The abscissa represents the average SNR recorded at éierantenna elements. We

employ COST-207 BU channel model [119]. Additional systeamgmeters are summarized in Table 1.4.

The achievable performance of the subspace tracking meftfeekction 2.6.2 is characterized in Figures

2.9, 2.10 and 2.11, where we define the Mean Square Error (M&f#)rmance criterion as follows

MSE =E {Z le; [n]|2} , (2.61)

1
wheree; is the FD-CTF tracking error defined by Equation 2.55. In aomusations we consider an OFDM
system havingK = 128 orthogonal QPSK-modulated subcarriers. The system deaistics are outlined
in Table 1.4. We employ an OFDM-frame-variant channel mbdging a time-variant 8-tap PDP character-
ized by the COST-207 BU channel model [119], as detailed cti®@=2 1.7.2. Additionally, each individual
propagation path undergoes fast Rayleigh fading with aespanding OFDM-symbol-normalized Doppler
frequency of eithelfp = 0.001 or fp = 0.005. The resultant channel can be characterised as a mutli-path
Rayleigh-fading channel with slowly-varying PDP, where ttelative delays; associated with different

PDP taps vary with time at a rate determined by the drift rarameter, defined in Section 1.7.2.
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Figure 2.10: The Mean Square Error exhibited by the4QAM-OFDM system employing the
PASTD method of Algorithm 2. The values of the PASTD forgettingttaonweren = 0.9,0.95 and
0.9. We considered the scenarios of encountering the Dopeuéncies of (afp = 0.001 and (b)
fp = 0.005. The abscissa represents the average SNR recorded ate¢her@atenna elements. We employ

COST-207 BU channel model [119]. Additional system para&mrsstre summarized in Table 1.4.

Firstly, Figure 2.9 characterizes the achievable FD-CTHEM®rformance of the PASY method of
Algorithm 2 for different rankd. of the estimated subspace, while assuming a constant vhilpue=00.95
for the forgetting factor. Figures 2.9(a) and 2.9(b) cqumesl to encountering the Doppler frequencies
of fp = 0.001 and0.005, respectively. From Figure 2.9, we may conclude that a hi¢fR €stimator
performance may be achieved when assuming that the estirGdte signal subspace has a rank.of 4,

regardless of the actual number of paths constituting thé-path channel encountered.

Secondly, Figure 2.10 characterizes the achievable MSierpeaince of the PASD method of Algo-
rithm 2 for different values of the forgetting factgr while assuming a constant rank bf= 4 for the
estimated subspace. Figures 2.10(a) and 2.10(b) cormgpoancountering the Doppler frequencies of
fp = 0.001 and0.005, respectively. As may be concluded from Figure 2.10, thémapn value of the
forgetting factory is largely dependent on the SNR as well as on the Doppler émyuencountered. Nev-
ertheless, the compromise valuerpt= 0.95 appears to constitute a relatively good choice in the pralcti

ranges of both SNR values and Doppler frequencies.

Finally, Figure 2.11 characterizes the achievable MSEoperance of the PASTY method of Algo-
rithm 2 for different values of the OFDM-symbol-normaliz€DP tap drift ratev,. Figures 2.11(a) and
2.11(b) correspond to encountering the Doppler frequenai¢p = 0.001 and0.005, respectively. Ob-
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serve that the specific values of the parameteassumed in Figure 2.11 substantially exceed the maximum
value considered in the base-line scenario outlined inerabl. Consequently, we may conclude that the
CIR tracking method of Algorithm 2 exhibits an adequate @enfance over the entire range of practical

channel conditions.
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Figure 2.11: The Mean Square Error exhibited by the4QAM-OFDM system employing the
PASTD method of Algorithm 2, while encountering different valuesthe PDP tap drift rate/; =
3-1075,10* and3 - 10~* as well as different values of the Doppler frequencies of fa}= 0.001 and (b)
fp = 0.005. The abscissa represents the average SNR recorded at¢her@aetenna elements. We employ

COST-207 BU channel model [119]. Additional system paramrssare summarized in Table 1.4.
In conclusion of this section we would like to offer the follmg observations

e We have demonstrated that both PAST method of Algorithm 1 elé as PASTd method of Al-
gorithm 2 facilitate recursive tracking of the CTF’s sigalbspace and thus allow for an efficient

estimation of the channel’s fractionally-spaced CIR.

e Furthermore, we have shown that the PASTd method exhilgtsehistability as well as lower com-

putational complexity and therefore is more suitable fopkryment in practical implementations.

e As suggested by Figure 2.9, an efficient estimation of th&€HSmay be achieved by tracking as low
asL = 4 number of significant FS-CIR taps at OFDM symbol normalizezppler frequencies as

high asfp = 0.005.

e As suggested by Figure 2.10, the forgetting factor vajue 0.95 constitutes the optimum value in

the context of a system characterized in Table 1.4.
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e Finally, as is confirmed by the results depicted in Figurd 2lie proposed channel estimation scheme
employing the PASTd method of Algorithm 2 is capable of $gitig the requirements imposed by

wireless systems involving mobile terminals moving at sisess high as 200 km/h.

In order to complete the design of the DDCE scheme of Figuten2 employ ara priori CIR pre-
dictor [28]. The CIR-related tap predictor considered carelmployed in conjunction with both the SS-
CIR and the FS-CIR estimators of Sections 2.5.2 and 2.5.We#sas in combination with the parametric
PASTD aided CIR estimator of Section 2.6.2. Observe, howevet ttiealow-rank PASD aided CIR esti-
mator of Section 2.6.2 will require the prediction of a sabslly lower number of. <« Ky CIR-related
taps. More specifically, in the case of the system charaetiiy Table 1.4, the SS-CIR estimator of Section
2.5.2 will require the prediction aky = 32 SS-CIR taps. This should be contrasted to the PASAided
CIR estimator of Section 2.6.2, which will require the paddin of only L = 4 FS-CIR-related taps, re-

gardless of the actual number of paths encountered.

In the next section we present an overview of the major CIRpt&gliction methods discussed in the
literature [28, 38, 64, 65]. We analyse the achievable perdmce of each method with the aid of extensive

simulations and conduct a comparative study aimed at igérgithe most promising approaches.

2.7 Time-DomainA Priori CIR Tap Prediction
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Figure 2.12: Stylized illustration of the estimation and predictiondiltboth operating in the CIR-related

v delay

domain usingN,;q number of previous posterioriCIR-related tap estimates [28].

The philosophy of the priori CIR predictor considered is illustrated in Figure 2.12. @im is to
predict the SS/FS-CIR tags [n + 1], - - - ,ar[n + 1]} associated with the future channel conditions, given
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the history of the previous CIRs, namely ta@osterioriestimates {&;[n]}, {&;[n — 1]},--- }.

2.7.1 MMSE Predictor

As portrayed in Section 1.7.1, theh CIR componenty;[n] undergoes a narrowband time-domain fading

process characterised by the associated cross-correfatiperties, which can be described by
E{aj [n]ay [n — m]} = rm]oll - 1'], (2.62)
wherer;[n] is the corresponding time-domain correlation function &nfis the Kronecker Delta function.

This WSS narrow-band process can be approximately modedledinite impulse response (FIR) auto-
regressive process of the ord¥g4 [28], yielding

Npra—1
an+1] = Z glmlog[n —m] 4+ v[n+1], (2.63)

whereg[m] represents the autoregressive coefficientsiafd is the model noise.

Let us define the following column vectors
afn] = (afn],a[n 1], a[n — Npa +1])"
q = (q[0],q01],--,4[Npa — 1)) (2.64)
and rewrite Equation (2.63) in a vectorial form as
ay[n+1] = ay[n]'q +o[n +1]. (2.65)

Left-multiplying both sides of (2.65) with the complex cagpte of the column vectay |1, /] and obtaining

the expectation value over the time-domain indexelds
E{af[n]as[n+ 1]} = E{aj[n](af[n]q + o[n +1])}, (2.66)
which can be represented as a set of Yule-Walker equatiaihe ifollowing form [134]
Tapr = Riaptq), (2.67)
where the vector,,, is the autocorrelation vector of the predicegriori CIR taps defined by

Yapr = Uile {a [n]a;[n+1]}, (2.68)

and the matrix®, is the autocorrelation matrix of treeposterioriCIR taps described in [28]

1 _
Rl,'apt = EE {“l [n]a?[n]}

= Rapr + 011, (2.69)
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where

Rapr = Ulle {a[n]a ]} (2.70)

and p; is the parameter determined by the variance of the effeestenation noise imposed by tfe

posteriori CIR estimator employedgpt,
%

such that we havg, = 5.
!

as well as the expectation magnitude of the CIR tap predj'tq%e

The optimal solution of Equation (2.67) evaluated in the M®Ese is given by

Tprd = Rippilapr- (2.71)

In the specific scenario when the channel is described bysJakedel [121], thea priori autocorrelation
VECtorr,p, can be formulated asy, 1] = rj[n] = Jo(27tfpn), n =1,2,..., Npq, Wherejo(x) is a zero-
order Bessel function of the first kind. The correspondargpsterioriautocorrelation matriR,p; is given
by Rap:[nn, m] = ry[n —m] + pé[n — m|, n,m = 0,1,... Npq — 1, while the CIR predictor’s coefficient

vector is described by (2.71) and the prediction is perfaraecording to
fn+1] = qipabaln], 1 =1,2,..., L. (2.72)

The corresponding performance can be characterised Usinfygquency-domain NMSE criterion as de-
rived in [28]
1 .
NMSE yapr = —F {|H[n, k] — Hn,k]|*}, (2.73)
H

whereH[n, k] andH[n, k] are the CTFs corresponding to the encountered CIR and fheri predicted

CIR &,[n], respectively. From [28] we have

1 L
NMSEpapr = —5 3 MSEjapr, (2.74)
Koy i3
where
MSEapr = 07 — G}y apt — f R 2.75
Lapr = 0] ql;prdrl;apt ql;prdrl;apt + ql,’prd l,aptql;prd‘ ( : )

The attainable NMSE performance of thepriori CIR predictor of Equation (2.72) evaluated for
the scenario when the Doppler frequency assumed in therdekife receiver matches the actual Doppler
frequency encountered, namely when we hfye= fp...q, is depicted in Figures 2.13 and 2.14. More
specifically in Figure 2.13 we demonstrate the NMSE of the @i&liction method considered using the
prediction filter of lengthN,,.q4 = 1,2,4,8,16,32 and64 as a function of the average SNR recorded at the
receive antenna. As expected, the performance of the astiin@roves when the prediction filter length
Np.q increases, although the corresponding additional NMSHatézh becomes more modest for high
values of the prediction filter length and hence a trade-efiveen the desired NMSE performance and the
associated computational complexity has to be found. Alaisiytem behavior can be observed in Figure

2.14, where the NMSE is evaluated as a function of the OFDMB®}-normalized Doppler frequendy.
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Figure 2.13: Mean Square Error exhibited by therobust a priori CIR predictor as a function of the
average SNR at the receive antenna. The curves on the plespond to the prediction filter lengths of
Nprd = 1,2,4,8,16,32 and64 from top to bottom respectively. The Bug channel model whiga ©FDM-
symbol-normalized Doppler frequency of (a) 0.003 and (BB@vas considered. The results were evaluated

from the Equation (2.74).
2.7.2 Robust Predictor

The CIR-tap prediction process described in the previoasmeexhibits a high CIR-tap estimation per-
formance under the assumption of having perfect knowleddbleochannel statistics. However, it suffers
from a significant performance degradation, when the acfu@hnel statistics deviate from the model as-
sumed, such as for example Jakes’ model. The issue of isi@tistismatch becomes increasingly detri-
mental in diverse wireless environments, where the chasor@itions and the corresponding statistics are

time-dependent and cannot be assumed to be wide-sensaaipti

As it has been shown in [38] and [28], the MSE exhibited by thedr CIR predictor of (2.72) is upper-

bounded by the MSE encountered, when communicating ovedeally band-limited channel having a

perfect low-pass Doppler PSD function given by

A if|f] <
Pranit(f) = P <o (2.76)
0, otherwise.

Hence, we arrive at the concept of designing Li’s [38] sdechlobustlinear predictor [28], which assumes
encountering the worst possible channel statistics. Astpdiout in [30], such sbustchannel predictor,

optimised for the worst-case PSD of Equation (2.76), candsgded by using the corresponding sinc-
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Figure 2.14: Mean Square Error exhibited by therobust a priori CIR predictor as a function of the
OFDM-symbol normalized Doppler frequengy. The curves on the plot correspond to the prediction filter
lengths oprrd =1,2,4,8,16,32 and64 from top to bottom, respectively. Bug’s channel model asged
with the receive antenna SNRs of (a) 10 and (b) 30 dB was cerexid The results were evaluated from the

Equation (2.74).

shapeda priori autocorrelation vectat,,, ,,p, Which is given by

__sin2mfpn

Taprrob|11] = 7B[1] = 27 fon n=12,...,Npd (2.77)
and by invoking the correspondirggposterioriautocorrelation matrilR,,o» defined by
Rapr;rob [1’1, m] =7TB [Tl - T’I’l] + 95 [1’1 - m]/ (278)

where we haver, m = 0,1, ... Nprg — 1.

In Figure 2.15 we characterize the attainable NMSE perfagaaf the robusa priori CIR predictor of
Equation (2.72) for the scenario when the Doppler frequefiagy.q assumed in the design of the receiver
does not match the actual Doppler frequerfgyencountered. It can be seen that the estimation method
considered is robust against a mismatches between the edsumd the encountered Doppler frequency, as

long as the encountered Doppler frequency does not exceaasiumed value, namely as long as we have

fD S fD;prd-
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Figure 2.15: Mean Square Error exhibited by therobust a priori CIR predictor as a function of the

encountered OFDM-symbol normalized Doppler frequefigy The results correspond to the case when

the Doppler frequency assumed in the receiver does not nifagchictual value encountered. The assumed

Doppler frequencies of (g)p = 0.03 and (b)0.003 have been considered and different curves on each plot

correspond to the prediction filter lengthsidf,.q = 1,2,4, 8,16, 32and64 from top to bottom, respectively.

The Bug channel model with the average receive antenna SNIRdB is considered. The results were

evaluated from the Equation (2.74).
2.7.3 MMSE Versus Robust Predictor Performance Comparison

The achievable performance of the DDCE scheme of Figurer@glaying therobust a priori CIR predictor

of Section 2.7.2 undanatched time-domain correlation conditions is quantified in Fig@r&6, when the
assumed OFDM-symbol-normalized Doppler frequefigy.q matches the actual value encountered. The
NMSE exhibited by the channel estimation scheme consideredgitdd in Figure 2.16(a), while the
corresponding BER exhibited by the turbo-coded QPSK-naiddIMC-CDMA system is shown in Figure
2.16(b). It can be seen that while the estimation accurackedses upon increasing the Doppler frequency,

the corresponding BER performance remains relativelyfeotgd.

Finally, Figure 2.17 illustrates the achievable perforoeaaf QPSK-modulated MC-CDMA employing
the DDCE scheme of Figure 2.1 undermatchedtime-correlation conditions. Our simulations were per-
formed at a constant value of the OFDM-symbol normalised @apfrequency assumed at the receiver,
namely atfp,,.¢ = 0.03. Furthermore, four different values of the actual norneali®oppler frequencies
were used, namelyp = 0.03,0.01,0.003 and0.001. Figure 2.17(a) characterizes the NMSE performance
of the DDCE scheme employed by the MC-CDMA system considevide the corresponding turbo-coded
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Figure 2.16: (a) NMSE exhibited by the decision-directed channel estimator egipy theRC-MMSE
FS-CIR a posterioriestimator of Section 2.5.4 and th&bust a priori CIR predictor of Section 2.7.2 as a
function of the average SNR recorded at the receiver an8& exhibited by the corresponding QPSK-
modulatedurbo-coded MC-CDMA system. The results correspondatched Doppler conditions, when
the Doppler frequencyp,,.q assumed in the receiver matches the actual value encodntéheframe-

variant Bug channel model was assumed.

BER is depicted in Figure 2.17(b). The achievable BER pearéorce in the case of perfect Channel State In-
formation (CSl), namely when the CTF is perfectly known &t tbceiver, is also depicted in Figure 2.17(a).
It can be seen that the performance of the CIR predictor adedds indeed tolerant to the mismatch of
the actual Doppler frequency and that assumed during thigboe design, as long as the actual Doppler
frequency does not exceed the value assumed in the preslidésign. Furthermore, the results depicted in
Figure 2.17(a) substantiate our conclusion that the pmdace of the MC-CDMA system employing chan-
nel estimation scheme of Figure 2.1 closely approachesditesponding performance of the MC-CDMA
system in the case of perfect CTF knowledge at the receivere Mxplicitly, the BER performance corre-
sponding to the different values of the Doppler frequefigyfall within 1dB from the BER performance

associated with the perfect CSI associated scenario.

2.7.4 Adaptive RLS Predictor

On the other hand, in the RLS-based adaptive CIR tap prediepproach of [64,65] no assumptions where

made concerning the channel’s stationarity. Consequethidytime-variantth CIR tap’s predictor filter
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Figure 2.17: (a) NMSE exhibited by the decision-directed channel estimator egipy theRC-MMSE
FS-CIR a posterioriestimator of Section 2.5.4 and th&bust a priori CIR predictor of Section 2.7.2 as a
function of the average SNR recorded at the receiver andd@spondindBER exhibited by theturbo-
coded QPSK-modulated MC-CDMA system. The results correspondrimatched Doppler conditions
associated with the assumed Doppler frequencyf.q = 0.03 and the actual encountered values of
fp = 0.001,0.003,0.01 and0.03. The bold line on the BER curve (b) portrays the BER perforoeanf the
MC-CDMA system considered in the case of perfect CSI.

coefficient vectog, [n] is calculated by minimizing the following scalar cost fuinot
Jris[n] = iﬁ”ﬂm [i + 1] — g [n]ay[i]]?, (2.80)
im

wherep € (0,1) is the so-calledorgetting factor[64], which accounts for possible deviations of the fading
process encountered from the WSS assumption. The restdtansive update fay,[#] is given by

q,(n] = q,In — 1] + ki[n — 1]ej [n], (2.81)
where

e/[n] = &[n] — q}'ln — 1)ay[n —1] (2.82)

is the prediction error, while
falr] = e Ul
B+ &j [n]Pi[n — 1];4[n]
denotes the RLS gain vector. Furthermore, the m&jx| is the inverse of thith CIR tap’s(Nprd X Nprd)-

(2.83)

dimensional sample covariance matrix, which can be regelystalculated as follows

P[] = %(1 — Ky [n)ad[n])Pyfn — 1] (2.84)
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Algorithm 3 The RLS Prediction Algorithm.

e[n] = &n] — &[n] = &[n] — q"[n — 1)&[n — 1] (2.79a)

qn] = q[n — 1] + k[n — 1]e*[n] (2.79b)

&[n +1] = q"[n]&[n] (2.79c)

g[n] = Pln — 1]&[n] (2.79d)
o 8l

k[n] BT &' nighn (2.79%)

Pln] — %(1 — K[n]a*[n])Pln — 1] (2.791)

As it was pointed out in [135] the choice of the forgettingttats valuep has only a moderate effect on the
performance of the resultant predictor. Specifically, in@mulations we used the value suggested in [135],

namelyp = 0.99.

2.7.5 Robust Versus Adaptive Predictor Performance Compason
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Figure 2.18: Mean Square Error exhibited by theMMSE, Robust and RLS a priori CIR predictors as a
function of the symbol-normalized Doppler frequency enteved. Two cases of Robust prediction, namely

whenfp.,rq = 0.03 andfp g = 0.003 are considered. The results correspond to the SNR level dB20

Figure 2.18 illustrates the achievable MSE performancédefQIR prediction methods considered as
a function of the Doppler frequencf, encountered. It can be seen that the MMSE CIR predictor, lwhic
relies on a perfeca priori knowledge of the underlying channel statistics represtmupper bound for
the MSE performance achievable by a linear predictor. FEuaniore, the robust CIR predictor exhibits a
relatively high performance, as long as the actual Doppuiency encountered does not exceed that as-

sumed. Finally, the RLS CIR predictor, which does not rezj@ny explicit knowledge concerning the
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Figure 2.19: Mean Square Error exhibited by thaMMSE, Robust and RLS a priori CIR predictors as
a function of theSNR encountered. Two cases of Robust prediction, namely ywher0.1 andp = 0.001

are considered. The results correspond to the symbohat®alized Doppler frequencies 6 = 0.01.

channel statistics exhibits a near-optimum performaneg the entire range of the values . Further-
more, Figure 2.19 illustrates the achievable MSE perfoaaanf the CIR prediction methods considered
as a function of the SNR encountered. Once again, the MMSEpE3Rictor exhibits the highest achiev-
able performance. The robust CIR predictor exhibits a ivalt high performance, as long as the SNR
encountered does not exceed the valyp assumed. On the other hand, the RLS predictor exhibits near
optimum performance over the whole range of the SNR valudglitidnally, the order of the computational
complexity associated with both CIR predictors consideretthe context of a DDCE-OFDM system and
quantified in terms of the total number of complex multiplicas and additions per OFDM symbol may be
expressed a® (K log, K + LN,q) andO(Klog, K + LNpq + LNﬁrd) for the robust [28] and RLS [65]
CIR predictors, respectively Explicitly, the order of complexity imposed by the RLS CIRgictor is only
slightly higher than that associated with the Robust CIRligter.

2.8 PASTb Aided DDCE

The detailed schematic of the channel estimation schenpoged is depicted in Figure 2.20. Our channel
estimator is constituted by a bank of the per-subcaeriposterioriMMSE CTF estimators outlined in Sec-
tion 2.4, followed by the PASD -aided CIR estimator of Section 2.6.2 and byahgiori RLS CIR predictor

of Section 2.7.4. The task of the CTF estimator seen in FigLa@ is to estimate the subcarrier-related CTF
coefficientsH[n, k] of Equation (1.7). The resultant estimated subcarrieteel samplesi[n, k], which

serve as an observation vector of the FD-CTF coefficiéfits, k] are fed to the PASD subspace-based

2K denotes the number of subcarriers comprising the OFDM symliiile L is the number of non-zero CIR taps encountered.
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Figure 2.20: Detailed structure of the 2D channel estimator correspantti the DDCE module of Figure
2.1. The channel estimator comprises a PAST module, whidlonpes recursive tracking of the CIR. The
resultant CIR related taps 1] are filtered by the adaptive RLS-based prediction filter ltggpin the a
priori estimates of the CIR-related tapgn + 1]. Finally, thea priori estimates of the subcarrier-related
coefficientsH[n + 1, k| are obtained by applying the transform matX#| provided by the PASTD mod-

ule.

tracking module, which performs recursive tracking of tharmel’s covariance matri€y signal subspace
and the associated CIR-related taps. The output of the PABddule is constituted by the instantaneous
CIR-related tap estimatés|n] and the corresponding estimate of the transformation mHfiin| of Equa-
tion (2.54). The CIR-related estimate vecigfn| is then fed into the low-rank time-domain CIR-related
tap predictor of Figure 2.20 for the sake of producingaapriori estimate;[n + 1], I = 1,---,L of
the next CIR-related tap-vector on a tap-by-tap basis [Epally, the predicted CIR is converted to the
subcarrier-related CTF with the aid of the transformaticetn® W [n] provided by the PASD module of
Figure 2.20. The resultant FD-CTF is employed by the recéordhe sake of detecting and decoding of the
next OFDM symbol. Note that this principle requires the sraission of a frequency-domain pilot-based
channel sounding sequence, such as for example a pilstesDFDM symbol, during the initialisation
stage. The operation of the resultant DDCE scheme illestrat Figure 2.20 is summarized in Algorithm

4.

In order to characterize the performance of the resultaahmdl estimation scheme, we would like to

introduce an estimation efficiency criteriawhich is defined as follows

1 L

==, 2.85

wherec? and+y are the estimation MSE and SNR, respectively, wkiland L are the number of OFDM
subcarriers and the number of the estimated CIR taps.

The achievable performance of the PAS@ided DDCE scheme of Algorithm 4 is characterized in

Figure 2.21. In our simulations we considered an OFDM sydteming K = 128 QPSK-modulated or-
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Algorithm 4 PASTb-aided DDCE
Signal Detection:
%[n] = Detect(y[n], H[n]) (2.86a)
CTF Estimation:
for k=1,2,...,K do
~ _ y[n, k%% [n, k| B e
Hin, k] = R KET o2 k=0,---,K—1 (2.86b)
end for
Subspace Tracking-Aided CIR Estimation:
Hq[n] = H[n] (2.86¢)
for [=1,2,...,L do
&[n] = wi[n — 1]H;[n] (2.86d)
Mn] = nAiln = 1] + |y [n] (2.86¢)
e [Vl] = Hl [Vl] — W [71 - 1]5{ (286f)
wy[n] = wi[n — 1] + ey[n](a] [n]/ A [n]) (2.869)
H)1[n] = Hy[n] — w[n]a;[n (2.86h)
end for
CIR Tap Prediction:
for 1=1,2,...,L do
eln] = & [n] — &[n] = &n] — q[n — 1a&y[n — 1] (2.86i)
q,n] = q,In — 1] + k;[n — 1]e* [n] (2.86))
&(n+1] = qj[n]& [n] (2.86k)
g[n] = Py[n — 1]&;[n] (2.86l)
8[n]
kin] = —¢ (2.86m)
B+ &j[n|gn]
1
] = 5 (I~ i[nlaf{n])Piln — 1 (2.86n)
end for

CTF Reconstraction:

H[n + 1) = W[n]

=2
B
+
=

(2.860)
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Figure 2.21: The (a)Mean Square Error and (b)Bit Error Rate exhibited by thelQAM-OFDM system
employing thePASTD -aided DDCE scheme of Algorithm 4. The value of the pararnsdtet 4,7 = 0.95
andB = 0.9 has been assumed. We considered the scenarios of encogrikeriDoppler frequencfp =

0.003. The abscissa represents the average SNR recorded ateheraatenna elements.

thogonal subcarriers. The system characteristics areedtin Table 1.4. We employ an OFDM-frame-
variant channel model associated with a time-variant 7P@p characterized by the COST-207 BU channel
model [119], as detailed in Section 1.7.2. Additionallycleandividual propagation path undergoes fast
Rayleigh fading having an OFDM-symbol-normalized Dopgiteguency offp = 0.003. We assumed the
valuesL = 4 andy = 0.95 for the PAS™D module-related subspace rank and forgetting factor paeme

respectively, as well as the value ®t= 0.9 for the RLS CIR-tap predictor-related forgetting factor.

Figure 2.21(a) portrays the achievable MSE performancéi@PASD aided DDCE scheme of Al-
gorihtm 4 for the pilot overhead ratias= 0.03,0.1,0.3 and 1.0, wheree = 0.03 ande = 1.0 corre-
spond to having% and100% pilots, respectively. Specifically, we may identify an esition efficiency of

Kk =5—10 = —5dB.

Furthermore, Figure 2.21(b) portrays the correspondindR BErformance of the rat§ turbo-coded

QPSK-modulated OFDM system.
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2.9 Channel Estimation for MIMO-OFDM

The main challenge associated with the estimation of the GHEITF coefficients in the context of multi-
antenna multi-carrier systems rests in the fact that, agsgapto the SISO scenario outlined in Section
2.4.2, the estimation of the MIMO-CTFs constitutes a higldgk-deficient problem. More specifically,
let us consider the SDM-OFDM system model associated wili-th subcarrier of the:-th SDM-OFDM

symbol, which may be characterized as follows
yln, k| = H[n,K)s[n, k| + w(n, K|, (2.87)

wheres|n, k|, y[n, k|, w[n, k| and H[n, k] are the signals associated with th¢h subcarrier of the:-th
SDM-OFDM symbol. Specificallys|n, k] is the m-dimensional signal vector transmitted from the
transmit antennasy(n, k| andw(n, k| are then,-dimensional signal and noise vectors recorded atithe
receive antennas, whil[n, k] is the (n, x m;)-dimensional matrix, which characterizes the MIMO-CTFs
encountered. Let us assume a relatively simple MIMO scemdithavingm; = n, = 4 transmit and receive
antennas. The corresponding MIMO-CTF matrix is constituig 4 x 4 = 16 uncorrelated coefficients,
which have to be calculated using four recorded samples Gsimgp the received signat(n, k|, as well
as four pilots or decision based symbols estimating thesinétted signak|n, k]. Notice that even in the
presence of tha priori known pilot-based transmitted signgh, k|, the MIMO-CTF matrixH [n, k] may
not be estimated reliably using a linear solution remimsadé that derived in Section 2.4.2. Consequently,
the estimation of thdn, x m;)-dimensional MIMO-CTF matrixt [, k] requires a sufficiently sophisti-
cated exploitation of both the time- and the frequency-dantarrelation properties of the MIMO-CTF

coefficients.

In this treatise we propose a MIMO channel estimation scheméch follows the decision-directed

channel estimation philosophy of Figure 2.1, as employegkiction 2.3 for SISO multicarrier systems.

Similarly to the SISO case of Section 2.3, our MIMO channdingstion scheme comprises an array
of K per-subcarrier MIMO-CTF estimators, followed byia x m;)-dimensional array of parametric CIR
estimators and a corresponding arraymf x m; x L) CIR tap predictors, wherk is the number of tracked
CIR taps per link for the MIMO channel. The structure of bdie parametric PASD -aided MIMO-CIR
tap estimators and that of the RLS MIMO-CIR tap predictoria large extent identical to those devised
in Sections 2.6.2 and 2.7.4, respectively, in the conteruofSISO channel estimation scheme advocated in
Section 2.8. On the other hand, our MIMO-CTF estimatorstakhisubstantially different structure, which

reflects the rank-deficient nature of the MIMO channel ediongoroblem.

In order to exploit the time-domain correlation propertiéshe MIMO-CTF coefficients matri¥ [n, k]

we employ an iterative tracking approach instead of the MMStimation method of Section 2.4.2.
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Algorithm 5 A PosterioriLMS MIMO-CTF Tracking

§[n, k] = Detect {y[n, k], H[n, k] } (2.91a)
e[n,k] = y[n, k] — Hn, ]9[ Kl (2.91b)
Hin k] = H[n — 1,k] + (1 — {)e[n, k]§"[n, k| (2.91c)

2.9.1 Soft Recursive MIMO-CTF Estimation

Analogous to the SISO channel estimator architechturanegtlin Section 2.8, at the first stage of our
MIMO channel estimation scheme we employ an arra) gfer-subcarrier MIMO-CTF estimators, which
function independently of each other. Consequently, ferdfike of notational simplicity we omit the sub-

carrier related indek in the following section.

29.1.1 LMS MIMO-CTF Estimator

The Least Mean Square (LMS) estimation method, which cies a simple approximation of the stochas-
tic gradient algorithm [64], was invoked for the iterativadking of the channel parameters in the context
of turbo equalization [40]. More specifically, followinggh.MS approach, we are seeking to minimize the
mean square error-based cost functipfis, which may be expressed as follows

n

Jums = ) e'[m]e[m], (2.88)

wheree[m| denotes the error signal, which is given by
e[m] = y[m] — H[m]3[m), (2.89)

wherey|m] is the signal vector recorded at thetransmit antennas, whikeis the corresponding estimate

of them,-dimensional transmitted signal.

Hence, analogously to the solution derived in [40], the LMS8neate of the(n, x m;)-dimensional
MIMO-CTF coefficient matrix associated with tiéh subcarrier of thath OFDM symbol may be obtained

as follows
Hin] =Hn — 1]+ (1 — Q)e[n]s"[n], (2.90)

where we define the forgetting fact®r The resultant LMS MIMO-CTF tracking method is summarized i

Algorithm 5.
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Algorithm 6 A PosterioriRLS MIMO-CTF Tracking

§[n, k] = Detect {y[n, k], H[n, k] } (2.97a)
®[n, k] = {®[n —1,k] + 8[n, k]8"[n, k| (2.97b)
0[n, k] = ¢0[n — 1,k] + 8[n, k|y" [n, k] (2.97c)
Hn k] = (® [n,k|0[n,k])" (2.97d)

2.9.1.2 RLS MIMO-CTF Estimator

The Recursive Least Squares (RLS) algorithm [101] coriesit@a rapidly-converging least squares algo-
rithm. The RLS method was considered in the context of rémichannel parameter estimation and track-
ing by multiple authors [40, 46, 50, 81]. As opposed to the Laffproach outlined in Section 2.9.1.1, the
RLS method attempts to minimize the cost function createwhfihe exponentially-weighted and windowed

sum of the squared error. Namely, we have

n

Jrus[n] = ) ¢""em, n]e[m, n], (2.92)

m=1

where, analogously to the LMS method of Section 2.9.1.1¢tineesponding error signal is given by
e[m, n] = y[m] — Hn]s[m], (2.93)

while ¢ denotes the forgetting factor. The corresponding RLS ed&nof the(n, x m;)-dimensional
MIMO-CTF coefficient matrix associated with thgh subcarrier of theith OFDM symbol may be cal-

culated as follows [40]
in] = (& '[njoln]) (2.94)

where we define the MIMO-CTF estimator’s input autocorietafunction®n], which may be calculated

recursively as follows

®[n] = i g""Ms[m]s"[m] = {®[n — 1] + s[n]s"[n], (2.95)

m=1
while the MIMO-CTF estimator’s input-output crosscortaa matricesd[n| as follows

n

Bln] = )_ " "s[mly"[m] = {6[n — 1] + s[n]y"[n]. (2.96)

m=1

The resultant RLS MIMO-CTF tracking method is summarizedligorithm 6.

2.9.1.3 Soft-Feedback Aided RLS MIMO-CTF Estimator

As suggested by thdecision-directedphilosophy of the channel estimation scheme outlined inti@ec
2.9, the transmitted signal vectsfn]| may not always be readily available at the receiver. Moreifipe

cally, the transmitted signal vectsfr| may be assumed to be knownpriori if and only if s constitutes
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a pilot symbo] which occupies a small portion of the transmitted dateasir. Alternatively, whenever an
information-carrying data-symbol is transmitted, theisien-based estimaten| become available in-
stead. Unfortunately, however, the decision-based etsidaare prone to decision errors, which may

potentially result irerror propagationand thus in a substantial performance degradation.

Consequently, as pointed out in [40, 46, 49], it is highly dfarial to exploit the probability-related soft
information available at the output of the MIMO-OFDM systemetector. More specifically, in addition to
the hard-decision based values of the transmitted signal estingatgsve may utilize the associatesbft
information-related quantities, such as the expectatamtksthe variances of the elements of the estimated
transmitted signal vectér= [$y, - - -, §,,,]T. Specifically, the expectation of thih transmitted symbol may
be expressed as follows

S§=E{&} =) cplsi=c}, (2.98)
ceM

while the corresponding variance is given by

v; = Var {§;} = ( Y et pisi= c}) — 587, (2.99)
ceM
Subsequently, we may define the following alternative esigmnals
é[m,n] = y[m] — H[n]s[m], (2.100)
&[m,n] = y[m] — H[n]3[m]. (2.101)

The error signals of Equations (2.100) and (2.101) may bsetsguted into the LMS and RLS algorithms of
Sections 2.9.1.1 and 2.9.1.2 in order to yield the hard aftdlsoision-based LMS and RLS CTF tracking

algorithms, respectively.

2.9.1.4 Modified-RLS MIMO-CTF Estimator

A further improved version of the soft decision-based Rl#8king algorithm, namely the so-called mod-
ified RLS algorithm was proposed by Otnes [40]. More spedificen the modified RLS method the cost
function of Equation (2.92) associated with the classic Riehod of Algorithm 6 is substituted by a cost
function, which takes into account the ambiguity inherenthie decision-based estimagds|. Firstly, for

the sake of notational convenience the following covargamatrices were defined in [40]
D(n] = Cov {3[n],8[n]} = E {8[n]s"[n]} = diag (v[n]) (2.102)
and

U(n] = E{s[n]s"[n]} = §[n|s"[n] + D[n], (2.103)
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Algorithm 7 MIMO-CTF A PosterioriModified-RLS Tracking

{8[n,k],5[n,k|} = Detect {y k], H[n k]} (2.108a)
Un, k] = diag (|8 [n K[> — |8[n,K]|?) +8[n,k|5[n, k]® (2.108b)
dfn, k] = y[n, k] — Fi[n, K3 [ ] (2.108¢)
®[n,k| = {®[n,k] + Uln, ] (2.108d)
0[n, k| = 0[n, k] + Uln, k|H[n, k| + 8[n, k|d"[n, k] (2.108e)
Hn, k] = (® '[n,k|0[n, k)" (2.108f)

where the elements of the variance veotpt] are given by Equation (2.99). The corresponding modified

RLS cost function may be expressed as follows [40]
n
Jmodris [ Z " "E {&"[m,n]&[m,n] | y[m],§[m], D[m], H[n]}, (2.104)

where as previously, denoted the forgetting factor. Observe, that as opposdtet&®LS cost function of
Equation 2.92, the modified RLS cost function of Equatio®2.thkes into account the ambiguity associated

with both the estimated CTF matrBi[n] as well as the estimated transmitted signal veg}o.
Finally, following the approach proposed in [40], the maetifiRLS MIMO-CTF estimat&I[»] may be
calculated using Equation (2.94), which is repeated heredovenience. Specifically, we have

Hi[n] = (cp—l[n]e[n])H, (2.105)

where the corresponding covariance matridgs] and6[n| may be reformulated using the quantiti®sn]

andU [n] of Equations 2.102 and 2.103, respectively. Namely, we have

n

Z ¢""Um] = {®[n —1] + U[n] (2.106)
and .
v = 30 (s + D]
= {0[n — 1] + Un]H[n — 1] + 3[n]e"[n]. (2.107)

The resultant soft decision-based MIMO-CTF modified-RLShuod is summarized in Algorithm 7.

2.9.1.5 MIMO-CTF Estimator Performance Analysis

The snapshots of the CTF estimation MSE exhibited by bott-temd soft-feedback aided LMS and RLS
MIMO-CTF tracking methods of Sections 2.9.1.1 and 2.9.de8pectively, as well as that of the modified
RLS method of Section 2.9.1.4, are depicted in Figure 2.22 civisidered the 4x4 MIMO-OFDM system
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characterized in Table 1.4. We assumed transmitting a sequaf signal bursts comprising 24 OFDM-
symbols each. Furthermore, each signal burst was comstibytan 8-OFDM-symbols pilot frame, followed
by a 16-OFDM-symbol data frame. Additionally, we assumecbentering an OFDM-symbol-normalized
Doppler frequency ofp = 0.003 and SNRs of 6.0 and 10.0 dB.

In Figure 2.22(a) we may observe that at low SNRs, where thesy suffers from frequent deci-
sion errors, the hard-feedback aided LMS and RLS methoddgufrthms 5 and 6 exhibit a substantially
worse performance than their soft-feedback aided coustiesrpOn the other hand, Figure 2.22(b), which
corresponds to the higher SNR value of 10 dB, where we havéativedy low probability of decision-
errors demonstrates that the hard-feedback aided RLS MOM®B-tracking method outperforms its soft-
feedback assisted counterpart. Nevertheless, the sgligvler performance of the soft-feedback aided
methods recorded at higher SNRs is a price worth paying fair gignificantly better robustness against
error-propagation at lower SNRs. Additionally, we can sedoth Figures 2.22(a) and 2.22(b) that the
modified RLS method of Algorithm 7 exhibits the best MSE perfance among the soft-feedback aided

tracking methods considered.

Consequently, from the results of Figure 2.22 we may dravetimelusion that the soft-feedback aided
modified RLS MIMO-CTF tracking method of Algorithm 7 exhibithe best combination of attractive MSE

performance and a high robustness against error propagatio
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Figure 2.22: Snapshots of th&lean Square Error exhibited by both the hard- and soft-feedback aided
recursive MIMO-CTF tracking methods of Sections 2.9.1.8.22 and 2.9.1.4. We considered a 4x4
MIMO-OFDM system and a scenario of encountering an OFDM{syinmormalized Doppler frequency
of fp = 0.003 as well as SNRs of (&).0 dB and (b)10.0 dB. The abscissa represents the indenf the
received OFDM symbol.
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2.9.2 PASD -Aided DDCE for MIMO-OFDM
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Figure 2.23: Detailed structure of the MIMO channel estimator corresfiog to the DDCE module of
Figure 2.1 in the context of the MIMO-OFDM system. The chdresimator comprises an array of
PASTD modules, which performs recursive tracking of the MINCIR. The resultant MIMO-CIR related
tapsa;j; [n] are filtered by an array of adaptive RLS prediction filterauisg in thea priori estimates
of the MIMO-CIR-related tapg;;; [n + 1]. Finally, thea priori estimates of the subcarrier-related coeffi-
cientsH|[n + 1, k] are obtained by applying the array of transform matridgsgn| provided by the PASTD

modules.

As outlined in Section 2.9, we propose a MIMO channel esimmatcheme, which follows the decision-
directed channel estimation philosophy of Figure 2.1. Téimited structure of our MIMO-DDCE channel
estimator is illustrated in Figure 2.23. More specificatlyr MIMO channel estimation scheme comprises
an array ofK per-subcarrier MIMO-CTF estimators, followed by x m;)-dimensional array of paramet-
ric CIR estimators and a corresponding arraymf x m; x L) CIR tap predictors, wherk is the number
of tracked CIR taps per link for the MIMO channel. The struetof both the parametric PAST-aided
MIMO-CIR tap estimators and that of the RLS MIMO-CIR tap dogdrs is to a large extent identical to
those devised in Sections 2.6.2 and 2.7.4 in the contextrdb 80O channel estimation scheme advocated in
Section 2.8. On the other hand, our MIMO-CTF estimators nmagley one of the recursive MIMO-CTF

tracking methods outlined in Sections 2.9.1.1, 2.9.1.2.8r1.4.

The resultant MIMO-DDCE scheme illustrated in Figure 2.88 amploying the modified RLS MIMO-
CTF estimator of Algorithm 7, the PASTaided CIR estimator of Algorithm 2 as well as the RLS CIR tap

predictor of Algorithm 3 is summarized in Algorithm 8.
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Algorithm 8 PASTD -aided MIMO-DDCE

MIMO-CTF Tracking:

for k=1,...,K do

Un, k| = diag (|8[n, k]|* — [3[n, k]|*) + 8[n, k]8[n, k]

d[n, k] = y[n, k] — H[n, k]5[n, k]
®[n, k| = {®[n, k| + Uln, k]
8[n, k| = 70[n, k| + Uln, k|H[n, k] + &[n, k|d"[n, k]
Hn, k] = (® '[n,k|0[n, k)"
end for k

CIR Tracking:

l
Riji[n] = wiyy[n — 11H,[n]
]

= Hl [l’l] — wl-j;l [Tl — 1]5(1‘]‘,-1 [Tl]
wij[n] = wij[n — 1] + ey [n](afj,; [n] / Aij [n])
Hjyq[n] = Hj[n] — wjj[n]&; [n]

end for [

end fori, endforj
CIR Prediction:

for i=1,...,n, do, for j=1,...,m do
for 1=1,2,...,L do
e[n] = &[n] — &[n] = &y[n] — qj[n — ay[n — 1]
ailn] = afn — 1] + ki n — 1 ]
i [n +1] = q; [n]ay[n]
g[n] = Pi[n — 1]&[n]

g 8l
Ml = B e gt
P[] = %(1 — Ky []&[n] )Py — 1]
end for |

end fori, endforj
CTF Reconstruction:

for i=1,...,n, do, for j=1,...,m do
FIij [71 + 1] = Wl‘]‘ [Tl]tvtij [71 + 1]

end fori, endforj

(2.109a)
(2.109b)
(2.109¢)
(2.109d)
(2.109€)

(2.109f)

(2.109g)
(2.109h)
(2.109i)
(2.109))
(2.109K)

(2.109I)
(2.109m)
(2.109n)
(2.1090)

(2.109p)

(2.109q)

(2.109r)
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2.9.2.1 PASTD -Aided MIMO-DDCE Performance Analysis
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Figure 2.24: The Mean Square Error exhibited by the2x2 SDM-4QAM-OFDM system employ-

ing the SDM PASTD-aided DDCE scheme of Algorithm 8. The PASTD-DDCE parameters @re-
0.1,0.3,---,0.9 as well asy = 0.95, B = 0.9. We considered the scenarios of encountering Doppler
frequencies of (afp = 0.001 and (b)fp = 0.005. The abscissa represents the average SNR recorded at the
receive antenna elements. We employ COST-207 BU channetlfibtB]. Additional system parameters

are summarized in Table 1.4.

In this section we would like to characterize the achievad@ddormance of the MIMO-DDCE scheme
of Algorithm 8 in the context of the MIMO-OFDM system of Figuf.13. More specifically, we consider
a 2x2 MIMO-QPSK-OFDM system having = 128 orthogonal QPSK-modulated subcarriers. The sys-
tem parameters are outlined in Table 1.4. We employ an OFBhé-variant channel model having the
time-variant 7-tap PDP characterized by the COST-207 Buhieblamodel of [119], as detailed in Section
1.7.2. Additionally, each individual propagation path argbes fast Rayleigh fading at an OFDM-symbol-
normalized Doppler frequency ¢p = 0.001 and fp = 0.005. The resultant channel can be characterised

as a multi-path Rayleigh-fading channel with slowly-fllating PDP.

Firstly, Figure 2.24 characterizes the achievable MSEoperdnce of the MIMO-DDCE method of
Algorithm 8 for different values of the MIMO-CTF tracking lseme’s forgetting factof. Figures 2.24(a)
and 2.24(b) correspond to encountering the Doppler fretiasmof fp = 0.001 and0.005, respectively. As
may be concluded from Figure 2.24, the optimum value of thgefiting factor¢ is largely dependent on
the SNR as well as on the Doppler frequency encountered. ritedess, the compromise value®t= 0.7

appears to constitute a relatively good choice in the pralctange of SNR values and Doppler frequencies.
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Figure 2.25: TheMean Square Error exhibited by the x 2 SDM-4QAM-OFDM system employing the

SDM PASTD-aided DDCE scheme of Algorithm 8. The PASTD-DDCE parametersiate 0.9, 0.95 and
0.99 as well asy = 0.7, B = 0.9. We considered the scenarios of encountering the Doppguéncies
of (a) fp = 0.001 and (b)fp = 0.005. The abscissa represents the average SNR recorded at éfgerec
antenna elements. We employ COST-207 BU channel model [1A#Hitional system parameters are

summarized in Table 1.4.

Secondly, Figure 2.25 characterizes the achievable MSierpgance of the MIMO-DDCE method of
Algorithm 8 for different values of the PASYaided CIR tracking scheme’s forgetting factpr Figures
2.25(a) and 2.25(b) correspond to encountering the Dofyglguencies offp = 0.001 and0.005, respec-
tively. Similarly to the choice of the optimum MIMO-CTF traag forgetting factorZ, the optimum value
of the PASD aided CIR tracking forgetting factoy is largely dependent on the SNR as well as on the
Doppler frequency encountered and the compromise valye=01.95 appears to constitute a good choice

across the practical range of SNR values and Doppler fresg®n

Furthermore, Figure 2.26 characterizes the achievable p&#termance of the MIMO-DDCE method
of Algorithm 8 for different rankg. of the PASD aided CIR tracking-related estimated subspace, while
assuming a constant value of the forgetting factprs- 0.95 and{ = 0.7. Figures 2.26(a) and 2.26(b)
correspond to encountering the Doppler frequenciefof= 0.001 and0.005, respectively. From Figure
2.26 we may conclude that a relatively high performance@PASTD aided CIR estimator may be achieved
when assuming that the rank of the estimated CTF signal agbspL. = 4, regardless of the actual number

of paths constituting the multi-path CIR encountered.

In order to further characterize the performance of thelt@suMIMO channel estimation scheme, we
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Figure 2.26: The Mean Square Error exhibited by the2x2 SDM-4QAM-OFDM system employing the

SDM PASTD-aided DDCE scheme of Algorithm 8 and tracking= 2,4, 6 and8 CIR taps. The PASTD-
DDCE parameters ar@ = 0.7, = 0.95 andp = 0.9. We considered the scenarios of encountering the
Doppler frequencies of (a)p = 0.001 and (b) fp = 0.005. The abscissa represents the average SNR
recorded at the receive antenna elements. We employ COBBR0channel model [119]. Additional

system parameters are summarized in Table 1.4.

would like to use the estimation efficiency critekiaf Equation 2.85. In the case of a MIMO systems, the

channel estimation efficiency factermay be redefined as follows

. 1 Lmn,
o2y K

(2.110)

7

whereLm;n, denotes the total number of the independent channel-geteteameters estimated. The value
of the channel estimation efficiency factocorresponding to the PAST-aided MIMO-DDCE scheme consid-

ered may be obtained empirically using the results depiatétyure 2.26. Specifically we hawe= —4dB.

Finally, Figure 2.27 characterizes the achievable BERoperince of the raté turbo-coded SDM-
QPSK-OFDM system employing the MIMO-PASTD-DDCE method dfjdtithm 8. The DDCE param-
etersardf = 0.7, L = 4, n = 095 andp = 0.9. Furthermore, we assumed a pilot overhead of 10%.
Figures 2.27(a) and 2.27(b) correspond to the 4x4 and 8x8™M#denarios, respectively. We considered
encountering the Doppler frequenciesfgf = 0.001, 0.003 and0.005. Observe, that the system proposed
attains a virtually error-free performance of a rag turbo-coded 8x8-QPSK-OFDM system, exhibiting
a total bit rate of 8 bits/s/Hz and having a pilot overhead myd0%, at SNR of 10dB and normalized
Doppler frequency of.003, which corresponds to the mobile terminal speed of rougBliré/H.

3Additional system parameters are characterized in Table 1.
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Figure 2.27: BERversusSNR performance exhibited by the ra%eturbo-coded (a) 4x4 and (b) 8:@M-

QPSK-OFDM system employing th1IMO-PASTD-DDCE method of Algorithm 8. The abscissa rep-

resents the average SNR recorded at the receive antennantéeemie employ COST-207 BU channel

model [119]. Additional system parameters are summarizd@ble 1.4.

2.10 Conclusions

In this chapter we have developed a decision directed chastienation scheme, which is suitable for

employment in a wide range of multi-antenna multi-carriemenunication systems. Our key findings may

be summarized as follows:

e In Section 2.2 we have emphasised the significant advant#dgbe decision directed approach to

channel estimation over its pilot-based counterpart.

e Correspondingly, in Section 2.3 we have derived a decisi@ttéd channel estimation scheme.

¢ In Section 2.4 we have discussed an MMSE CTF estimator andmignated its advantages in com-

parison to the LS-based CTF estimator.

e In Section 2.5 we discuss the benefits of employing the fyaatly-spaced CIR-based channel esti-

mation scheme in comparison to the conventional sampleespp@IR-based approach.

e Furthermore, in order to facilitate a relatively low comyptg FS-CIR estimation in Section 2.5 we

employed a subspace tracking method, which is capable afgige tracking the channel's delay

profile.
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¢ In Section 2.9 we have extended the scope of the proposedP/Aa®iEd DDCE scheme to the context

of multi-antenna systems.

e Specifically, in Section 2.9.2.1 we demonstrated that arn@REK-OFDM system, having a total
bit rate of 8 bits/s/Hz and employing the soft-decision aA$&PD aided MIMO-DDCE scheme of

Algorithm 8, while having a pilot overhead of only 10% exlt#ba virtually error-free performance at

an SNR of 10dB.

e The optimum values of the relevant DDCE configuration patarseare summarized in Table 2.2.

Table 2.2: mRLS-PASTd-RLS MIMO-DDCE configuration parameters.

Parameter Value
MRLS CTF estimator forgetting factgr 0.7
PASTd CIR estimator forgetting factgr | 0.95
PASTd CIR estimator no. tags 4
RLS CIR tap predictor forgetting factgr 0.9

Our future research is related to reducing the pilot-ovadheequired, potentially leading to semi-blind

channel estimation schemes.




Chapte

Signal Detection for MIMO-OFDM Systems

3.1 Outline

In this chapter we would like to discuss and compare the padace of several SDM detection methods
available in the literature. Specifically, in Section 3.84 demonstrate that the linear increase in capacity,
predicted by the information-theoretic analysis [29], nradeed be achieved by employing a relatively low-
complexity linear SDM detection method, such as the MMSE Sddtection technique [101]. Secondly,
in Section 3.4.1 we show that a substantially better perfmee can be achieved by employing a non-linear
Maximum Likelihood (ML) SDM detector [83, 102, 103], whiclomstitutes the optimal detection method
from a probabilistic sequence-estimation point of view.elaborate a little further, the ML SDM detector
is capable of attaining transmit diversity fully-loadedsystems, where the number of transmit and receive
antennas is equal. Moreover, as opposed to the linear metescthemes considered, the ML SDM detector
is capable of operating in thank-deficientsystem configuration, when the number of transmit antennas
exceeds that of the receive antennas. Unfortunately, henvibie excessive computational complexity asso-
ciated with the exhaustive search employed by the ML detectiethod renders it inapplicable to practical
implementation in systems having a large number of tranamtiénnas. Subsequently, in Sections 3.4.2
and 3.4.3 we explore a range of advanced non-linear SDMtitstemethods, namely the SIC and Genetic
Algorithm-aided MMSE detection, respectively, where th#dr may potentially constitute an attractive
compromise between the low complexity of the linear SDM diide@ and the high performance of the ML
SDM detection schemes. Indeed, we will demonstrate in @e8ti4.3 that the SDM detection method based

on the SIC as well as on the GA-MMSE detector [100] are botlabkgof satisfying these requirements.

In Section 3.5 our discourse evolves further by proposingrdrancement of the SDMD schemes consid-
ered by employing both Space-Frequency Interleaving (&f)Space-Frequency Walsh-Hadamard Trans-
form (SFWHT)-aided spreading. The performance benefitemfi@ying SFl and SFWHT are quantified in
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Section 3.5. Finally, our conclusions are summarized ini@e8.7.

3.2 SDM/V-BLAST OFDM Architecture

In a simple SDM/V-BLAST OFDM architecture [97] the incomimigta-stream is demultiplexed inte,
parallel data-streams. Each of the resultant data-strémmslependently channel encoded and OFDM-
modulated. The resultamt; OFDM-modulated signals are processed by a bankaynchronised trans-
mitters, which operate within the same frequency band. Béittem; transmitters comprises a conventional
OFDM transmitter havindK subcarriers and an OFDM-symbol periodof In contrast to the D-BLAST
scheme [84], the V-BLAST system configuration [97] imposesspecial requirements on the particular
structure of each of the multiple transmitters employedusT@ach of the transmitters can be thought of as
a single-user transmitter employing a single transmitrarde The SDM-OFDM architecture is illustrated
in Figure 3.1. Observe that the structure of the SDM schem&®a in Figure 3.1 is equally applicable to
point-to-point SDM systems, as well as to systems supgprtialtiple users, each employing one or more
transmit antennas. Consequently, the system configuratiosidered in this section is equivalent to the

uplink multi-user SDMA-OFDM system discussed in [28].
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Figure 3.1: Schematic of an SDM-OFDM BLAST-type transceiver. In costta Figure 1.14, here the de-
multiplexed data substreams associated with differenstrit antennas are channel encoded independently,

which makes this system model equavalent to a multi-user SBj&tem.
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3.3 Linear Detection Methods

The simple phylosophy of the linear SDM detector is to rectlve signal vectok([n, k| € C™ transmitted
from them; elements of the transmit antenna array at time instanaed OFDM-subcarriek from the
corresponding signal vectogr{n, k| € C", which is described by the received signal vector of Equatio
(1.25) recorded at the, elements of the receiver antenna array at time instareoed OFDM-subcarriek.

More explicitly, we have
%[, k] = We[n, Kly[n, ], (3.1)

whereW(n, k] € C™*™: is the corresponding linear SDM detector weight-matrixjohhis designed to

yield the optimal linear estimate of the transmitted sigreaitorx|n, k], as detailed henceforth.

By substituting Equation (1.25) into (3.1) we have

% = wiy
= wi(Hx + v)
1M
= w?(H)ixi—i—w? Z (H)]x]—kwflv (32)
— j=Lj#i ~~
Xis N— Xi:N
Rix
= HijeffXi + Ujseft, (3.3)

where(H); is theith column of the channel matréd, while w; denotes théth column of the weight-matrix
W. We also define the corresponding additive compongpist;; and £;. of the estimated signal; as
suggested by Equation (3.2), where the subscripts S, | arehbltd the Signal, Interference and the AWGN-
related Noise signal components, respectively. Furtheznwee define the corresponding quantities seen in

Equation (3.3) as in [28], namely as
Hijest = Wi (H);  and v = £i1 + i, (3.4)
which are the effective channel coefficient and the effedtiterference-plus-noise component, respectively.

The choice of the particular linear SDM detector weight#imaW is dependent on the optimization
criterion used. A number of examples of the relevant opigatibn criteria are discussed in [28] and
include maximising the Signal-to-Interference Ratio (B4R in the Least Squares (LS) method, maximising
the Signal-to-Interference-plus-Noise Ratio (SINR) aklinimum Mean Square Error (MMSE) technique,
as well as maximising the SIR, while ensuring a partial sepgion of the AWGN as in the Minimum

Variance (MV) method. When maximizing the SINR, which carekpressed as

o?
o ;S
SINR; = (3.5)

0
Ui+ 0N
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the associated MMSE method [28, Section 17.2.6.1] comssitan optimal linear approach to the problem
of the SDM detection. Thus, in this report we will limit oursdiussion of the linear SDM detection methods

to the characterization of the MMSE SDM detector.

3.3.1 Minimum Mean Square Error Detection

As advocated in [28], the problem of maximizing tBENR of Equation (3.5) is equivalent to minimizing
the mean square error at the output of the linear SDM dete¢tBiquation (3.1). The MSE of the linear

SDM detector of Equation (3.1) may be expressed as

MSE =E {Ax"Ax}
=E {(x — Wiy)"(x — Wfy)} . (3.6)

Differentiating the MSE of Equation (3.6) with respect t@ thlements of the liner SDM detector weight
matrix W yields

OMSE 0 .

W Tawk AT

0 . , 0
=F {Zl: <mAxi Axl' + Axi mAXi) }

= —2E{y(x — Wiy)"}

=—2E{yAx"} =0 (3.7)
= —2E {yx" — yy"W}
= —2(Ryx — R,W) =0, (3.8)

where0 € C"*™t is a zero matrix, while the cross-correlation and autoatation matricedzyx andRy of

the transmitted and received signals, respectively aenddy

Ry =E {(Hx + v)x"}
=HE {xx"} = HRy (3.9)
and
R, =E{(Hx +v)(Hx +v)"}
=HE {xxH} H" +E {VVH}
=HR,H" + R,

=HR, H" + 0L (3.10)
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Observe that Equation (3.7) represents the so-calidtbgonality principle[101]. More specifically, the
extremum of the cost function defined by the MSE of Equatio@)(@ccurs, when the estimation error signal

Ax is orthogonal to the received signal From Equation (3.8) we can deduce that
Winse = (Ry) 'Ry (3.11)
Furthermore, substituting Equations (3.10) and (3.9) (8tt1) yields
Wivise = (HRyH® 4 ¢21) "'HR,. (3.12)
Equation (3.12) may be further expanded as follows

W =(R;'H ' (HRH" + ¢21))!

1
:((HHH;R,C +DeeRH !
v

1

1
=—HR,(H'HR, +1)"". (3.13)
0-?} UU
Finally, substituting the Hermitian transpose of the weiglatrix W of Equation (3.13) into Equation (3.1)

yields the MMSE SDM detector, which can be expressed as
% = (REgngH'H + 1) 'RY g\ Hy, (3.14)

where we define the SNR-dependent auto-correlation mdtthedransmitted space-division signal vector
x asRy.snr = %Rx. In the typical case of mutually independent transmittgphai substreamR,.snr
may be expressed &5.syr = diag (0’1-2 / (75), Wh(—:‘reai2 is the transmission power corresponding toithe

transmit antenna element. Furthermore, in the scenarierenll the transmit antenna elements transmit

the same power? = 02/my, i =1, -+, m, we have
o2 v
Rysng = —51=—1, (3.15)
my0y L

where as beforey is the average SNR value recorded at the receive antennamtenilence, the expression
in Equation (3.14) can be further simplified by substitutibguation (3.15) into (3.14), yielding

-1
& = <1HHH + 1) 7 gy, (3.16)
my my

3.3.1.1 Generation of Soft-Bit Information for Turbo Decodng

The BER associated with the process of communicating ovadiad noisy MIMO channel can be dra-
matically reduced by means of employing channel coding. #qadarly effective channel coding scheme
is constituted by theoft-input soft-outputurbo coding method. Turbo coding however requiseft in-
formation concerning the bit decisions at the output of tBd/Sdetector, in other words tha posteriori

information regarding the confidence of the bit-decisioreguired.
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The derivation of an expression for the low-complexity eadilon of the soft-bit information associated
with the bit estimates of the linear SDM detector’s outpudreleterized by Equation (3.16) is given in [28].

Here, we present a brief summary of the results deduced ]n [28
The soft-bit value associated with thveth bit of the QAM symbol transmitted from thih transmit
antenna element is determined by the log-likelihood fuumctiefined in [136]

n P {blm = 1|xAi/ Hii;eff}
P {blm = 0|£i/ Hii;eff} ’

Lim =1 (3.17)

which is the logarithm of tha posterioriprobabilities’ ratio associated with the logical valuesland0

of the mth bit corresponding to the QAM symbol transmitted from ftietransmit antenna. The terf

in Equation (3.17) denotes the estimate of the transmitigribbx obtained by applying the linear SDM
detection method considered, whil§;..¢ is the effective channel coefficient defined by Equation)(3.2
which can be evaluated as tftb element on the main diagonal of the effective channelimgiven by
H.s = WHH, whereW is the linear SDM detector’s weight matrix associated wité particular linear
SDM detection method employed. More explicitly, in the cas¢he MMSE SDM detector of Equation
(3.16) we have

-1
Hey = (lHHH + 1> T HFy. (3.18)
L ny

The PDF of Equation (3.17) can be expressed as [28, Secti@rb]l7

P{bim =b| %, Hietr} = Y, P{Xi|%i, Hiiett} , (3.19)

¥eMb,
where M! denotes the specific subset of the total s¢tof constellation points associated with the modu-

lation scheme employed, which have a logical vdlad theirmth bit position, namely we have
ME ={%|x € M,b,=b}, be{0,1} (3.20)

andb,, denotes thenth bit associated with the constellation paintFurthermore, it is demonstrated in [28,

Section 17.2.5] that

Y e 1 1. y
P{X|%;, Hijet} = (o2 ) &P (-(72 |2 — Hii;effxi!2> : (3.21)

Vieff (A ,'eff

Consequently, substituting Equation (3.19) and (3.21) (8t17) yields

i;eff

1 1a .
Y e M1 €XP <_ag % — Hii,'effxio|2>

Lim = In (3.22)

i;eff

1 1a» .
Y xe M0 €XP <_ag % — Hii,'effxi1|2>
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Figure 3.2: Bit Error Rate exhibited by the QPSK-modulat&DM-OFDM system employing alMMSE
SDM detector of Equation (3.14) amtt = n, = 1, - - - , 6 transmit and receive antennas. The abscissa rep-
resents the average SNR recorded at the receive antennentdeniihe system parameters are summarized

in Table 2.1.

3.3.1.2 Performance Analysis of the Linear SDM Detector

In this section, we present our simulation results for thé&//SDFDM system employing the MMSE SDM

detection schemes described in Section 3.3.1.

Our simulations were performed in the base-band frequeanyath and the system configuration char-
acterised in Table 2.1 is to a large extent similar to thatlusg[38]. We assume having a total band-
width of 800kHz. The OFDM system utilises 128 QPSK-modulatethogonal subcarriers. For Forward
Error Correction (FEC) we usérate turbo coding [26] employing two constraint-lendg¢gh= 3 Recur-
sive Systematic Convolutional (RSC) component codes amdtidndardi24-bit WCDMA UMTS turbo
code interleaver of [131]. The octally represented RCS gagae polynomials of (7,5) were used. Finally,
throughout this report we stipulate the assumption of perdbannel knowledge, where the knowledge of

the frequency-domain subcarrier-related coefficiéiifs, k| is deemed to available in the receiver.

Figure 3.2 demonstrates the ability of the SDM-OFDM systempleying theMMSE SDM detector of
Equation (3.16) to exploit the available MIMO channel cayagain in thefully loaded system configura-
tion, namely when the number of the transmit antenna elesmenis equal to that of the receiver antenna
elementsi,. Figure 3.2 depicts the achievalB&ER performance of the SDM-OFDM system considered
as a function of the average SNR recorded at each of the ezcmitenna elements. More explicitly, the

results depicted in Figure 3.2 illustrate that the SDM-OFBydtem employingn, = n, = 6 transmit and
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Figure 3.3: Bit Error Rate performance exhibited by th8DM-QPSK-OFDM system employing an
MMSE SDM detector of Equation (3.14) and;, = 3,4,5 and6 transmit antennas, as well ag = 4
receive antennas. The abscissa represents the average&diRed at the receive antenna elements. The

system parameters are summarized in Table 2.1.

receive antennas, as well as M&ISE SDM detector of Equation (3.16) is capable of achieving afRSN
gain of aboutldB at the target BER af0—3, when compared to the same system employing a single antenna

element at both the transmitter and receiver.

Figure 3.3 demonstrates the SDM-OFDM system’s capabdityetect the spatially multiplexed signals
arriving from various number of transmit antennas, whenleyipg the MMSE SDM detection method of
Equation (3.16) and having a constant numbern,0f= 4 receive antenna elements. Specifically, we aim
for exploring the performance of the MMSE SDM detector in ¢iver-loadedsystem scenario, where the
number of transmit antenna elements exceeds that of theveeedements. Figure 3.3 demonstrates the
achievable BER performance of the MMSE SDM detector comeil@s a function of the average SNR
recorded at each of the receiver antenna elements. We cahatebe MMSE SDM detector exhibits a
relatively good performance, whenever the number of trénamenna elements is lower than or equal to
the number of the receiver antenna elements. As seen ind=B)8r the system exhibits a diversity gain
of about2dB recorded in terms of the SNR at the target BER®f3, when comparing the scenarios of
my = 3 andm; = 4 receiver antenna elements. On the other hand, however, IWSBVSDM detector
of Equation (3.16) exhibits a severe performance degm@uati the over-loaded scenario, hamely when
we havem; > n., which is confirmed by the curves corresponding to the soemaf m, = 5 and6

characterised in Figure 3.3.
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3.4 Non-Linear SDM Detection Methods

In Section 3.3 we discussed the linear approach to the probfeSDM detection. The major advantage of
the linear detection strategy is its conceptual simpliaiy corresponding low computational complexity.
Unfortunately however, as it is evident from our discussianSection 3.3, the output of the linear SDM

detector contains a substantial amount of residual in&mte.

In this section we explore a family ofon-linear SDM detection methods. We would like to commence
our discourse with the derivation of the Maximum Likeliho@dL) SDM detection method, which consti-
tutes an optimal solution of the SDM detection problem frém thaximum likelihood sequence detection
point of view. Unfortunately however, the brute-force MLteletion method does not provide a feasible
solution to the generic SDM detection problem as a resultsafxcessive computational complexity. Nev-
ertheless, it provides an important benchmark for the divachievable performance of a generic SDM

detector.

We will then continue our discussions by considering twoitaithl non-linear SDM detection meth-
ods, which achieve a sub-optimal performance at a reatisticputational complexity. More explicitly, in
Section 3.4.2 we will consider the SIC-aided SDM detecti@thnd. Furthermore, in Section 3.4.3 we will
invoke the Genetic Algorithm-aided MMSE SDM detector.

3.4.1 Maximum Likelihood Detection

The ML method [28, 71, 137] constitutes an optimal SDM dévecinethod in the sense of @anposteriori
probability. The simple philosophy of the ML detection issbd on an exhaustive search throwadihpos-
sible values of the transmitted signal vectokvith the aim of determining the value, which is most likely
to have been transmitted. Clearly, the major drawback sfghiategy is its excessive computational com-
plexity. Specifically, the number of potential candidat&uea of the signal vectot|n, k| of the m; transmit
antennas associated with ttta OFDM subcarrier of thath OFDM symbol is given byM™ = 2" where

M is the number of phasor-constellation points comprisirghhQAM/M-PSK constellation employed,
while 7 is the corresponding number of bits pei-rQAM/ M-PSK modulated symbol. More explicitly, this
relationship suggests that the number of the potentialasigector candidates to be examined by the ML
detector increases exponentially with the number of tréitsnantennas, as well as with the number of bits
per modulated symbol. The resultant computational conifglexay become excessive for systems employ-
ing a high number of transmit antennas and/or high-levelutaiithn schemes, which renders it unsuitable
for practical applications. As noted above, however, théopmance of the ML SDM detector constitutes

an important benchmarker for the performance evaluatiatrar, more practical SDM detection schemes.
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Let us recall that our channel model described by Equatidbjivas given by
y =Hx+w, (3.23)

where, as before, we omit the OFDM subcarrier and symbot@s#tiandn, respectively. As outlined above,
the output of the ML SDM detector considered comprises aasigector candidat&, which maximises the

a posterioriprobability function

X = arg Jmax P {x|y,H}, (3.24)

where M™: is the set ofll possiblecandidate symbol values of the transmitted signal vectoamely we

have

M™M= {x= (%, - JXm) T X € M} (3.25)
and M denotes the entire set M complex constellation points associated with the pamici-QAM/ M-
PSK modulation scheme employed.

It follows from the Bayes’ theorem [136] that the conditibpsobability of Equation (3.24) can be

expressed as

P {xy, H} = P {y|% H} E% (3.26)

where all possible values of the transmitted signal veceme assumed to be equally probable and therefore
we havepP {x} = 1/M™ = const. Moreover, we have
P{y} = ) P{y[xH}P{x} = const, (3.27)
xe MMt
which follows from the probability function normalisatigmoperty of

Y P{xlyH}=1 (3.28)
xe MMt
We can therefore infer that
R = P{xly, Hl <& x= P{y|x,H}. 3.29
X = arg max {x|y, H} % = arg max {ylx, H} (3.29)

As it was pointed out in [28], the signal vectpirecorded at ther, receive antenna elements can be repre-
sented as a sample of multi-variate complex Gaussiantiitéd random variables with the meHix and

the covariance matrix given by Equation (3.10), which maysbemarised ag ~ CN (Hx,R,), where
we denote the complex-values normal distribution havingeamygiven by the vectgr and the covariance
matrix C asCN (u, C). The corresponding Probability Density Function (PDF) barthus expressed as
in [101]

1 1
Pyl H) = oy oxp (o ly — Hixl3). (3.30)
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The PDF in Equation (3.30) has a formBfJ} = ae Pl wherew andp are constants and we define
J(x) = ||y — Hx||5. Clearly,P {J} is a monotonically decreasing function of its argumgn€onsequently,
the maximum of the posterioriprobability function of Equation (3.24) can be substitutbgdhe minimum
of the corresponding argumefitx), such that we have

X = arg xén/\l/lr}nt J(x), (3.31)
where again](x) is defined as an Euclidean distance-based cost-functiochwinay be expressed as

ny 2

J(%) = |ly -Hx[z =}

i=1

(3.32)

ny
vi — ) Hij%;
=1

3.4.1.1 Generation of Soft-Bit Information

Based on our arguments in Section 3.3.1.1, the soft-bievassociated with thath bit of the QAM symbol
transmitted from théth transmit antenna element is determined by the log-hkeldl function defined in
[136]

Z)V(EM:,;?“ P {y|)\2/ H}
Z)V(EM?'Z'W P{ylx H}

Ly =In (3.33)

where we define
Mo = {x = (&1, , %) % € Miforj £, % € Mb,} (3.34)
and M, denotes the specific subset of the entire/s€bf constellation points of the modulation scheme
employed, which comprises the bit valbe= {0, 1} at themth bit position.
Substituting Equation (3.30) into (3.33) yields
E i ep (- ly - e1)

Lmi =In i .
Teeniom o (=g ly ~ Hx[?)

(3.35)

Note that Equation (3.35) involves summation o2&#—! exponential functions. This operation may po-
tentially impose an excessive computational complexityldege values ofn, and/orr. As demonstrated

in [28] however, the expression in (3.35) may be closely axipnated by a substantially simpler expression,

namely by
1 y y
Lui = = |[ly = B2 = |y — H, 2], (3.36)
w
where we have
X, = arg _min ly —Hx|]>, b=0,1. (3.37)

xeMmi



3.4.1. Maximum Likelihood Detection 97

0 sdm-ofdm-mid-fl : 28-Aug-2006
107 T

10'2 ,,,,,,,,,,,,,,,,,,,,,,,, —
o
L
as]
10'3 ,,,,,,,,,,,,,,,,,,,,, —
1
4L = = AN N .
10 2 ]
3
4
° :
10° 6 . a a
0 5 10 15 20
SNR [dB]

Figure 3.4: Bit Error Rate exhibited by the QPSK-modulateeDM-OFDM system employing aiL
SDM detector of Equation (3.24) amdt = n, = 1, - - - , 6 transmit and receive antennas. The abscissa rep-
resents the average SNR recorded at the receive antennentdeniihe system parameters are summarized

in Table 2.1.

3.4.1.2 Performance Analysis of the ML SDM Detector

In this section, we present our simulation results charaatg the SDM-OFDM system employing the ML
SDM detection schemes described in Section 3.4.1. Our ationlsetup is identical to that described in

Section 3.3.1.2 and the corresponding simulation parasate summarised in Table 2.1.

Figure 3.4 demonstrates that the SDM-OFDM system emplotfiadML SDM detector of Equation
(3.31) is capable of exploiting the available MIMO chansefultiplexing gain in thefully loaded system
scenario, when the number of the transmit antenna elemenis equal to that of the receiver antenna
elementsi,. More specifically, Figure 3.4 depicts the achievaBER performance of the SDM-OFDM

ML detector considered as a function of the average SNR dedoat the receiver antenna elements.

The results depicted in Figure 3.4 illustrate that the SDWBE®™ ML detector havingn; = n, = 6
transmit and receive antennas exhibits an SNR gaBuBfat the target BER of0~3, when compared to
the same system employing a single antenna element at lwotratismitter and receiver, as well as a factor

six higher throughput.

Additionally, Figure 3.5 characterizes the capability lo& tSDM-OFDM system employing thdL
SDM detector of Equation (3.31) and having a constant nurober, = 4 receive antenna elements, to

detect the multiplexed signals arriving from various numsbef transmit antenna elements. Specifically,
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Figure 3.5: Bit Error Rate performance exhibited by tHeDM-QPSK-OFDM system employing aiL
SDM detector of Equation (3.24) and; = 3,4,5 and6 transmit antennas, as well ag = 4 receive
antennas. The abscissa represents the average SNR reabtbedeceive antenna elements. The system

parameters are summarized in Table 2.1.

we aim for exploring the performance of tMl. SDM detector in theverloadedsystem scenario, where
the number of transmit antenna elements exceeds that oétlee/er elements and thus we hang > n,.
Figure 3.5 demonstrates the achievable BER performandeedsDM-OFDM system employing thdL
SDM detector as a function of the average SNR recorded attteve antenna elements. We can see that
as opposed to the MMSE SDM detector discussed in Sectioh, 3teML SDM detector exhibits a good
performance both when we haxvg < n,, as well as in the overloaded system scenario, when the mwhbe

transmit antenna elements exceeds the number of the rece®ena elements,e. when we haven; > n,.

3.4.2 SIC Detection

The SIC-assisted SDM detector was proposed by Fosehaliin [84] and it was discussed in further detail
in [97,98,138-140].

In order to commence our discourse, let us recall the philogf the linear SDM detector discussed
in Section 3.3, where the detection of the transmitted $igeetor x[n, k| was performed using a linear

transformation described by Equation (3.1), namely by
x[n, k| = WH[n, k]y[n, k], (3.38)

whereW|n, k] € C"*" is the corresponding linear SDM detector weight-matrix.
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As it was further inferred in Section 3.3, the correspond@ihgR at the output of the linear SDM detector
may vary considerably across different elements of thestréited signal vectok|[n, k|, as substantiated
by Equation (3.5). Consequently, as suggested in [28], Weeatl MSE at the output of the linear SDM
detector employed is dominated by the SINR associated Wwithrainsmitted signal component having the
lowest signal power [28] determined b:yj |Hl-j|2. This observation suggests that a considerably higher

performance can be achieved by employing successiveenggide cancellation.

Following the SIC paradigm, the detection of the transrdigignal vectox|, k| associated with thith
OFDM subcarrier of thetth OFDM symbol is performed in a successive manner, wheradt detection
iterationi we detect a single vector componentn, k] using the linear MMSE SDM detection method
discussed in Section 3.3.1. We then modify the receivedabiggrtory[n, k] by removing the remodulated
interfering signal components and repeat the aforemestdidinear detection process in order to estimate
the next transmitted signal component . The iterative process described above is then repeatédhent
transmitted signal components associated with all tratbsnantenna elements are detected. In this section
we will demonstrate that the successive structure of thectleh process results in a substantially improved
SIR for the weaker signal components. Note that in our fanthiog derivation we, once again, omit the
OFDM symbol and subcarrier indicesandk, which does not restrict the generality of the results oletdj
since the space-devision detection process describedftgmped independently for each pair of time and

frequency domain indicel, k|.

More specifically, we commence our SIC detection procesk ailinear detection of the transmitted

signal component;,, as suggested by Equation (3.1), where we have

%j, = wiyi, (3.39)

andw; = (W)]-1 is the j;th column of the SDM MMSE detector’s weight matrix descritldEquation

(3.13), whiley; is assumed to be identical to the original received signetiorey.

In the next step, the interference imposed by the just dedemtd remodulated signal componeftis

subtracted from the received signal yielding

y2 =y1— (H);Q(%;), (3.40)

where(H);, is thejith column of the channel matrid, while Q(x) represents the slicing or hard-decision
operation performed in the receiver in order to estimatetiliesmitted information-carrying QAM/PSK
symbol. The resultant partially-decontaminated signatomprises the contributions of a reduced number
of interferers. In order to detect our next desired traneaisignal component;, we now have to calculate
the updated linear SDM detector weight matiW, which may be readily achieved by substituting the

effective channel matriHj—l, obtained by zeroing columy of the original channel matriM, into Equation
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(3.13) yielding
W2 = Hy(HiHy, + mo2l) 7L, (3.41)

where we follow the notation employed in [138] and corresfiogly H]T denotes the matrix obtained by

zeroing columngy, - - -, j; of the original matrixH. By substituting the terms; , w; andy; of Equation

1 l
(3.39) by the corresponding termsg, y» of Equation (3.40) andv, = (W), of Equation (3.41), we arrive at
the desired estimate of next transmitted signal compoifénally, the iterative detection process described

above is repeated, until all desired transmitted signalpmmants are successfully detected.

As it was argued in [138], the order in which the detection loé transmitted signal components
X; [n],j=1,---,mqis performed is important for the overall performance ofdeéection process. More-
over, as it was demonstrated in [138], the optimal orderingea if the “best first” successive detection
strategy is applied, where the best possible performaneehieved, when at each iteratiomf the SIC
detection process the desired signal component is selactedding to the selection criterion of

ji+1 = argmax [|(Hy);%, (3.42)
)

implying that the least attenuatede. the highest-power antenna’s signal is detected first.
The SDM SIC detection process employing the MMSE detectiethod of Section 3.3.1 is summarised
in Algorithm 9.

3.4.2.1 Performance Analysis of the SIC SDM Detector

In this section we present our performance results for th1€F-DM system employing the SIC SDM
detection scheme described in Section 3.4.2. The simulagtup is identical to that described in Section

3.3.1.2 and the corresponding simulation parameters anenswised in Table 2.1.

Figure 3.6 characterizes the ability of the SDM-OFDM systmploying theSIC SDM detector of
Algorithm 9 to exploit the available MIMGQnultiplexing gain in thefully loaded system configuration,
when the number of the transmit antenna elementss equal to that of the receiver antenna elements
n.. More explicitly, Figure 3.6 depicts the achievall&R performance of the SDM-OFDM SIC system
considered as a function of (a) the average SNR recordec attieiver antenna elements, as well as (b)
versus the correspondin, / Ny value for various numbers ofi; = n, = 1,--- ,6 transmit and receive

antenna elements.

More specifically, the results portrayed in Figure 3.6 iitate on the SNR scale that the SDM-OFDM
SIC system having:, = n, = 6 transmit and receive antennas exhibits an SNR gain of dhiiitat the
target BER ofl0~3, when compared to the same system employing a single aneement at both the

transmitter and receiver.
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Algorithm 9 MMSE-aided V-BLAST SIC SDM Detector

y1 =y(n]
W; = H(H*H + mo21) !

ji = argmax [ieconli (3.43a)

for i=1,2,...,m do

wj, = (Wy);, (3.43b)

%;,[n] = wiy; (3.43c)

yir1 =yi— (H[n]); Q(%;,) (3.43d)

Wis1 = Hy(HEH; + mo2l) ! (3.43e)

i1 = argmax 1(H5);1? (3.43f)
end for

Furthermore, Figure 3.7 illustrates the capability of tiRMEOFDM system employing th&81C SDM
detector of Algorithm 9 and having a constant numberof= 4 receive antenna elements to detect the
multiplexed signal arriving from various numbers of tratitsamtenna elements. Specifically, we aim for
exploring the attainable performance of tBEC SDM detector in theoverloaded system scenario, where
the number of transmit antenna elements exceeds that oéteéver antenna elements and thus we have
my > n,. Figure 3.7 demonstrates the achievable BER performanttee §DM-OFDM system employing
the SIC SDM detector as a function of the average SNR recorded aetteve antenna elements. In can
be seen by comparing Figures 3.7 and 3.3 that in an overlcamethrio theSIC SDM detector considered
performs better than the MMSE SDM detector of Section 3.8evertheless, observe from the comparison
of Figures 3.7 and 3.5 that a substantial performance datiomdmay still be observed in comparison
to the ML SDM detector of Section 3.4.1. A more detailed corigmm of the achievable performance

corresponding to the various SDM detection methods coresideill be carrier out in Section 3.6.

3.4.3 Genetic Algorithm-Aided MMSE Detection

Genetic Algorithms (GA) [99, 141] constitute a family of aptzation algorithms often utilized for finding
approximate solutions to optimization problems havinggular error surfaces associated with local min-

ima, such as in interference, rather than noise-limitegh@gation environments [142]. Genetic Algorithms
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Figure 3.6: Bit Error Rate exhibited by the QPSK-modulaté@DM-OFDM system employing aSIC
SDM detector of Equation (3.38) amak = n, = 1, - - - , 6 transmit and receive antennas. The abscissa rep-
resents the average SNR recorded at the receive antennentdeniihe system parameters are summarized

in Table 2.1.

use biologically-inspired search and optimization metfiadich as inheritance, mutation, natural selection
and recombination (or crossover) of genes, each reprageioti example a bit string, describing a potential
candidate of the transmitted multiplexed signal vectoraiagthe GA's individuals are represented as strings
of discrete symbols, such as for instance, Os and 1s, buj deffierent encoding schemes is also possible.
In each generation, pairs of parent individuals are salefrtam the current population based on thidir
nessproperties. They are modified (mutated or recombined) tmfamew population, which becomes the

current population in the next iteration of the algorithm.

Genetic algorithms were found to be highly efficient in nuowsr global search and optimisation prob-
lems, especially when their solution using conventionatlhmas is not feasible, or otherwise would impose
an excessive computational complexity. GAs were first applo the problem of multi-user detection by

Junttiet al. in [100] and Wanggt al. in [143]. They were then documented in great detail in [142].

In our case, we explore the achievable performance of theaiddd SDM detection method in the
the context of the SDM-OFDM system of Section 1.8.3. We emplo SDM-MMSE detector described
in Section 3.3.1 as our solution in the initial populatiortla input of the GA-aided SDM detector. The
detailed description of GA-aided detection and the padicconfiguration of the GA employed is beyond
the scope of this report. The configuration of the GA empldyexe is identical to that described in much

detail in [144]. The interested readers may also refer t@]1@r further insight.
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Figure 3.7: Bit Error Rate performance exhibited by tH@DM-QPSK-OFDM system employing aSIC
SDM detector of Equation (3.38) and; = 3,4,5 and6 transmit antennas, as well ag = 4 receive
antennas. The abscissa represents the average SNR reabtbedeceive antenna elements. The system

parameters are summarized in Table 2.1.

In the next section, we explore the achievable performahtteedsA-aided SDM detector in the context
of the SDM-OFDM system of Figure 3.1. The simulation setuphef SDM-OFDM system is identical to
that described in Section 3.3.1.2, as summarized in Talleathile details concerning the configuration of

the GA-MMSE SDM detector employed can be found in Table 3.1.

3.4.3.1 Performance Analysis of the GA-MMSE SDM Detecor

The achievable BER performance of the SDM-OFDM system obifeig8.1 employing th&sA-MMSE
SDM detection method described in [144] is depicted in FegBi8. More explicitly, Figure 3.8 demon-
strates the ability of the SDM-OFDM system employing tBA-MMSE SDM detector [144] to exploit
the available MIMO capacity gain in tHelly loaded system configuration, when the number of transmit
antenna elements; is equal to that of the receiver antenna elemantso elaborate a little further, Figure
3.8 depicts the achievabRER performance of the SDM-OFDM system considered as a funaifahe
average SNR recorded at each of the receiver antenna elermfentan be seen in Figure 3.8, the SDM-
OFDM system employing th6A-MMSE SDM detector andn; = n, = 6 transmit and receive antennas
exhibits an SNR gain of abo\azB at the target BER of0—3, when compared to the same system of Table

2.1 employing a single antenna element at both the traresmaitid receiver.
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Population initialization methog Output of the MMSE MUD
Mating Pool Creation Strategy Pareto-Optimality
Selection method Fitness-Proportionate
Cross-over operation Uniform cross-over
Mutation operation M-ary mutation
Elitism Enabled
Incest prevention Enabled
Population sizeX Varied
Number of generations Varied
Mutation probabilityp,, 0.1

Table 3.1: The configuration parameters of the GA-aided SDM detecié4]1

3.5 Performance Enhancement Using Space-Frequency Intedving

Employing frequency-domain interleaving is common ptn OFDM transceivers [28], since it enables
the exploitation of the available Frequency Domain (FDkdiity provided by a frequency-selective wire-
less fading channel. In this section we explore the furtkesrefits of employing space-frequency interleav-

ing in the context of the SDM-OFDM system architecture itigeded.

3.5.1 Space-Frequency-Interleaved OFDM

The structure of the Space-Frequency Interleaved (SFI) SIMDM system considered is illustrated in
Figure 3.9. Observe, that in contrast to the system ar¢hiie@ortrayed in Figure 3.1 the set of OFDM-
subcarrier related data substreams at the outputs of tHe dfachannel encoders seen in Figure 3.9 are
jointly interleaved, resulting in the space-frequencgilgaved signal vectoss, wherei =1, - - - , m; is the
index corresponding to the different transmit antenna et@s Correspondingly, at the SDM-SFI-OFDM
receiver of Figure 3.9 the set of detected OFDM-subcargtated signal vectorg; are space-frequency
deinterleaved, before they are processed by the bank ofiehdecoders portrayed in Figure 3.9. As aresult,
the impact of the channel impairments, such as fading aedfé@rence, is uniformly spread across the data
substreams associated with the different transmit antelaments. In other words, the SDM-SFI-OFDM
system considered is capable of more efficiently exploibioth the space and frequency diversity benefits
of the wireless MIMO channel. Consequently, we may expeattttie SDM-SFI-OFDM system advocated
will outperform the SDM-OFDM system of Section 3.2 in ternigh® achievable BER performance.
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Figure 3.8: Bit Error Rate exhibited by the QPSK-modulaté@DM-OFDM system employing aSIC
SDM detector described in [144] amd = n, = 1, - - - , 6 transmit and receive antennas. The abscissa rep-
resents the average SNR recorded at the receive antennentdeniihe system parameters are summarized

in Table 2.1.

3.5.1.1 Performance Analysis of the SFI-SDM-OFDM

As a test-case for exploring the achievable performancéefSIDM-SFI-OFDM scheme advocated, we
employ the GA-MMSE SDM detector characterized in Sectigh3. Figure 3.10 demonstrates the ability
of the SDM-SFI-OFDM system employing tli@A-MMSE SDM detector of Section 3.4.3 to exploit the
available MIMO channel capacity gain in tdly loaded system configuration, namely when the number
of the transmit antenna elememts is equal to that of the receiver antenna elemeantsSpecifically, Figure
3.10 depicts the achievabBER performance of the SDM-OFDM system considered as a functidhe
average SNR recorded at each of the receiver antenna elerf@nthermore, the results depicted in Figure
3.10 illustrate that the SDM-OFDM system employitng = n, = 6 transmit and receive antennas, as well
as theGA-MMSE SDM detector is capable of achieving an SNR gai3aB at the target BER of0—3,

when compared to the same system employing a single anttemarg at both the transmitter and receiver.

3.6 Performance Comparison and Discussion

In this section we compare the achievable performance @b detection methods considered in Sections
3.3 and 3.4 in the context of both the SDM-OFDM and SDM-SFBE®Fsystems of Sections 3.2 and
3.5.1, respectively. More specifically, Figure 3.11 porsréhe achievable BER performance of the SDM-
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Figure 3.9: Schematic of a SDM-SFI-OFDM transceiver. In contrast to3BM-OFDM scheme charac-
terized in Figure 3.1, here the OFDM-subcarrier related dabstreams associated with different transmit

antenna elements are space-frequency interleaved at tingt ofithe channel encoder.

MMSE detector of Section 3.3.1, as well as that of the ML, Sh@ &A-MMSE SDM detectors described
in Sections 3.4.1, 3.4.2 and 3.4.3, respectively. Figur&4 8) and (b) correspond to the scenarios of
my = n, = 2 andé6 transmit and receive antenna elements, respectivelyhémumnbore, the hollow markers in
Figures 3.11 (a) and (b) correspond to the SDM-OFDM scheraeacterized in Figure 3.1, while the bold
markers correspond to the SDM-SFI-OFDM arrangement pattan Figure 3.9.

It can be seen in Figures 3.11 (a) and (b) that the SNR perfuwenaf the non-linear SDM detec-
tion methods, namely that of the ML, SIC and GA-MMSE detextof Sections 3.4.1, 3.4.2 and 3.4.3,
respectively, is significantly higher than the correspogdierformance of the linear MMSE SDM detector
characterized in Section 3.3.1. This conclusion holdsHerscenarios of both the SDM-OFDM and SDM-
SFI-OFDM systems. Furthermore, the SNR performance of t(heMMSE detector is within 1dB margin
of the SNR performance exhibited by the ML SDM detector irhidtbe SDM-OFDM and SDM-SFI-OFDM

scenarios.

By comparing Figures 3.11 (a) and (b) we may conclude thaStiR performance of all the SDM
detection methods considered improves upon increasinguiher of the transmit and receive antenna
elements. Additionally, Figure 3.11(b) suggests that ftnghh number of transmit and receive antennas
the achievable performance of the turbo-coded SDM-SFI-RBRstem employing the ML SDM detector
of Section 3.4.1 and communicating over the dispersivenfaghannel categorized by the Bug’s chanel
model [118] approaches the performance attained over an R\Wt@&nnel. Specifically, in the scenario of
my = n, = 6 characterized in Figure 3.11(b) the SNR performance ofuhsotcoded SDM-SFI-OFDM

system communicating over the dispersive fading chanrtegoazed by the Bug’s chanel model [118] is
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Figure 3.10: Bit Error Rate exhibited by the rat% turbo-coded QPSK-modulateésDM-SFI-OFDM
system employing th& A-MMSE SDM detector described in [144] amd = n, = 1,- - -, 6 transmit and
receive antennas. The abscissa represents the average&diRed at the receive antenna elements. The
achievable performance of the SDM-OFDM system employiregGih\-MMSE detector was characterized
in Figure 3.8. The OFDM system parameters are summarizeclheT2.1 and the corresponding GA

configuration parameters are outlined in Table 3.1.

within a 2dB margin of the corresponding performance in AW@&idnnel.

Finally, it can be seen in Figures 3.11 (a) and (b) that the SEFtOFDM system employing the
SDM detectors considered outperforms its SDM-OFDM coyradr Quantitatively, in the scenario of
my = n, = 6, the SDM-SFI-OFDM system employing the ML, SIC or GA-MMSE Mletector exhibits
an SNR gain of about 1dB, when compared to its SDM-OFDM capaté In the case of employing the
linear MMSE detector, the corresponding SNR differencevbeh the SDM-SFI-OFDM and SDM-OFDM
systems is about 2dB at the target BER©f3. It should be noted that the performance gains portrayes her
are dependent on the particular channel model considetesidiVersity gain associated with employing the
SFI method becomes higher if the channel considered is Isgsrdive,.e. the corresponding power delay

profile characterizing the channel considered comprisssren-zero taps.

3.7 Conclusions

In this chapter we investigated the attainable performdrareefits of employing multiple-antenna-aided

SDM-OFDM architectures invoked in wireless communicatsystems in the context of goint-to-point
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Figure 3.11: Bit Error Rate exhibited by the raté turbo-coded QPSK-modulat&DM-OFDM system of
Section 3.2, as well as by tf8DM-SFI-OFDM system employing the SDM detection methods of Sections
3.3 and 3.4. The abscissa represents the average SNR rd@irttee receive antenna elements and the
results conrrespond to the cases of{a}= m¢ = 2 and (b)n, = my = 6. The OFDM system parameters
are summarized in Table 2.1, while the corresponding GA gardition parameters are outlined in Table

3.1

system scenario, where tvpeerterminals employing multiple antennas communicate ovéana-tarying
frequency-selective fading channel. We have demonstithigdthe linear capacity increase, predicted by
the relevant information-theoretic analysis [82] can edlde achieved by employing a relatively low-
complexity linear detection technique, such as the MMSEdatet. We also showed that the ML detector is
capable of attaining significant transmit diversity gammfuily-loadedsystems, where the number of trans-
mit and receive antennas is identical. Furthermore, the lgllector is capable of adequately performing
in a over-loadedsystem configuration, where the number of transmit anteereseds that of the receive
antennas. Subsequently, we explored the potential of &rahgdditional advanced non-linear SDM de-
tection methods, which may potentially constitute an ativa compromise between the low complexity of
the MMSE linear detector and the high performance of the Miecter. More explicitly, we demonstrated
that the family of detection methods based on SIC as well asa@&d MMSE detection are capable of sat-
isfying these challenging requirements. Finally, we pggmba novel technique termed here as SFI, which
may be employed in the SDM system architecture advocatednaiyche beneficially combined with all the
aforementioned detection techniques, resulting in a @r8NR performance improvement of up to 2dB.

The SNR values required by different SDM detection scheroasidered in order to achieve the target BER
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Table 3.2: SDM detection SNR [dB] required for a target BER16f 4.

Detection methoq 2x2 | 2x2 SFI| 6x6 | 6x6 SFI
ML 8.8 8.1 7.7 5.9
GA-MMSE 8.8 8.1 7.8 7.6
SIC 12.0| 10.2 9.8 8.3
MMSE 115 10.1 | 10.7 8.1

of 10~* are summarized in Table 3.2.



Chapte

Approximate Log-MAP SDM Detection

4.1 Outline

As it was pointed out in [28] , the “brute-force” ML detectionethod does not provide a feasible solu-
tion to the generic SDM detection problem owing to its exsessomputational complexity. Nevertheless,
since typical wireless communication systems operate aenabe-to-high SNRs, Reduced Search Algo-
rithms (RSA) may be employed, which are capable of approgctiie ML solution at a complexity, which
is considerably lower than that imposed by the ML detectof28] . The most potent among the RSA
methods found in the literature is constituted by the SpBereoder (SD) [104]. The SD was first proposed
for employment in the context of space-time processing @b]lwhere it was utilized for computing the
ML estimates of the modulated symbols transmitted simebasly from multiple transmit antennas. The
complexvalued version of the sphere decoder, which is capable mfoaphing the channel capacity was
proposed by Hochwald and ten Brink in [106]. The subject wiathér investigated by Damext al. in [107].
Subsequently, an improved version of the Complex Sphered»®dqCSD) was advocated by Phainal.

in [108]. The issue of achieving near-capacity performamdgle reducing the associated complexity was
revisited by Wang and Giannakis in [114, 145]. Further rssoih reduced complexity CSD were published
by Zhao and Giannakis in [113]. Finally, CSD-aided detettitas considered by Tellambued al. in a
joint channel estimation and data detection scheme explorgs7], while a revised version of the CSD

method, namely the so-called Multistage Sphere DecodirfgliMvas introduced in [109, 111].

In this chapter we would like to introduce a novel Optimizewitdrchy RSA (OHRSA)-aided SDM
detection method, which may be regarded as an advancedsmxtaf the CSD method portrayed in [108].
The algorithm proposed extends the potential range of egdjmins of the CSD methods of [106] and [108],
as well as reduces the associated computational complesitglering the algorithm attractive for employ-

ment in practical systems.
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The method proposed, which we refer to as the Soft-outpuin@&td HIErarchy (SOPHIE) algorithm

exhibits the following attractive properties:

1. It can be employed in the so-called rank-deficient scenarhere the number of transmit antenna
elements exceeds that of the receive antenna elementstiéugaty interesting potential application
is found in a Multiple Input Single Output scenario, where gystem employs multiple transmit
antennas and a single receive antenna. Moreover, the aesbciomputational complexity is only
moderately increased even in heavily overloaded scenaniodd is almost independent of the number

of receive antennas.

2. As opposed to the conventional CSD schemes, the calmulatithe sphere radius is not required and
therefore the method proposed is robust to the particulgicetof the initial parameters both in terms

of the achievable performance and the associated commahtomplexity.

3. The method proposed allows for a selected subset of thenigted information-carrying symbols to

be detected, while the interference imposed by the undsteiginals is suppressed.

4. The overall computational complexity required is oniglsily higher than that imposed by the linear

MMSE multiuser detector designed for detecting a similanbar of users.

5. Finally, the associated computational complexity idfandependent of the channel conditions quan-

tified in terms of the Signal-to-Noise Ratio encountered.

The rest of this chapter is constructed as follows. In Sedli@.1 we derive the OHRSA-aided ML
SDM detector, which benefits from the optimal performancthefML SDM detector [28], while exhibiting
a relatively low computational complexity, which is onlyigtitly higher than that required by the low-
complexity MMSE SDM detector [28]. To elaborate a littlether, in Section 4.2.2 we derive a bit-wise
OHRSA-aided ML SDM detector, which allows us to apply the GB#Rmethod of Section 4.2 in high-

throughput systems, which employ multi-level modulatichemes, such agl-QAM [28].

In Section 4.2.3 our discourse evolves further by dedudmg@HRSA-aided Max-Log-MAP SDM
detector, which allows for an efficient evaluation of thetdwnf information and therefore results in highly
efficient turbo decoding. Unfortunately however, in congam to the OHRSA-aided ML SDM detector
of Section 4.2.2 the OHRSA-aided Max-Log-MAP SDM detectb6ection 4.2.3 exhibits a substantially
higher complexity. Consequently, in Section 4.2.5 we deair approximate Max-Log-MAP method, which
we refer to as Soft-output OPtimized HIErarchy (SOPHIE) SD&tector. The SOPHIE SDM detector
combines the advantages of both the OHRSA-aided ML and OH&8&d Max-Log-MAP SDM detec-
tors of Sections 4.2.2 and 4.2.3, respectively. Specificilexhibits a similar performance to that of the

optimal Max-Log-MAP detector, while imposing a modest céexfay, which is only slightly higher than
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that required by the low-complexity MMSE SDM detector [28he computational complexity as well as
the achievable performance of the SOPHIE SDM detector ofi@ed.2.5 are analysed and quantified in
Sections 4.2.5.1 and 4.2.5.2, respectively.

Our conclusions are summarized in Section 4.3. Specificallyreport achieving a BER df0—* at
SNRs ofy = 4.2, 9.2 and14.5 dB in high-throughput 8x8 raté-turbo-codedM = 4,16 and64-QAM
systems communicating over dispersive Rayleigh fadingiiocbla Additionally, we report achieving a BER
of 10~* at SNRs ofy = 9.5, 16.3 and22.8 dB in high-throughput rank-deficient 4x4, 6x4 and 8x4 r%te-
turbo-coded 16-QAM systems, respectively.

4.2 OHRSA-Aided SDM Detection

42.1 OHRSA-Aided ML SDM Detection

We commence our discourse by deriving an OHRSA-aided ML SXX&ation method for a constant-
modulus modulation scheme, such ®EsPSK, where the transmitted symbalsatisfy the condition of
5|2 =1, Vs € M, and M denotes the set d¥1 complex-valued constellation points. In the next section,
we will then demonstrate that the method derived is equalilieable for high-throughput multi-level

modulation schemes, such #6QAM.

Let us recall that our system model described in detail iri&ed.8 is given by
y =Hs +w, 4.1

where we omit the OFDM subcarrier and symbol indikesnd 1, respectively. As outlined in [28] , the
ML SDM detector provides am-antenna-based estimated signal vector cand&jatdich maximizes the
objective function defined as the conditioraposterioriprobability functionP {$|y, H} over the sefM ™

of legitimate solutions. More explicitly, we have

§ =arg max P {3y, H}, (4.2)

where M™: is the set ofall possible m;-dimensional candidate symbol vectors of theantenna-based

transmitted signal vectar. More specifically, we have

MMt - {g = (51/' o /S’Mt)T; S/l € M} . (43)

Furthermore, it was shown in [28] that we have

(4.4)

~

y 1 y
P {31y, H) = Aexp | ly - H3|2
w
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whereA is a constant, which is independent of any of the valig$;_; ... »,. Thus, it may be shown [28]
that the probability maximization problem of Equation {4 equivalent to the corresponding Euclidean

distance minimization problem. Specifically, we have

§ = arg min [y — HS|%, (4.5)

where the probability-based objective function of Equat{d.2) is substituted by the objective function
determined by the Euclidean distance between the receigedl vectory and the corresponding product

of the channel matriHl with thea priori candidate of the transmitted signal veckor M ™,

Consequently, our detection method relies on the obsenjatihich may be summarized in the follow-

ing lemma.

Lemma 1. The ML solution of Equation (4.2) of a noisy linear problenmsdébed by Equation (4.1) is
given by
$ =arg min {||UE—%)|*}, (4.6)

se MMt

whereU is an upper-triangular matrix having positive real-valeéeiments on the main diagonal and satis-

fying
U%U = (H'H + ¢21), 4.7)

while
% = (H'H + 631) 'H'y (4.8)

is the unconstrained MMSE estimate of the transmitted $iggetor s, which was derived in [28] .

Note 1. Observe that Lemma 1 imposes no constraints on the dimensiwrrank of the matriX of
the linear system described by Equation (4.1). This prgpsrparticularly important, since it enables us
to apply our proposed detection technique to the scenarmver-loadedsystems, where the number of

transmit antenna elements exceeds that of the receiverengdements.

Note 2: As substantiated by Equation (4.5), it is sufficient to prthet the following minimization prob-

lems are equivalent

§ = i — H3|)? 4.9
§ = arg min [ly — H3| (4.9)
& §=arg min |UE-%)[% (4.10)

se MMt
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Proof of Lemma 1: Itis evident that in contrast to the mat#*H, the matrix(H*H + ¢2I) of Equation
(4.6) is always Hermitian and positively definite, regasdlef the rank of the channel matiik associated
with the particular MIMO channel realization encounteredonsequently, it may be represented as the
product of an upper-triangular matix and its Hermitian adjoint matrik/® using for example the Cholesky

factorization method [146].

Let U be the matrix generated by the Cholesky decomposition dfifrenitian positive definite matrix

(HEH + ¢2]1) of Equation (4.7). More specifically, we have
UU = (H'H + 21), (4.11)

whereU is an upper-triangular matrix having positive real-valeéginents on its main diagonal.

Upon expanding the objective function of Equation (4.6) andsequently invoking Equation (4.7) we

obtain

J(8) = UG- %)

= (8 —%)"UU(8 — %)

=B —)HHH+ (5 - %)

= $"(H'H + 021)8 — ¥ (H'H + 021)38

— §1(HH + 2% + & (H'H + 2% (4.12)
Furthermore, substituting Equation (4.8) into (4.12) gsel

J(8) = s"H"Hs — y"Hs — s"H"y
+ 058" + y"H(H'H + o3 1) 'H'y

= |ly — H8||> + o285 + y" (H(HIH + o21) 'H" — 1)y. (4.13)
P

Observe that in the case of a system employing a constantlosodhodulation scheme, such &&PSK,
where we havé"s = 1, ¢ of Equation (4.13) constitutes a real-valued scalar anhitse does not depend
on the argumeng of the minimization problem formulated in Equation (4.6).orSequently, the mini-
mization of the objective functiofi($) of Equation (4.13) can be reduced to the minimization of &rent
|ly — Hs||?, which renders it equivalent to the minimization problenEgfuation (4.9). This completes the

proof.

Using Lemma 1, in particular the fact that the maftixis an upper-triangular matrix, the objective
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function J () of Equation (4.13) may be reformulated as follows

X)
Ztlulj(éj — 32]) = Z(])i(él’), (4.14)

where](8) and¢;(8;) are positive real-valued cost and sub-cost functions easly. Elaborating a little
further we have
11 2
¢i(8i) = ‘Z”ij(svj - Jej)‘
=i
] 2

My
wi(%— %)+ Y ui(5— %) (4.15)
j=i+1

a;
Note that the term; is a complex-valued scalar, which is independent of theiipsymbol values; of the

ith element of the priori candidate signal vectdr.

Furthermore, lef;(3;) be a Cumulative Sub-Cost (CSC) function recursively defaeed

]mt (Svmt) = ¢mt(§mt) = |umtmt (Svmt - Jaﬂt)’z (4163-)

Ji(8:) = Ji1(8ip1) + ¢i(8i), i=m1,-- 1, (4.16b)

where we define the candidate subvecto$;as [3;, - - - ,3,,]. Clearly,;(8;) exhibits the following proper-

ties

J(3) = J1(31) > J2(82) > -+ > Ju(8m,) > 0 (4.17a)

Ji(8:) = Ji({s;}, j =1, ,my) (4.17b)

for all possible realizations of € C™ ands € M™, where the spac&€™ contains all possible uncon-

strained MMSE estimatesof the transmitted signal vecter

Equations (4.17a) and (4.17b) enable us to employ a higffilsieaft reduced search algorithm, which
decreases the number of objective function evaluationkefrtinimization problem outlined in Equation
(4.6) to a small fraction of the se¥1™:. This reduced-complexity search algorithm is outlinednia hext

section.
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4.2.1.1 Search Strategy

Example 1. OHRSA-ML 3x3 BPSK

Consider a BPSK system having = m; = 3 transmit and receive antennas, which is described by
Equation (4.1). The transmitted sigrsalthe received signat as well as the channel matr#t of Equation

(4.1) are exemplified by the following values

1 0.2 05 04 —02
s=| -1, y=| 08 |, H=|04 —-03 02 |- (4.18)
1 -1.2 09 18 -0.1

Our task is to obtain the ML estimate of the transmitted digeators. Firstly, we evaluate the triangular
matrix U of Equation (4.7) as well as the unconstrained MMSE estikateEquation (4.8). The resultant

quantities are given by

115 148 —0.10 0.85
U= 0 118 —-015 |, %=| —1.05 |- (4.19)
0 0 040 —0.01

Observe that the direct slicing of the MMSE estimateill result in an erroneously decided sigrial=

[ 1 -1 -1 ]T. Subsequently, following the philosophy outlined in Sexté.2.1, for each legitimate
candidates € M™: of the m-antenna-based composite transmitted signal vectee calculate the cor-
responding value of the cost functigits) of Equation (4.14) using the recursive method described by
Equation (4.16). The search process performed is illestrat Figure 4.1(a). Each evaluation step, namely
each evaluation of the CSC functigi(s;) of Equation (4.16b) is indicated by an elliptic node in Figur
4.1(a). The label inside each node indicates the order dfi@ian as well as the corresponding vaji;)

of the CSC function inside the brackets. Furthermore, tlamdites corresponding to the two legitimate

values ofs; = —1 and1 are indicated using the dashed and solid edges and nodesctiesly.

More specifically, commencing from the top of Figure 4.1@)recursive step = 3 we calculate the
CSC function of Equation (4.16a) associated with all leggtie values of the last element of the signal

vectors, where we have
J3(5 = —1) = |uss (8 — £3)|* = (0.40(—1 — (—0.01)))* = 0.15 (4.20)
and

J5(83 = 1) = (0.40(1 — (—0.01)))? = 0.16. (4.21)
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The corresponding values @f(s3 = —1) = 0.15 andJ3(33 = 1) = 0.16 are indicated by the nodes 1 and
8 in Figure 4.1(a). Observe that thecursivenature of the search process considered suggests thatténe la
value of J3($3 = 1) is not considered until the entire search branch origigafiom the more promising
node 1 associated with the lower CSC valu®.@b is complited. Consequently, the valjigs; = 1) is the

8th value of the CSC function to be evaluated, which is ingiddy the corresponding node’s index 8.

Furthermore, at recursive stép= 2 for each hypothesised valdg we calculate both the quantity
of Equation (4.15) as well as the sub-cost function of Equaf#t.15) and the corresponding CSC function
of Equation (4.16b) associated with all legitimate valukthe last-but-one element of the signal vector

Explicitly, for s3 = —1 we have
ap = ups(83 — £3) = —0.15(—1— (—0.01)) = 0.15 (4.22)

and

— 0.15 + (1.18(—1 — (—1.05)) +0.15) = 0.20
pB2=18=-1)=]3E3=—1)+¢(5 =1,83 = —1)

= 0.15+ (1.18(1 — (—1.05)) + 0.15) = 6.79. (4.23)

The corresponding values §f(8, = [—1,—1]) = 0.20 andJ>(3, = [1, —1]) = 6.79 are indicated by the
nodes 2 and 5 in Figure 4.1(a).

Finally, at recursive index = 1 for each hypothesised subvecterwe calculate the quantity; (3;)
and the sub-cost functiopy (81) of Equation (4.15) as well as the correspondiogl cost function] (5, =
—1,8,) andJ(5; = 1,8;) of Equation (4.14) associated with all legitimate valuetheffirst element of the
signal vectors. Specifically, for the left-most search branch of Figurgd) torresponding to tha priori

candidates, = [—1, —1] we have

a1 = u12(8) — £2) + u13(83 — £3)

= 1.48(—1— —1.05) + —0.10(—1 — —0.01) = 0.17 (4.24)
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and

= 0.20 + (1.15(1 — 0.85) + 0.17) = 0.31. (4.25)

Upon completing the entire search process outlined abovarmve at eight values of the total cost function
J(8) associated with eight legitimate 3-bit solutions of theed@bn problem considered. The eight different
candidate solutions are indicated by the eight bottom-ralligtic nodes in Figure 4.1(a). Clearly, the ML

solution is constituted by the search branch terminatingpeée 11 of Figure 4.1(a) and having the minimum

valueJ(8) = 0.19 of the total cost function.

Observe that the difference between the valueg@s = —1) andJ3(53 = 1) associated with nodes
1 and 8 in Figure 4.1(a) is quite small and thus the potenfidinding the ML solution along either of
the search branches commencing at nodes 1 and 8 in Figuis &l not be recognised with a high
degree of confidence. On the other hand, the difference keatite values of the CSC function along two
complementary search branches commencing at nodes 1 armb®é&® substantially more evident, if we
apply thebest-firstdetection strategy suggested in [147]. More specifically, sert the columns of the
channel matrixH in the increasing order of their Euclidean or square norne rEsultant reordered channel
matrix H' as well as the corresponding triangular matldixand the unconstrained MMSE estim&temay

be expressed as

02 05 04 044 —025 —0.73 ~0.01
H=| 02 04 03|, U=( 0 112 135 |, =] 08 |- (4.26)
01 09 1.8 0 0 1.11 ~1.05

The search tree generated by applying the aforementiorm@disprocess and using the modified quantities
H’, U’ and&’ is depicted in Figure 4.1(b). Note the substantial diffeeebetween the values of the CSC
function J3($3 = —1) andJ3(S3 = 1) associated with the nodes 1 and 8. Moreover, by comparingaibe

of the CSC functiorj3(33) of node 8 with that of the total cost functigifs) of node 7 we can conclude that

the search along the branch commencing at node 8 is in fachdedht.
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In order to further optimize our search process, at recarsigps of = 3 and2 we first calculate the
sub-cost functiongs (53 = {—1,1}) and¢, (83,52 = {—1,1}) of Equation (4.15). We then compare the
values obtained and continue with the processing of thefapsearch branch corresponding to the smaller
value of the sub-cost functiog;(8;) first. The resultant search tree is depicted in Figure 4.1Qt)serve
that in Figure 4.1(c) the minimum value of the total cost fisrc](8) = 0.19 is obtained faster, namely in

3 evaluation steps in comparison to 7 steps required by #relséree of Figure 4.1(b).

Finally, we discard all the search branches commencingdasbaving an associated value of the CSC
function, which is in excess of the minimum total cost fuaotvalue obtained. Specifically, we discontinue
the search branches commencing at nodes 5 and 8 having thRu@&iOn values in excess 6f19, namely
4.03 and>5.15, respectively. The resultant reduced search tree is @epictFigure 4.1(d). Note that the ML
solution is obtained in 6 evaluation steps in comparisoheédl® steps required in the case of the exhaustive
search of Figure 4.1(a). In conclusion, upon performing approprite reordering of the obtained ML

T
estimate, we arrive at the correct value of the transmitigbs vectors = [ 1 -1 1 ] .
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Figure 4.1: Examples of a search tree formed by the OHRSA-ML SDM detentibre scenario of a system

employing BPSK modulationy; = n, = 3 transmit and receive antennas and encountering average SNR

of 10dB. The labels indicate the order of evaluation, as aglthe corresponding valJyg§;) of the CSC

function of Equation (4.16), as seen in the brackets. Thaathand solid arrows indicate the values of

$; = —1 and1, respectively.
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4.2.1.2 Generalization of the OHRSA-ML SDM Detector

Let us now generalize and substantiate further the detep@padigm derived in Example 1. Firstly, we
commence the recursive search process with the evaludtibe €SC function valug,,, (s,,,) of Equation
(4.16a). Secondly, at each recursive stag the search algorithm proposed we stipulate a series of hy-
potheses concerning the value of thkary transmitted symbal; associated with thé&h transmit antenna
element and subsequently calculate the conditioned ssibfanction J;(8;) of Equation (4.16b), where
§ = (3, - ,3m,)" denotes the subvector of thg-antenna-based candidate vedaomprising only the
indices higher than or equal io Furthermore, for each tentatively assumed valug @fe execute a suc-
cessive recursive search step 1, which is conditioned on the hypotheses made in all pregedinursive
stepsj =i, --- ,m;. As substantiated by Equations (4.15) and (4.16b), theevafithe CSC functior; (8;)

is dependent only on the values of the eleme{m;},]-:i,...,mt of thea priori candidate signal vectd, which
are hypothesized from stgp= m; up to the present stepof our recursive process. At each arrival at the
stepi = 1 of the recursive process, a complete candidate veciohypothesized and the corresponding

value of the cost functioffi(s) formulated in Equation (4.14) is evaluated.

Observe that the recursive hierarchical search procedigerided above may be employed to perform
an exhaustive search through all possible values of therrdied signal vectog and the resultant search
process is guaranteed to arrive at the ML solutign , which minimizes the value of the cost function
J(8) of Equation (4.14). Fortunately however, as opposed torditiesearch schemes, the search process
described above can be readily optimized, resulting in endt& reduction of the associated computational
complexity. Specifically, the potential optimization coety gain originates from the fact that most of
the hierarchical search branches can be discarded at anséagk of the recursive search process. The

corresponding optimization rules proposed may be outlawfbllows.

Rule 1. We reorder the system model of Equation (4.1) as suggestdd 1. Specifically, we apply the

best-firstdetection strategy outlined in [28, pp.754-756] , which liegpthat the transmitted signal vector
components are detected in the decreasing order of theia@ssbchannel quality. As it was advocated
in [28, pp.754-756] , the quality of the channel associatéith the ith element of the transmitted signal
vectors is determined by the norm of thth column of the channel matr#d. Consequently, for the sake of
applying thebest-firstdetection strategy, the columns of the channel mdiiare sorted in the increasing
order of their norm. Thus, the resultant, column-reorderegnnel matrixd complies with the following

criterion

1) < [[(H)2? < - < [|(H)m |1, (4.27)
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where(H); denotes théth column of the channel matrid. Note that the elements of the transmitted signal
vectors are reordered correspondingly, but their original ordes toebe reinstated in the final stage of the

detection process.

Rule2. Ateach recursive detection indéx= my, - - - , 1, the potential candidate valugs,, }—1... v € M
of the transmitted signal componentare considered in the increasing order of the correspongihge of

the sub-cost functiog;(8;) = ¢;(cm, $i+1) of Equation (4.15), where we have
$ic1,8ip1) < -+ < Pilem, 8iv1) < -+ < Pi(em, 8it1),
and according to Equation (4.15)

Gi(cm, 8iv1) = |ui(om — %) + aif?

- a;
= wjilom — % + — *- (4.28)
ii

Consequently, the more likely candidatgsof theith element of the transmitted signal vecsosre exam-
ined first. Observe that the sorting criterion of Equatio2®} may also be interpreted as a biased Euclidean
distance of the candidate constellation pojpfrom the unconstrained MMSE estimatgof the transmitted

signal componery;.

Rule 3. We define aut-off value of the cost fuctiofin;, = min{J($)} as the minimum value of the total
cost function obtained up to the present point of the searobegs. Consequently, at each arrival at step

i = 1 of the recursive search process, the-off value of the cost function is updated as follows

]min - min{]min/](é)}- (429)

Rule 4. Finally, at each recursive detection siepnly the high probability search branches corresponding
to the highly likely symbol candidates, resulting in low values of the CSC function obeyifi¢c,,) < Jmin
are pursued. Furthermore, as follows from the sorting rooibeof the optimization Rule 2, as soon as the

inequalityJ;(c,) > Jmin iS encountered, the search loop at iftedetection step is discontinued.

An example of the search tree generated by the algorithnkimgathe Rules 1-4 described above is
depicted in Figure 4.2. The search trees shown correspotie tecenario of using QPSK modulation and
employingm; = n, = 8 antenna elements at both the transmitter and the receilrercdses of encountering
the average SNRs of (a) 10 and (b) 20 dB were considered. Egelofsthe search procedure is depicted as
an ellipsoidal-shaped node. The label associated with magé indicates the order of visitation, as well as
the corresponding value of the CSC functih(;) formulated in Equation (4.16), as seen in the brackets.

As suggested by the fact that QP SK modulation is consideteghch recursive steépfour ligitimate search
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branches are possible. However, as can be seen in Figueg,4aly a small fraction of the potential search
branches are actually pursued. Observe that the rate ofgmmce of the algorithm proposed is particularly
rapid at high values of SNR. In the case of encountering loR $Bllues, the convergence rate decreases.
Nevertheless, the associated computational complexitlyamatically lower than that associated with an

exhaustive ML search.

The pseudo-code summarizing the recursive implementafisthe OHRSA-based ML SDM detector

proposed is depicted in Algorithm 10.

Given the cost-functions of Equation (4.14) and the appatgly ordered matriH of Equation (4.1),
the proposed algorithm may be viewed as a specific manii@stat a tree search algorithm [148]. Another
example of a tree search algorithm commonly employed indéisegd of communication systems constitutes
the well-known Viterbi algorithm [26, 149]. More specifialthe sub-cost function values of Equation
(4.15) may be regarded as being analogous to the branctceettiile the CSC values of Equations (4.16)
as accumulated path metrics. It should be noted howeverttbaDHRSA-ML algorithm described here
and the classic tree-search-based Viterbi algorithm éxibstantial differences. Specifically, the Viterbi
algorithm assumes that the branch metric is a function ofylséem states constituting one particular state
transition, which is equivalent to the assumption of hadrdiagonal matribU in Equation (4.7). Evidently,
this requirement cannot be satisfied by our generic MIMOesyst Consequently, the tree-search-based

Viterbi algorithm cannot be applied to the search problestdbed above.

The operation of the OHRSA-ML SDM detector of Algorithm 10fusther exemplified in Figure 4.2
where we illustrate the search process corresponding 638K signal detection in a MIMO fading chan-
nel characterized by the SNR values of (a) 10 and (b) 20 dBlatheds corresponding to each elliptic node
in Figure 4.2 indicate the order of visitation, as well as¢beresponding valug (3;) of the CSC function
of Equation (4.16), as seen in the brackets, correspondiriget signal subvectas; associated with that
node. Observe that at each level of the search tree of FigRrevé first explore the branch corresponding
to the lower value of the objective function. The actual Mllusion in Figure 4.2(a) is attained in node 25
with the corresponding valug(3y) = 4.03 and is formed by the search branch comprising nodes 0-1-19-
20-21-22-23-24-25. Observe that the nodes forming the Mltiem do not necessarily correspond to the
lowest value of the objective functiofa(s;) at each level of the search tree. The ML solution is attained i
(a) 41 and (b) 16 evaluation steps in comparison toithe: 65536 evaluation steps required in the case of

the exhaustive ML search.
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Algorithm 10 OHRSA-aided ML SDM Detector

Sort{H}, such that ||(H){|*> < --- < ||(H)u,|?
G = (H'H + o21)

U = CholeskyDecomposition(G)

% =G 'H%

Calculate [y,

Unsort{s}

function Calculate J[;(8;)
"
ai =Y wuj(3j— %))
j=i+1
Sort{cy }, such that ¢;(c1) < --- < ¢pi(cm),
where ¢i(cy) = |uii(cm — %) + a;]?
for m=12,...,M do
$i=Cm
Ji(8i) = Jiv1(8it1) + ¢i(8)
if  Ji(8;) < Jmin then
if i>0 then Calculate [,
else
Jonin = J(8)
§=S5§
end if
end if
end for

end function

(4.30a)

(4.30b)
(4.30¢)

(4.30d)
(4.30e)
(4.30f)

(4.30g)

(4.30h)

(4.30i)
(4.30j)

(4.30Kk)

(4.300)
(4.30m)
(4.30n)

(4.300)
(4.30p)
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Figure 4.2: Examples of a search tree formed by the OHRSA-ML SDM detentibre scenario of a system
employing QPSK modulatiomy; = n, = 8 transmit and receive antennas and encountering average SNR
of (a) 10dB and (b) 20dB. The labels indicate the order oftaiiin, as well as the corresponding value
J:(8;) of the CSC function of Equation (4.16), as seen in the brackEhe ML solution is attained in (a)

41 and (b) 16 evaluation steps in comparison todthe- 65536 evaluation steps required in the case of the

exhaustive ML search.
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4.2.2 Bitwise OHRSA ML SDM Detection

Example 2. OHRSA-ML QPSK 2x2

Let us now consider a QPSK system having= m; = 3 transmit and receive antennas, which is described
by Equation (4.1). The transmitted signsalthe received signat as well as théest-firstreordered channel

matrix H of Equation (4.1) are exemplified by the following values

[ 1-1
S — , y —_=
-1-1
[ 01-02) —0.7—0.6
03404 —1.3-0.5

02+ 1.1y
14+1.7)

7

H= . (4.31)

As before, our task is to obtain the ML estimate of the trattgabisignal vectos. Firstly, we apply the

OHRSA-ML method of Algorithm 10.

As suggested by Algorithm 10, we commence the detectionggoby evaluating the quantitiesand
% of Equations (4.30c) and (4.30d) respectively, which ygeld

U 0.63 —0.85+0.27; . 0.43 — 0.34;
= , X= .
0 1.45 —1.10 — 0.79;

(4.32)

Furthermore, we proceed by calculatifiyr values of the CSC functiof (S, = ¢iy), m = 1,---,4 of
Equation (4.30l) associated with tifi@ur different pointsc,, of the QPSK constellation. For instance, we

have
L3 =-1-1)) =252 = 1= 1)) = [un(% — 2)|?
= |1.45(—1— 1) — (—1.10 — 0.797))|* = 0.12. (4.33)
Subsequently, four QPSK symbol candidatgsare sorted in the order of increasing sub-cost function
¢2(cm), as described by Equation (4.30i) of Algorithm 10. For eaghdthesized symbol valug = ¢, we
can now obtairfour values of the total cost functiois) = J;($1,3,) of Equation (4.30l) associated with
four legitimate values of; = ¢,,. For instance, we have
JG=1-1,%=-1-1))

=hEH=-1-1))+¢(E=1-1,5%=-1-1))

=Dh(H=—-1-1) + [un (31 — £1)) + @ |?

=0.12+ [0.63[1 — 17 — (0.43 — 0.34))] + (—0.03 + 0.217)|* = 0.27, (4.34)

where the quantity; is given by Equation (4.30h) of Algorithm 10 as follows

a1(§2 = -1 1]) = M12(§2 — 55‘2)

= (—0.85+0.27)[~1 — 1) — (—1.10 — 0.79))] = —0.03 + 0.21;. (4.35)
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As further detailed in Algorithm 10, we calculate the valaéshe total cost functiorj (s, $2) only for the
specific hypothesis;, for which the value of the CSC functigi(s,) is lower than the minimum valugin

obtained.

The resultant search tree is depicted in Figure 4.3(a), eviiebefore, each evaluation step, namely each
evaluation of the CSC functiofi(s;) of Equation (4.30I) is indicated by an elliptic node. Moregvthe
label inside each node indicates the order of evaluationedisas the corresponding valygs;) of the CSC
function inside the brackets. The branches correspondifayt legitimate values of the QPSK symbol are
indicated by the specific type of the edges and nodes. Splifithe gray andblack lines indicate the
value of the real part of the QPSK symbKs;} = —1 and1, while thedashedandsolid lines indicate the

value of the imaginary paf{s;} = —1 and].

Example 3. Bitwise OHRSA-ML QPSK 2x2

Let us consider a QPSK system identical to that describedamiple 2 and attempt to derive an alternative
way of finding the ML estimate of the transmitted signal veestaising the bit-based representation of the
QPSK symbols. In order to describe this bit-based multipbasor constellation, let us develop a matrix
and vector-based mathematical model. Firstly, obsenestizh point of the QPSK constellatiop € M
may be represented as the inner prodyct= q*d,, of a unique bit-based vectd, = [d,,1, dp2]”, dyy =

{-1,1} and the vectog = [1,1;]". For instance we have

T -1
c1:—1—1]:qd1:[1 1]]- . (4.36)
-1
Furthermore, let us define(d x 2)-dimensional matrix
11, 0 0
00 11

wherel is (2 x 2)-dimensional identity matrix, while> denotes thenatrix direct producf150]. Conse-

quently, the QPSK-modulated signal vecéanay be represented as

1-1 11,00 || -1
s —Qt= , (4.38)
11y 00 11 |]|-1

wheret = [t], 1] is a column supervector comprising the two bit-based vedtoandt, associated with

the QPSK-modulated symbalg ands;, respectively.

Substituting Equation (4.38) into the system model of Eigmai4.1) yields

y =HQt+w, (4.39)
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Moreover, sincet is a real-valued vector, we can elaborate a bit further amllick a real-valued system

model as follows

R R{H R N
b | | RUFQE N R gy, (4.40)
Iy} 7{HQ} I{w}
whereH is a real-valued4 x 4)-dimensional bitwise channel matrix, which may be exprésse
[ 01 02 —07 06 |
N R{H 03 —-04 —-13 05
= {HQj = (4.41)
Z{HQ} -02 01 -06 -07

| 04 03 -05 -13 |

Thus, we arrive at the new system model of Equation (4.40jchwimay be interpreted as @ x 4)-

dimensional BPSK-modulated SDM sytem. By applying the OARM. method of Algorithm 10 we

have
[ 063 0 —085 —027 | [ 043 ]
0 063 027 -0.85 —0.34
U= X = (4.42)
0 0 1.45 0 —1.10
0 0 0 145 | | —0.79 |
Furthermore, the first two steps of the recursive searchegsof Algorithm 10 are given by
Ja(fs = —1) = |uaa(fs — 24)|
= [1.45(—1 — (—0.79)) > = 0.10 (4.43)
and
a3(fy = —1) = uzs(fs — 24)
=0(—1—-(-0.79)) =0,
Js(fs = —1,& = —1) = |uzs(fs — £3) + a|?
= [1.45(—1 — (—1.10)) + (0)|* = 0.12. (4.44)

Upon completing the recursive search process of Algoritbrnwé arrive at the search tree depicted in Fig-
ure 4.3(b). As before, each evaluation step, namely eadbagian of the CSC functiorf; ({;) of Equation
(4.301) is indicated by an elliptic node. Moreover, the lainside each node indicates the order of eval-
uation as well as the corresponding valiéf;) of the CSC function inside the brackets. The branches
corresponding to two legitimate valugés= —1 and1 are indicated using théashedandsolid edges and

nodes, respectively.
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Observe that the ML estimatésandt of Figures 4.3 (a) and (b) are obtained within the same number
of evaluation steps. Nevertheless, the latter search guoeés constituted by lower-complexity real-valued
operations. Furthermore, in contrast to the detection atetionsidered in Example 2, the search method
outlined in this QPSK-based example can be readily gezedhior the scenario a¥1-QAM SDM systems,

as demonstrated in the forthcoming section.
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Figure 4.3: Examples of a search tree formed by the (a) OHRSA-ML and (byBWRSA-ML SDM
detectors in the scenario of a system employing QPSK mddunlaty = n, = 3 transmit and receive
antennas and encountering average SNRs of 10dB. The labéate the order of execution, as well as the

corresponding valug (3;) of the CSC function of Equation (4.16), as seen in the bracket
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4.2.2.1 Generalization of the BW-OHRSA-ML SDM Detector

In this section we generalize the result obtained in Secti@ril to the case of systems employing hyper-
rectangular modulation schemes, nam&tyQAM, where each modulated symbol belongs to a discrete
phasor constellatiotM = {c;; }m—1,... M. Itis evident that each phasor point of an M-QAM constella-
tion map may be represented as the inner product of a unitiased vectod,, = {d,; = —1,1};,-1,... p

and the correspondinguantisation vectoy. Specifically, we have

Cm = q . (4.45)

Some examples of the quantization vectors correspondirtgetonodulation schemes of BPSK, QPSK,

16-QAM as well as 64-QAM are portrayed in Table 4.1.

Table 4.1: Examples of quantization vectors.

Modulation scheme g°*
BPSK [1]
QPSK Ll
16QAM ﬁ[1, 17, 2, 2j]
64QAM \/%[1, 17, 2, 25, 4, 4]

Furthermore, we define(@&m, x m;)-dimensionafuantization matrixQ = I ® g, wherel is an(m; x
my)-dimensional identity matrix ang is the aforementioneduantization vectgrwhile ® denotes the

matrix direct produc{150]. Consequently th&1-QAM-modulated signal vectar may be represented as
s = Qt, (4.46)

wheret = [t],---, t; |7 is a column supervector comprising the bit-based vedtoassociated with each
transmitted signal vector component Substituting Equation (4.46) into the system model of Egua
(4.1) yields

y = HQt + w. (4.47)

Moreover, since is a real-valued vector, we can elaborate a bit further amllick a real-valued system

model as follows

y = Riyh | _ | RHQ t+ Riw) = Ht+ W, (4.48)
Iy} I{HQ} I{w}

whereH is a real-valued2n, x bm;)-dimensional bitwise channel matrix. Observe in Equatina?) that

the requirement of having constant-modulus symbols isfeadi by the modified system model of Equation
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Algorithm 11 Bit-Wise OHRSA-aided ML SDM Detector

H= [ 7;{{38}} } (4.49a)
Sort{H}, such that |[(H){|* < --- < ||(H),|? (4.49b)
G = (H'H + 021) (4.49c¢)
U = CholeskyDecomposition(G) (4.49d)
x = G 'Hy (4.49)
Calculate J, (4.49f)
Unsort{t} (4.499)
function Calculate J; (4.49n)
iy
ai =Y uij(fj —%j) (4.49))
j=i+1
Sort{d}, such that ¢;(d1) < ¢i(da), (4.49))
where ¢;(d) = |uji(d — %) + a;|? (4.49K)
for m=1,2 do (4.490)
fi=d, (4.49m)
Ji = Jis1 + ¢i(£;) (4.49n)
if Ji < Jmin then (4.490)
if >0 then Calculate [; 4 (4.49p)
else
Jmin = Jo (4.49q)
t=t (4.49r)
end if
end if
end for

end function

(4.47), since we havg;|*> = 1 and thus the method described in Section 4.2.1 and sumrdani2dgorithm

10 is applicable for the evaluation of the bitwise ML estienbbf Equation (4.47). Consequently, we apply
the following changes to Algorithm 10:

1. Include the evaluation of the bitwise channel maHiin (4.49a) and

2. Adjust the number of candidate bit valuesafo d,, = {—1,1} in (4.49I).

Hence we arrive at a new detection technique, namely thei&it@HRSA-aided ML SDM detector, which

is summarized in Algorithm 11.

In order to further explore the operation of Algorithm 11ustconsider the search tree diagram depicted
in Figure 4.4. The search-tree diagram depicted in Figyredrresponds to the scenario of a system, which

employs QPSK modulation and,=#n,=8 transmit and receive antennas, while operating at the geera
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SNR of 6 dB. Each circular node in the diagram represents eabilidatef;. The bold and hollow nodes
denote the binary values of the Bit= {—1,1} assumed in the current step of the recursive search process.
The corresponding signal vector candidaties: {Ej}j:i,...,, of the transmitted bit-based signal vectare
represented by the complete search branches startingmbdigpO and ending at the bottom, namely at level
16 of the search tree. Furthermore, the values of the CSGidunk(f;) associated with each branéhof

the search tree of Figure 4.4 are indicated by both the calodithickness of the transitions connecting each
child or descendenhodet; with the correspondingarentnodet;. . The reference scale of the objective
function values ranging fromi = 0 at the top tree level 0 to a value pf= 2.6 at the bottom tree level 16

is depicted on the left of Figure 4.4. For instance, the fittsiiged signal candidate associated with the left-
most search branch of Figure 4.4 may be associated with thé bhary vectof; = [0111101000110111].

As suggested by the bottom node of the left-most search biarkéigure 4.4, the corresponding value of the
objective function igl; = J(t;) ~ 2.6. Subsequently, only the specific branches of the searcth&éag

their objective function valueg (t;) below J; are pursued. The second candidate solution attained by the
search tree of Figure 4.4 is constituted by a binary vettes [0111101000100101], which differs from

the first candidaté, in its last five bits and has the associated objective funataue of], = J(f;) ~ 2.1.
Finally, the ML solution is constituted by the last searcarmh, reaching the bottom level 16 of the search
tree in Figure 4.4, namely the binary vectg, = [1111001110100101] associated with the corresponding
objective function value ofyi. = J(tmr) & 1.7. Observe that the ML solution is attained in 139 evaluation

steps in comparison to tfE® = 65536 evaluation steps required by the exhaustive ML search.
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Figure 4.4: Example of a search tree formed by the BW-OHRSA method of Atigm 11 in the scenario
of QPSK,m=n,=8 and an average SNR of 6 dB. Each circular node in the diagrprasents a subvector
candidate; = {F]-}]-:i,...,r of the transmitted bit-based signal vectoiThe bold and hollow nodes denote
the duo-binary values of the Hit= {—1,1} assumed. The corresponding value of the CSC fungtidn)
quatified in Equation (4.17b) is indicated by both the colod #he thickness of the transitions connecting
each child nodé; with the corresponding parent notle ;. The ML solution is attained in 139 evaluation

steps in comparison to tie® = 65536 evaluation steps required by the exhaustive ML search.
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4.2.3 OHRSA-aided Log-MAP SDM Detection

It is evident [28] that the BER associated with the processoofimunicating over a noisy fading MIMO
channel can be dramatically reduced by means of employiagrei coding. A particularly effective chan-
nel coding scheme is constituted by thaft-input soft-outputurbo coding method [26]. Turbo coding,
however, requiresoftinformation concerning the bit decisions at the output ef 8DM detector, in other

words thea posteriorisoft information regarding the confidence of the bit-dexiss required.

The derivation of an expression for the low-complexity eadilon of the soft-bit information associated
with the bit estimates of the SDM detector’s output charéze by Equation (4.5) is given in [28]. Here,

we present a brief summary of the results deduced in [28].

The probability of thenth bit of the QAM symbol transmitted from théh transmit antenna element is

determined by thékelihood function, which may be expressed as follows [136]

P(bim) = Y, P($)p(yls H), (4.50)
seMM
where we define
MU — {s — (81, 5m)T € Mforj A1, 5 € an} (4.51)

and M!, denotes the specific subset of the entire/s€f modulation constellation phasors, which com-

prises the bit valué = {0, 1} at themth bit position.

Correspondingly, the soft-bit value associated withvittle bit of the QAM symbol transmitted from the

ith transmit antenna element is determined by the log-hikeld ratio (LLR) values defined in [136] as

r 1 P(bim = 1) 1 de/\/ﬂ?’”t P(é)p(y|§, H) (4 52)
im =10 =lo n____ I .
EPbm=0  °%, i PEP(YIEH)

However, the direct calculation of the accumulatgosterioriconditional probabilities in the nominator
and denominator of Equation (4.52) may have an excessiveleaity in practice. Fortunately, as advocated

in [28], the LLR values characterized in Equation (4.52) rhayclosely approximated as follows

max,_  on P(8)p(3]y, H)
Lin ~ log ( SEMin , (4.53)

maxéeM?;nt P(8)p(sly, ﬁ>

where we assume equiprobable transmitted phasansl hence may elaborate a little further. Namely, we

have
x1 H
Lo ~ log P(y!flom ) (4.54)
p(yls;, H)
where we define
s —arg max p(y[$,H), b=0,1. (4.55)
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As suggested by the nature of Equation (4.54), the deteptimress employing the objective function deter-
mined by Equations (4.54) and (4.55) is usually referredsttiha Logarithmic Maximund Posteriori(Log-
MAP) probability detector.

A practical version of the Log-MAP detector may be deriveda®ws. Substituting Equation (4.4)
into Equations (4.52) and (4.50) yields

Plb) = Y exp (— ! Hy—H§H2> (4.56)

2
_ 1.0
seMim T
and

Y qtime OXP (—ﬁ”y - H§||2>

im

1 , (4.57)
ZéGM?r;th exp (_ 103 ly — H§H2>

Ly, = log

respectively. Note that Equation (4.57) involves two surtioms over2 ! exponential functions. This
operation may potentially impose an excessive computatioomplexity for large values ofi; and/orr.
However, as demonstrated in [28], the expression in (4.5%) loe closely approximated by a substantially

simpler expression, namely by

1 )4 v
Lin~ — |y — H8}, | — lly — Hs}, ||, (4.58)
™w
where we have
sf —arg min |y—H3|? b=0,1, (4.59)
seMpt

and ag]ain,/\/lf,;Tt denotes the specific subset of the entire s€t* of signal vector candidates associated
with the modulation scheme employed, which comprises thedieb = {0,1} at themth bit position of

theith signal vector component.

The Log-MAP detector defined by Equations (4.58) and (4.58y be applied for obtaining the soft-bit
information associated with the bitwise OHRSA ML SDM detealerived in Section 4.2.2. Consequently,
substituting the bitwise system model of Equation (4.4%) (@.58) and (4.59) yields

1 (1Y ~
Lo~ (lly = Bl |2 = ly — HE,5,[12] (4.60)
™w
where we have
Eimin = arg pmin, ly — B, b=0,1 (4.61)

1

and Df” denotes the subset of the entire $¥t of (r =mlog, M)-dimensional bitwise vectors, which

comprise the binary valug = d, = {—1,1} at theith bit position.
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Furthermore, substituting the bitwise objective functidicquation (4.58) into (4.60) yields

1 . .
‘Ci %nr%% [I(t(i);min) + 4) - ](tzl;min) - 4)]
1 10 M|
= ”rUz% |:](ti;min) - ](ti,'min)] ’ (462)
wheref;j?mm and the corresponding cost function vaﬁ@églmin) may be obtained by applying the constrained

OHRSA-aided ML detection method derived in Section 4.2.2.

Consequently, the evaluation of the bitwise Max-Log-MAHmeates of the transmitted bitwise signal
vectort involves repetitive evaluation &fr constrained ML estimatel§’ . along with the associate2y

values of the objective functiof(t”. . ).

i;min
Example 4. OHRSA-Log-MAP BPSK 3x3
Consider a BPSK system having = m; = 3 transmit and receive antennas, which is described by

Equation (4.1). The transmitted sigrsareceived signay as well as the channel matik of Equation (4.1)

are exemplified by the following values

-1 0.2 01 -1 1.1
s=1| 1|, y=| 03 |, H=| —02 07 —-07 |- (4.63)
1 —0.5 04 05 —05

Observe that the channel matiik of Equation (4.63) happens to best-firstordered and does not require
any further reordering. Furthermore, in our scenario of Bt dulation the channel matrid of Equation

(4.63) is equivalent to the bitwise channel maifbof Algorithm 12.

Subsequently, our task is to obtain the Log-MAP estimatéefttansmitted signal vectér= s. We
apply the OHRSA-Log-MAP method of Algorithm 12. Firstly, wealuate the triangular matrl¥ of Equa-
tion (4.82d) as well as the unconstrained MMSE estiftaiEEquation (4.82¢). The resultant quantities are

given by
0.56 —0.07 0.09 —0.80
U= 0 135 —-135|, x=| —0.01 |- (4.64)
0 0 0.46 0.13

Secondly, as further suggested by Algorithm 12, for eachstratted bitwise symbol; we calculate the

quantities] (f 1

i;min

associated with the constrained ML estimates of the tratetnbitwise vectot with theith bit-component

) and] (E}/,min) corresponding to the values of the cost functjgh) of Equation (4.820)

assuming values of 1 and1, respectively.

For instance, the cost function valyiéf; ! . ) associated with the ML estimate of the bitwise signal
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vectort constrained by bit-component valéie= —1 may be calculated as follows

Ja(ls = 1) = |uss(f3 — %3)|? = (0.46(1 — (0.13)))? = 0.16,
ay(f3 = 1) = ups(f3 — £3) = —1.35(1 — (0.13)) = —1.17,
Jo(fo =1, =1) = 3(ls =1) + [un(f, — %) + ap|?

=0.16 + [1.35(1 — (—0.01)) + (—1.17)|* = 0.20. (4.65)

Furthermore, we have

a(fa =1,1 = 1) = upp (b — £2) + w3(f3 — £3)
= —0.07(1 — (—0.01)) +0.09(1 — (0.13)) = 0.00,
JE ) = h(h=-1E=15=1)
=Nhbh=1k=1)+un(fh — %) +a]?

= 0.20 + [0.56(—1 — (—0.80)) + (0.00)[2 = 0.21. (4.66)

Observe that for the sake of brevity we omit the calculatibhhe CSC values outside the major search

branch of Algorithm 12,. e. outside the search branch leading to the constrained Mimasti The

1
min

corresponding search tree formed by the evaluation of thﬂ%\lﬁ](éi ) using Algorithm 12 is depicted

in Figure 4.5(a). Furthermore, Figures 4.5 (b)-(f) illag& the search trees formed by the search sub-

b=-1,1

processes of Algorithm 12 corresponding to the remaiﬁmalues{](égmm) }i:1 5

b=—1,1
Finally, upon completing the calculation of aik values{](éﬁ’;mm)} s we arrive at the following

i=1
matrix

021 1.21
= )}, = (@.67)
J= Si.:min s 033 0.21 |, :
0.33 0.21
where the elements of the matjixwhich we refer to as Minimum Cost Function (MCF) matrix, dedined
as fij =] (éib;jrnin>' Consequently, theoft-bit vector representing the Log-MAP estimate of the transuhitte
bitwise signal vectot may be expressed as
-9
1 .. R
L= 2 [(D1i—=0)2] =1 12 |, (4.68)

1.2

Where(j)]- denotes thgth column of the MCF matrij defined in Equation (4.67).
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Figure 4.5: Example of search trees formed by the OHRSA-Log-MAP SDM aeteof Algorithm 12 in

the scenario of a system employing BPSK modulatiep,= n, = 3 transmit and receive antennas and

encountering average SNRs of 10dB. The labels indicatertter of visitation, as well as the corresponding

valueJ;(;) of the CSC function of Equation (4.820), as seen in the bitacke
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Example 5. OHRSA Approximate Log-MAP BPSK 3x3

Again, consider a BPSK system identical to that describeixample 4. Specifically, we have(a x 3)-

dimensional real-valued linear system described by Equé#i.1) with the corresponding transmitted signal
s, the received signat and the channel matrild described in Equation (4.63). In this example we would
like to demonstrate an alternative search paradigm, whioitda the repetitive process characterized by

Algorithm 12 and examplified in Figure 4.5 of Example 4, whiletaining a similar result.

Firstly, we apply the OHRSA-ML method of Algorithm 11. Themgular matrixU of Equation (4.49d)
as well as the unconstrained MMSE estimiatd Equation (4.49e) are similar to those evaluated in Exampl
4 and are characterized by Equation (4.64). The resultamtisg@rocess is characterized by the search tree

diagram portrayed in Figure 4.6(a).

Additionally, however, we define@ x 2)-dimensional Minimum Cost Function (MCF) matfixwhich
will be used for evaluation of the soft-bit information, aasbign to it an initial value of = ], 1, wherel is
a (3 x 2)-dimensional matrix of ones arjg > -y is some large constant, which should be greater than the
average SNR of = 10 encountered. For instance let us assygne 100. Subsequently, the cost-function-
related matriy is updated according to a procedure to be outlined below @ehwhen the search branch
forming the search tree portrayed in Figure 4.6(a) is teataith, regardless whether its termination occured
due to reaching the final recursive index value ef 1, or owing to exceeding the minimum value of the
cost function]min. More specifically, we update the elements of the mgtiworresponding to the bitwise
symbolsf]-, j=1,---,3constituting the bitwise subvector candidgtassociated with the particular search

branch, as outlined below
Jip, = min {fjb]-/]i({i)} ,j=iee 3 F={-11}. (4.69)

For instance, upon completing the first, left-most seare@mdin depicted in Figure 4.6(a) and associated
T
with the transmitted signal candiddte= [ -1 1 1 } , hamely upon reaching the node number 3 of the

search tree, the following update of the MCF majris performed

fiu = min {fi1,J(§)} = min {100,021} = 0.21
f2 = f32 = min {100,021} = 0.21. (4.70)

Consequently, the matrijkbecomes

021 100
J3) =1 100 021 (4.71)
100 0.21
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Furthermore, the states of the MCF matrix correspondingéasearch steps 4, 5 and 6 of Figure 4.6(a) are

021 1.21 021 121 021 1.21
jJ4o) =110 o021 |, J6)=1 645 021 |, J6)=| 645 021 |. (4.72)
100 0.21 100 0.21 027 021

Finally, by substituting the resultant value of the MCF rixafi(6) into Equation (4.68) we obtain the

following soft-bit estimate of the transmitted bitwise rs& vectort

-9
L,= | 6239 |- (4.73)
0.60

Observe that the soft-bit estimat®, of Equation (4.73) appears to be considerably more relitide
the MMSE estimate of Equation (4.64). Specifically, as opposed to the MMSEwsiE x in Equation
(4.19) the direct slicing of the soft-bit estimafg results in the correct signal vectsiof Equation (4.63).
Moreover, the soft-bit estimaté, provides further information concerning the reliabilityeach estimated
bit, albeit the resultant soft-bit information of Equati@h73) substantially deviates from the more reliable

exact Log-MAP estimaté given by Equation (4.68).

Fortunately, however, the precision of the soft-bit estand, may be readily improved. Specifically,
we introduce an additional parametemwhich will allow us to control the rate of convergence in gearch
process of Algorithm 11 by increasing the threshold valuthefCSC function, which controls the passage
of the recursive search process throlmh likelihoodsearch branches having CSC function valfjég) in
excess 0P Jmin, as opposed tnin of Equation (4.490) in Algorithm 11. Let us now execute thedified
OHRSA-ML method of Algorithm 11, where the conditign< Jnin of Equation (4.490) is replaced by the

corresponding condition gf < o /min-

The search trees formed by the execution of the modified Algarll in the scenarios of setting (b)
p = 1.3 and (c)p = 2.0 are depicted in Figures 4.5 (b) and (c), respectively. feurtiore, the convergence

of the MCF matrixj as well as the resultant soft-bit estimatén both scenarious may be characterized as

follows
021 1.21 021 1.21 -9
(b) J(7)=| 031 021 |, J(8 =031 021 |, L= 0.99 (4.74)
031 0.21 031 0.21 0.99
and
021 1.21 021 1.21 -9
(c) J(8) =033 021 |,J(10)=| 033 021 |, Lc=]| 12 |, (4.75)

033 0.21 0.33 0.21 1.2
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where as beford,(n) denotes the state of the MCF matrix at search steprresponding to theth node

of the search tree in Figures 4.5 (b) and (c). Note that theeBgaocesses characterized by Figures 4.5 (b)
and (c) merely expand the search process portrayed in Higha). Consequently, for the sake of brevity,
the corresponding Equations (4.74) and (4.75) depict drdyektra states of the MCF matrix introduced by
the expanded search procedure. For instance, the §fatésandj(8) of Equation (4.75) complement the
state] (7) of Equation (4.74), as well as the staj¢s),J(5),J(4) andj(3) of Equations (4.71) and (4.72),

respectively.

Finally, by comparing the resultant soft-bit estimai&s £, and £, of Equations (4.73), (4.74) and
(4.75) corresponding to the scaling valuegpof 1.0,1.3 and2.0 to the corresponding Log-MAP estimate
L of Equation (4.68), we may hypothesize that the value of dielst estimate obtained by the modified
OHRSA-ML method of Algorithm 11 rapidly converges to the EWBAP estimate of the OHRSA-Log-
MAP method of Algorithm 12 upon increasing the value of theapaeterp. As expected, there is a tradeoff
between the accuracy of the soft-bit information obtained the corresponding computational complexity
associated with the particular choicefln the next section we will generalize the results obtaiinetthis
example and substantiate the aforementioned convergelated hypothesis, as well as deduce the optimal

value of the associated scaling parameter
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Figure 4.6: Example of the search trees formed by the modified OHRSA-MMSitector of Algorithm

11 using different values of the paramegtenamely, (ap = 1.0, (b) 1.3 and (c)2.0. We consider a system

employing BPSK modulationpy = n, = 3 transmit and receive antennas and encountering an average

SNR of 10dB. The labels indicate the order of evaluation, e as the corresponding valygs;) of the

CSC function of Equation (4.16), as seen in the brackets.
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4.2.4 Soft-Input Soft-Output Max-Log-MAP SDM Detection

The OHRSA aided Max-Log-MAP SDM detection method outlined®ection 4.2.3 may be easily adopted
for the sake of expoiting ang priori bit-related soft information available. More specifically Section
4.2.3 we assumed having equiprobable transmitted ph&sdaZ®rrespondingly, in order to accommodate
any availablea priori probability informationP(£;) associated with the estimated bit valugs =1, - - - ,r,

Equations (4.60) and (4.61) may be modified as follows

1 ~ ~
L~ |y = B = lly — HE 17 (4.76)
w
and
. . — Hi|?
t0 i = arg min {—log(P(t)) + u} , b=01, (4.77)
teD;"” Cw

where, againl)f” denotes the subset of the entire B€tof (r=m; log, M)-dimensional bitwise vectors,

which comprise the binary valde = d, = {—1,1} at theith bit position.

In practice, the probability-related soft information edated with the estimated bit-valuésis con-
veyed using the LLR values;. Correspondingly logorithm of the probability valieg(P(t)) of Equation

(4.61) may be calculated as follows [26]

log(P(¥)) =) P(L), (4.78)
where we have
P(f; = —1) = JacLog(0, L;) (4.79)
and
P(f;=1) =1 — JacLog(0, L;), (4.80)

whereJacLog(-) denotes the Jacobian logarithm [151] defined@siog(a,b) = log(e” + ¢').

The resultant priori probility valuesP(#;) may be incorporated the OHRSA SDM detector of Algo-
rithm 11. Namely, cost function constitugpitof Equation (4.49K) is redefined for the sake of accomodating

thea priori log-probabilistic informatiorP(f;) as follows
(Pz(d) = |uii(d — J?l‘) + al-]2 — UZZUP({Z) (481)

The pseudo-code describing the implementation of the d#wsoft-input-soft-output OHRSA Max-Log-
MAP SDM detector is summarized in Algorithm 12.

Clearly, the repetitive nature of the search process amgdidquations (4.82f,i-r) in Algorithm 12 and ex-

emplified by Example 4 imposes a substantial increase indsecaated computational complexity. Hence,
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Algorithm 12 Bitwise SISO-OHRSA-LogMAP SDM Detector

Ao [ R0
Z{HQ}

Sort{H}, such that ||(H){[*> < --- < [|(H)m,]?

G = (H'H + 721)

U = CholeskyDecomposition(G)

x = G 'Hly

for i=1,---,r

1
Lim = 0_2 |:]8min - ]il,'min]

w

end for
Unsort{L;}i—1..,

function Calculate ],Iz,.l-
ai= ) w(fj—%)
if i=k then
do = {-1,1},
else
Sort{d,, = —1,1},
such that ¢;(dy) < ¢;(dy),
where ¢;i(dy) = |ui(dy — %) + a;]* — o5 P(F)
end if
for m=0,1 do
fi = dy
Jii = Jkiv1 + ¢i(dm)
if J; < Jmin then
if i>0 then Calculate ],l(’;i_l
else
Jmin = Jtmin = Jio
end if
end if
if i=k thenbreakfor loop

end for

end function

(4.82a)

(4.82b)

(4.82¢)
(4.82d)

(4.82¢)

(4.82)

(4.82)

(4.82h)

(4.82i)

(4.82j)

(4.82K)
(4.821)

(4.82m)

(4.82n)
(4.820)
(4.82p)

(4.820)

(4.82r)
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in the next section we derive an OHRSA-aided approximate-Méd® method, which is capable of ap-
proaching the optimum Log-MAP performance, while avoidihg repetitive evaluation of Equation (4.82f)

in Algorithm 12 and therefore imposes considerably redwmedplexity requirements.

4.2.5 Soft-Output Optimized Hierarchy-Aided Approximate Log-MAP SDM Detection

Let us define thér x 2)-dimensional Bitwise Minimum Cost (BMC) function matrjxhaving elements as

follows
Jo=J®),i=1,--,r,b=—1,1, (4.83)

Whereff? is defined by Equation (4.59). Using the BMC matrix of Equai{4.83), Equation (4.62) may also
be expressed in a vectorial form as
1 .. .
L=—[J)1—0)], (4.84)

UZU

where, as before(j)b denotes théth column of the matrij having elements defined by Equation (4.83).

Consequently, in order to evaluate the bit-related softrinfition we have to populate the BMC matrix
j of Equation (4.83) with the corresponding values of the éasttion of Equation (4.83). Observe, that
the evaluation of the ML estimafiewill situate half elements of the cost matfjxwith the corresponing

minimum value of the cost function associated with the Mlineate, such that we have
Jw=J®),i=1--,r,b=1F. (4.85)

Subsequently, let us introduce the following adjustmemtsigorithm 11. Firstly, we introduce an additional
parametep, which we refer to as thsearch radius factorMore specifically, the parametgrallows us to
control the rate of convergence for the tree search prodesfggorithm 11 and affects the cut-off value
of a CSC function, which limits the passage of the recursadagch process throudbw-likelihood search
branches having the a CSC function vaJyd;) in excess 0pJmin, as opposed tfin. Thus, the following

rule replaces Rule 4 of Section 4.2.1.1.

Rule 4a At each recursive detection levglonly the high-probability search branches corresponting
the highly likely symbol candidates, resulting in low values of the CSC function obeyifiifc,,) < pJmin
are pursued. Furthermore, as follows from the sorting riviteof the optimisation Rule 2, as soon as the

inequality J;(c,,) > pJmin is sutisfied, the search loop at thil recursive detection level is discontinued.

Secondly, we introduce an additional rule, which faciisathe evaluation of the elements of the BMC

matrix J of Equation (4.83). Explicitly, we postulate Rule 5.
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Rule 5 At each arrival at the bottom of the search tree, which cpoeds to search level 1, the resultant
value of the branch cost functiof(t) is utilized to populate the elements of the BMC maffjxwhich
correspond to the bitwise signal componehtsomprising the obtained signal candidateNamely, we

have
fi =min{f, J®)}, i=1,---,r, b=1F (4.86)

Subsequently, we suggest that the evaluation of the BMCixnftwhich is performed in the process
of the ML search of Algorithm 11 extended by Rule 4a and usingeF will allow us to provide reliable
soft-bit information, while imposing a relatively low comational complexity. The main rationale of this
assumption will be outlined in our quantitative complexdyd performance analysis portrayed in Section

4.2.5.1.

As we will further demonstrate in Section 4.2.5.1, the resulapproximate Log-MAP SDM detector
exhibits a particularly low complexity at high SNR valuesn tbe other hand, at low SNR values the asso-
ciated complexity substantially increases. Consequeintlgrder to control the computational complexity
at low SNR values, we indroduce the additional complexawptml parametery. Our aim is to avoid the
computationally demanding and yet inefficient detectiothefspecific signal components, which have their
signal energy well below the noise floor. More specificallg modify Equation (4.49p) of Algorithm 11

according to Rule 6.

Rule 6 The branching of the tree search described by Algorithm lXfuiscated, if the SNR associated
with the corresponding signal component is lower than theevaf the complexity-control parameter In
other words, the search along a given branch is truncated ﬁawe% <.

Upon applying Rules 4, 5 and 6 in the context of the OHRSA-Mlthrod of Algorithm 11, we arrive
at anapproximateOHRSA-Log-MAP SDM detector, which avoids the repetitiveusd required by the
OHRSA-Log-MAP SDM detector of Section 4.2.3. The result@iRSA-aided approximate Log-
MAP SDM detector, which we refer to as the Soft-output ORtediHIErarchy (SOPHIE) SDM detector is

summarised in Algorithm 13.
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Algorithm 13 SOPHIE Approximate Log-MAP SDM Detector
T R{HQ} }
H= 4.87a
| Z{no) @872
Sort{H}, such that |[(H){[? < --- < |[(H),|? (4.87b)
G = (H'H + 021) (4.87¢)
U = CholeskyDecomposition(G) (4.87d)
% =G 'Hy (4.87e)
Calculate |, (4.87f)
1 ... <
L=—[(J)o— ()] (4.879)
U-ZU
Unsort{L;}i—1,.. , (4.87h)
function Calculate J; (4.871)
Mt
a; =) uy(fj— %) (4.87))
j=i+1
Sort{d}, such that (Pz(dl) < (Pi(dZ)/ (4.87k)
where (Pl(d) = ’I/lii(d - 5&1‘) + 01’2 — Ugip(fl) (4.871)
for m=1,2 do (4.87m)
fi=d, (4.87n)
Ji = Jisa + ¢i(F) (4.870)
if J; < pJmin then (4.87p)
H) |2
if i>0and M > 7 then (4.87q)
w
Calculate [;_1 (4.87r)
else
]min - min(]i/ ]min) (4-873)
for j=1,---,r (4.871)
f]fj - mln{fﬂ]/]({)}/ ] = 1/ e, F (487U)
end for (4.87v)
end if
end if
end for

end function
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4.2.5.1 SOPHIE Algorithm Complexity Analysis.

As it was pointed out in [28] , “the brute-force” ML SDM detemt method does not provide a feasible
solution to the generic SDM detection problem, as a resulh®fExcessive associated computational com-
plexity. More explicitly, the ML SDM detector advocated 2g] has a computational complexity, which is

of the order of
CmL = O{]\/Imt . (3nr + 2nrmt)}, (4.88)

where3n, + 2n,.m; is the complexity associated with a single search step, lyamith the evaluation of the
objective function valué|Hs — y||?, while M is the number of legitimate candidates of the transmitted
signal vectors. Clearly, the order of complexity imposed by Equation (4.B8comes excessive for a
large number of transmit antennasg. in the case of employing 16QAM and;, = n, = 8 transmit
and receive antennas, where the computational comples$ycéated with ML detection is of the order of
10”7 complex operations per channel use,16¥ complex operations per OFDM symbol formed Ky=

128 subcarriers. Furthermore, the evaluation of the softfifibrimation required by an efficient turbo-
decoder implementation imposes a further substantiab@rse of the associated computational complexity.
Specifically, the soft-output Log-MAP SDM detector advechin [28] has a computational complexity,

which is of the order of

Cim = O{milog,M - 2108 M=1 (351 4 2y my) . (4.89)

On the other hand, the MMSE SDM detector derived in [28] dansts the low-complexity SDM de-
tector. The complexity imposed by the MMSE SDM detector &][thay be shown to be of the order

of
Cyvvise = O{my + mynZ + min, + men, }. (4.90)

Clearly, the MMSE SDM detector's complexity is substamyidbwer than that associated with the ML
or Log-MAP SDM detectors. Specificallg.g. only 1600 complex operations are required for detecting
16QAM signals transmitted and received fay = n, = 8 transmit and receive antennas. Unfortunately,
however, as it was demonstrated in [28] the achievable paénce exhibited by the linear MMSE SDM
detector is considerably lower than that attained by ther@ti_og-MAP SDM detector advocated in [28] .
Moreover, linear SDM detectors, such as the MMSE detectes dot allow for the high-integrity detection
of signals in the over-loaded scenario, where the numbdreafransmit antennas exceeds that of the receive

antennas.

Consequently, in Sections 4.2.2, 4.2.3 and 4.2.5 we haveedea family of methods, which com-

bine the advantageous properties of the ML and Log-MAP detgcwhile imposing a substantially lower
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complexity. In this section we demonstrate that the contfmutal complexity associated with the SOPHIE-
aided Log-MAP SDM detector of Algorithm 13 is in fact only gifitly higher than that imposed by the
low-complexity MMSE SDM detector advocated in [28] , white performance is virtually identical to the

performance of the Log-MAP SDM detector [28] .

The direct calculation of the complexity associated with @HRSA methods of Algorithms 11, 12 and
13 is infeasible, since the complexity a random variableictvis a function of several parameters, such as
the numbenn, andn, of transmit and receive antennas, the average SNR encedrdsrwell as the value
of the parametep in Algorithm 13. Therefore, we perform the correspondingnpexity analysis using

computer simulations.
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Figure 4.8: (a) Computational complexity quantified in terms of the total number of real multiplica-
tions and additions per detected QPSK symbol and (b) thespondingBER exhibited by the rate half
turbo-codedSDM-QPSK-OFDM system employing the different SDM detection methods a®rsid at
SNR=6dB. The abscissa represents the numhee n, = 1,---,8 of transmit and receive antenna ele-
ments. We employ COST-207 BU channel model [119]. We empl@y G207 BU channel model [119].

Additional system parameters are summarized in Table 1.4.

Figure 4.8(a) illustrates our comparison between the coatipmal complexity required by different
SDM detection methods, namely the linear MMSE detector eabeanl in [28] , the SIC detector of [28,
pp.754-756] , the exhaustive search-based ML and Log-MARBcts of [28] as well as the OHRSA-
aided ML, Log-MAP and SOPHIE SDM detectors of Algorithms 12,and 13, respectively. The results
depicted in Figure 4.8(a) correspond to fladly-loaded scenario, where we have; = n, transmit and
receive antennas. Observe that the complexity associatadoath the OHRSA-ML and SOPHIE SDM
detectors is only slightly higher than that imposed by the #MSDM detector and is in fact lower than the
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complexity imposed by the SIC SDM detector.

Furthermore, the achievable performance of the SDM-OFDMesy employing the different SDM
detection methods considered is depicted in Figure 4.80serve that both the OHRSA-Log-MAP and
SOPHIE SDM detectors considerably outperform the linear3Bwietector. Moreover, the associated BER
decreases upon increasing the number of transmit and eearitennasi; = n,, which suggests that as
opposed to both the MMSE and the SIC SDM detectors, the OHR&EAMAP SDM detector is capable of
achieving spatial diversity even in ttigly-loadedsystem. In other words, it is capable of simultaneously

achieving both multiplexing and diversity gains, while mtaining a low computational complexity.

The relatively low performance of the OHRSA-ML SDM detectoay be attributed to the fact that it
produces no soft-bit information and therefore the efficyeaf the turbo code employed is substantially
degraded. Moreover, observe that while the SIC SDM detexitgerforms its MMSE counterpart at high

SNR values [28], the achievable performance of the two nustlim fairly similar at low SNR values, such

as 6dB.
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Figure 4.9: Computational complexity quantified in terms of the total number of real multiplicatscand
additions per detected QPSK symbol. We considerQrRSA-ML, OHRSA-Log-MAP and SOPHIE
SDM detection methods of Algorithms 11, 12 and 13, respebtiAdditionally, we show the correspond-
ing computational complexity required by the low-comptgtinear MMSE SDM detector as well as the

optimum exhaustive Log-MAP detector. The abscissa reptesiee average SNR encountered.

Additionally, Figure 4.9 illustrates the complexity im@usby the OHRSA methods of Algorithms 11,
12 and 13 as a function of the average SNR encountered. Eigu®e(a) and (b) portray the average

complexity encountered in the scenatiosmf= n, = 8 andm; = 8, n, = 4 transmit and receive antennas,
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respectively. Observe that the complexity associated both the OHRSA-ML and SOPHIE methods of
Algorithms 12 and 13 is mainly determined by the numiagof transmit antennas employed. Furthermore,
the complexity associated with the SOPHIE method closeliches that exhibited by the OHRSA-ML
method at high SNR values and the complexity exhibited by Inoeéthods is only slightly higher than the
complexity exhibited by the low-complexity MMSE SDM detect

4.2.5.2 SOPHIE Algorithm Performance Analysis
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Figure 4.10: Bit Error Rate (top) and the associatedmputational complexity per detected bit(botom)
exhibited by thet x 4 16QAM-SDM-OFDM system employing thEOPHIE SDM detector of Algorithm
13 and assuming different values of search radius and seesolution parameters (@)and (b)y. The
abscissa represents the averBgéN, recorded at the receive antenna elements. We employ COBB20

channel model [119]. Additional system parameters are sanized in Table 1.4.

In this section we present our simulation results charaitgr the SDM-OFDM system employing
the OHRSA-aided SDM detection schemes described in SedttanOur simulations were performed in

the base-band frequency domain and the system configuctamcterised in Table 2.1 is to a large extent
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similar to that used in [38]. We assume having a total banttwefl800kHz. The OFDM system utilises 128
QPSK-modulated orthogonal subcarriers. For forward aeroorection (FEC) we usé-rate turbo coding
[26] employing two constraint-lengtk = 3 Recursive Systematic Convolutional (RSC) component codes
and the standar@24-bit WCDMA UMTS turbo code interleaver of [131]. The octalfgpresented RCS
generator polynomials of (7,5) were used. Furthermore, wgl@y the eight-path urban non-line-of-sight
Bug Rayleigh-fading channel model characterised in [1E&ally, throughout this report we stipulate the
assumption of perfect channel knowledge, where the knaeled the frequency-domain subcarrier-related

coefficientsH|[n, k| is deemed to be available in the receiver.

Figure 4.10 characterises the achievable performancelbasibe associated computational complexity
exhibited by thet x 4 16QAM-SDM-OFDM system employing the SOPHIE SDM detectoAdgjorithm
13. More specifically, we analyse the associated performaarcsus complexity trade-offs of using various
values of the complexity-control parametgr&ndy. In Figure 4.10(a) we can observe how the achiev-
able BER performance (top) and the corresponding computticomplexity depend on the value of the
parametery. Using the results depicted in Figure 4.10(a) we may comchidt the optimum choice of
the complexity-control parameter lies in the rangd).5 — 0.8, where we have a minor BER performance
degradation of less thah5 dB, while achieving up to two orders of magnitude complerégiuction at low

SNR values, when compared to the full-complexity SOPHIB@Eigm assumingy = 0.

On the other hand, Figure 4.10(b) portrays both the achievBBER performance and the associated
compexity of thed x 4 16QAM-SDM-OFDM system for different values of the comptgxcontrol pa-
rametero. We may conclude that the optimum trade-off between thénattée BER performance and the
associated complexity is achieved, when the value of theptmiity-control parametes lies in the range of
1.3 — 1.5, where the BER performance degradation imposed does neeéfié dB, while the associated
computational complexity is reduced by more than an ordenadnitude, when compared to large values

of p, such as for instange = 2.0.

Furthermore, Figure 4.11(a) demonstrates both the BERmeance (top) and the associated computa-
tional complexity exhibited by thé8 x 8) 4, 16 and 64QAM SDM-OFDM systems employing the SOPHIE
SDM detector of Algorithm 13. Figure 4.11(b) characteriges 16QAM-SDM-OFDM system employing
the SOPHIE SDM detector of Algorithm 13 and having a constamhber ofn, = 4 receive antenna el-
ements in terms of its ability to detect the multiplexed sigrarriving from various numbers of transmit
antenna elements. Specifically, we aim for exploring théogperance of the SOPHIE SDM detector in the
overloaded system scenario, where the number of transteihaa elements exceeds that of the receiver
elements and thus we hawe > n,. Indeed, the BER curves portrayed in Figure 4.11 (top) confire
near-Log-MAP performance of the SOPHIE SDM detector of Aifpon 13 in both systems employing

high-throughput modulation schemes as well as in the ozddd system scenatrio.
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Figure 4.12 characterizes the computational complexifyosed by the SOPHIE SDM detector of Al-
gorithm 13 as a function of the numbet, = n, of transmit and receive antennas. More specifically, we
consider three ranges of SNR values: low SNRs, the critibdR Swvhich corresponds to the “waterfall”
region of the BER versus SNR curve, as well as high SNRs, wtoctesponds to the error-free detection
region. In Figure 4.12 we may observe that the computaticoi@plexity imposed by the SOPHIE detector
increases according to a polynomial law as a function of tivalver of transmit antennas for both high and
low SNRs.

Figure 4.13(a) demonstrates that the SDM-OFDM system gfimgahe SOPHIE SDM detector of
Algorithm 13 is capable of exploiting the available MIMO cimeel's multiplexing gain in the fully loaded
system scenario, when the number of the transmit antenmeester; is equal to that of the receiver antenna
elements:,.. More specifically, the results depicted in Figure 4.13(ajgest that the SDM-OFDM SOPHIE
SDM detector havingn, = n, = 8 transmit and receive antennas exhibits an SNR-relatedsitiyeyain
of 2dB at the target BER of0—#, as well as a factor four higher throughput, when compareatigsame

system employing two antennas at both the transmitter araives.

Additionally, Figure 4.13(b) characterises the SDM-OFDptem employing the SOPHIE SDM detec-
tor of Algorithm 13 and having a constant numbemgf= 4 receive antenna elements in terms of its ability
to detect the multiplexed signals arriving from various tems of transmit antenna elements. Specifically,
we aim for exploring the performance of the SOPHIE SDM detett the over-loaded system scenario,
where the number of transmit antenna elements exceedsftlia oeceiver elements and thus we have
m¢ > n;. We can see that as opposed to the MMSE SDM detector [28] @RHIE SDM detector exhibits
a good performance both when we have < n,, as well as in the over-loaded system scenario, when the
number of transmit antenna elements exceeds the numbee oétkive antenna elements, i.e. when we

havem,; > n,.
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Figure 4.11: Bit Error Rate (top) and the associatedmputational complexity per detected bit(bottom)
exhibited by thesDM-OFDM system employing th8OPHIE SDM detector of Algorithm 13 and assuming
= 1.3, v = 0.8. (a)8 x 8 system employing 4, 16 and 64 QAM, and (b) 16QAM system eniptpyg

fixed number of 4 receive antennas, as well as 4, 6 and 8 traasi@nnas. The abscissa represents the

averagef;, / Ny recorded at the receive antenna elements. We employ COBBQ&hannel model [119].

Additional system parameters are summarized in Table 1.4.
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summarized in Table 1.4.
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Figure 4.13: Bit Error Rate exhibited by theSDM-QPSK-OFDM system employingsOPHIE SDM
detector of Algorithm 13 in (a) fully-loaded scenario with = n, = 2,4,6 and8 transmit and receive
antennas, as well as (b) overloaded scenario with fixed nuwifbe, = 4 receive antennas and, =
3,4,---,8 transmit antennas. The abscissa represents the averageo¥al, / N, recorded at the receive
antenna elements and. We employ COST-207 BU channel motie]. [Additional system parameters are

summarized in Table 1.4.
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4.3 Conclusions

In this chapter we proposed a novel OHRSA-aided SDM detectiethod, which may be regarded as an
advanced extension of the CSD method. The algorithm probesends the potential range of applications
of the CSD methods, as well as reduces the associated cdiopataomplexity, rendering them a feasible

solution for implementation in practical systems.

Furthermore, we have shown that the OHRSA-aided SDM detpodposed combines the advantageous
properties of both the optimum-performance Log-MAP SDMedgir and the minimum-complexity linear
MMSE SDM detector, which renders it an attractive altexeafior implementation in practical systems.
More specifically, we have shown that the OHRSA-aided SDMdet proposed exhibits the following

advantageous properties 1-5 outlined in Section 4.2.

More specifically, the method can be employed in the ovellddascenario, where the number of trans-
mit antenna elements exceeds that of the receive antenmeert® while the associated computational
complexity increases only moderately even in heavily mased scenarios and is almost independent of
the number of receive antennas. Furthermore, as oppos¢aniasd CSD schemes [106], no calculation
of the sphere radius is required and therefore the methqubpeal is robust to the particular choice of the
initial parameters both in terms of the achievable perforteaand the associated computational complex-
ity. The overall computational complexity required is oslightly higher than that imposed by the linear
MMSE multiuser detector designed for detecting a similanbar of users. Specifically, the computational
complexity per detected QAM symbol associated with bothNiSE and SOPHIE SDM detectors is of
the order ofO{m?}, wherem; is the number of transmit antennas. Finally, the associevedputational

complexity is fairly independent of the channel conditigngntified in terms of the SNR encountered.
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Figure 5.1: Schematic of an iterative turbo receiver employing an fieeadecision-directed channel esti-

mator as well as an iterative detection and decoding module.

Despite the immense interest of both the academic and thestiia research communities, the con-
ception of a practical multiple-input multiple-output (MD) transceiver architecture, which is capable of
approaching the MIMO channel’s capacity in realistic crermonditions remains largely an open problem.
An important overview encompassing most major aspectsaddirand MIMO-OFDM wireless commu-
nications including both channel estimation and signatct&n, as well as time- and frequency-domain
synchronization was contributed by Stile¢al [67]. Other important publications considering MIMO sys-
tems operating in realistic channel conditions includeséhloy Miinster and Hanzo [69], kt. al.[66], Mali
et. al.[81], Ronenet. al.[116] as well as Qiaet. al.[80]. Nevertheless, substantial contributions address-

ing all the major issues pertaining to the design of MIMO s@givers, namely error correction, space-time
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detection as well as channel estimation in realistic chiacwmeditions remain scarce.

Against this background, in this chapter we would like tadduce an iterative, so callédrbo multi-
antenna-multi-carrier (MAMC) receiver architecture. Quibo receiver is illustrated in Figure 5.1. Fol-
lowing the philosophy of turbo processing [26], our turboNHFDM receiver comprises a succession of
detection modules, which iteratively exchange soft Hitexl information and thus facilitate a substantial

improvement of the overall system performance.

More specifically, our turbo SDM-OFDM receiver compriseethmajor components, namely the soft-
feedback decision-directed channel estimator detail&kction 2.9, followed by the soft-input-soft-output
OHRSA Log-MAP SDM detector derived in Section 4.2.3 as wslbaclassic parallel-concatenated soft-
input-soft-output turbo code [27]. Consequently, in thisgter we would like to analyze the achievable
performance of each individual constituent of our turbcereer, as well as the achievable performance of
the entire iterative system. Our aim is to document the varidesign trade-offs, such as the achievable

error-rate performance, the attainable data-rate as wéleaassociated computational complexity.

Against this background, in this chapter we derive an itegatso calledturbo multi-antenna-multi-
carrier (MAMC) receiver architecture. Our turbo receiv@illustrated in Figure 5.1. Following the philoso-
phy of turbo processing [26], our turbo SDM-OFDM receivemgrises a succession of detection modules,
which iteratively exchange soft bit-related informatiarmdahus facilitate a substantial improvement of the

overall system performance.

More specifically, our turbo SDM-OFDM receiver compriseethmajor components, namely, the soft-
feedback decision-directed channel estimator, discusseetail in Section 2.9, followed by the soft-input-
soft-output OHRSA Log-MAP SDM detector derived in Sectia2.8 as well as a soft-input-soft-output
serially concatenated turbo code [27]. Consequently,isndmapter we would like to analyze the achievable
performance of each individual constituent of our turbcereer, as well as the achievable performance of
the entire iterative system. Our aim is to identify the opimsystem configuration, while considering var-
ious design trade-offs, such as achievable error-rat@peance, achievable data-rate as well as associated

computational complexity.

In Section 5.4.2.4 we demonstrate that our turbo SDM-OFDBtesy employing the MIMO-DDCE
scheme of Section 2.9 as well as the OHRSA Log-MAP SDM detauftGection 4.2.3 remains effec-
tive in channel conditions associated with high terminaesfs of up to 130 km/h, which corresponds to
the OFDM-symbol normalized Doppler frequency of 0.006. #iddally, we report a virtually error-free
performance for a raté/2 turbo-coded 8x8-QPSK-OFDM system, exhibiting an effectivroughput of
8 MHz - 8 bits/s/Hz=64 Mbps and having a pilot overhead of only 10%MR of 7.5dB and a normalized

Doppler frequency 08.003, which corresponds to a mobile terminal speed of about 65km/
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5.2 Turbo Forward Error Correction Coding
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Figure 5.2: Scematic of an iterative turbo decoder employing two peligHconcatenated RSC codes.

The family of the so-calledurbo codes was first introduced by Berrat. al.[27, 152, 153]. The
properties of turbo codes have been extensively studieldercontext of various system architectures by
a multiplicity of authors, for instance Benedetto [154]t&# [155], Omeret. al.[156] as well as Hanzo
et. al.[26]. The plausible conclusion of these studies was théioteodes are capable of approaching the

capacity, while imposing a realistic computational corrje

Consequently, at the first stage of our iterative turbo keeirchitecture illustrated in Figure 5.1 we em-
ploy a turbo decoder. The detailed structure of the turbo@decconsidered is depicted in Figure 5.2. More
specifically, our turbo decoder is constituted by a pair oéfpal-concatenated soft-input-soft-output (SISO)
RSC decoders, which iteratively exchange informatiorrddiited extrinsic information in the form of LLR
valuesL., for the sake of attaining the highest possible reliabilityhe decoded information-carrying bits.
In this treatise we employed two ra%epunctured RSC codes [156]. Observe that the parallel-¢cenated
codes share the same information bits, while the correspormgrity bits at the output of the encoder are
punctured, which results in the overall concatenated catmaf%. The octally represented RCS generator
polynomials of (7,5) having the constraint length of 3 wesedifor both RCS codes. Observe that in the
introduction of this treatise, namely in Figure 1.3, we depi serial-concatenated turbo decoder. In con-
trast, as seen in Figures 5.1 and 5.2, in this chapter we getble parallel-concatenated code, reminiscent
of that derived in [27]. Both the parallel and the serial i@rs of turbo codes are applicable in our system.
Both methods were found to exhibit fairly similar perfornaanbut in the rest of this chapter we will focus

our attention on the former.

In this section we would like to quantify the achievable parfance of the turbo code considered in
the context of increasingly more sophisticated systemsnuanicating under increasingly more realistic
channel conditions. We commence our discourse by charantgithe achievable BER performance of
the turbo code in the uncorrelated Rayleigh fading in FiguBe Subsequently, in Figure 5.4 we consider
the BER performance of the turbo code in the context of a 1@&arier OFDM system encountering

both uncorrelated Rayleigh fading in the time-domain ad a®lcorrelated fading having a time-domain
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correlation determined by the OFDM-symbol-normalized plep frequency spanning the range fof =

0.1 t0 0.003.
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Figure 5.3: BER versusE, /Ny performance exhibited by the ra%eparallel-concatenated turbo code in
uncorrelated non-dispersive Rayleigh fading using skagienna single-carrier QPSK transmissions. The
CIR was the 7-path COST-207 BU model [119]. All our additibsystem parameters are summarized in
Table 1.4.

For the sake of characterizing the achievable BER perfoceman Figure 5.3 we portray the BER per-
formance of the parallel-concatenated turbo decoder derexil, when encountering uncorrelated Rayleigh
fading. More specifically, we considered a narrowband shugirrier QP SK-modulated system, which em-
ploys a time-domain random block interleaver encompashi@) consecutive bits. Observe, that the BER
performance exhibited by the turbo decoder improves rapigbn increasing the number of decoding iter-
ations performed. Furthermore, the decoder approachbsestpossible performance aftgghtiterations.

Consequently, in our further studies we consider perfogmjg. = 8 iterations by the turbo decoder.

On a similar note, Figure 5.4 characterizes the achievaglR Berformance of the turbo decoder con-
sidered in the context of a QPSK-modulated OFDM system,andriicountering a Rayleigh fading channel
exhibiting various correlation properties. For benchrnragkpurposes, we contrast the performance of a
narrow-band system encountering uncorrelated Rayleidimdaas well as that of & = 128-subcarrier
OFDM system encountering a dispersive channel having ueleted time-domain Rayleigh fading taps
specified by the COST-207 Bad Urban (BU) 7-tap CIR [119]. la ffrequency-domain this CIR results
in a corresponding correlated frequency-selective CTRhEtmore, we also consider the more realistic
scenario of & = 128-subcarrier OFDM system encountering correlated timealoRayleigh fading hav-

ing the Doppler frequencies ¢ = 0.1,0.03 and0.003 as well as a dispersive CIR characterized by the
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Figure 5.4: BER versusE, / Ny performance exhibited by thi€ = 128-subcarrier single-antenna QPSK-
OFDM system employing a rat? parallel-concatenated turbo code in correlated Rayleiginfy having
the OFDM-symbol-normalized Doppler frequenciesfpf= 0.1,0.03 and0.003. The CIR was the 7-path
COST-207 BU model [119]. All additional system parameteessammarized in Table 1.4.

COST-207 BU model [119].

From Figure 5.4 we conclude that as expected, while our tddmmder exhibits a good BER perfor-
mance [29] in uncorrelated Rayleigh fading, the correspaun®ER performance recorded in correlated
fading is substantially degraded owing to the relatively-lmemory 1000-bit turbo-interleaver, which is

unable to break up and randomize the long fading-inducest bursts.

5.3 lterative Detection — Decoding
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Figure 5.5: Schematic of a MIMO receiver employing iterative joint deten and decoding.

Figure 5.5 portrays the schematic of the iterative spane-tietector and decoder considered. Following
the philosophy of iterative turbo detection, the incomingearrier-related signal vectgin, k| is processed
by the soft-input-soft-output OHRSA Log-MAP detector ofgatithm 12, which delivers the bit-related

posterioryLLR valuesﬁggﬁ. The resultant LLR valueﬁ§§§ are then normalized and de-interleaved for the
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sake of generating tha priori bit-related LLR values£deS, which may be utilized by the turbo decoder

apr?
of Figure 5.5. Subsequently, tlzeposterioriLLR valuesﬁgg‘t? generated at the output of the decoder are
normalized, interleaved and fed back to the SDM detectdnerfarm of thea priori LLR values£det. This

apr*
iterative detection process is continued gk number of detection iterations.

As a next step, we would like to characterize the achievabttopnance of the iterative SDM detection
and decoding scheme illustrated in Figure 5.5. Throughuosisection we stipulate the idealistic assumption

of having a perfect knowledge of the OFDM-subcarrier-edaC TF.
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Figure 5.6: BER versus, / Ny performance exhibited by thé = 128-subcarrier rat% turbo-coded 4x4-
SDM-QPSK-OFDM system employing the iterative SDM detettimd decoding scheme of Figure 5.5 in
uncorrelated time-domain Rayleigh fading channel charastd by the COST-207 BU model [119]. The
effective throughput of the system wads 2 - % = 4 bits/sec/Hz. All additional system parameters are

summarized in Table 1.4.

Firstly, for the sake of benchmarking, in Figure 5.6 we gifnihe BER versus, / Ny performance of
the iterative SDM detection and decoding scheme of Figusérbthe context of a raté-turbo-coded 4x4-
SDM-QPSK-OFDM system communicating over the uncorrelated-domain Rayleigh fading channel
characterized by the COST-207 BU model [119]. We consideyitey outig.; = 1,2,3 and4 iterations for
the SDM detector, while performing.. = 8 iterations for the inner turbo decoder per each iteratiothef
SDM detector. From Figure 5.6 we may observe thaEghN, gain of about 1 dB is achieved by invoking
iget = 3 iterations of the SDM detector and decoder in comparisonvoking a single detection iteration.
By contrast, only a minor furthek;, / Ny improvement may be achieved by invokifg; > 3 number of

iterations for the SDM detector and decoder complex of FEdub.

Let us now consider the effects of realistic time-domairr@ations encountered by our SDM-OFDM
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Figure 5.7: BER versu<;, / Ny performance exhibited by the ra%eHero-coded 4x4-SDM-QPSK-OFDM
system employing the iterative SDM detection and decodalgesie of Figure 5.5 in realistic correlated
Rayleigh fading conditions when using the 7-path COST-207@R [119] and encountering the Doppler
frequencies offp = 0.1,0.03 and0.003. The BER performance recorded in case of uncorrelated time-
domain Rayleigh fading is also shown for the sake of benchimgr We invoked an iteration pattern of
(iget idec) = (3,8). The overall throughput wak- 2 - 1 = 4 bits/sec/Hz. Additional system parameters

are summarized in Table 1.4.

system employing the iterative SDM detection and decodihgme of Figure 5.5. Figure 5.7 characterizes
the achievable BER versis / Ny performance of the iterative SDM detection and decodingisa) which
assumes the iteration pattern @fie, igec) = (3,8), in the context of a raté- turbo-coded 4x4-SDM-
QPSK-OFDM encountering the OFDM-normalized Doppler fremagies offp = 0.1,0.03 andfp = 0.003.
The corresponding BER performance recorded in the unedectime-domain Rayleigh fading conditions
when using the 7-path COST-207 BU CIR is also shown for the sdkbenchmarking. In contrast to
the single antenna scenario characterized in Figure 5.4nae observe from Figure 5.7 that the BER
performance exhibited by the system encountering a reai$tDM-symbol-normalized Doppler frequency
of fp = 0.003 lies within anE; / Ny range 0f0.8 dB from the corresponding BER curve exhibited by the
system encountering idealistic uncorrelated time-donkayleigh fading conditions, when using the 7-
path COST-207 BU CIR. We may hence conclude that, as expeuntedix4-SDM-QPSK-OFDM system

efficiently exploits the spatial-diversity potential inkat in the MIMO channel.

This conclusion is further supported by the results degicteFigure 5.8, where we plot the BER
versusEg/ Ny performance exhibited by the ra%eturbo-coded SDM-QPSK-OFDM system employing
the iterative SDM detection and decoding scheme of Figuseabd havingm, = n, = 1,2,4 and8
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Figure 5.8: BER versu<, / Ny performance exhibited by the ra%eturbo-coded SDM-QPSK-OFDM sys-
tem employing the iterative SDM detection and decodingsehef Figure 5.5 and having, = n, = 1,2,4
and8 transmit and receive antennas. We invoked an iteratioematf (iget, igec) = (3,8). The 7-path
COST-207 BU channel model [119] was used and we assumed rtecimg the OFDM-symbol-normalized
Doppler frequency ofp = 0.003. The overall throughput was 1,2,4 a8d2 - % = 8 bits/sec/Hz, respec-

tively. Additional system parameters are summarized irerahs.

transmit and receive antennas. We assumed encountering@i@ymbol-normalized Doppler frequency

of fp = 0.003, while employing bit-interleaving acrogs; = 10 OFDM symbols. Observe that having

an interleaved block of bits spanning the duration\ofl; = 10 T, which is substantially shorter than

channel’'s coherence time df fp ~ 300 T corresponds to having virtually no time-domain diversiaing

In other words, a relatively short interleaver is unable tealk up and randomize the long fading-induced
error bursts. Consequently, we may conclude from FigurétfaBthe BER performance exhibited by the
single-antenna OFDM system is limited by the probabilityooturrence of a precipitated burst of errors
in some of the OFDM symbols, which we may refer asatage[29] inherent in single-antenna Rayleigh
fading channels. On the other hand, SDM-OFDM systems dpgrat MIMO scenarios exhibit a BER

performance, which improves upon increasing the numhet 7, of transmit and receive antennas.

5.4 Iterative Channel Estimation — Detection — Decoding

In this section we consider the transmission of a sequencersfecutive SDM-OFDM transmissidnirsts
which are processed independently. In other words, eadheo$dlf-contained SDM-OFDM transmission

bursts includes all the necessary data, such as for insfalutesignals, required for successful detection
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Figure 5.9: OFDM transmission burst structure comprising a preambld/pfull-pilot OFDM symbols
followed by a sequence df; data OFDM-symbol frames. Each data OFDM-symbol frame isguted by

a single full-pilot OFDM symbol followed by, information-carying OFDM symbols. Consequently, our
OFDM transmission burst accommodates a total numba#f,of L full-pilot OFDM symbols as well as a

total number of_ ; N, information-carrying OFDM symbols.

and decoding of the information accommodated by the OFDNktrassion burst. Correspondingly, each
SDM-OFDM transmission burst may be processed independehthe neighbouring bursts. This philos-
ophy is reminiscent of the packet-based transmission sehaopted, for example, in the IEEE 802.11
a/g WLAN standard [157]. The structure of a single SDM-OFDfshsmission burst considered is de-
picted in Figure 5.9. More specifically, our OFDM transmissburst portrayed in Figure 5.9 commences
with a channel-sounding preamble formed Ny number of pure pilot SDM-OFDM symbols. Subse-
quently, our SDM-OFDM transmission burst accommodatesjaesgce of..; number of so-called OFDM-
symbol-frames. More explicitely, as seen in Figure 5.9 he@&DM-symbol-frame constitutes a single
bit-interleaved turbo-encoded codeword and comprisesgesfull-pilot SDM-OFDM symbol followed by
N, number of information-carrying SDM-OFDM symbols.

For each SDM-OFDM transmission burst the detection processmences with the initialization of
the channel estimator by utilizing the pilot SDM-OFDM syngoonstituting the burst’s preamble, as seen
in Figure 5.9. Specifically, both the received signgls] as well as the corresponding transmitted signals
s[n] associated with thé&V, pilot SDM-OFDM symbols constituting the burst preamble @ufe 5.9 are
sequentially fed into the channel estimator of Figure 2rlilie sake of attaining an initial convergence for

the three adaptive filters constituting the decision-d@géahannel estimator of Figure 2.1.

During the first iteration of the detection process, whichasied out for each subsequexij-OFDM-
symbol data-frame of Figure 5.9 that commences with a filditsDM-OFDM symbol associated with the
SDM-OFDM-symbol indexz, we perform a long-term prediction of the CIR-related tapsg the CIR tap
predictor of Figure 2.1. More specifically, we aim for preuotig the CIR associated with tHast OFDM
symbol of the current OFDM-symbol-frame of Figure 5.9, nhntlge one associated with the SDM-OFDM-
symbol index of(n + N;). The CIRs associated with the remainiflg; — 1) SDM-OFDM symbols hosted

by the current OFDM-symbol-frame are then obtained usingdr interpolation between those associated
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with the nth pilot SDM-OFDM symbol preceding the current OFDM-symifrgime and the predicted CIR
associated with the lagtz + N,;) data OFDM symbol.

The predicted and interpolated MIMO-CTF coefficiemvi@n], m=mn+1,...,n+ Ny are utilized
for the sake of performing an initial detection of the infation-carrying data SDM-OFDM symboisn|.
Observe that in the possession of the CIRs and the corresgpad Fs associated with the entire SDM-

OFDM-symbol frame, we are able to employ the iterative SDedigon and decoding scheme outlined in

Section 5.3.
. S
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Figure 5.10: Schematic of an iterative turbo receiver employing theatige decision-directed channel

estimator of Figure 2.1 as well as the iterative detectiahdacoding module of Figure 5.5.

The resultant tentative estimates of the data-dbjtas well as the associated soft-bit information, corre-
sponding to the entire data SDM-OFDM-symbol frame of Fighu®are remodulated in order to generate
the soft reference signélm|, m = n+1,...,n+ N, of Equation (2.98). The reference sigiat| is
fed back to the soft-input channel estimator of AlgorithnoBthe sake of refining the estimates of the CTF
coefficientsH[m|, m =n+1,...,n+ N;. The interaction between the iterative channel estimdtéd-o
gorithm 8 and the iterative SDM detection and decoding meadiiSection 5.3 is illustrated in Figure 5.10.
The iterative channel estimation—detection—decodingg®s® portrayed in Figure 5.10 is repeated, until a

sufficiently reliable detected SDM-OFDM symbils generated.

5.4.1 Mitigation of Error Propagation

As we noted in Section 2.3, the main difficulty associatedhwliie decision-directed approach to channel
estimation is constituted by the potential error propamgtivhere the erroneous data decisions result in
erroneous channel estimation, which inflicts further pitaied data decision errorsic In other words,
the reliability of the estimated CTF coefficients degradgsdly in the presence of decision errors routinely
occurring in the low SNR region. The resultant degradatibithe channel state information accuracy
results in further decision errors and ultimately in divearge of the iterative channel estimation — data
detection process and in a subsequent avalanche of deeisimns. As we pointed out in Section 2.9.1.4,
the soft feedbaclassisted RLS CTF estimator of Algorithm 7 is capable of sarislly mitigating the
effects of error propagation. Nevertheless, ensuring télgilgy of an iterative channel estimation — data
detection system in the presence of data decision erroraimsma challenging issue. Consequently, for the

sake of mitigating the system'’s vulnerability to errorjpagation-related instability effects we propose the
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following method.

Firstly, after each channel estimation and SDM detecti@raiton, which is performed on thé;-SDM-
OFDM symbol data frame of Figure 5.9, we record the resuls48E. The joint channel estimation and
SDM detection MSE may be expressed as follows

n+N; K
el =Y. Y lylm K —Hm, K8 [m K|, (5.1)
m=n+1k=1
where, as beforg;[m, k| denotes the SDM signal associated withkttesubcarrier of thenth SDM-OFDM
symbol and recorded at the receive antennas, whild! [, k] ands[m, k] are the corresponding estimates
of the CTF coefficient matrix and the transmitted signal @eowvhich were obtained after thh iteration

of the channel estimation and detection process.

Subsequently, after carrying oidt number of channel estimation iterations we select thequdati pair
of CTF estimated![m, k| and data estimate&[m, k], which correspond to the specific iteration resulting

in the minimum MSE. More explicitely, the decision rule emy#d may be expressed as
{A[m,k],8[m, k|} = argmine'[n], (5.2)
1

wherewe haven =n—+1,--- ,n+ Ny k=1,--- ,Kandi=1, - ,ic.

Let us now consider the scenario of encountering a large ruofldecision errors. Naturally, the deci-
sion errors in any of the iterations would result in a degdacteannel estimation accuracy in the subsequent
iteration and hence even more decision errors as well asesitable increase of the corresponding MSE
e![n]. Consequently, invoking the final-decision rule of Equat©2 substantially mitigates the system’s

avalanchelike error propagation and hence improves the systenmtsligyaand robustness.

5.4.2 MIMO-PASTD-DDCE Aided SDM-OFDM Performance Analysis
5.4.2.1 Number of Channel Estimation — Detection lteratios

Firstly, we would like to characterize the BER performanaigttained by the iterative MIMO-PA®I-
DDCE in comparison to single-iteration channel estimatitore specifically, Figure 5.11 portrayes the
BER versusE,/ Ny performance of the raté/2 turbo-coded 4x4-SDM-QPSK-OFDM system employing
the MIMO-PASTD -DDCE of Algorithm 8 and invoking.. = 1,2, 3 and4 channel estimation iterations as
well asiy.s = 2 SDM detector iterations ang.. = 4 iterations of the parallel-concatenated turbo decoder
per each iteration of the channel estimator. We assumecdgimglthe transmission burst structure depicted
in Figure 5.9, where the corresponding parameters were giyg L, N, Ny) = (8,8,10), which yields

an overall pilot overhead af= (N, + L¢)/(LfNg) = 0.1, or in other words 10%. The 7-path COST-207

BU channel model was used and we assumed encountering th@eDéequency offp = 0.003. As may
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Figure 5.11: BER versusE,/Ny performance exhibited by the rage{urbo—coded 4x4-SDM-4QAM-
OFDM iterative turbo receiver of Figure 5.10 employing théMD-PASTD-DDCE of Algorithm 8 and
invokingice = 1,2,3 and4 channel estimation iterations as well @get, igec) = (2,4) SDM detection
and turbo decoding iterations, respectively. The 7-patlsT@07 BU channel model [119] was used and
we assumed encountering the OFDM-symbol-normalized Bogpéquency offp = 0.003. The overall

throughput wad - 2 - % = 4 bits/sec/Hz. All additional system parameters are sunzadiin Table 1.4.

be concluded from Figure 5.11, the SDM-OFDM system emplpifire iterative channel estimation scheme
of Algorithm 8 exhibits arE;, / Ny gain of about 2 dB, when comparing three iterations and desiteyation
of the channel estimator. Moreover, only a modest furtfgf Ny gain may be achieved upon invoking a

higher number of channel estimation iterations.

5.4.2.2 Pilot Overhead

In order to provide further insights, Figure 5.12 chardzter the achievable BER versig/ Ny perfor-
mance of the MIMO-PASD -DDCE of Algorithm 8 in the context of employing different, andn, num-
bers of transmit as well as receive antennas. Specificadlgomsider the SDM-QPSK-OFDM turbo receiver
of Figure 5.10, which invokes$ic, iget, igec) = (3,2,4) channel estimation, detection and decoding itera-
tions, respectively, while employing; = n, = 1,2,4,6 and8 transmit and receive antennas. Observe,
that the BER performance improves rapidly upon increadmegrt. = n, number of transmit and receive
antennas, as long as it does not exceed= n, = 4. Furthermore, the BER performance degrades slowly
upon further increasing the number of antennas according;te- n, > 4. The simple explanation of

this phenomenon is that as expected, the SDM-OFDM systewfiteefrom the increased spatial diversity
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Figure 5.12: The BER versug;, / Ny performance exhibited by the rageturbo-coded SDM-QPSK-OFDM
turbo receiver of Figure 5.10 employing the iterative MIMSTD-DDCE of Algorithm 8 and usingg, =

ny = 1,2,4,6 and8 transmit and receive antennas. The corresponding eféetttroughputs werg, 2,4, 6
ands -2 - % = 8 bits/sec/Hz, respectively. The 7-path COST-207 BU chamuelel was used [119] and we
assumed encountering the Doppler frequencypf= 0.003. The pilot overhead of 10% and the iteration
pattern of(ice, iget, idec) = (3,2,4) were used. All additional system parameters are summairzéable
1.4.

associated with a higher number of antennas. On the othel, ls@moted in Section 2.9, the channel es-
timation problem becomes increasingly more rank-deficient hence the estimation accuracy of the CIR
taps as well as the corresponding subcarrier-related C&ficents degrades upon increasing the number
of independent spatial links constituting the MIMO chanridie overall system performance is determined
by the associated trade-off between the beneficial diyegsiin increase and the inevitable degradation of
the estimated CTF accuracy. Ultimately, however, the dwtgion of the estimated CTF accuracy does
not appear to constitute a major impediment. Quantitativae evidenced by the results of Figure 5.12, the
BER performance exhibited by the high-complexity systewingun, = n, = 8 antennas lies within a 1
dB margin in comparison to the corresponding BER perforraanove associated with the system having
my = n, = 4 transmit and receive antennas. Observe that the 4x4 systahite the best recorded perfor-
mance and hence appears to represent an optimum tradeseffdrethe beneficial special diversity gain and

the system-size-related channel estimation accuracydatijon.
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Figure 5.13: BER versus£, / Ny performance exhibited by the ra%eturbo-coded 4x4-SDM-QPSK-OFDM
turbo receiver of Figure 5.10 employing the MIMO-PASTD-DBGcheme of Algorithm 8. The pilot
overhead was either 3, 10, 30, or 100%, which corresponds-t6.03,0.1,0.3 and1.0, respectively, where
we consider the idealistic scenario of having 100% pilotsvelt as the scenario of perfect channel state
information for benchmarking purposes. The 7-path COSTB0 channel model [119] was used and we
assumed encountering the Doppler frequencyof= 0.003. The iteration pattern ofice, iget, idec) =
(3,2,4) was used. The effective throughput wa<2 - % = 4 bits/sec/Hz. All additional system parameters

are summarized in Table 1.4.

5.4.2.3 Performance of a Symmetric MIMO System

Subsequently, we would like to characterize the achievaklR performance exhibited by the SDM-QPSK-
OFDM turbo receiver of Figure 5.10 employing the MIMO-PASTIDCE scheme of Algorithm 8 and
using various densities of the dedicated pilot SDM-OFDM bgla. More specifically, in Figure 5.13 we
have plotted the rate/2 turbo-coded QPSK-related BER exhibited by our SDM-OFDMeysemploying
my = n, transmit and receive antennas. For benchmarking purposdsave included the BER versus
E,/ Ny performance of the SDM-OFDM system assuming perfect CIRMedge, as well as assuming
channel estimation based on the idealistic scenario ohlgat00% pilots. Furthermore, we present our
results for the SDM-OFDM system using pilot overheads ofl¥and 3%, which corresponds to the pilot
overhead ratio of = 0.3,0.1 and0.003, respectively. We observe from Figure 5.13 that the 100%t-pil
based channel estimation results in an approximately E 4B\, degradation in comparison to the perfect
CIR estimation scenario. Furthermore, the more realist&umption of employing up to 10% dedicated
SDM-OFDM pilot symbols results in a furthdt, / Ny degradation of about 1.5 dB in comparison to the

100% pilot-based scenario. Additionally, a further reducof the pilot overhead to as low as 3% of pilots
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results in arky, / Ny degradation of 2.5 dB in comparison to the 100% pilot-basedario.

5.4.2.4 Performance of a Rank-Defficient MIMO System
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Figure 5.14: BER versu€;, / Ny performance exhibited by the rank-deficient rétmrbo—coded 4x2-SDM-
QPSK-OFDM turbo receiver of Figure 5.10 employing the MIMRASTD-DDCE scheme of Algorithm
8. The pilot overhead was either 3, 10, 30, or 100%, whichesponds te& = 0.03,0.1,0.3 and 1.0,
respectively, where we consider the idealistic scenaribasing 100% pilots as well as the scenario of
perfect channel state information for benchmarking pueposrhe 7-path COST-207 BU channel model
was used [119] and we assumed encountering the Dopplerenegwf fp = 0.003. The iteration pattern
of (ice, iget, Igec) = (3,2,4) was used. The effective throughput wia< - % = 4 bits/sec/Hz. All additional

system parameters are summarized in Table 1.4.

Similar phenomena may be observed in Figure 5.14, whichackexizes the achievable BER perfor-
mance exhibited by a rank-deficient 4x2-SDM-QPSK-OFDMetyst The 4x2 MIMO scenario constitutes
a particularly interesting detection problem. More spealfy, let us consider thkth subcarrier of therth
SDM-OFDM symbol. The computational challenge lies in thet fhat we have to estimate as manyag
transmittedM-QAM SymbO|SS]' n,k], j = 1,...,4 as well as the correspondireight CTF coefficients
Hij[n,k],i = 1,2, j =1,...,4, while utilising merely theworecorded signal samples pfin, k|, i = 1,2.
Consequently, similarly to Figure 5.13 we have plotted tfieRBrersusE, /Ny performance of the 4x2-
SDM-QPSK-OFDM system assuming perfect CSI as well as asguetiannel estimation based on the
idealistic scenario of having 100% pilots. Furthermore,haee plotted the BER corresponding to the sce-
narios of using pilot overheads of 30, 10 and 3%. Similarlihed4x4 scenario, assuming 100% pilot-based

channel estimation results in an approximately 1E}B N, degradation in comparison to the perfect CIR
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knowledge scenario. On the other hand, in contrast to thesdedario characterized in Figure 5.13, in Fig-
ure 5.14 we may observe that the system employing 10% of aediSDM-OFDM pilot symbols results in
nearly 6 dBE, / Ny degradation in comparison to the 100% pilot-based scenauighermore, an additional
reduction of the pilot overhead to 3% of pilots results in stegn instability and hence no satisfactory BER

performance may be achieved, regardless of the SNR encednte

5.5 Conclusions

Table 5.1: MIMO-PAST-DDCE aided SDM-OFDM performance summary: theRS[MIB] required for
attaining a target BER df0 . The results were extracted from Figures 5.13 and 5.14.

Pilot to data ratio|| PerfectCSl| e =10 | e=03 | e=0.1 | e =0.03

4x4 4.8 5.7 7.2 7.4 8.6
4x2 12.1 12.8 15.8 17.6 -

In this chapter we have documented the performance trertubiid by the proposed turbo SDM-
OFDM receiver of Figure 5.1, which comprises three main congmts, namely the soft-feedback decision-
directed MIMO channel estimator derived in Section 2.9lofeed by the soft-input-soft-output OHRSA
Log-MAP SDM detector of Section 4.2.3 as well as a soft-irgft-output parallel-concatenated turbo
code [27]. We analyzed the achievable performance of ealividnal constituent component of our turbo

receiver, as well as the attainable performance of theesitdirative system.

In order to summarize the attained results, the achievablB Berformance of the iterative MIMO-
PAST-DDCE aided SDM-OFDM system considered in the contéXtoth the symmetric MIMO config-
uration of Figure 5.13 as well as a rank-deficient MIMO confagion of Figure 5.14 are summarized in
Table 5.1. Specifically, we have found that our turbo SDM-G®FBystem employing the MIMO-DDCE
scheme of Section 2.9 as well as the OHRSA Log-MAP SDM detaxft@ection 4.2.3 remains effective
in channel conditions associated with high terminal speddg to 130 km/h, which corresponds to the
OFDM-symbol normalized Doppler frequency of 0.006. Adutitlly, in Figure 5.12 we reported a virtu-
ally error-free performance for a rate’2 turbo-coded 8x8-QPSK-OFDM system, exhibiting an effexctiv
throughput of 8 MHz 8 bits/s/Hz=64 Mbps and having a pilot overhead of only 10%meENR of 7.5dB
and a normalized Doppler frequency @003, which corresponds to a mobile terminal speed of about 65
km/ht.

1Additional system parameters are characterized in Table 1.



Chapter

Conclusions and Future Work

6.1 Achieved Results

In this treatise we characterized a suite of iterative tudsivers suitable for employment in a wide range

of multi-antenna aided multi-carrier systems operatingealistic rapidly-fluctuating channel conditions.

More specifically, we reported the following major findings:

e In Chapter 2 we derived an advanced decision directed chastimation (DDCE) scheme, which
is capable of recursive tracking and prediction of the nggildictuating channel parameters, char-
acterized by time-variant statistics. More specificallg @mployed the Projection Approximation
Subspace Tracking (PAST) [117] technique for the sake aking the channel transfer function’s
low-rank signal subspace and thus facilitated the hight#amy tracking of the channel's transfer

function, while imposing a relatively low computationalneplexity.

e Additionally, in Chapter 2 we introduced an advanced MIMQ@umhel estimation scheme for multi-
antenna multi-carrier systems. Our advocated arrangeinasikes the aforementioned PAST aided
subspace technique in conjunction with an enhanced soi$ida aided RLS MIMO-CTF estimator,
which utilizes the modified RLS tracking technique outlined40]. We demonstrated that our soft-
decision aided MIMO-DDCE scheme is suitable for multi-earsystems employing a high number

of transmit and receive antennas for the sake of achievinghathroughput.

e In Chapter 4 we proposed a range of Optimized Hierarchy Rmti&earch Algorithm (OHRSA)-
aided space-time processing methods, which may be regasdad advanced extension of the Com-
plex Sphere Decoder (CSD), portrayed in [108]. The algoriffroposed extends the potential ap-
plication range of the CSD methods of [106] and [108], as wselireduces the associated compu-

tational complexity. Moreover, the OHRSA-aided SDM detegiroposed is capable of achieving
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the near-optimum performance of the Log-MAP SDM detectdnjeMmposing a substantially lower

computational complexity, which renders it an attractiesign alternative for practical systems.

¢ Finally, in Chapter 5 we amalgamated both the soft decigedlback aided MIMO channel estimation
scheme of Chapter 2 as well as the Log-MAP SDM detection ndetlavived in Chapter 4 into an
iterative receiver architecture. Additionally, we cadri@eut an analysis of the associated design trade-

offs.

In the following chapter we will summarize some of the majoncusions of this study and propose promis-

ing directions for future work.

6.1.1 Channel Estimation

The DDCE scheme proposed in Chapter 2 is suitable for emmayrim both OFDM and MC-CDMA
systems. We analysed the achievable performance of tmead&th scheme considered in conjunction with
a realistic dispersive Rayleigh fading channel model rpaimealistic Fractionally-Spaced (FS) rather than

an idealized Symbol-Spaced (SS) Power Delay Profile (PDP).

Specifically, in Section 2.5.1 we proposed the MMSE FD-CTifretor, which is suitable for employ-
ment in both OFDM and MC-CDMA systems. In Section 2.5 we curgd our discourse with the derivation
of both sample-spaced as well as fractionally-spaced CiRawors. In Section 2.5.5 we performed a com-
parison between the two methods considered and demoistreteadvantages of the fractionally-spaced
scheme. Subsequently, in Section 2.6 we developed a paramattionally-spaced CIR tap tracking tech-
nique, which facilitates low-complexity channel estimatin realistic channel conditions characterized by
time-variant fractionally-spaced power delay profiles. rMspecifically, we employ the deflation PAST
method of Algorithm 2 for the sake of recursive tracking of tBTF's covariance matrix and for the sub-
sequent tracking of the corresponding CIR taps. We denaiestrthat the PAST-aided DDCE scheme

proposed exhibits a good performance over the entire rahgeactical propagation conditions.

In Section 2.7 we discussed two major CIR tap predictiorteggias, namely the robust predictor, which
was capable of guaranteeing a certain level of performanceruspecified worst-case PDP conditions,
as well as the adaptive RLS predictor. In Figures 2.18 anfél @fiSection 2.7.5 we characterized and
compared the achievable performance of both methods @mesicand drew conclusions concerning their
relative merits. Specifically, we demonstrated that the Rk&liction technique outperforms its robust

counterpart over the entire range of the relevant chanmalitons.

Subsequently, in Section 2.9 we addressed the problem ohehastimation in multi-antenna aided

multi-carrier systems. Specifically, we proposed a DDCEesudy which is suitable for employment in
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a wide range of multi-antenna aided multi-carrier systeayzable of operating over the entire range of
practical channel conditions. In particular, we consideaegeneric MIMO-OFDM system employing
orthogonal frequency-domain subcarriers as well as havirgndn, transmit and receive antennas, respec-
tively. The MIMO channel estimation scheme derived in S8Tc#.9 comprises an array &fper-subcarrier
MIMO-CTF estimators, followed by &n, x m)-dimensional array of parametric CIR estimators and a
corresponding array dfin, x m; x L) CIR tap predictors, where is the number of CIR taps tracked per

each link of the MIMO channel.

In Section 2.9.1 we explored a family of recursive MIMO-CT&dking methods, which were combined
with the aforementioned PAST-aided CIR-tracking metho&eétion 2.6 as well as with the RLS CIR tap
prediction method of Section 2.7.4 in order to create aniefftcchannel estimation scheme for MIMO-
OFDM systems. More specifically, in Section 2.9.1 we considéboth hard- and soft-feedback assisted
LMS and RLS CIR tap tracking algorithms as well as the modifRkd algorithm, which is capable of

improved exploitation of the soft information associatathwhe decision-based estimates.

Finally, in Figures 2.24-2.27 of Section 2.9.1.5 we documeerihe achievable performance of the
resultant MIMO-DDCE scheme employing the recursive CTIEKirzg of Section 2.9.1 followed by the
parametric CIR tap tracking and CIR tap prediction techesqaf Sections 2.6 and 2.7, respectively. We
demonstrated that the MIMO-DDCE scheme proposed exhibiigoal performance over the entire range
of practical conditions. More specifically, both the BER asdhas the corresponding MSE performance of
the channel estimation scheme considered was charactémiiee context of a turbo-coded MIMO-OFDM
system in Figures 2.24-2.27. We demonstrated that the MIMIXE scheme proposed remains effective
in channel conditions associated with high terminal speddg to 130 km/h, which corresponds to the
OFDM-symbol normalized Doppler frequency of 0.006. Adutitlly, we reported a virtually error-free
performance for a raté/2 turbo-coded 8x8-QPSK-OFDM system, exhibiting a total aterof 8 bits/s/Hz
and having a pilot overhead of only 10%, at an SNR of 10dB amthatized Doppler frequency @003,

which corresponds to a mobile terminal speed of about 65 km/h

In conclusion, the performance of the PAST aided MIMO-DDEEesne derived in Chapter 2 may be
characterized based on the MSE performance results deiickégure 6.1. More specifically, the MSE

exhibited by the channel estimation scheme considered mayxfressed as

1L
o2 = - ”I"é”f, (6.1)

whereL is the number of the estimated CIR taps, whileandn, are the numbers of transmit and receive
antennas, respectively. Correspondingly;.n, denotes the total number of the independent channel-gelate
parameters estimated, whileis the average SNR encountered at the receiver. Furthermeremploy the
estimation efficiency factot of Equation 2.110. The value of the parametavas determined empirically

using Equation 2.110, yielding = 4 dB.
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Figure 6.1: The Mean Square Error exhibited by the (a) 1x1 and (b) 2xQAM-OFDM system em-
ploying thePASTD CIR estimator of Algorithm 2 and tracking = 2,4,6 and8 CIR taps. The value
of the PASTD forgetting factor wag = 0.95. The OFDM symbol normalized Doppler frequency was

fp = 0.001. The abscissa represents the average SNR recorded até¢herastenna elements.
6.1.2 Signal Detection in MIMO Systems

In Chapter 3, we have performed an overview study of sevasplilar SDM detection methods avail-
able in the literature. Specifically, in Section 3.3.1 we dasirated that the linear increase in capacity,
which was predicted by the information-theoretic analydif29], may indeed be achieved by employing
a relatively low-complexity linear SDM detection methodgck as the MMSE SDM technique [101]. Sec-
ondly, in Section 3.4.1 we showed that a substantially bptformance can be achieved by employing the
higher-complexity non-linear Maximum Likelihood (ML) SDRletector [83, 102, 103], which constitutes
the optimal detection method from a probabilistic sequesstamation point of view. To elaborate a little
further, the ML SDM detector is capable of attaining trartsdiversity infully-loadedsystems, where the
number of transmit and receive antennas is equal. Moreageopposed to the linear detection schemes
considered, the ML SDM detector is capable of operating @érdink-deficientsystem configuration, when
the number of transmit antennas exceeds that of the recefearas. Unfortunately, however, the exces-
sive computational complexity associated with the exhaeisearch employed by the ML detection method
renders it inapplicable to practical implementation integss having a high number of transmit antennas.
Subsequently, in Sections 3.4.2 and 3.4.3 we explored & afrgdvanced non-linear SDM detection meth-
ods, namely both a SIC and a Genetic Algorithm-aided MMSEdst, respectively, where the latter may

constitute an attractive compromise between the low caoxitplef the linear SDM detector and the high
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performance of the ML SDM detection schemes. Indeed, we dstraied in Section 3.4.3 that both the
SDM detection method based on the SIC as well as the GA-MM$&ctie [100] are capable of satisfying

these requirements.

In Chapter 4 we have focused our attention on a family of gaRaduced Search Algorithm (RSA)
aided space-time processing methods, the members of wkiidhitea particularly advantageous trade-off
between the achievable performance and the associatedutatiopal complexity, namely the family of
the Sphere Decoding-aided SDM detection methods. Constgua set of novel OHRSA-aided SDM
detection methods was outlined in Section 4.2. Specificall$ection 4.2.1 we derived the OHRSA-aided
ML SDM detector, which benefits from the optimal performamméeghe ML SDM detector [28], while
exhibiting a relatively low computational complexity, wehiis only slightly higher than that required by
the low-complexity MMSE SDM detector [28]. To elaborate tHdifurther, in Section 4.2.2 we derived a
bit-based OHRSA-aided ML SDM detector, which allows us tplgphe OHRSA method of Section 4.2 in
high-throughput systems, which employ multi-level modiola schemes, such ad4-QAM [28].

In Section 4.2.3 we deduced the OHRSA-aided Max-Log-MAP S@a¢ector, which allows for an
efficient evaluation of the soft-bit information and thenef results in highly efficient turbo decoding. Un-
fortunately however, in comparison to the OHRSA-aided ML\MsBetector of Section 4.2.2 the OHRSA-
aided Max-Log-MAP SDM detector of Section 4.2.3 still extsta substantially higher complexity. Con-
sequently, in Section 4.2.5 we derive an approximate Mag-MAP method, namely the SOPHIE SDM
detector. The SOPHIE SDM detector combines the advantddmdiothe OHRSA-aided ML and OHRSA-
aided Log-MAP SDM detectors of Sections 4.2.2 and 4.2.3aets/ely. Specifically, it exhibits a similar
performance to that of the optimal Max-Log-MAP detector,ile/imposing a modest complexity, which
is only slightly higher than that required by the low-conxiie MMSE SDM detector [28]. The computa-
tional complexity as well as the achievable performanca®RSOPHIE SDM detector of Section 4.2.5 were

analysed and quantified in Sections 4.2.5.1 and 4.2.5 2ectsely.

Our related conclusions were summarized in Section 4.3cifsgaly, based on Figure 4.11 and we re-
ported achieving a BER d0—* at SNRs ofy = 4.2,9.2 and14.5 in high-throughput 8x8 raté—turbo—coded
M = 4,16 and64-QAM systems communicating over a dispersive Rayleighnigdhannel. Additionally,
recall from Figure 4.10 that we reported achieving a BER®f* at SNRs ofy = 9.5,16.3 and22.8 in
high-throughput rank-deficient 4x4, 6x4 and 8x4 réte}rbo—coded 16-QAM systems, respectively.

6.1.3 Ilterative Reciever Architecture

In Chapter 5 we derived an iterative, so-caltedoo multi-antenna-multi-carrier (MAMC) receiver archi-

tecture. Following the philosophy of turbo processing [26]r turbo SDM-OFDM receiver of Figure 5.1
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comprises a succession of detection modules, which tehatexchange soft bit-related information and

thus facilitate a substantial improvement of the overadkesn performance.

More specifically, our turbo SDM-OFDM receiver comprisesethmajor components, namely, the soft-
feedback decision-directed channel estimator discussddtail in Section 2.9, followed by the soft-input-
soft-output OHRSA Log-MAP SDM detector derived in Sectia@.8 as well as a soft-input-soft-output
serially concatenated turbo code [27]. Consequently, gutéis 5.3-5.14 of Chapter 5 we analyzed the
achievable performance of each individual constituentpament of our turbo receiver, as well as the achiev-
able performance of the entire amalgamated iterative systée aimed at identifying the optimum system
configuration, while considering various design trade;ofiuch as the achievable BER performance, the

attainable data-rate as well as the associated compughtomplexity.

In Section 5.4.2.4 we demonstrated that our turbo SDM-OFp#lesn employing the MIMO-DDCE
scheme of Section 2.9 as well as the OHRSA Max-Log-MAP SDMdet of Section 4.2.3 remains ef-
fective in channel conditions associated with high mohileezls of up to 130 km/h, which corresponds to
the OFDM-symbol normalized Doppler frequency of 0.006. #ddally, in Figure 5.13 we reported a vir-
tually error-free performance for a rat¢2 turbo-coded 8x8-QPSK-OFDM system, exhibiting an effectiv
throughput of 8 MHz 8 bits/s/Hz=64 Mbps and having a pilot overhead of only 10%meENR of 7.5dB
and a normalized Doppler frequency @003, which corresponds to a mobile terminal speed of about 65

km/h.

In conclusion, we would like to offer the following importaobservations. The potential performance
gain achievable by an iterative multi-antenna multi-eaargystem may be dissected into several major re-
gions, where we may identify thdiversity gainregion, thedetection gairregion as well as théerative

gainregion. Consider the BER versus SNR performance curvestéepn Figure 6.2.

e Firstly, the diversity gain region may be associated with ithterval spanning the SNR values of
Figure 6.2, which lie between the performance curves 1 ara2gsponding to the scenarios of low
and high diversity ranks respectively. Correspondingly, the achievable diveigin may be realized
by attaining a sufficient diversity rank contributed by tleembination of the channel and waveform

parameters. This phenomenon is exemplified, for instancEjdure 5.8 of Section 5.3.

e The detection gain region may be identified as the region ®3NR values located between the
performance curves 2 and 3 of Figure 6.2, which correspordeeystems employing for example
a linear MMSE detector and a near-optimum Max-Log-MAP detegcespectively. The achievable

detection gain may be realized by the means of employingfaesit MIMO detection method rem-

1Quantitatively speaking, the low diversity rank channehishannel, where the distribution of the total channel gnésg

reminiscent tq»(%D distribution, withD ~ 1. Correspondingly, the high diversity channels are channehere we hav® > 1.
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Figure 6.2: BER versus SNR performance of an iterative multi-antenntlicawrier system in dispersive
Rayleigh fading channel. We consider the scenarios of 1. dwersity rank, 2. high diversity rank and
suboptimum SDM detector, 3. high diversity rank and optinsiM detector and 4. high diversity rank

and iterative optimum SDM detector and decoder.

iniscent of the OHRSA method derived in Chapter 4. This phegmon is exemplified, for instance,
by Figure 3.11 of Section 3.6.

e Finally, the iterative gain region corresponds to the wakpf the SNR values located between the
performance curves 3 and 4 of Figure 6.2, which correspontiedsystems employing a single as
well as eight detection and decoding iterations. Corredimgly, the attainable iterative gain may
be realized by employing iterative detection and decodimigich invokes iterative exchange of the
soft bit-related information and thus facilitates the édfit exploitation of the diversity rank avail-
able. This phenomenon is exemplified, for instance, by Eig&.3 and 5.6 of Sections 5.2 and 5.3,

respectively.

6.2 Future work

6.2.1 Semi-Analytical Model

The family of state-of-the-art communication systems kaga conglomerate of complex mathematical
algorithms. The analytical expressions describing theatielir of these algorithms are often hard to de-

rive. Correspondingly, the performance of complex systergpically evaluated using extensive software
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Figure 6.3: Mobile wireless communication system analysis methodplog

simulations. Unfortunately however, the multiplicity dfexts imposed by the different phenomena in the
complex systems considered tend to obscure the imporemdgrand trade-offs, which have to be consid-

ered in the process of system design and optimization.

Consequently, we propose a semi-analytic methodologycwiaicilitates the prediction of the perfor-

mance achievable by a system characterised by a specifimblesef system and channel parameters.

The proposed semi-analytical technique attempts to difsecomplex problem of system performance
analysis into a set of factors originating from differenpests of both the channel and the waveform char-
acteristics, thus exposing the various trends and trafdenatierent in the design of an efficient wireless

mobile smart-antenna-aided multicarrier communicatistesn.

Let us consider the system analysis methodology charaetkeim the stylised illustration of Figure 6.3,
where we identify two sets of parameters, which charaaer system. Firstly, at the left of the figure we
have a set othannel parametersvhich comprizes the Doppler frequengy, the RMS delay spreat s,
the angular spread? as well as the AWGN variancg?,. Additionally, we have to consider the statistical
distribution of the CIR taps-related fading coefficientsec@ndly, for each channel-related parameter, we
have the correspondingaveform parameteras seen at the right of Figure 6.3. Namely, we have the bit-

interleaver depth’, the signal bandwidtlB, the numbersn, andn, of transmit and receive antennas as
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Figure 6.4: BER versus SNR performance of uncodedQAM in Gaussian and Rayleigh channels. The
markers characterize the simulated results corresportdidd = 4,16 and64. The solid and dashed
lines show the corresponding calculated BER versus SNRdais€8an and Rayleigh channels, respectively,

obtained using the semi-analytical model.

well as the signal to noise ratip. Additionally, we have the statistical distribution of taeergy associated
with the transmitted symbols, which is determined by theigalar coding, spreading and modulation
scheme. Some examples of the possible symbol-power diitrits include the constant power in the case
of a PSK modulation, the quantized multi-level uniform digition in the case oM-QAM as well as the

near-Rayleigh power distribution in the cases of CDMA andO®F

Consequently, our aim is to derive a set of semi-analytigplassions, which would describe the in-
terdependencies between the aforementioned system fararared a set of criteria characterizing the per-
formance of the mobile wireless communication system clamed. Specifically, we choose four major
performance criteria, which form the performance metripicted in Figure 6.3, namely we consider the

BER Complexity Throughputas well ad_atency

We have completed a feasibility study and our preliminasults suggest that a semi-analytical model
may be devised for characterizing the various phenomenighvidrcapable of accounting for the majority
of the effects featuring in Figures 6.4—6.9, which deteartime performance of a complex mobile wireless
communication system. Some examples of these aspectd) miaig be taken into account in a correspond-

ing model include

e Modulation schemeg.g.4,16,64 QAM (Figures 6.4 and 6.7).
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Figure 6.5: BER versus SNR performance of an uncoded QPSK system coroatung over a)glzj-
distributed flat-fading channel. The markers portray theusated results associated with the diversity ranks
D = 1,2,---,32. The solid lines show the corresponding calculated BERuge&NR curves obtained

using the semi-analytical model.

e Coding schemee.g. block, convolutional, turbo code with a given number of ding iterations

(Figure 6.6).

MIMO system dimensions,e. number of transmit and receive antennas (Figure 6.7).

Multi-user environmenti.e. number of coherent and non-coherent users (Figures 6.7.8hd 6

Channel correlation propertieisg. Doppler frequency, delay spread (Figure 6.5).

MIMO detection complexity (Figures 6.8 and 6.9).

Imperfect channel estimation (Figure 6.10).
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Figure 6.6: BER versus SNR performance of a turbo code in uncorrelatédRfigleigh channel. The
markers characterize the simulated results, while inwgRimo 16 iterations of the turbo decoder. The lines

show the corresponding calculated SNR versus BER obtaisied the semi-analytical model.
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Figure 6.7: BER versus SNR performance exhibited by fie= 128-subcarrier single-antenna QPSK-
OFDM system employing a rat%a parallel-concatenated turbo code in a correlated Raylf@idimg having
the OFDM-symbol-normalized Doppler frequenciesfpf= 0.1,0.03 and0.003. The CIR was the 7-path
COST-207 BU model [119]. All additional system parameteessummarized in Table 1.4. The markers
characterize the simulated results, while invokigg = 8 turbo decoder iterations. The solid lines show

the corresponding calculated SNR versus BER obtained tisstngemi-analytical model.
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Figure 6.8: BER versus SNR performance exhibited by a r%um{bo coded 8x8 OFDM system employing

30

4,16 and 64-QAM and communicating over a dispersive Raljléading channel. The markers portray the

simulated results, while the solid lines show the corredpanresults obtained using the semi-analytical

model.
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my = 4,6 and8 transmit antennas as well 4seceive antennas. The markers characterize the simuksted r

sults. The solid lines show the corresponding calculateld 8&tsus BER obtained using the semi-analytical

model.
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Figure 6.10: BER versus SNR performance exhibited by a r§teufbo coded QPSK-MIMO-OFDM system
employing numbers, = my = 1, 2,4, 6 and8 of transmit and receive antennas and using the PAST-MIMO-
DDCE scheme of Section 2.9, while communicating over dsperRayleigh fading channel. The markers
portray the simulated results, while the solid lines shogvdbrresponding results obtained using the semi-

analytical model.



6.2.2. EXIT Chart Aided Optimization for Turbo Architectur e 187

6.2.2 EXIT Chart Aided Optimization for Turbo Architecture

EXtrinsic Information Transfer (EXIT) chart aided analysonstitutes a powerful semi-analytic tool, which
enables the visualisation and analysis of the convergemqeepies of iterative decoding algorithms. EXIT
charts, originally developed by ten Brink [158] for the aysié$ of turbo codes, provide an insight into the
interaction between different soft-input-soft-outpubgmnent modules comprising a turbo system, such as
for example the joint turbo receiver depicted in Figure Bhls facilitating the design of a highly efficient
system, which is capable of achieving a near-optimum perdoice. EXIT chart aided optimization of
turbo equalisation was explored by Tuchédral. [159] and was further developed by Otnes [160]. The
application of EXIT charts in the context of iterative MIM@tction and decoding was first considered by

ten Brink [161]. An example of a typical EXIT chart is depidtim Figure 6.11
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Figure 6.11: Typical EXIT chart for a MIMO system at different SNRs.
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Glossary

BER Bit Error Rate

BLAST Bell Labs Layered Space-Time
CIR Channel Impulse Response
CSC Cumulative Sub-Cost

CsD Complex Sphere Decoder

CSl Channel State Information
CTF Channel Transfer Function

D-BLAST Diagonal BLAST

DDCE Decision Directed Channel Estimation

DFT Discrete Fourier Transform

FD-CTF Frequency-Domain Channel Transfer Function
FEC Forward Error Correction

FS Fractionally-Spaced

FS-CIR Fractionally-Spaced CIR

GA Genetic Algorithms

GA-MMSE  Genetic Algorithm-aided MMSE

LLR log-likelihood ratio
Log-MAP Logarithmic MaximumA Posteriori
LS Least Squares
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MAMC multi-antenna-multi-carrier
MC-CDMA  Multi-Carrier Code Division Multiple Access
MCF Minimum Cost Function
MIMO Multiple-Input Multiple-Output
ML Maximum Likelihood
MMSE Minimum Mean Square Error
MUD Multi-User Detection
MV Minimum Variance
NLOS Non-Line-Of-Sight
NMSE Normalized Mean Square Error
OFDM Orthogonal Frequency Division Multiplexing
OHRSA Optimized Hierarchy RSA
OHRSA Optimized Hierarchy Reduced Search Algorithm
PAST Projection Approximation Subspace Tracking
PDF Probability Density Function
PDP Power Delay Profile
PIC Parallel Interference Cancellation
PSD Power Spectral Density
RF Radio Frequency
RMS Root Mean Square
RSA Reduced Search Algorithm
RSA Reduced Search Algorithms
RSC Recursive Systematic Convolutional
SD Sphere Decoder
SDM Space Devision Multiplexing
SDM Space Division Multiplexing
SDMA Space Devision Multiple Access
SDMD SDM Detection

Successive Interference Cancellation
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SINR Signal-to-Interference-plus-Noise Ratio
SIR Signal-to-Interference Ratio

SISO Single Input Single Output

SOPHIE Soft-output OPtimized HIErarchy

SS Symbol-Spaced

STBC Space-Time Block Codes

STC Space-Time Codes

STTC Space-Time Trellis Codes

V-BLAST Vertical BLAST

WHT Walsh-Hadamard Transform
WSS Wide Sense Stationary
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