Influence of the stress field due to pressurized nanometric He bubbles on the mobility of an edge dislocation in iron

Voids and He bubbles are strong obstacles to dislocation, which induce hardening and loss of ductility. In Fe, molecular dynamics simulation is used to investigate the basic mechanisms of the interaction between a moving edge dislocation and a void or He bubble, as a function of its He content, temperature, interatomic potentials and interaction geometry. Different interatomic potentials for Fe-Fe and Fe-He interactions are used. It appears that temperature eases the dislocation release, due to the increased mobility of the screw segments appearing on the dislocation line upon bowing from the void or He bubble. The mobility includes the cross-slipping of these segments, which leads to the formation of a jog. It appears that the He bubble induces an inhomogeneous stress field in its surroundings, which strongly influences the dislocation passage depending on the geometry of the interaction.


Published in:
Philosophical Magazine, 90, 7, 1075-1100
Year:
2010
Publisher:
Taylor & Francis
ISSN:
1478-6435
Keywords:
Laboratories:
SPC
CRPP




 Record created 2011-04-15, last modified 2018-01-28


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)