Plasma Turbulence studied by means of Correlation-ECE in the TEM domain in TCV

A. Pochelon, V.S.Udintsev\(^1\), E.Fable, A.Bortolon, O.Sauter, S.Brunner, Y.Camenen, S.Coda, T.P.Goodman, J.Graves, S.Jolliet, A.Marinoni, C.de Meijere, M.Rancic, L.Villard, F.Voutaz

Centre de Recherches en Physique des Plasmas
Ecole Polytechnique de Lausanne (EPFL)
Association EURATOM-Confédération Suisse
Lausanne, Switzerland

\(^1\)ITER IO, Cadarache, France
Heat diffusivity modified by Shape δ & Collisionality ν_{eff} (TEM)

- Lower χ_e at high collisionality ν_{eff}
- Negative triangulation δ
- Trends qualitatively reproduced by GS2 (local, flux tube, non-lin., $\rho \sim 0.7$), but radial dependence disagrees (global effects not taken into account!)

Marinoni PPCF 09
Global TEM simulations

LORB simulations (gyrokinetic, global, linear, no collisions)

electrostatic potential fluctuations

Negative $\delta < 0$:
- \Rightarrow stronger tilt of eddies at LFS equator!
- \Rightarrow higher k_\perp
- \Rightarrow lower mixing-length transport

ORB5: for TEM: non-lin. results are close to linear
Camenen PPCF05
Jolliet Thesis 09
T_e-fluct. ampl. (corr-ECE diag.) decrease with ν_{eff}, as in GS2

T_e-fluctuation spectra decrease with density from expt. Ohmic, $q \sim 10$, $\kappa \sim 1.4$, $\delta \sim 0.3$

T_e- & n_e-fluctuations from GS2 decrease with ν_{eff} (as in experiment)

consistent with TEM ampl. reduction with collisions (e^- collisional detrapping)

Udintsev, Fable US-TTF09
What will we find at the turbulence level?

With correlation-ECE, investigate:

- Spatial structure of turbulence radial structures with size $\Delta \rho > 10\%$ seen

- Changes expected with e.g. triangularity k_{\perp}, orientation of cells, ...

- Shaping: a tool to vary continuously transport parameters
 - helpful to test models
 - and compare with gyro-kinetic codes

- How close are expts from linear/non-linear global gyro-kinetic simulations?