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Abstract. We study the problem of navigating through a database of
similar objects using comparisons under heterogeneous demand, a prob-
lem closely related to small-world network design. We show that, under
heterogeneous demand, the small-world network design problem is NP-
hard. Given the above negative result, we propose a novel mechanism for
small-world network design and provide an upper bound on its perfor-
mance under heterogeneous demand. The above mechanism has a natural
equivalent in the context of content search through comparisons, again
under heterogeneous demand; we use this to establish both upper and
lower bounds on content search through comparisons.

1 Introduction

The problem we study in this paper is content search through comparisons. In
short, a user searching for a target object navigates through a database in the
following manner. The user is asked to select the object most similar to her target
from small list of objects. A new object list is then presented to the user based
on her earlier selection. This process is repeated until the target is included in
the list presented, at which point the search terminates.

Searching through comparisons is typical example of exploratory search [14],
the need for which arises when users are unable to state and submit explicit
queries to the database. Exploratory search has several important real-life ap-
plications. An often-cited example [13, 12] is navigating through a database
of pictures of humans in which subjects are photographed under diverse un-
controlled conditions. For example, the pictures may be taken outdoors, from
different angles or distances, while the subjects assume different poses, are par-
tially obscured, etc. Automated methods may fail to extract meaningful features
from such photos, so the database cannot be queried in the traditional fashion.
On the other hand, a human searching for a particular person can easily select
from a list of pictures the subject most similar to the person she has in mind.

Users may also be unable to state queries because, e.g., the are unfamiliar
with the search domain, or do not have a clear target in mind. For example,
a novice classical music listener may not be able to express that she is, e.g.,
looking for a fugue or a sonata. She might however identify among samples of
different musical pieces the closest to the one she has in mind. Alternatively,
a user surfing the web may not know a priori which post she wishes to read;
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presenting a list of blog posts and letting the surfer identify which one she likes
best can steer her in the right direction.

In all the above applications, the problem of content search through compar-
isons amounts to determining which objects to present to the user in order to
find the target object as quickly as possible. Formally, the behavior of a human
user can be modeled by a so-called comparison oracle [5]: given a target and
a choice between two objects, the oracle outputs the one closest to the target.
The goal is thus to find a sequence of proposed pairs of objects that leads to the
target object with as few oracle queries as possible. This problem was introduced
in [5] and has recently received considerable attention [11, 12, 13].

Content search through comparisons is also naturally related to the following
problem: given a graph embedded in a metric space, how should one augment
this graph by adding edges in order to minimize the expected cost of greedy
forwarding over this graph? This is known as the small-world network design
problem [4, 3] and has a variety of applications as, e.g., in network routing. In this
paper, we consider both problems under the scenario of heterogeneous demand.
This is very interesting in practice: objects in a database are indeed unlikely to
be requested with the same frequency. Our contributions are as follows:

– We show that the small-world network design problem under general het-
erogeneous demand is NP-hard. Given earlier work on this problem under
homogeneous demand [3, 4], this result is interesting in its own right.

– We propose a novel mechanism for edge addition in the small-world design
problem, and provide an upper bound on its performance.

– The above mechanism has a natural equivalent in the context of content
search through comparisons, and we provide a matching upper bound for
the performance of this mechanism.

– Finally, we also establish a lower bound on any mechanism solving the con-
tent search through comparisons problem.

To the best of our knowledge, we are the first to study the above two prob-
lems in a setting of heterogeneous demand. Our analysis is intuitively appealing
because our upper and lower bounds relate the cost of content search to two
important properties of the demand distribution, namely its entropy and its
doubling constant. We thus provide performance guarantees in terms of the bias
of the distribution of targets, captured by the entropy, as well as the topology of
their embedding, captured by the doubling constant.

The remainder of this paper is organized as follows. In Section 2 we provide
an overview of the related work in this area. In Sections 3 and 4 we introduce
our notation and formally state the two problems that are the focus of this work,
namely content search through comparisons and small-world network design. We
present our main results in Section 5 and our conclusions in Section 6.

2 Related Work

Content search through comparisons is a special case of nearest neighbour search
(NNS) [1, 6], where it is typical to assume that database objects are embedded
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in a metric space with a small intrinsic dimension. Krauthgamer and Lee [10]
introduce navigating nets, a data structure for NNS in doubling metric spaces.
Clarkson [1] considers a similar structure for objects embedded in a space sat-
isfying a sphere-packing property, while Karger and Ruhl [8] study NNS under
growth-restricted metrics. All three assumptions have formal connections to the
doubling constant we consider in this paper. However, in these works, the under-
lying metric space is fully observable by the search mechanism, and the demand
over target objects is homogeneous. Our work assumes access only to a compar-
ison oracle while also dealing with heterogeneous demand.

NNS with access to a comparison oracle was first introduced by Lifshits et
al. [5], and further explored by Lifshits and Zhang [11] and Tshopp and Dig-
gavi [12, 13]. In contrast to [8, 10, 1], the above authors do not assume that
objects are necessarily embedded in a metric space; instead, they only require
that a comparison oracle can rank any two objects in terms of their similarity to
a given target. To provide performance guarantees on the search cost, Lifshits
et al. introduce a disorder constant [5], capturing the degree to which object
rankings violate the triangle inequality. This disorder constant plays roughly the
same role in their analysis as the doubling constant does in ours. Nevertheless,
these works also assume homogeneous demand. Our work introduces the notion
of heterogeneity while assuming that a metric embedding exists.

Small-world networks (also called navigable networks) have received a lot of
attention since Kleinberg’s seminal paper [9]. Our work is closest to Fraigneaud
et al. [4], [3], who identify conditions under which graphs embedded in a doubling
metric space are navigable. Again, our approach to small-world network design
differs by considering heterogeneous demand, an aspect absent from earlier work.

3 Definitions and Notation

Comparison Oracle. Consider a set of objectsN , where |N | = n, and a metric
space (M,d), where d(x, y) denotes the distance between x, y ∈ M. Assume that
objects in N are embedded in (M,d), i.e., there exists a 1-to-1 mapping from
N to a subset of M. The objects in N may represent, for example, pictures
in a database. The metric embedding is a mapping from the pictures to a set
of attributes (e.g., the person’s age, her eye color, etc.). The distance d then
represents how “similar” objects are w.r.t. these attributes. In what follows, we
abuse notation and write N ⊆ M, keeping in mind that database objects (the
pictures) are in fact distinct from their embedding (their attributes).

Given an object z ∈ N , we write x 4z y if d(x, z) ≤ d(y, z), ordering thus
objects according to their distance from z. Moreover, we write x ∼z y if d(x, z) =
d(y, z) and x ≺z y if x 4z y but not x ∼z y. For a non-empty A ⊆ N , let min4z

A
be the set of objects in A closest to z, i.e., w∈min4z

A⊆A if w4z v for all v∈A.
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A comparison oracle [5] is an oracle that, given two objects x, y and a target
t, returns the closest object to t. More formally,

Oracle(x, y, t) =







x if x ≺t y,
y if x ≻t y,
x or y if x ∼t y.

(1)

This oracle “models” human users: a user interested in locating, e.g., a target
picture t within the database, can compare two pictures with respect to their
similarity to this target but cannot associate a numerical value to this similarity.
When the two pictures are equidistant from t the user’s decision is arbitrary.

Entropy and Doubling Constant. For any ordered pair (s, t) ∈ N × N ,
we call s the source and t the target of the pair. We consider a probability
distribution λ over all ordered pairs of objects in N which we call the demand.
We refer to the marginal distributions ν(s) =

∑

t λ(s, t) and µ(t) =
∑

s λ(s, t),
as the source and target distributions, respectively. Moreover, we refer to the
support of the target distribution T = supp(µ) = {x ∈ N : s.t. µ(x) > 0} as
the target set of the demand.

Let σ be a probability distribution over N . We define the entropy and max-
entropy of σ, respectively, as

H(σ) =
∑

x∈supp(σ)

σ(x) log σ−1(x), Hmax(σ) = max
x∈supp(σ)

log σ−1(x). (2)

The entropy has strong connections with content search. More specifically, sup-
pose that we have access to a so-calledmembership oracle [2] that answers queries
of the following form: “Given a target t and a subset A ⊆ N , does t belong to
A?”Let t be a random target selected with distribution µ. To identify t one
needs to submit at least H(µ) queries, in expectation, to a membership ora-
cle, and there exists an algorithm (Huffman coding) that identifies t with only
H(µ)+1 queries, in expectation (see, e.g., [2]). In the worst case, which occurs
when the target is the least frequently selected object, the algorithm requires
Hmax(µ)+1 queries to identify t. Our work identifies similar bounds assuming
that one only has access to a comparison oracle, as defined in (1). Not surpris-
ingly, the entropy H(µ) also shows up in our performance bounds (Theorems 3
and 4).

For x ∈ N , we denote by Bx(r) = {y ∈ M : d(x, y) ≤ r} the closed ball
of radius r ≥ 0 around x. Given a probability distribution σ over N and a set
A ⊂ N let σ(A) =

∑

x∈A σ(x). We define the doubling constant c(σ) to be the
minimum c > 0 for which σ(Bx(2r)) ≤ c · σ(Bx(r)), for any x ∈ supp(σ) and
any r ≥ 0. As we will see, search trough comparisons depends not only on the
entropy H(µ) but also on the topology of µ, as captured by c(µ).

4 Problem Statement

We now formally define the two problems we study. The first is content search
through comparisons and the second is the small-world network design problem.
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4.1 Content Search Through Comparisons

Consider the object set N . Although its embedding in (M, d) exists, we are
constrained by not being able to directly compute object distances; instead, we
only have access to a comparison oracle. In particular, we define greedy content
search as follows. Let t be a target and s an object serving as a starting point.
The greedy content search algorithm proposes an object w and asks the oracle to
select among s and w the object closest to t, i.e., it evokes Oracle(s, w, t). This
is repeated until the oracle returns something other than s, say w′. If w′ 6= t,
the algorithm repeats these steps, now from w′. If w′ = t, the search terminates.

Formally, for k = 1, 2, . . . , let xk, yk be the k-th pair of objects submitted
to the oracle: xk is the current object, which greedy content search is trying to
improve upon, and yk is the proposed object, submitted to the oracle for com-
parison with xk. Let ok = Oracle(xk, yk, t) ∈ {xk, yk} be the oracle’s response,
and define the history of the search up to and including the k-th access as
Hk = {(xi, yi, oi)}

k
i=1.

The source object is always one of the first two objects submitted to the
oracle, i.e., x1 = s. Moreover, xk+1 = ok, i.e., the current object is always
the closest to the target so far. The selection of the proposed object yk+1 is
determined by the history Hk and the object xk. In particular, given Hk and
the current object xk there exists a mapping (Hk, xk) 7→ F(Hk, xk) ∈ N such
that yk+1 = F(Hk, xk), where here we take x0 = s ∈ N (the source/starting
object) and H0 = ∅ (i.e., before any comparison takes place, there is no history).

We call the mapping F the selection policy of the greedy content search. In
general, we allow the selection policy to be randomized; in this case, the object
returned by F(Hk, xk) is a random variable, whose distribution Pr(F(Hk, xk) =
w) for w ∈ N is fully determined by (Hk, xk). Observe that F depends on the
target t only indirectly, through Hk and xk; this is because t is only “revealed”
when the search terminates. We say that a selection policy is memoryless if it
depends on xk but not on the history Hk.

Our goal is to select an F that minimizes the number of accesses to the oracle.
In particular, given a source object s, a target t and a selection policy F , we
define the search cost CF (s, t) = inf{k : yk = t} to be the number of proposals
to the oracle until t is found. This is a random variable, as F is randomized; letE[CF (s, t)] be its expectation. We thus define the following problem.

Content Search Through Comparisons (CSTC): Given an em-
bedding ofN into (M, d) and a demand distribution λ(s, t), select F that
minimizes the expected search cost C̄F =

∑

(s,t)∈N×N λ(s, t)E[CF (s, t)].

Note that, as F is randomized, the free variable in the above optimization prob-
lem is the distribution Pr(F(Hk, xk) = w).

4.2 Small-World Network Design

In the small-world network design problem the objects in N , embedded in
(M, d), are connected to each other. The network formed by such connections
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is represented by a directed graph G(N ,L∪S), where L∩S = ∅, L is the set of
local edges and S is the set of shortcut edges. The edges in L satisfy the following
property:

Property 1. For every pair of distinct objects x, t ∈ N there exists an object u
such that (x, u) ∈ L and u ≺t x.

I.e., for any x and t, x has a local edge leading to an object closer to t.
A comparison oracle can be used to route a message from s to t over the edges

in graph G. In particular, given graph G, we define greedy forwarding [9] over G
as follows. Let Γ (s) be the neighborhood of s, i.e., Γ (s) = {u ∈ N s.t. (s, u) ∈
L ∪ S}. Given a source s and a target t, greedy forwarding sends a message to
neighbor w of s that is as close to t as possible, i.e., w ∈ min4t

Γ (s). If w 6= t,
the above process is repeated at w; if w = t, greedy forwarding terminates.
Property 1 guarantees that greedy forwarding from any source s will eventually
reach t: there is always a neighbor closer to t than the object/node forwarding
the message. Moreover, if the message is at x, the closest neighbor w can be
found using |Γ (x)| queries to a comparison oracle.

The edges in L are called “local” because they are typically determined by
object proximity. For example, in the classic paper by Kleinberg [9], objects are
arranged uniformly in a rectangular k-dimensional grid—with no gaps—and d is
taken to be the Manhattan distance on the grid. Moreover, there exists an r ≥ 1
such that

L = {(x, y) ∈ N ×N s.t. d(x, y) ≤ r}. (3)

Assuming every position in the rectangular grid is occupied, such edges indeed
satisfy Property 1. In this work, we do not require that edges in L are given by
any locality-based definition like (3); our only assumption is that they satisfy
Property 1. Nevertheless, for consistency, we also refer to edges in L as “local”.

Our goal is to select the shortcut edges in S so that greedy forwarding is
as efficient as possible. In particular, assume that we can select no more than
β shortcut edges, where β is a positive integer. For S a subset of N × N such
that |S| ≤ β, we denote by CS(s, t) the cost of greedy forwarding, in message
hops, for forwarding a message from s to t given that S = S. We allow the
selection of shortcut edges to be random: the set S can be a random variable
over all subsets S of N ×N such that |S| ≤ β. We denote the distribution of S
by Pr(S = S) for S ⊆ N ×N such that |S| ≤ β. Given a source s and a target
t, let E[CS(s, t)] =

∑

S⊆N×N :|S|≤β CS(s, t) · Pr(S = S) be the expected cost of
forwarding a message from s to t with greedy forwarding, in message hops.

We consider again a heterogeneous demand: a source and target object are
selected at random from N ×N according to a demand probability distribution
λ. The small-world network design problem can then be formulated as follows.

Small-World Network Design (SWND): Given an embedding of
N into (M, d), a set of local edges L, a demand distribution λ, and an
integer β > 0, select a r.v. S ⊂ N ×N , where |S| ≤ β, that minimizes
C̄S =

∑

(s,t)∈N×N λ(s, t)E[CS(s, t)].
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In other words, we wish to select S so that the cost of greedy forwarding is
minimized. Note again that the free variable of SWND is the distribution of S.

5 Main Results

We now present our main results with respect to SWND and CSTC. Our first
result is negative: optimizing greedy forwarding is a hard problem.

Theorem 1. SWND is NP-hard.

The proof of this theorem can be found in our technical report [7]. In short, the
proof reduces DominatingSet to the decision version of SWND. Interestingly,
the reduction is to a SWND instance in which (a) the metric space is a 2-
dimensional grid, (b) the distance metric is the Manhattan distance on the grid
and (c) the local edges are given by (3). Thus, SWND remains NP-hard even
in the original setup considered by Kleinberg [9].

The NP-hardness of SWND suggests that this problem cannot be solved
in its full generality. Motivated by this, as well as its relationship to content
search through comparisons, we focus our attention to the following version of
the SWND problem, in which we place additional restrictions to the shortcut
edge set S. First, |S| = |N |, and for every x ∈ N there exists exactly one
shortcut edge (x, y) ∈ S. Second, the object y to which x connects is selected
independently at each x, according to a probability distribution ℓx(y). I.e., for
N = {x1, x2, . . . , xn}, the joint distribution of shortcut edges has the form:

Pr(S = {(x1, y1), . . . (xn, yn)}) =
n
∏

i=1

ℓxi
(yi). (4)

We call this version of the SWND problem the one edge per object version,
and denote it by 1-SWND. Note that, in 1-SWND, the free variables are the
distributions ℓx, x ∈ N .

For a given demand λ, recall that µ is the marginal distribution of the demand
λ over the target set T , and that for A ⊂ N , µ(A) =

∑

x∈A µ(x). Then, for any
two objects x, y ∈ N , we define the rank of object y w.r.t. object x as follows:

rx(y) ≡ µ(Bx(d(x, y))) (5)

where Bx(r) is the closed ball with radius r centered at x.
Suppose now that shortcut edges are generated according to the joint distri-

bution (4), where the outgoing link from an object x ∈ N is selected according
to the following probability:

ℓx(y) ∝
µ(y)

rx(y)
, (6)

for y ∈ supp(µ), while for y /∈ supp(µ) we define ℓx(y) to be zero. Eq. (6)
implies the following appealing properties. For two objects y, z that have the



8

same distance from x, if µ(y) > µ(z) then ℓx(y) > ℓx(z), i.e., y has a higher
probability of being connected to x. When two objects y, z are equally likely
to be targets, if y ≺x z then ℓx(y) > ℓx(z). The distribution (6) thus biases
both towards objects close to x as well as towards objects that are likely to
be targets. Finally, if the metric space (M, d) is a k-dimensional grid and the
targets are uniformly distributed over N then ℓx(y) ∝ (d(x, y))−k. This is the
shortcut distribution used by Kleinberg in [9]; (6) is thus a generalization of this
distribution to heterogeneous targets as well as to more general metric spaces.

Our next theorem, whose proof is in Section 5.1, relates the cost of greedy
forwarding under (6) to the entropy H , the max-entropy Hmax and the doubling
parameter c of the target distribution µ.

Theorem 2. Given a demand λ, consider the set of shortcut edges S sampled
according to (4), where ℓx(y), x, y ∈ N , are given by (6). Then

C̄S ≤ 6c3(µ) ·H(µ) ·Hmax(µ).

Note that the bound in Theorem 2 depends on λ only through the target dis-
tribution µ. In particular, it holds for any source distribution ν, and does not
require that sources are selected independently of the targets t. Moreover, if N is
a k-dimensional grid and µ is the uniform distribution over N , the above bound
becomes O(log2 n), retrieving thus Kleinberg’s result [9].

Exploiting an underlying relationship between 1-SWND and CSTC, we can
obtain an efficient selection policy for greedy content search. In particular,

Theorem 3. Given a demand λ, consider the memoryless selection policy
Pr(F(Hk, xk) = w) = ℓxk

(w) where ℓx is given by (6). Then

C̄F ≤ 6c3(µ) ·H(µ) ·Hmax(µ).

The proof of this theorem is almost identical, mutatis mutandis, to the proof
of Theorem 2, and can be found in our technical report [7]. Like Theorem 2,
Theorem 3 characterises the search cost in terms of the doubling constant, the
entropy and the max-entropy of µ. This is very appealing, given (a) the rela-
tionship between c(µ) and the topology of the target set and (b) the classic
result regarding the entropy and accesses to a membership oracle, as outlined in
Section 3.

The distributions ℓx are defined in terms of the embedding ofN in (M, d) and
the target distribution µ. Interestingly, however, the bounds of Theorem 3 can
be achieved if neither the embedding in (M, d) nor the target distribution µ are
a priori known. In our technical report [7] we propose an adaptive algorithm that
asymptotically achieves the performance guarantees of Theorem 3 only through
access to a comparison oracle. In short, the algorithm learns the ranks rx(y) and
the target distribution µ as searches through comparisons take place.

A question arising from Theorems 2 and 3 is how tight these bounds are.
Intuitively, we expect that the optimal shortcut set S and the optimal selection
policy F depend both on the entropy of the target distribution and on its dou-
bling constant. Our next theorem, whose proof is in Section 5.2, establishes that
this is the case for F .
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Theorem 4. For any integer K and D, there exists a metric space (M, d) and a
target measure µ with entropy H(µ) = K log(D) and doubling constant c(µ) = D
such that the average search cost of any selection policy F satisfies

C̄F ≥ H(µ)
c(µ)− 1

2 log(c(µ))
· (7)

Hence, the bound in Theorem 3 is tight within a c2(µ) log(c(µ))Hmax factor.

5.1 Proof of Theorem 2

According to (6), the probability that object x links to y is given by ℓx(y) =
1
Zx

µ(y)
rx(y)

, where Zx =
∑

y∈T
µ(y)
rx(y)

is a normalization factor bounded as follows.

Lemma 1. For any x ∈ N , let x∗ ∈ min4x
T be any object in T among the

closest targets to x. Then Zx ≤ 1 + ln(1/µ(x∗)) ≤ 3Hmax.

Proof. Sort the target set T from the closest to furthest object from x and index
objects in an increasing sequence i = 1, . . . , k, so the objects at the same distance
from x receive the same index. Let Ai, i = 1, . . . , k, be the set containing objects
indexed by i, and let µi = µ(Ai) and µ0 = µ(x). Furthermore, let Qi =

∑i
j=0 µj .

Then Zx =
∑k

i=1
µi

Qi
. Define fx(r) : R+ → R as fx(r) = 1

r − µ(x). Clearly,

fx(
1
Qi

) =
∑i

j=1 µj , for i ∈ {1, 2 . . . , k}. This means that we can rewrite Zx as

Zx =
∑k

i=1(fx(1/Qi) − fx(1/Qi−1))/Qi. By reordering the terms involved in

the sum above, we get Zx = fx(
1
Qk

)/Qk +
∑k−1

i=1 fx(1/Qi)(
1
Qi

− 1
Qi+1

). First

note that Qk = 1, and second that since fx(r) is a decreasing function, Zx ≤

1 − µ0 +
∫ 1/Q1

1/Qk
fx(r)dr = 1 − µ0

Q1
+ ln 1

Q1
. This shows that if µ0 = 0 then

Zx ≤ 1 + ln 1
µ1

or otherwise Zx ≤ 1 + ln 1
µ0

. ⊓⊔

Given the set S, recall that CS(s, t) is the number of steps required by the
greedy forwarding to reach t ∈ N from s ∈ N . We say that a message at object
v is in phase j if 2jµ(t) ≤ rt(v) ≤ 2j+1µ(t). Notice that the number of different
phases is at most log2 1/µ(t). We can write CS(s, t) as

CS(s, t) = X1 +X2 + · · ·+Xlog 1
µ(t)

, (8)

where Xj are the hops occurring in phase j.Assume that j > 1, and let I =
{

w ∈ N : rt(w) ≤
rt(v)
2

}

. The probability that v links to an object in the set I,

and hence moving to phase j − 1, is
∑

w∈I ℓv,w = 1
Zv

∑

w∈I
µ(w)
rv(w) . Let µt(r) =

µ(Bt(r)) and ρ > 0 be the smallest radius such that µt(ρ) ≥ rt(v)/2. Since
we assumed that j > 1 such a ρ > 0 exists. Clearly, for any r < ρ we have
µt(r) < rt(v)/2. In particular, µt(ρ/2) <

1
2rt(v). On the other hand, since the

doubling parameter is c(µ) we have µt(ρ/2) >
1

c(µ)µt(ρ) ≥
1

2c(µ)rt(v). Therefore,

1

2c(µ)
rt(v) < µt(ρ/2) <

1

2
rt(v). (9)
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Let Iρ = Bt(ρ) be the set of objects within radius ρ/2 from t. Then Iρ ⊂ I,

so
∑

w∈I ℓv,w ≥ 1
Zv

∑

w∈Iρ

µ(w)
rv(w) . By triangle inequality, for any w ∈ Iρ

and y such that d(y, v) ≤ d(v, w) we have d(t, y) ≤ 5
2d(v, t). This means

that rv(w) ≤ µt(
5
2d(v, t)), and consequently, rv(w) ≤ c2(µ)rt(v). Therefore,

∑

w∈I ℓv,w ≥ 1
Zv

∑
w∈Iρ

µ(w)

c2(µ)rt(v)
= 1

Zv

µt(ρ/2)
c2(µ)rt(v)

. By (9), the probability of terminat-

ing phase j is uniformly bounded by

∑

w∈I

ℓv,w ≥ min
v

1

2c3(µ)Zv

Lem. 1
≥

1

6c3(µ)Hmax(µ)
(10)

As a result, the probability of terminating phase j is stochastically dominated by
a geometric random variable with the parameter given in (10). This is because
(a) if the current object does not have a shortcut edge which lies in the set I, by
Property 1, greedy forwarding sends the message to one of the neighbours that is
closer to t and (b) shortcut edges are sampled independently across neighbours.
Hence, given that t is the target object and s is the source object,

E[Xj |s, t] ≤ 6c3(µ)Hmax(µ). (11)

Suppose now that j = 1. By the triangle inequality, Bv(d(v, t)) ⊆ Bt(2d(v, t))

and rv(t) ≤ c(µ)rt(v). Hence, ℓv,t ≥
1
Zv

µ(t)
c(µ)rt(v)

≥ 1
2c(µ)Zv

≥ 1
6c(µ)Hmax(µ)

since

object v is in the first phase and thus µ(t) ≤ rt(v) ≤ 2µ(t). Consequently,

E[X1|s, t] ≤ 6c(µ)Hmax(µ). (12)

Combining (8), (11), (12) and using the linearity of expectation, we get
E[CS(s, t)] ≤ 6c3(µ)Hmax(µ) log

1
µ(t) and, thus, C̄S ≤ 6c3(µ)Hmax(µ)H(µ). ⊓⊔

5.2 Proof of Theorem 4

Our proof amounts to constructing a metric space and a target distribution µ for
which the bound holds. Our construction will be as follows. For some integers
D,K, the target set N is taken as N = {1, . . . , D}K . The distance d(x, y)
between two distinct elements x, y of N is defined as d(x, y) = 2m, where

m = max {i ∈ {1, . . . ,K} : x(K − i) 6= y(K − i)} .

We then have the following

Lemma 2. Let µ be the uniform distribution over N . Then (i) c(µ) = D, and
(ii) if the target distribution is µ, the optimal average search cost C∗ based on a
comparison oracle satisfies C∗ ≥ K D−1

2 .

Before proving Lemma 2, we note that Thm. 4 immediately follows as a corollary.

Proof (of Lemma 2). Part (i): Let x = (x(1), . . . x(K)) ∈ N , and fix r > 0.
Assume first that r < 2; then, the ball B(x, r) contains only x, while the ball
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B(x, 2r) contains either only x if r < 1, or precisely those y ∈ N such that
(y(1), . . . , y(K − 1)) = (x(1), . . . , x(K − 1)) if r ≥ 1. In the latter case B(x, 2r)
contains preciselyD elements. Hence, for such r < 2, and for the uniformmeasure
on N , the inequality

µ(B(x, 2r)) ≤ Dµ(B(x, r)) (13)

holds, and with equality if in addition r ≥ 1.
Consider now the case where r ≥ 2. Let the integer m ≥ 1 be such that

r ∈ [2m, 2m+1). By definition of the metric d on N , the ball B(x, r) consists of
all y ∈ N such that (y(1), . . . , y(K − m)) = (x(1), . . . , x(K − m)), and hence
contains Dmin(K,m) points. Similarly, the ball B(x, 2r) contains Dmin(K,m+1)

points. Hence (13) also holds when r ≥ 2.
Part (ii): We assume that the comparison oracle, in addition to returning one

of the two proposals that is closer to the target, also reveals the distance of the
proposal it returns to the target. We further assume that upon selection of the
initial search candidate x0, its distance to the unknown target is also revealed.We
now establish that the lower bound on C∗ holds when this additional information
is available; it holds a fortiori for our more resticted comparison oracle.

We decompose the search procedure into phases, depending on the current
distance to the destination. Let L0 be the integer such that the initial proposal x0

is at distance 2L0 of the target t, i.e. (x0(1), . . . , x0(K −L0)) = (t(1), . . . , t(K −
L0)), x0(K − L0 + 1) 6= t(K − L0 + 1). No information on t can be obtained by
submitting proposals x such that d(x, x0) 6= 2L0. Thus, to be useful, the next
proposal x must share its (K − L0) first components with x0, and differ from
x0 in its (K − L0 + 1)-th entry. Now, keeping track of previous proposals made
for which the distance to t remained equal to 2L0, the best choice for the next
proposal consists in picking it again at distance 2L0 from x0, but choosing for
its (K −L0+1)-th entry one that has not been proposed so far. It is easy to see
that, with this strategy, the number of additional proposals after x0 needed to
leave this phase is uniformly distributed on {1, . . .D−1}, the number of options
for the (K − L0 + 1)-th entry of the target.

A similar argument entails that the number of proposals made in each phase
equals 1 plus a uniform random variable on {1, . . . , D− 1}. It remains to control
the number of phases. We argue that it admits a Binomial distribution, with
parameters (K, (D − 1)/D). Indeed, as we make a proposal which takes us into
a new phase, no information is available on the next entries of the target, and
for each such entry, the new proposal makes a correct guess with probability
1/D. This yields the announced Binomial distribution for the numbers of phases
(when it equals 0, the initial proposal x0 coincided with the target).

Thus the optimal number of search steps C verifies C ≥
∑X

i=1(1+Yi), where
the Yi are i.i.d., uniformly distributed on {1, . . . , D − 1}, and independent of
the random variable X , which admits a Binomial distribution with parameters
(K, (D− 1)/D). Thus using Wald’s identity, we obtain that E[C] ≥ E[X ]E[Y1],
which readily implies (ii). ⊓⊔

Note that the lower bound in (ii) has been established for search strategies that
utilize the entire search history. Hence, it is not restricted to memoryless search.
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6 Conclusions

In this work, we initiated a study of CTSC and SWND under heterogeneous
demands, tying performance to the topology and the entropy of the target distri-
bution. Our study leaves several open problems, including improving upper and
lower bounds for both CSTC and SWND. Given the relationship between these
two, and the NP-hardness of SWND, characterizing the complexity of CSTC
is also interesting. Also, rather than considering restricted versions of SWND,
as we did here, devising approximation algorithms for the original problem is
another possible direction.

Earlier work on comparison oracles eschewed metric spaces altogether, ex-
ploiting what where referred to as disorder inequalities [5, 11, 12]. Applying
these under heterogeneity is also a promising research direction. Finally, trade-
offs between space complexity and the cost of the learning phase vs. the costs of
answering database queries are investigated in the above works, and the same
trade-offs could be studied in the context of heterogeneity.
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