
On the Reduction of Atomic Broadcast to
Consensus with Byzantine Faults

(Full Version)
Zarko Milosevic, Martin Hutle, André Schiper

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Email: firstname.lastname@epfl.ch

Abstract—We investigate the reduction of atomic broad-
cast to consensus in systems with Byzantine faults. Among
the several definitions of Byzantine consensus that differ
only by their validity property, we identify those equivalent
to atomic broadcast. Finally, we give the first deterministic
atomic broadcast reduction with a constant time complexity
with respect to consensus.

Keywords-Atomic broadcast; Consensus; Byzantine
faults; Reduction

I. INTRODUCTION

The relation of consensus and atomic broadcast, in-
cluding the reduction of atomic broadcast to consensus,
is well understood in the case of crash faults [1]. On the
contrary, little is known on the relation between atomic
broadcast and the consensus problem in the context of
Byzantine faults. Although there is a huge amount of
literature on the implementation of atomic broadcast
under Byzantine faults, and some of them even use
some sort of agreement as a building block, most of
these papers do not—strictly speaking—reduce atomic
broadcast to consensus.1 In fact, we are aware only of
three reductions of atomic broadcast to consensus with
Byzantine faults [2], [3], [4], and in our opinion this
work does not fully clarify the relation of consensus and
atomic broadcast.

It is easy to observe that the standard reduction of
atomic broadcast to consensus with benign faults does
not work with Byzantine faults. One can also observe
that there exist several definitions of consensus with
Byzantine faults (which differ in the validity property),
and it is not clear at all which one should be considered
for an atomic broadcast reduction. In addition, the rela-
tion between these definitions of consensus and atomic
broadcast is only partially understood.

Contribution. The first question addressed in the paper
is the relation between these various definitions of con-

1We discuss these papers in the related work section.

sensus for Byzantine faults and the atomic broadcast
problem. We show that only some of the consensus
validity properties in the literature lead to consensus
problems that are equivalent to atomic broadcast. We
also show that consensus with weak unanimity [5] is not
sufficient to solve atomic broadcast, while with strong
validity [6] consensus is harder than atomic broadcast.

After that, we give a reduction of atomic broadcast
to range validity consensus [7].2 The reduction has a
constant time complexity with respect to consensus,
which is not the case for the reduction in [2], [3], [4] 3.
As discussed in Section IV-D, this means that the time
for adelivering a message is bounded by k1τ

C + k2δ,
where τC is the maximum execution time of some
consensus algorithm, δ the maximum communication
delay, and k1, k2 two constants.

After the reduction of atomic broadcast to range
validity consensus, we give a reduction of range validity
consensus to binary consensus that has constant time
complexity (with respect to binary consensus). This
implies that atomic broadcast can be reduced to binary
consensus with constant time complexity (with respect
to binary consensus).

About constant time reductions. The key feature of range
validity consensus that allows us to achieve constant time
reduction with respect to consensus is the fact that it
constrains the decision value even if not all initial values
of correct processes are the same. This is not the case
with the strong unanimity [5] consensus, which was used
in the reduction in [3]. The reduction in [3] requires, as
written by the authors, a “deterministic and fair rule”
for choosing which messages to propose to consensus

2We denote with range validity the validity property used in [7],
which requires the decision value to be in the range of initial values
of correct processes.

3[4] gives two reductions, one deterministic and the other ran-
domized. The randomized reduction has a constant expected time
complexity with respect to binary consensus.

such that eventually all correct processes propose the
same set of messages. However, [3] gives no examples
of such a rule. Moreover, relying on such a mechanism
clearly leads to a reduction algorithm that does not have
constant time complexity with respect to consensus. The
reduction in [2] relies on abortable consensus [8], [2],4

which restricts a decision value to the default value
⊥ if not all initial values of correct processes are the
same. The consequence is that the reduction algorithm
only makes progress when the initial values of correct
processes are the same. This leads to an algorithm that
does not have constant time complexity with respect to
consensus.

Structure of the paper: The system model and problem
definitions are given in Section II. We then compare the
different definitions of consensus and atomic broadcast
in Section III. In Section IV, the reduction of atomic
broadcast to range validity consensus is presented. Solv-
ing range validity consensus is addressed in Section V.
The reduction of atomic broadcast to binary consensus
with constant time complexity with respect to consensus
is discussed in Section VI. Section VII is devoted to
related work, and Section VIII concludes the paper.

II. DEFINITIONS

We consider a system of n processes Π = {1, . . . , n}
that are connected with asynchronous reliable links. At
most t processes may fail in an arbitrary way (Byzantine
faults). A correct process is the one that is not Byzantine.
Links satisfy the integrity property, i.e., a message that
is received from a process was also sent by this process.
We do not use signatures.

A. Reliable Unique Broadcast

In our reduction we use reliable unique broadcast [9],5

a broadcast primitive slightly different from reliable
broadcast [10]. As shown in [9], the primitive can be
implemented in an asynchronous system with reliable
links. Reliable unique broadcast is defined in terms of
two primitives, rubcast and rubdeliver. A process p that
wants to broadcast a message m invokes rubcastp(k,m)
with a tag k it has not used before. This message is then
delivered by executing rubdeliverq(k,m, p) at process q.
Reliable unique broadcast fulfills the following proper-
ties:
• Validity: If a correct process p invokes
rubcastp(k,m), and this is the only invocation

4In [8] abortable validity is called non-intrusion validity, and the
corresponding consensus intrusion-tolerant Byzantine consensus. In [2]
it is called multi-valued consensus validity.

5In [9] the primitive is called consistent unique broadcast.

of p for index k, then p eventually executes
rubdeliverp(k,m, p).

• Agreement: For any two correct processes p and q,
if p executes rubdeliverp(k,m, s), then q eventually
executes rubdeliverq(k,m, s).

• Integrity: For any index k and every process q, ev-
ery correct process p executes rubdeliverp(k,m, q)
at most once. Moreover, if q is correct, then q
previously invoked rubcastq(k,m).

Observe that rubcastq(k,m) provides stronger guaran-
tees than rbcastq(m′) (reliable broadcast) with m′ =
〈k,m〉. With the latter, a correct process could deliver
both m′ = 〈k,m〉 and m′′ = 〈k,m〉. With the former,
because of the integrity property, a correct process can-
not deliver (k,m) and (k,m).

B. Atomic Broadcast

Atomic broadcast is defined in terms of two primitives,
abcast and an adeliver. A process p that wants to atomic
broadcast a message m invokes abcastp(m). This mes-
sage m is then delivered by executing adeliverq(m, p)
at process q. We assume that all messages are unique.
Atomic broadcast fulfills the following properties [10]:
• Validity: If a correct process p invokes abcastp(m),

then p eventually executes adeliverp(m, p).
• Agreement: For any two correct processes p and q,

and any process s, if p executes adeliverp(m, s),
then q eventually executes adeliverq(m, s).

• Integrity: For any message m and any process s,
every correct process p executes adeliverp(m, s)
at most once. Moreover, if s is correct, then it
previously invoked abcasts(m).

• Total order: If some correct process p executes
adeliverp(m, s) before adeliverp(m′, s′) for any two
processes s and s′, then every correct process q
executes adeliverq(m′, s′) only after it has executed
adeliverq(m, s).

C. Consensus

In the consensus problem, every process has an initial
value from a set V and has eventually to irrevocably
decide on a value from V . The problem is defined by
an agreement, a termination, and a validity property.
Validity is discussed in the next section.
• Agreement: No two correct processes decide differ-

ently.
• Termination: All correct processes eventually de-

cide.
The interface to consensus uses two primitives,

proposep(i, v) to denote the start of a consensus instance
i at p with the initial value v, and decidep(i, d) to denote

2

termination at p of consensus instance i with the decision
value d.

III. ATOMIC BROADCAST REDUCTION AND THE
VALIDITY PROPERTY OF CONSENSUS

Consensus is defined by three properties, validity,
agreement and termination. With benign faults, agree-
ment can be uniform or non uniform, termination re-
quires that all correct processes decide, and the standard
validity states that the decision must be the initial value
(taken from a set V) of some process. Other validity
properties have also been considered [11]. However, it is
well understood that the standard validity property above
allows the reduction of atomic broadcast to consensus in
an asynchronous system with benign faults.

With Byzantine faults, more definitions of consensus
have been proposed, which differ only by the validity
property (with Byzantine faults, only non uniform agree-
ment makes sense). Depending on the validity property,
the definition of consensus can be weaker, stronger or
equivalent to atomic broadcast, as we now show. We
consider the following definitions:
• Strong validity ([12], [6]): If a correct process

decides on v, then v is the initial value of some
correct process.6

• Weak unanimity [5]: If all correct processes have the
same initial value, and no process is faulty, then this
is only possible decision value.

• Strong unanimity [5]: If all correct processes have
the same initial value, then this is the only possible
decision value.

• Abortable validity ([2], [8]):7

(a) If all correct processes have the same initial
value, then this is the only possible decision
value.

(b) If a correct process decides v, then v is the
initial value of some correct process, or v = ⊥.

Abortable validity considers a special decision value ⊥.
This special value can be decided if not all correct
processes have the same initial value.

The last validity property considered is introduced
(without name) in [7]. We call it range validity since

6Strong validity can be seen as the counterpart, in the context of
Byzantine faults, of the standard validity property with benign faults: If
a correct process decides v, then v is the initial value of some process.
Indeed, since it does not make sense to refer to the initial value of a
Byzantine process, the definition becomes: If a correct process decides
v, then v is the initial value of some correct process.

7In [2] this is called multi-valued consensus validity, and is defined
by three validity properties MVC1 to MVC3. The MVC1 validity
property corresponds to abortable validity (a). The MVC2 validity
property can be rephrased as follows: If a correct process decides v,
then v was proposed by some correct process. Together with MVC3,
we get abortable validity (b).

the decision value is in the range of initial values of
correct processes. Range validity requires the domain V
of initial values to be totally ordered:
• Range validity [7]: There exist two distinct correct

processes p1, p2, so that every decision value dq of a
correct process q is between the initial values of p1
and p2 (C is the set of correct processes, vp denotes
the initial value of process p):

∃p1, p2 ∈ C : ∀q ∈ C : vp1
≤ dq ≤ vp2

.

We have the following relations between these validity
properties: strong validity implies range validity and
abortable validity; both range validity and abortable va-
lidity imply strong unanimity; strong unanimity implies
weak unanimity.

The special case |V| = 2 is called binary consensus.
For |V| = 2, strong validity, range validity, strong
unanimity and abortable validity are equivalent. In our
proofs, when referring to binary consensus, we will
assume the “strong unanimity” formulation.

In the rest of the section, we compare the difficulty of
these various consensus problems and atomic broadcast.

A. Atomic broadcast is harder than weak unanimity
consensus

We show that with n > 3t, atomic broadcast is harder
than weak unanimity consensus.8 To do so, we first
show that whenever atomic broadcast is solvable, range
validity consensus is also solvable.

Lemma 1. If n > 3t, then range validity consensus can
be reduced to atomic broadcast.

Proof: The reduction is as follows. First, every
process atomic broadcasts its initial value, and waits until
n − t messages from different processes are delivered.
When a process has adelivered n − t messages from
different processes, it orders the values of these messages
in ascending order and decides on the value at (t+ 1)st
position.

Termination. Since atomic broadcast guarantees the
delivery of all messages from correct processes, and
there are at least n − t correct processes, all correct
processes decide.

Agreement. Since atomic broadcast ensures that all
messages are delivered in total order, the set of the n− t
first messages from different processes is the same at all
correct processes, and thus all correct processes decide
on the same value.

8Consensus with validity property X will simply be called “X
consensus” or “X validity consensus”.

3

Range Validity. After values from the first n − t
messages from different processes are ordered, we have
two cases to consider: (1) the t first values are from
faulty processes, (2) the t first values contain at least
one value from a correct process. It is easy to see that
in both cases range validity holds.
Since range validity implies strong unanimity validity,
we have the following corollary:

Corollary 1. If n > 3t, then strong unanimity consensus
can be reduced to atomic broadcast.

Now we show that for n > 3t, the solvability of
weak unanimity consensus does not imply solvability of
atomic broadcast. We start with a lemma.

Lemma 2. Strong unanimity consensus cannot be re-
duced to weak unanimity consensus.

Proof: Assume by contradiction that such a reduc-
tion T exists. Then T , together with weak unanimity
consensus, solves strong unanimity consensus, and in
particular in all runs where at least one process is faulty
and weak unanimity consensus always decides a fixed
value v0 (independently of the initial values of correct
processes). Now consider a modified algorithm T ′ that
uses always v0 as a fixed value instead of the output
of weak unanimity consensus. Clearly, for all runs of
T ′ there is a run of T that is indistinguishable to the
correct processes, and thus they decide as in T . This
means that T ′ is a deterministic algorithm that solves
strong unanimity consensus in an asynchronous systems
with at least one faulty process. A contradiction with the
FLP impossibility result [13].

We can now prove the above claim.

Proposition 1. If n > 3t, atomic broadcast cannot be
reduced to weak unanimity consensus.

Proof: Assume by contradiction that atomic broad-
cast can be reduced to weak unanimity consensus. If
n > 3t, by Corollary 1, consensus with strong unanimity
can be reduced to atomic broadcast. Thus, strong una-
nimity consensus is reducible to consensus with weak
unanimity. A contradiction with Lemma 2.

From Corollary 1 and Proposition 1 it follows that
with n > 3t atomic broadcast is harder than weak
unanimity consensus.

B. Strong validity consensus is harder than atomic
broadcast

We show that strong validity consensus with more than
three values (|V| > 3) is harder than atomic broadcast.
To do so, we will use the result from [2] that atomic
broadcast can be reduced to binary consensus.

Proposition 2. If n > 3t, then atomic broadcast can be
reduced to binary consensus.

Proof: The result is proven in [2].

Proposition 3. If n > 3t, then atomic broadcast can be
reduced to strong validity consensus.

Proof: If n > 3t then by Proposition 2 atomic
broadcast can be reduced to binary consensus, that is
strong validity consensus with |V | = 2.

We now show that the opposite does not hold in general.

Proposition 4. For |V| > 3, in general strong validity
consensus cannot be reduced to atomic broadcast.

Proof: The proof is by contradiction. Consider a
synchronous system with n = 4 and t = 1. We first
show that in this setting, atomic broadcast is solvable.
Indeed, in this setting binary consensus is solvable. If
binary consensus is solvable, by Proposition 2 atomic
broadcast is also solvable.

Let us assume by contradiction that there is a reduc-
tion of strong validity consensus to atomic broadcast in
an asynchronous system. With the result of the previous
paragraph, this means strong validity consensus is solv-
able in a synchronous system with n = 4 and t = 1.
This contradicts the results from [6], where it is shown
that solving strong validity consensus in a synchronous
system requires n > max(3, |V|)t.

C. Consensus problems equivalent to atomic broadcast

The other consensus problems introduced, namely
strong unanimity consensus, abortable validity consensus
and range validity consensus are all equivalent to atomic
broadcast. This result follows from three propositions:

Proposition 5. If n > 3t, atomic broadcast and range
validity consensus are equivalent.

Proof: From Proposition 2 it follows that if n > 3t
atomic broadcast can be reduced to binary consensus,
that is range validity consensus with |V | = 2. On the
other hand, by Lemma 1, if n > 3t range validity
consensus can be reduced to atomic broadcast.

Proposition 6. If n > 3t, atomic broadcast and
abortable validity consensus are equivalent.

Proof: This result is proven in [2].

Proposition 7. If n > 3t, atomic broadcast and strong
unanimity consensus are equivalent.

Proof: From Corollary 1 it follows that if n > 3t
strong unanimity consensus can be reduced to atomic

4

Algorithm 1 Atomic broadcast by reduction to range-
validity consensus (code of process p)
1: r ← 0
2: adelivered ← ∅
3: rubdelivered ← ∅
4: lsn ← 0
5: decided sn[1 . . . n]← [0 . . . 0]

6: upon abcast(m) do
7: lsn ← lsn + 1
8: rubcast(lsn,m)

9: upon rubdeliver(i,m, q) do
10: rubdelivered ← rubdelivered ∪ {〈m, i, q〉}

11: loop
12: wait until rubdelivered − adelivered 6= ∅
13: r ← r + 1
14: for π = 1 to n do
15: rdel sn[π]← largest `, so that

∀j, 1 ≤ j ≤ ` : 〈−, j, π〉 ∈ rubdelivered
16: v[π]← min(rdel sn[π]− decided sn[π],max(V))

17: range-propose((r − 1) · n+ π, v[π])
18: for π = 1 to n do
19: wait until

range-decide((r − 1) · n+ π, decision[π])
20: if decision[π] > 0 then
21: for ` = decided sn[π] + 1 to

decided sn[π] + decision[π] do
22: wait until

∃msg = 〈m, `, π〉 : msg ∈ rubdelivered
23: if 〈m,−, π〉 6∈ adelivered then
24: adeliver(m,π)
25: adelivered ← adelivered ∪msg
26: decided sn[π]← decided sn[π] + decision[π]

broadcast. On the other hand, by Proposition 2 if n > 3t
then atomic broadcast can be reduced to binary consen-
sus, that is strong unanimity consensus with |V | = 2.
This shows that atomic broadcast and strong unanimity
consensus are equivalent.

IV. REDUCING ATOMIC BROADCAST TO CONSENSUS
WITH RANGE VALIDITY

In this section we give a reduction of atomic broadcast
to consensus with range validity, the first constant time
reduction to consensus for Byzantine faults. For range
validity consensus we assume that V is a countable set,
and without loss of generalization, we assume that V
is the set {0, . . . , |V| − 1} if V is finite, or N0 if V is
infinite.

A. Reduction algorithm

The reduction is given as Algorithm 1. It uses reliable
unique broadcast. In order to abcast a message, the
message is first rubcast together with a local sequence

number lsn (line 8). When this message is rubdelivered
it is stored in the variable rubdelivered for further
processing (line 10).

The main loop (lines 14-26) is executed when there
are messages that are rubdelivered but not yet adelivered.
The code between the wait statements and the “upon”
blocks are executed atomically. We call each iteration
of the main loop a “round”. In the sequel, we denote
with xp the value of a variable x at process p, and for
any round r > 0 we denote with xrp the value of xp at
the beginning of round r (a round begins at line 14).
In every round r, Algorithm 1 executes n instances of
range validity consensus in parallel, see lines 14 and 18.
Consensus instance (r−1) ·n+π is used to agree which
messages abcast by process π are adelivered in round r.
A process p proposes in consensus instance (r−1)·n+π
the difference between rdel snp[π] and decided snp[π],
where
• rdel snp[π] contains the highest sequence number,

such that all messages from π with a smaller
sequence number are rubdelivered at p, and

• decided snp[π] contains the sequence number of
the last message from π that is adelivered by p.

The decision value of consensus instance (r− 1) ·n+π
determines the number of messages from π that will be
adelivered in round r. Finally, all messages from π are
adelivered by all correct processes in the order of their
sequence numbers lsn .

Remark: Executing range validity consensus n times
in parallel, as done in Algorithm 1, has a high message
complexity. This cost can easily be reduced to the
message complexity of one instance of range validity,
with larger messages. The solution consists of executing
one instance of consensus on a “vector of n elements”
instead of “n instances of range consensus” in parallel.
The consensus then operates simultaneously on each
entry of the vector, providing an independent element-
wise range consensus semantics for each of the vector’s
elements.

B. Proof of Algorithm 1

Lemma 3. For all correct processes p and q, and all
r > 0, decided snr

p = decided snr
q .

Proof: The proof is by induction on r. For r = 1,
at all processes decided snr = [0 . . . 0], and thus the
lemma holds. Assume now that the lemma is true for
r − 1. When the correct processes decide consensus in-
stances (r−2)n+1 to (r−2)n+n in round r−1, because
of the agreement property of range validity consensus
they all decide the same values. Thus, at the end of
round r−1 (at line 26), all processes update decided sn

5

consistently. Therefore, decided snr
p = decided snr

q

and the lemma holds also for r.

Lemma 4. For all correct processes p and q, and all
r > 0, adeliveredr

p = adeliveredr
q .

Proof: The proof is by induction on r. For r = 1,
at all processes adeliveredr = ∅, and thus the lemma
holds. Assume now that the lemma is true for r − 1.
By the agreement property of consensus, all correct
processes terminate consensus instance (r − 2)n + π
for π = 1..n in round r − 1 with the same decision
decision(π) (?). The value of decided sn in round
r − 1 at line 21 is equal to decided snr−1, therefore
by Lemma 3, decided sn has the same value at line 21
in round r − 1 at all correct processes (??). By (?) and
(??), for every instance π = 1..n of loop at line 18
all correct processes will execute the same number of
iterations at line 21. For each iteration they will consider
the same message due to the agreement property of
reliable unique broadcast. By induction assumption we
have adeliveredr−1

p = adeliveredr−1
q , and since the

value of adelivered at line 23 at round r − 1 is equal
to adeliveredr−1, the condition at p and q at line 23 of
round r − 1 will evaluate to the same value. Therefore,
p and q will update adelivered in round r− 1 at line 25
to the same value, so the lemma holds also for r.

Lemma 5. If adeliverp(m, s) occurs at some correct
process p in round r, then adeliverq(m, s) also occurs
in round r at any correct process q.

Proof: By Lemma 4 we have adeliveredr−1
p =

adeliveredr−1
q and adeliveredr

p = adeliveredr
q (for r =

1 the result follows also from line 2 of the reduction
algorithm) (*). We have

adeliveredr
p = adeliveredr−1

p ∪ adelrp

where adelrp denotes the messages adelivered by p in
round r (**). From (*) and (**) we have adelrp = adelrq .
If m is adelivered by p in round r, we have m ∈ adelrp.
So we also have m ∈ adelrq , i.e., m is adelivered by q
in round r.

Lemma 6 (Validity). If a correct process p invokes
abcastp(m), then p eventually executes adeliverp(m, p).

Proof: Assume by contradiction that message m
abcast by p is the first message abcast by p such that
(m, p) is not adelivered by some correct process q.
When process p invokes abcastp(m), the local sequence
number lsn is incremented and the message 〈lsn+1,m〉
is rubcast. Messages that are abcast by p before m are
rubcast with sequence number smaller than lsn + 1 and

by assumption all these messages are adelivered. By
line 26 (update of decided snq[p]), ∃r s.t. eventually
decided snr

q[p] = lsn . From Lemma 3 follows that at
all correct processes we have decided sn[p]r = lsn .

By the termination property of reliable unique broad-
cast, all messages 〈i,−〉 with i = 1..lsn + 1 are
eventually rubdelivered at all correct processes. Because
〈lsn + 1,m〉 was rubcast by a correct process, by
the agreement and integrity property of reliable unique
broadcast, all correct processes eventually rubdeliver
〈lsn + 1,m〉, and have 〈m, lsn + 1, p〉 in rubdelivered .
Therefore, in round r all correct processes propose in the
consensus instance (r−1) ·n+p a value larger or equal
to 1 (see lines 16-17).9 By the range validity property of
consensus, decisionq[p] is therefore larger or equal to 1
and p executes adeliver(m, p). A contradiction.

Lemma 7 (Agreement). For any two correct processes p
and q, and any process s, if p executes adeliverp(m, s),
then q eventually executes adeliverq(m, s).

Proof: Follows directly from Lemma 5.

Lemma 8 (Integrity). For any message m and any pro-
cess s, every correct process p executes adeliverp(m, s)
at most once. Moreover, if s is correct, then it previously
invoked abcasts(m).

Proof: The first part of the claim follows directly
from line 23. For the second part, a message is adelivered
at a correct process p only if p rubdelivered 〈i,m, q〉
before. If the sender q is correct, by the integrity prop-
erty of reliable unique broadcast, q previously invoked
rubcastq(−,m). By lines 6 and 8, q previously invoked
abcastq(m).

Lemma 9 (Total order). If some correct process p
executes adeliverp(m, s) before adeliverp(m′, s′) for any
two processes s and s′, then every correct process
q executes adeliverq(m′, s′) only after it has executed
adeliverq(m, s).

Proof: Let p and q be two correct processes such
that adeliverp(m, s), adeliverp(m′, s′), adeliverq(m, s),
and adeliverq(m′, s′) are executed. Let further rx, resp.
r′x, denote the value of r when (m, s), resp. (m′, s′), is
delivered at process x ∈ {p, q}.

By Lemma 5, (m, s) and (m′, s′) are each delivered
in the same rounds by all correct processes, i.e., rp =
rq and r′p = r′q . If (m, s) and (m′, s′) are delivered in
different rounds, then either rp < r′p and rq < r′q , or
rp > r′p and rq > r′q , and the order property holds. If

9For simplicity we assume that V is infinite: otherwise the same
reasoning will apply for some round r′ > r.

6

(m, s) and (m′, s′) are delivered in the same round r,
then they are delivered in the order of the process IDs
and lsn, and the order property holds.
From Lemmas 6–9 and the fact that reliable unique
broadcast can be implemented in an asynchronous sys-
tem with reliable links when n > 3t [9], we get the
following theorem:

Theorem 1. If n > 3t, then Algorithm 1 is a reduction
of atomic broadcast to range validity consensus in an
asynchronous system with reliable links.

C. Why reliable unique broadcast?
We illustrate now on an example why reliable unique

broadcast [9] (rather than reliable broadcast [10]) is
needed in Algorithm 1. Consider n = 4, t = 1, processes
denoted by i ∈ [1, 4], and process 4 being the faulty
process. If reliable broadcast is used in Algorithm 1,
then processes 1 and 2 may rdeliver, from process 4
at line 9, m′ = 〈1,m〉 resp. m′′ = 〈1,m〉. By the
Agreement property of reliable broadcast, all correct
processes eventually rdeliver m′ = 〈1,m〉 and m′′ =
〈1,m〉 from process 4. Therefore, all correct processes
will eventually start round k proposing 1 for consensus
instance (k−1) ·n+4. By the range validity property of
consensus, all processes will decide 1 in the consensus
instance (k−1)·n+4. Therefore, process 1 will adeliver
(m, 4) and process 2 will adeliver (m, 4), violating the
total order property of atomic broadcast.

D. Time complexity of Algorithm 1

We express the time complexity τAB
m of our reduction

algorithm as the upper bound of the duration between
the atomic broadcast of some message m by a correct
process and the delivery of m at all correct processes.10

We express τAB
m in terms of the maximum execution

time of consensus — denoted by τC — and the maxi-
mum communication delay δ. For τC , we consider the
starting time of an instance of consensus to be the time
at which the last input event of a correct process occurs,
and the ending time to be the time at which the last
output event (decision value) of a correct process occurs.
We define δ as the maximum transmission delay on
messages exchanged among correct processes. We have
the following result (proof in [14]):11

Theorem 2. [Time complexity] If |V| = ∞, for Algo-
rithm 1 we have τAB

m ≤ 2τC + 3δ.

10Since communication delays are unbounded in an asynchronous
system, the analysis is done for finite runs, where a maximum value
exists for every run. To simplify the notation, we drop the reference
to runs.

11In the proof we assume that reliable unique broadcast is imple-
mented as in [9] and therefore has time complexity of 3δ.

Proof: We show that ordering an arbitrary mes-
sage from a correct process takes at most 2τC + 3δ
time (τC denotes maximum execution time of range
validity consensus). , i.e., for any message m we have
τAB
m = eAB

m −sAB
m ≤ 2τC +3δ (sAB

m being time when m
is abcast and eAB

m being time when last correct process
adeliver m). In the proof we assume that reliable unique
broadcast is implemented as in [9] and therefore has time
complexity of 3δ.

Assume that a correct process p abcasts message m at
time sAB

m . Then, also at time sAB
m , message m is rubcast

with a next index `. Since p is correct, for all j, 0 < j <
`, messages have been rubcast before. By time sAB

m +3δ,
all these messages have been rubdelivered at all correct
processes. Therefore, at every correct process q, the set
rubdeliveredq contains a message 〈−, j, p〉 for all 0 <
j ≤ ` (?). At most τC later, every process has started a
new consensus instance with an index k such that k =
(r−1) ·n+p. By (?), rdel sn[p] ≥ ` at line 15 of round
r at all correct processes. Now, if decided sn[p] ≥ `, all
correct processes already adelivered message m before,
and because of τAB

m ≤ 2τC + 3δ we are done.
Else, decided sn[p] < ` at line 16 in round r. Then

because |V| = ∞, at all correct processes we have that
v[p] = rdel sn[p] − decided sn[p] at line 16, and this
value is proposed to consensus instance (r − 1) · n+ p.
By the range validity property of consensus, decision[p],
the decision value of consensus instance (r − 1) · n+ p
is greater or equal to v[p]. Therefore, at all correct pro-
cesses decided sn[p] + decision[p] ≥ decided sn[p] +
rdel sn[p] − decided sn[p] ≥ rdel sn[p] ≥ `. There-
fore, message 〈m, p〉 will be adelivered at line 24. This
will happen at all correct processes at latest at time
sAB
m + 2τC + 3δ. The theorem follows.

V. SOLVING RANGE VALIDITY CONSENSUS

In order to complete the contribution of the previous
section, we discuss now the solution of range validity
consensus. Range validity consensus is easy to solve in
the partially synchronous model [5]. For example, this
is achievable by modifying one single line of the CL
consensus algorithm in [15], which itself is based on
PBFT [16]. Instead of giving this algorithm, we find it
more interesting to show a different solution, namely that
range validity consensus is reducible to binary consensus
with constant time complexity. The reduction is given by
Algorithm 2.

Algorithm 2 starts by having processes rubcast their
initial value (line 4). After delivery of n−t initial values
(line 7), processes execute a sequence of rounds: in each
round r, n binary consensus instances, namely instances
(r−1)·n+i, i = 1..n, are executed in parallel. A correct

7

Algorithm 2 Reduction of range validity consensus to
binary consensus (code of process p)
1: r ← 0
2: rubdelivered ← ∅

3: upon range-propose(v) do
4: rubcast(1, v) /* 1 is the local index number, see

Sect.II-A; each process rubcasts only once. */

5: upon rubdeliver(1, v, q) do
6: rubdelivered ← rubdelivered ∪ {〈1, v, q〉}

7: wait until |rubdelivered | ≥ n− t
8: loop
9: r ← r + 1
10: for π = 1 to n do
11: v[π]← 1 if 〈−, π〉 ∈ rubdelivered otherwise 0
12: bin-propose((r − 1) · n+ π, v[π])
13: for π = 1 to n do
14: wait until bin-decide((r − 1) · n+ π, decision[π])
15: Π1 ← {q ∈ Π : decision[q] = 1}
16: if |Π1| ≥ n− t then
17: for all i ∈ Π1 do
18: wait until

∃m : msg = 〈1,m, i〉 ∈ rubdelivered
19: dec ← max v s.t.

∃qv ∈ Π1 : (1, v, qv) ∈ rubdelivered ∧ |{q ∈ Π1 :
(1, v′, q) ∈ rubdelivered s.t. v′ ≥ v}| ≥ t+ 1

20: range-decide(dec)

process proposes 1 in consensus instance (r−1)·n+i if it
has rubdelivered the initial value of process i; otherwise
it proposes 0 (line 11). The algorithm terminates in a
round in which at least n− t binary consensus instances
decide 1 (line 16). Line 19 ensures that the decision
value is ≥ than the initial value of at least one correct
process. Moreover, since n > 3t, line 19 also ensures
that the decision value is ≤ than the initial value of at
least one correct process.
The next theorem establishes the correctness of the
reduction:

Theorem 3. If n > 3t then Algorithm 2 reduces range
validity consensus to binary consensus.

Proof: To avoid ambiguity we use the prefix range
resp. bin to distinguish the proposal and decision events
of the two consensus specifications.

Agreement. Because of the agreement property of
binary consensus, for any round r, the set Π1 is the
same at all correct processes p. By the agreement and
integrity property of reliable unique broadcast, if two
correct processes rubdeliver a message with the same tag
from some process, they rubdeliver the same message.
Since the deterministic rules at lines 15-19 are based
only on the set Π1 and messages rubbcast by processes

from the set Π1, it follows that all correct processes
decide the same value.

Termination. By the validity and agreement properties
of reliable unique broadcast all correct processes even-
tually rubdeliver messages from all correct processes
(?). Since there are at most t Byzantine processes, no
correct process waits forever at line 7. By the termination
property of binary consensus, no correct process waits
forever at line 14. Furthermore, by (?), eventually all cor-
rect processes have received messages from all correct
processes, so they propose 1 for all consensus instances
(r − 1) · n + π that correspond to correct processes π.
By the agreement property of binary consensus, these
instances of binary consensus decide 1. Therefore, the
set Π1 eventually has n− t elements and the condition
at line 16 evaluates to true .

If a process waits at line 18 to rubdeliver (1,m, q),
this means that the decision value of binary consensus
instance (r−1) ·n+q was 1. By the validity property of
binary consensus, at least one correct process proposed 1
for this binary consensus instance. Therefore, by line 11,
this process rubdelivered (1,m, q). By the agreement
property of reliable unique broadcast, all correct pro-
cesses eventually rubdeliver (1,m, q), so no process
waits forever at line 18.

Range Validity. A value v is decided if (i) there are at
least t+ 1 values v′ such that v′ ≥ v, and (ii) if v is the
maximum value among the values that satisfies condition
(i) (see line 19). Condition (i) ensures that there is at
least one initial value of a correct process that is greater
or equal than the decision value (?). Further, a value is
decided only if the set Π1 contains at least n− t values.
Since we assume that n > 3t, the number of values
that satisfies condition (i) is n − 2t > t, so at least
one among these values is an initial value of a correct
process. Therefore, condition (ii) ensures that selected
value is greater or equal to at least one initial value of
correct process (??). From (?) and (??) it follows that
the decision value is between the initial values of correct
processes.

As in in Section IV-D, the time complexity of Al-
gorithm 2 is expressed in terms of maximum execution
time of binary consensus τCbin and the maximum com-
munication delay δ. We have the following result (proof
in [14]):

Theorem 4. [Time complexity] For the reduction given
by Algorithm 2, we have τRV

k ≤ 2τCbin + 3δ.

Proof: We show that an execution of every instance
k of range validity consensus takes at most 2τCbin + 3δ
time i.e., τRV

k = eRV
k − sRV

k ≤ 2τCbin + 3δ for any range
validity consensus instance (sRV

k being time when the

8

last input event of a correct process for range validity
consensus instance k occurs, while eRV

k is the time
where the last output event of a correct process occurs).
In the proof we assume that reliable unique broadcast is
implemented as in [9] and therefore has time complexity
of 3δ.

By definition of sRV
k , at time sRV

k + 3δ, all messages
rubcast by correct processes at line 4 are rubdelivered
by all correct processes (see line 6). By definition of
τCbin, the next n binary consensus instances are started
at line 12 the latest at time sRV

k + 3δ + τCbin. Since at
this time, all correct processes have received messages
from all correct processes, they will propose 1 for all
consensus instances (r−1)·n+i, for all correct processes
i. By the validity property of binary consensus, all these
instances will decide 1. Since there are at least n − t
correct processes, at least n− t consensus instances will
return 1 and the condition at line 16 evaluates to true
at all correct processes. Therefore, they all decide at
line 20 the latest at time sRV

k +3δ+2τCbin. Therefore, the
execution time of any range validity consensus instance
k is τRV

k ≤ 2τCbin + 3δ, and Algorithm 2 has a constant
time complexity with respect to both binary consensus
and communication.

VI. REDUCING ATOMIC BROADCAST TO BINARY
CONSENSUS

If we use Algorithm 1 with |V| = 2, we get a reduction
of atomic broadcast to binary consensus. Unfortunately,
this reduction does not have constant time complexity
with respect to binary consensus. For a finite domain, in
particular for V = {0, 1}, the reduction shown by Algo-
rithm 1 has a constant time complexity with respect to
binary consensus only if the number of abcast invocation
by a correct process is bounded: Algorithm 1 can order at
most |V| messages per round and process. Since every
round takes at least the execution time of consensus,
ordering n|V| requests requires O(nτCbin) time.

Constant time complexity with respect to binary con-
sensus can be obtained by combining Algorithm 1 with
Algorithm 2 (to implement range validity consensus).
This leads to a reduction of atomic broadcast to binary
consensus with constant time complexity with respect
to binary consensus. From Theorem 1 and Theorem 2
follow:

Corollary 2. For the atomic broadcast reduction to
binary consensus, obtained by combining Algorithm 1
(with |V| = ∞) with Algorithm 2, we have τAB

m ≤
2(2τCbin + 3δ) + 3δ.

VII. RELATED WORK

Atomic broadcast: Algorithms for atomic broadcast
have attracted a lot of attention, both for the benign and
for the Byzantine fault model. In this paper, we focus
on algorithms that solve atomic broadcast by reduction
to consensus.

In [1], Chandra and Toueg solve atomic broadcast by
reduction to consensus for benign faults. The reduction
has constant time complexity with respect to consensus.
The authors also mention that atomic broadcast is re-
ducible to consensus in the Byzantine fault model, but
no reduction is given.

In [2], [17], Correia et al. give reductions of atomic
broadcast to consensus in the Byzantine fault model.
They give two reductions, the first to abortable consensus
and the second to binary consensus. The reductions
do not have constant time complexity with respect to
consensus, a property of our reduction. Indeed, the
reduction to abortable consensus has a time complexity
τAB
m ≤ (f+1)τC +6δ, while the time complexity of the

reduction to binary consensus is τAB
m ≤ (f + 1)(τCbin +

6δ) + 6δ.
In [4], Cachin et al. give reductions of atomic broad-

cast to binary consensus for Byzantine faults with au-
thentication. They give two reductions: the first is deter-
ministic and the second randomized. As an intermedi-
ate module in these algorithms, they use multi-valued
Byzantine agreement with external validity. External
validity allows an application that requests agreement to
specify the decision values that are acceptable. Note that,
strictly speaking, multi-valued Byzantine agreement with
external validity is not consensus since it depends on the
application by the external validity property. [4] gives
two implementations of multi-valued Byzantine agree-
ment with external validity by reduction to binary con-
sensus, the first being deterministic and the second ran-
domized. Depending on the implementation considered,
the atomic broadcast reduction to binary consensus is
deterministic or randomized. The deterministic reduction
does not have constant time complexity with respect to
binary consensus (we have τAB

m ≤ (f+1)(τCbin+δ)+4δ).
The randomized reduction to binary consensus has a
constant expected time complexity with respect to binary
consensus. Note that this is different from deterministic
constant time reduction to binary consensus obtained
in this paper. The approach highly relies on the use
of cryptographic tools, which is not the case for our
reduction. The approach was later followed in several
papers [18], [19], [20].

Atomic broadcast is part of several Byzantine-tolerant
group communication systems, where it is implemented

9

either monolithically [21] or using view synchrony [22],
[23], [24]. All these protocols rely on the use of crypto-
graphic tools, which is not the case for our reduction.

Although atomic broadcast can be used to implement
state machine replication, several algorithms directly
implement Byzantine state machine replication, e.g.,
[16], [25], [26]. The algorithm in [26] proceeds in two
phases, pre-agreement and agreement phase, and in the
agreement phase, similarly to our Algorithm 1, processes
agree on message IDs instead on full messages. This idea
of agreeing on message IDs was discussed by Ekwall and
Schiper in [27], where the authors give a reduction of
atomic broadcast to consensus in the benign fault model.

Validity property of consensus: Besides the validity
properties discussed in the paper, other validity proper-
ties have been proposed. In [6], differential consensus
is defined by introducing δ-differential validity, which
requires that the decision value is of a certain plurality
among the correct processes. It is not clear that such
a validity property helps in the reduction of atomic
broadcast.

Several papers have considered the vector consensus
problem [28] as an intermediate step in solving atomic
broadcast [2], [28]. Contrary to the consensus problem,
in vector consensus the type of the decision differs from
the type of the initial values (initial values of type T,
decision of type vector of T). As noted in [2], vector
consensus is an adaptation for asynchronous systems
of interactive consistency, defined for synchronous sys-
tems [29].

An interesting observation is that range validity can
be seen as a special case of the validity condition in
approximate agreement [30]. We can think about range
validity consensus as a “perfect” approximate agreement
problem with ε = 0 where ε defines allowed difference
among decision values. Interestingly in SIFT, a fault
tolerant system for aircraft control [31], range validity
consensus would naturally fit in the algorithms for clock
synchronization, stabilization of input from sensors, and
agreement on results of diagnostic tests, where interac-
tive consistency was used.

Consensus Reductions: In [32], Turpin and Coan
give an algorithm that reduces abortable multi-valued
consensus to binary consensus in a synchronous system.
Reductions have also been described in an asynchronous
system. [33] gives a reduction that uses signatures,
and in [2] a similar algorithm without signatures is
shown. Both reductions have constant time complexity
with respect to binary consensus. However, in all these
reductions, processes decide on a “default” value if
correct processes do not have the same initial value.
Therefore, they cannot be used to reduce (multi-valued)

range validity consensus to binary consensus. Note that
algorithm 2 relies on mechanisms similar to those found
in other reduction to binary consensus, e.g., [34]. How-
ever, contrary to Algorithm 2, they do not consider the
reduction of the standard consensus problem.

VIII. CONCLUSION

The paper has discussed the relation between atomic
broadcast and different variants of consensus in systems
with Byzantine faults. It has shown that consensus
with weak unanimity is not sufficient to solve atomic
broadcast, while consensus with strong validity is harder
than atomic broadcast. Furthermore, the paper has shown
that atomic broadcast is equivalent to consensus with
strong unanimity, consensus with abortable validity, and
consensus with range validity.

The paper has also given a reduction of atomic
broadcast to range validity consensus with constant time
complexity with respect to consensus. Range validity
consensus has been then reduced to binary consensus,
also with constant time complexity. Together, this leads
to a reduction of atomic broadcast to binary consensus,
with constant time complexity with respect to binary
consensus. To the best of our knowledge, these are the
first atomic broadcast reductions to consensus with the
constant time complexity with respect to consensus in
the Byzantine fault model.

Acknowledgement: We would like to thank Sam Toueg
for having shared with us, a long time ago, a reduction
of atomic broadcast to binary consensus in the context
of Byzantine faults. We would like to thank also Martin
Biely, Omid Shahmirzadi, the anonymous reviewers and
Flavio Junqueira.

REFERENCES

[1] T. D. Chandra and S. Toueg, “Unreliable failure detectors for
reliable distributed systems,” Journal of the ACM, 1996.

[2] M. Correia, N. F. Neves, and P. Verı́ssimo, “From consensus to
atomic broadcast: Time-free byzantine-resistant protocols without
signatures,” Comput. J., 2006.

[3] V. Drabkin, R. Friedman, and A. Kama, “Practical byzantine
group communication,” Distributed Computing Systems, Interna-
tional Conference on, 2006.

[4] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and
efficient asynchronous broadcast protocols (extended abstract),”
in in Advances in Cryptology: CRYPTO, 2001.

[5] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the
presence of partial synchrony,” J. ACM, 1988.

[6] M. Fitzi and J. A. Garay, “Efficient player-optimal protocols for
strong and differential consensus,” in PODC, 2003.

[7] D. Dolev and E. N. Hoch, “Constant-space localized byzantine
consensus,” ser. DISC, 2008.

[8] A. Mostéfaoui and M. Raynal, “Signature-free broadcast-based
intrusion tolerance: never decide a byzantine value,” ser.
OPODIS, 2010.

[9] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg,
“Consensus with byzantine failures and little system synchrony,”
in DSN, 2006.

10

[10] V. Hadzilacos and S. Toueg, “A modular approach to fault-
tolerant broadcasts and related problems,” Tech. Rep., 1994.

[11] N. A. Lynch, Distributed Algorithms, 1996.
[12] G. Neiger, “Distributed consensus revisited,” Inf. Process. Lett.,

1994.
[13] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility

of distributed consensus with one faulty process,” J. ACM, 1985.
[14] Z. Milosevic, M. Hutle, and A. Schiper, “On the reduction of

atomic broadcast to consensus with byzantine faults,” no. EPFL-
REPORT-165021, 2011.

[15] ——, “Unifying byzantine consensus algorithms with weak in-
teractive consistency,” in OPODIS, 2009.

[16] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems,
2002.

[17] H. Moniz, N. F. Neves, M. Correia, and P. Verissimo, “Ritas:
Services for randomized intrusion tolerance,” IEEE Transactions
on Dependable and Secure Computing, 2011.

[18] K. Kursawe and V. Shoup, “Optimistic asynchronous atomic
broadcast,” in in the Proceedings of International Colloqium on
Automata, Languages and Programming (ICALP05) (L Caires,
G.F. Italiano, L. Monteiro, Eds.) LNCS 3580, 2001.

[19] H. V. Ramasamy and C. Cachin, “Parsimonious asynchronous
byzantine-fault-tolerant atomic broadcast,” in OPODIS, 2005.

[20] D. Dobre, H. V. Ramasamy, and N. Suri, “On the latency
efficiency of message-parsimonious asynchronous atomic broad-
cast,” in SRDS, 2007.

[21] L. E. Moser and P. M. Melliar-Smith, “Byzantine-resistant total
ordering algorithms,” Inf. Comput., 1999.

[22] M. K. Reiter, “Secure agreement protocols: Reliable and atomic
group multicast in rampart,” in In Proceedings of the 2nd ACM
Conference on Computer and Communications Security, 1994.

[23] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “The
securering group communication system,” ACM Trans. Inf. Syst.
Secur., 2001.

[24] H. V. Ramasamy, P. Pandey, M. Cukier, and W. H. Sanders,
“Experiences with building an intrusion-tolerant group commu-
nication system,” Softw. Pract. Exper., 2008.

[25] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,
“Zyzzyva: speculative byzantine fault tolerance,” in SOSP, 2007.

[26] Y. Amir, B. A. Coan, J. Kirsch, and J. Lane, “Byzantine replica-
tion under attack,” in DSN, 2008.

[27] R. Ekwall and A. Schiper, “Solving atomic broadcast with
indirect consensus,” in DSN, 2006.

[28] A. Doudou and A. Schiper, “Muteness detectors for consensus
with byzantine processes,” Tech. Rep., 1997.

[29] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in
the presence of faults,” J. ACM, 1980.

[30] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl,
“Reaching approximate agreement in the presence of faults,”
Journal of the ACM, 1986.

[31] J. H. Wensley, L. Lamport, J. Goldberg, S. Member, M. W.
Green, K. N. Levi’it, P. M. Melliar-smith, R. E. Shostak, Charles,
and B. Weinstock, “Sift: Design and analysis of a fault-tolerant
computer for aircraft control,” in Proceedings of the IEEE, 1978,
pp. 1240–1255.

[32] R. Turpin and B. A. Coan, “Extending binary byzantine agree-
ment to multivalued byzantine agreement,” Information Process-
ing Letters, 1984.

[33] S. Toueg, “Randomized byzantine agreements,” ser. PODC ’84,
1984.

[34] M. Ben-Or and R. El-Yaniv, “Resilient-optimal interactive con-
sistency in constant time,” Distrib. Comput., 2003.

11

