Turbulence and transport reduction with innovative plasma shapes in TCV - correlation ECE measurements and gyrokinetic simulations

Turbulence and transport reduction with innovative plasma shapes in TCV -- correlation ECE measurement and gyrokinetic simulations Due to turbulence, core energy transport in tokamaks generally exceeds collisional transport by at least an order of magnitude. It is therefore crucial to understand the instabilities driving the turbulent state and to find ways to control them. Shaping the plasma is one of these fundamental tools. In low collisionality plasmas, such as in a reactor, changing triangularity from positive (delta=+0.4) to negative triangularity (delta=-0.4) is shown on TCV to reduce the energy transport by a factor two. This opens the possibility of having H-mode-like confinement time within an L-mode edge, or reduced ELMs. An optimum triangularity can be sought between steep edge barriers (delta>0), plagued by large ELMs, and improved core confinement (delta<0). Recent correlation ECE measurements show that the reduction of transport at negative delta is reflected in a reduction by a factor of two of both the amplitude of temperature fluctuations in the broadband frequency range 30-150 kHz, and the fluctuation correlation length, measured at mid-radius. In addition, the fluctuations amplitude is reduced with increasing collisionality, consistent with a reduction of the Trapped Electron Modes (TEM) drive. The effect of negative triangularity on turbulence and transport is compared to gyrokinetic code results: First, global linear simulations predict shorter radial TEM wavelength, consistent with the shorter radial turbulence correlation length observed. Second, at least close to the strongly shaped plasma boundary, local nonlinear simulations predict lower TEM induced transport with decreased triangularity. Calculations are now being extended to global nonlinear simulations.

Presented at:
Bulletin of the American Physical Society, 52nd Annual Meeting of the APS Division of Plasma Physics, Volume 55, Number 15 , Chicago, Illinois, USA, November 8–12, 2010

 Record created 2011-04-12, last modified 2019-04-16

Download fulltextPDF
External links:
Download fulltextURL
Download fulltextURL
Rate this document:

Rate this document:
(Not yet reviewed)