Transport and turbulence reduction with negative triangularity : Correlation ECE measurements in TCV

A. Pochelon, M.Rancic, V.S.Udintsev ${ }^{1}$, T.P.Goodman, E.Fable ${ }^{2}$, B.Labit, O.Sauter, R.Behn, A.Bottino², S.Brunner, Y.Camenen ${ }^{3}$, A.Casati, P.K.Chattopadhyay ${ }^{4}$, S.Coda, B.P.Duval, L.Federspiel, S.Jolliet ${ }^{5}$, A.Karpushov, N.Kirneva ${ }^{6}$, A.Marinoni, Ph.Marmillod, B.McMillan, S. Y.Medvedev ${ }^{7}$, J-M.Moret, A.Pitzschke, L.Porte, L.Villard, and the TCV team

Ecole Polytechnique de Lausanne (EPFL)
Centre de Recherches en Physique des Plasmas
Association EURATOM-Confédération Suisse
Lausanne, Switzerland
${ }^{1}$ ITER-IO, ${ }^{2}$ IPP-Garching, ${ }^{3}$ CFSA-Warwick, ${ }^{4}$ IPR-Bhat-India, ${ }^{5}$ JAEA-Tokyo, ${ }^{6}$ RRC-Kurchatov-Moscow, ${ }^{7}$ Keldysh-Inst-Moscow

MOTIVATIONS

Why to study also plasma shapes different from ITER?

- A tool for test and validation of transport modeling
- Confinement in the core improves towards negative triangularity (at least in L-mode!)

Energy confinement improves towards $\delta<0$ (at low $v_{\text {eff }} \sim 0.2-1$)

- $\tau_{\text {Ee }}$ improvement is not explained by gradient geometrical (=shape) factor, $->\chi_{\mathrm{e}}$ is thus varying with triangularity
- Plasma conditions: low density ECH plasmas, high $R / L_{T \mathrm{e}}>7$ and $T_{\mathrm{e}} / T_{\mathrm{i}}$, low collisionality $v_{\text {eff }}$
-> TEM dominated regime
(no ETG due to high $Z_{\text {eff }} \& T_{\mathrm{e}} / T_{\mathrm{i}}$,
in range $0.2<\rho<0.7$)
Coda 98, Pochelon NF99 \& EPS99, Weisen NF98

Energy transport reduces by a factor 2 towards $\delta<0$

Two shapes, $\delta= \pm 0.4$:
Expt. 1: adapting the power at $\delta=-0.4$ to keep the same plasma energy,
$T_{\mathrm{e}}, n_{\mathrm{e}}$ and q-profiles than at $\delta=+0.4$:
Only half add. power needed, resulting in χ_{e} halfed at mid-radius,
Expt. 2: same powers at $\delta= \pm 0.4$: resulting in higher energy \& lower χ_{e}

OUTLINE

FROM GLOBAL TO LOCAL quantities ...

confinement, transport, turbulence

1. Intro: correlation ECE set-up, effect of collisinality on turbulence
2. Turbulence characteristics with triangularity
3. Global linear gyrokinetic simulations

FROM LOCAL TO GLOBAL GK simulations
4. Conclusions and Outlook

TCV facility

TCV:

$R=0.88 \mathrm{~m}, a=0.25 \mathrm{~m}, R / a \sim 3.5$ $B<1.5 \mathrm{~T}$,
$I_{\mathrm{p}} \leq 1 \mathrm{MA}$
elongation $0.9<\kappa<2.8$
triangularity $-0.7<\delta<1$
squareness
SN \& Snowflake divertor

ECRH:

4.5 MW at $2^{\text {nd }}$ and $3^{\text {rd }}$ harmonic

TCV programmatic brainstorming: 15-16 Sept.

Turbulence measurements using ECE

ECE views

4 normal antennas, equat. LFS with focusing lens

1 sweepable oblique LFS antenna (L7)
$3^{\text {rd }}$ EFDA TTG \& $15^{\text {th }}$ EU-US TTF $7-10$ Sept 2010

Correlation ECE setup

- single Gaussian-beam sight-line measurement from LFS, from 2 narrowband (0.1 GHz) tunable ($61-89 \mathrm{GHz}$) YIG filters, defining two sampling volumes
- focussed beam resolves to $k_{\theta} \leq 1.4 \mathrm{~cm}^{-1}$

Fluctuation amplitudes versus collisionality

cross-spectral density (CSD)
decrease with density
Ohmic, $q \sim 10, \kappa \sim 1.4, \delta \sim 0.3$

fluctuation amplitude
CSD integrated over<30-130kHz>
to avoid MHD-modes

T_{e}-fluctuation amplitudes decrease with collisionality $v_{\text {eff }}$

Udintsev \& Fable US-TTF09
$3^{\text {rd }}$ EFDA TTG \& $15^{\text {th }}$ EU-US TTF

Motivation: outer plasma not totally blackbody in for ECE:

- since optical depth at $\rho_{\mathrm{v}}=0.55$ is <3, thus measured fluct. attributable to both T_{e} and n_{e}
- from GS2:
- both ($T_{\mathrm{e}}, n_{\mathrm{e}}$)-fluctuations show
same trend with $v_{\text {eff }}$
- direction of propagation characteristic of TEM

The amplitude reduction with $v_{\text {eff }}$ is also consistent with TEM drive reduction due to TE collisional detrapping

Triangularity scan

$\rho_{\mathrm{v}}=0.6$ on LFS equator
(taking into account varied Shafranov shift in $\delta= \pm 0.4$; significative since CSD doubles each $\Delta \mathrm{R} / \mathrm{a}$ 10\%)
profiles

matching $\delta=-0.4,250 \mathrm{~kW}$ Ohmic profiles by adding 580 kW ECH in $\delta=+0.4$

Cross spectral density : $\delta= \pm 0.4, \mathrm{OH} / \mathrm{EC}$

CSD reduced towards $\delta<0$

Varying separation of detection volumes

Correlation lengths: $\delta= \pm 0.4, \mathrm{OH} / \mathrm{EC}$

Radial correlation length λ_{C} :

- shorter at $\delta<0$ (factor ~ 2)
- larger with EC to reach same T_{e} and n_{e} profiles, but thus with doubled heat flux

Global linear GK simulation with ORB

Comparing correlation length: expt. $\lambda_{\mathrm{c}} / \boldsymbol{k}_{\perp}$ lin. global GK simul.

Radial turb. correlation length λ_{c} and $\lambda_{\perp} \sim 1 / k_{\perp}$,
both reduced by factor ~ 2
linear global GK simulations appear
 to suggest correct trend!

Comparing spectra (expt. turbulence / GK TEM transport)

CSD reduced at $\delta<0$, predominantly at the low frequencies

$\chi_{\text {e_mixing length }}$ reduced at $\delta<0$, predominantly at the low n (role of the large, global structures)
$3^{\text {rd }}$ EFDA TTG \& $15^{\text {th }}$ EU-US TTF $7-10$ Sept 2010

Correlation length λ_{c} and χ_{e} versus collisionality

from power balance

Correlation length λ_{c} and χ_{e} show both similar reduction with collisionality and negative triangularity

Conclusions

- At negative triangularity, compared to positive,
$-\tau_{E e}$ is improved and χ_{e} reduced (both factor ~ 2)
- both radial correlation length λ_{c}, and turbulence amplitudes reduce (by factor ~ 2)
- The (so far linear) comparison with global GK code ORB shows similar trends:
$-\lambda_{\perp} \sim 1 / k_{\perp}$ is reduced with negative triangularity
(similar trend with δ as the measured correlation length λ_{c}, apparently a relevant (linear!) hint for TEM developped turb. ...)
- role of low n, low frequency - large radial structures - in the variation of transport with δ.
- plasma shape: a tool to investigatate transport properties for model validation - in particular their dependence on equilibrium
geometry!

Outlook

- next step aims at a more detailed comparision beween expt and GK-modeling, using e.g. non-lin global ORB5 code with an artificial diagnostics, mimicking corrECE measurements
- wishful next experimental step: evolve to multi-channel corrECE (from present 2-point-correlation diag.) :
- opens to new physics domain: non-local transport, avalanches, meso-scale structures (as in present NL global GK codes)
- allows for a more efficient tokamak use, 2-point-only-correlations limiting investigations
- further explorations with oblique line-of-sight angles to resolve turbulence structures
(e.g.: link between λ_{c} and potential cell orientation)

