Transport and turbulence reduction with negative triangularity : Correlation ECE measurements in TCV

A. Pochelon, M.Rancic, V.S.Udintsev¹, T.P.Goodman, E.Fable², B.Labit, O.Sauter, R.Behn, A.Bottino², S.Brunner, Y.Camenen³, A.Casati, P.K.Chattopadhyay⁴, S.Coda, B.P.Duval, L.Federspiel, S.Jolliet⁵, A.Karpushov, N.Kirneva⁶, A.Marinoni, Ph.Marmillod, B.McMillan, S.Y.Medvedev⁷, J-M.Moret, A.Pitzschke, L.Porte, L.Villard, and the TCV team

Ecole Polytechnique de Lausanne (EPFL) Centre de Recherches en Physique des Plasmas Association EURATOM-Confédération Suisse Lausanne, Switzerland

¹ITER-IO, ²IPP-Garching, ³CFSA-Warwick, ⁴IPR-Bhat-India, ⁵JAEA-Tokyo, ⁶RRC-Kurchatov-Moscow, ⁷Keldysh-Inst-Moscow

Why to study also plasma shapes different from ITER?

 A tool for test and validation of transport modeling

 Confinement in the core improves towards negative triangularity (at least in L-mode!)

- τ_{Ee} improvement is not explained by gradient geometrical (=shape) factor,
 - -> χ_e is thus varying with triangularity
- Plasma conditions: low density ECH plasmas, high R/L_{Te} >7 and T_e/T_i , low collisionality v_{eff} -> *TEM dominated regime* (no ETG due to high $Z_{eff} \& T_e/T_i$, in range 0.2< ρ <0.7)

Coda 98, Pochelon NF99 & EPS99, Weisen NF98

3

Energy transport reduces by a factor 2 towards $\delta < 0$

Two shapes, $\delta = \pm 0.4$:

Expt. 1: adapting the power at δ = - 0.4 to keep the same plasma energy, $T_{\rm e}$, $n_{\rm e}$ and q-profiles than at δ = + 0.4 :

Only half add. power needed, resulting in χ_e halfed at mid-radius,

Expt. 2: same powers at $\delta = \pm 0.4$: resulting in *higher energy & lower* χ_e

FROM GLOBAL TO LOCAL quantities ...

confinement, transport, turbulence

- 1. Intro: correlation ECE set-up, effect of collisinality on turbulence
- 2. Turbulence characteristics with triangularity
- **3. Global linear gyrokinetic simulations**

FROM LOCAL TO GLOBAL GK simulations

4. Conclusions and Outlook

TCV facility

TCV:

 $R = 0.88 \text{ m}, a = 0.25 \text{ m}, R/a \sim 3.5$ B < 1.5T, $I_p \leq 1\text{MA}$ elongation $0.9 < \kappa < 2.8$ triangularity - $0.7 < \delta < 1$ squareness SN & Snowflake divertor

ECRH:

4.5 MW at 2nd and 3rd harmonic

TCV programmatic brainstorming: 15-16 Sept.

ECE views

7

Correlation ECE setup

- single Gaussian-beam sight-line measurement from LFS, from 2 narrowband (0.1GHz) *tunable* (61-89GHz) YIG filters, defining two sampling volumes
- focussed beam resolves to $k_0 \le 1.4 \text{ cm}^{-1}$

8

Fluctuation amplitudes versus collisionality

 $T_{\rm e}$ -fluctuation amplitudes decrease with collisionality $v_{\rm eff}$

Udintsev & Fable US-TTF09

9

Motivation: outer plasma not totally blackbody in for ECE:

- since optical depth at ρ_v =0.55 is < 3, thus measured fluct. attributable to both T_e and n_e
- from GS2:
 - both (T_e, n_e) -fluctuations show same trend with v_{eff}
 - direction of propagation characteristic of TEM

The amplitude reduction with $v_{\rm eff}$ is also consistent with TEM drive reduction due to TE collisional detrapping

Udintsev, Fable US-TTF09

Triangularity scan

 ρ_V =0.6 on LFS equator (taking into account varied Shafranov shift in δ =±0.4; significative since CSD doubles each $\Delta R/a \sim 10\%$)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE matching δ =-0.4, 250 kW Ohmic profiles by adding 580 kW ECH in δ =+0.4

CSD reduced towards $\delta < 0$

 Δf [GHz] - scan, $\rho_v \sim 0.6$

CSD amplitude decreasing with radial separation

Correlation lengths: $\delta = \pm 0.4$, OH/EC

Radial correlation length λ_c :

- shorter at $\delta < 0$ (factor ~ 2)
- larger with EC to reach same T_e and n_e profiles, but thus with doubled heat flux

Global linear GK simulation with ORB

Comparing correlation length: expt. λ_c / k_{\perp} lin. global GK simul.

Comparing spectra (expt. turbulence / GK TEM transport)

30

~

k_⊥ p_s

 γ/k_{\perp}^{2} [m²/s]

CSD reduced at $\delta < 0$, predominantly at the low frequencies

 $\chi_{e_mixing length}$ reduced at $\delta < 0$, predominantly at the low n (role of the large, global structures)

Correlation length λ_c and χ_e show both similar reduction with collisionality and negative triangularity

- At negative triangularity, compared to positive,
 - τ_{Ee} is improved and χ_{e} reduced (both factor ~2)
 - both radial correlation length λ_c , and turbulence amplitudes reduce (by factor ~2)
- The (so far linear) comparison with global GK code ORB shows similar trends:
 - $-\lambda_{\perp} \sim 1/k_{\perp}$ is reduced with negative triangularity (similar trend with δ as the measured correlation length λ_{c} , apparently a relevant (linear!) hint for TEM developped turb. ...)
 - role of low *n*, low frequency large radial structures in the variation of transport with δ .
- plasma shape: a tool to investigatate transport properties for model validation - in particular their dependence on equilibrium geometry!

- next step aims at a more detailed comparision beween expt and GK-modeling, using e.g. non-lin global ORB5 code with an artificial diagnostics, mimicking corrECE measurements
- wishful next experimental step: evolve to multi-channel corrECE (from present 2-point-correlation diag.) :
 - opens to new physics domain: non-local transport, avalanches, meso-scale structures (as in present NL global GK codes)
 - allows for a more efficient tokamak use,
 2-point-only-correlations limiting investigations
- further explorations with oblique line-of-sight angles to resolve turbulence structures
 (e.g.: link between λ_c and potential cell orientation)

