Chemistry and structure of core/double-shell nanoscale precipitates in Al-6.5Li-0.07Sc-0.02Yb (at.%)

An Al-6.3Li-0.07Sc-0.02Yb (at.%) alloy is subjected to a double-aging treatment to create nanoscale precipitates, which are studied by atom-probe tomography and transmission electron microscopy. After homogenization and quenching, Yb atoms form clusters exhibiting L12-like order. A first aging step at 325 °C leads to a doubling of microhardness as a result of the formation of coherent precipitates with an Al3Yb-rich core and an Al3Sc-rich shell. The core and shell both exhibit the L12 structure and both contain a large concentration of Li, which substitutes for up to 50% of the Sc or Yb atoms at their sublattice positions. These core/single-shell precipitates provide excellent resistance to overaging at 325 °C. Subsequent aging at 170 °C increases the microhardness by an additional 30%, through precipitation of a metastable δ′-Al3Li second shell on the core/single-shell precipitates, thereby forming a chemically and structurally complex core/double-shell structure. The metastable δ′-Al3Li phase is observed to form exclusively on pre-existing core/shell precipitates. © 2011 Acta Materialia Inc.

Published in:
Acta Materialia, 59, null, 3398-3409

 Record created 2011-04-12, last modified 2018-03-17

Rate this document:

Rate this document:
(Not yet reviewed)