
Genome-Wide mRNA Expression Correlates of Viral
Control in CD4+ T-Cells from HIV-1-Infected Individuals
Margalida Rotger1., Kristen K. Dang2., Jacques Fellay2., Erin L. Heinzen2, Sheng Feng2,3, Patrick

Descombes4, Kevin V. Shianna2, Dongliang Ge2, Huldrych F. Günthard5, David B. Goldstein2*, Amalio

Telenti1*, The Swiss HIV Cohort Study and the Center for HIV/AIDS Vaccine Immunology"

1 Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland, 2 Institute for Genome Sciences & Policy, Duke University, Durham,

North Carolina, United States of America, 3 Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, United States of America, 4 Genomics

Platform, University of Geneva, Geneva, Switzerland, 5 Division of Infectious Diseases, University Hospital Zurich, University of Zurich, Zurich, Switzerland

Abstract

There is great interindividual variability in HIV-1 viral setpoint after seroconversion, some of which is known to be due to
genetic differences among infected individuals. Here, our focus is on determining, genome-wide, the contribution of
variable gene expression to viral control, and to relate it to genomic DNA polymorphism. RNA was extracted from purified
CD4+ T-cells from 137 HIV-1 seroconverters, 16 elite controllers, and 3 healthy blood donors. Expression levels of more than
48,000 mRNA transcripts were assessed by the Human-6 v3 Expression BeadChips (Illumina). Genome-wide SNP data was
generated from genomic DNA using the HumanHap550 Genotyping BeadChip (Illumina). We observed two distinct profiles
with 260 genes differentially expressed depending on HIV-1 viral load. There was significant upregulation of expression of
interferon stimulated genes with increasing viral load, including genes of the intrinsic antiretroviral defense. Upon
successful antiretroviral treatment, the transcriptome profile of previously viremic individuals reverted to a pattern
comparable to that of elite controllers and of uninfected individuals. Genome-wide evaluation of cis-acting SNPs identified
genetic variants modulating expression of 190 genes. Those were compared to the genes whose expression was found
associated with viral load: expression of one interferon stimulated gene, OAS1, was found to be regulated by a SNP
(rs3177979, p = 4.9E-12); however, we could not detect an independent association of the SNP with viral setpoint. Thus, this
study represents an attempt to integrate genome-wide SNP signals with genome-wide expression profiles in the search for
biological correlates of HIV-1 control. It underscores the paradox of the association between increasing levels of viral load
and greater expression of antiviral defense pathways. It also shows that elite controllers do not have a fully distinctive mRNA
expression pattern in CD4+ T cells. Overall, changes in global RNA expression reflect responses to viral replication rather
than a mechanism that might explain viral control.
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Introduction

There has been a recent effort to identify the genomic determinants

of susceptibility to HIV-1 infection, control of viral replication, and

disease progression [1]. Genetic analyses have identified over the years

a number of validated variants in candidate genes, while a recent

genome-wide association study [2] highlighted the dominant role of

variants in the MHC region in the control of viral setpoint (the steady

state of viral replication after infection) and disease progression. Other

genome-wide studies [3–5] confirmed the variants identified in the first

genome-wide analysis. These variants collectively explain up to about

13% of the variation in viral setpoint, indicating that other biological

determinants of control have yet to be identified. Here our focus is on

determining the contribution of variable gene expression to viral

control, and to relate it to genomic DNA polymorphism.

There have been a number of transcriptome studies in HIV-1

target cells (CD4+ T cells, monocytes/macrophages), non-targets

such as NK cells and B cells, and of dendritic cells and total

peripheral blood mononuclear cells (PBMCs) (reviewed in [6], and

recent publications [7–11]). These studies provide insight into gene

expression changes associated with virus replication and persis-

tence. Studies are limited by the number of genes interrogated, or

by the number of individuals investigated. These limits notwith-

standing, microarray data have yielded novel mechanisms of HIV-

mediated pathogenesis. Transcriptome analyses of cell lines

transfected with individual viral proteins or mutant viruses have

also been reported (reviewed in [6]).

This study aims at coupling a large scale assessment of gene

expression in purified CD4+ T cells from HIV-1 infected

individuals, with genome-wide genotype data tested for association
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with viral setpoint. Integrating gene expression data with results

from genome-wide association studies may help prioritize fine-

mapping efforts and provide shortcuts to disease biology [12].

Therefore, the goals of the study are the description of the

expression program associated with HIV-1 in vivo, the identifica-

tion of mRNAs that are differentially expressed in individuals that

present effective control of viral replication, and the search for cis-

acting variation in differentially expressed genes. Expression

polymorphism due to single nucleotide polymorphisms (SNPs)

that influence mRNA levels has received increasing attention for

the understanding of phenotypes in health and disease (reviewed in

[12]). Genome-wide screens, most generally done in cell lines,

have established the relevance of cis-acting SNPs in expression

polymorphism [13]. However, little is known regarding expression

polymorphism and HIV-1 disease.

In order to have power to detect correlations, we have considered

a large sample set of purified CD4+ T cells from individuals with

known date of infection and carefully determined viral load results.

Transcription analysis was done at the time of viral setpoint, so that

samples are representative of the steady-state replication for a given

individual, and across the full range of viral setpoint in an infected

population. For a large subset of participants, we also established the

transcription profile after initiation of antiretroviral therapy (ART)

to assess the modulation of expression upon effective control of

viremia. Thus, this study represents a first attempt at assessing,

genome-wide, the genotype-to-transcriptome-to-clinical phenotype

associations in HIV-1 disease.

Results

Transcriptome profile and viral setpoint analysis
We identified 298 hybridization probes that were significantly

correlated with viral load (FDR-adjusted p-value,0.01). This

resulted in a list of 260 genes, since multiple probes are used for

some of the genes. The majority of these (n = 209) were positively

associated with viral setpoint, while a smaller group (n = 51) was

negatively associated (Supplementary Table S1). We used

(unsupervised) clustering to group the expression profiles of the

samples for these 260 genes, and found that they showed distinct

behavior in individuals with effective virus control (reflected in low

viral setpoint) as compared with individuals showing poor control

of viral replication (Figure 1). In an analysis that considered

viral load at the precise date of transcriptome analysis instead of

setpoint, the results were comparable, implying that the expression

profile is representative for the period of analysis (three months to

three years after seroconversion), Figure 1. The analysis included

various parameters as covariates (clinical center, gender, age, CD4

T cell viability and laboratory date, and microarray chip batch -

sentrix ID). The CD4 T cell value at the time of sampling was

found to be closely correlated with viral setpoint (Pearson’s

correlation of 20.5 and a p-value = 1.195e-10), which made

difficult to separate their effects on the data. The 149 genes that

are shared between analysis using CD4 T cell count, and the

analysis using viral setpoint are indicated in Supplementary
Table S1.

The main gene clusters exhibiting a positive correlation with

viral setpoint (i.e., increasing gene expression with increasing viral

load), as defined by STRING, DAVID and IPA, were the

interferon pathway, the proteasome, and cell cycle genes (Figure 2
and Supplementary Table S2, S3). Conversely, among genes

that exhibited a negative correlation with viral setpoint (Supple-
mentary Table S1B), no pathway enrichment was identified. A

separate analysis that used a gene-by-gene modeling approach

resulted in a list of significant genes that was shorter (44 genes) but

highly concordant with the output of the empirical Bayes analysis

described above (Supplementary Table S4): we therefore used

the empirical Bayes results for subsequent analyses. Because the

CD4+T cell composition may vary depending on the degree of

viral replication [7], we re-analyzed the data controlling for CD25

expression (encoding IL2RA as marker of activation), or CD62L,

CD40L, CD11a, and CD27 (markers that distinguish naive from

memory CD4+ T cells). Although several additional significant

genes were found using each of the above markers as covariates,

the overall expression profile did not vary significantly (see for

example data from analysis adjusted by CD25 in Supplementary
Table S5). These analyses indicate the existence of a clear

expression program associated with high viral load, but fail to

identify definite gene networks associated with viral control.

Analysis of genes of the interferon response pathways
We observed a linear association between increasing expression

of interferon signaling and interferon-stimulated genes (ISGs) and

increasing viral setpoint. We compiled a list of 40 genes implicated

in the interferon response [14] (Supplementary Table S6).

Seventeen genes were significantly associated with viral setpoint

after FDR adjustment at the 0.01 level, and 12 were associated at a

p-value of 0.05. These 29 genes comprise most of the signaling and

ISGs, but notably exclude the interferon genes themselves and the

interferon receptors (Figure 3). This analysis points to a de-

regulated interferon response that associates with an ineffective

antiviral response.

Analysis of genes associated with HIV-1 life cycle and
pathogenesis

We similarly examined in detail a list of selected genes reported

to be involved in HIV-1 life cycle or pathogenesis (see Methods for

explanation of candidate selection) [15]. Of this list, 138 genes

were matched to probes, with four having a FDR-adjusted

significant association with viral setpoint, p-value ,0.01: TRIM22,

IRF7, RANBP1, and APOBEC3G. An additional 12 genes had

FDR-adjusted p-values ,0.05, and a further 26 had nominal

p-values ,0.05 (Supplementary Table S7). Genes of the

intrinsic cellular defense against retroviruses (TRIM5a, TRIM22,

TRIM19/PML, APOBEC3G, APOBEC3F, APOBEC3H, PPIA/

Cyclophilin A, BST2/Tetherin) were all upregulated with increasing

viral load, which is consistent with their general dependence on

the interferon pathways. A number of chemokines and chemokine

Author Summary

There has been recent progress in understanding the
genetic factors that modulate susceptibility to HIV-1
infection. Genetic variation explains to a certain extent
differences in disease progression among individuals. Less is
known regarding the contribution of differences in gene
expression to viral control. The present study evaluated,
genome-wide, gene expression levels in CD4+ T cell, the
main target of HIV-1. Thereafter, it searched for genetic
variants that would modify gene expression. Specific
expression profiles associated with high levels of vire-
mia—in particular, the upregulation of genes of the antiviral
defense. In contrast, no expression profile associated with
effective viral control. Multiple genetic variants modulated
gene expression in CD4+ T cells; however, none had a
strong influence on viral control. This integrated genome-
wide assessment suggests that viral replication drives gene
expression rather than expression pointing to mechanisms
of viral control.

Genome-Wide mRNA Expression and HIV
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Figure 1. Transcriptome analysis in CD4+ T cells from HIV-infected untreated individuals. Gene clusters are presented on the left. In total,
260 genes are differentially expressed (at adjusted p,0.01) in association with viral load in CD4+ T cells during in vivo HIV-1 infection. Patient clusters
are presented at the top for untreated individuals. Clustering was performed on the Spearman correlation coefficient. The phenotype is presented at
the bottom, as log10 viral setpoint in gray, and log10 viral load at time of sample collection in red. A smooth of the setpoint viral load values is
depicted by the black line. The red rectangle surrounds a cluster of individuals characterized by low viral load (mean Log10 viral setpoint = 2.6), and
including several ‘‘elite controllers’’ – individuals that spontaneous control viral replication in the absence of treatment. The blue rectangle identifies a
cluster of individuals with high viral setpoint (mean Log10 viral setpoint = 4.4). The remaining clusters illustrate the heterogeneity of transcription
profile across the range of viral load values.
doi:10.1371/journal.ppat.1000781.g001

Genome-Wide mRNA Expression and HIV
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receptors were also positively modulated with increasing viremia.

We also identified differentially expressed genes that are present in

both the current analysis and studies that used siRNA or shRNA

to identify HIV-1 dependency factors [16–19] (Supplementary
Table S8).

Changes in transcriptome profile after treatment
The significant association of a number of genes and pathways

with viral setpoint was further assessed by observing the changes in

transcriptional profile in CD4+ T cells after viral suppression. We

found statistical support for differential expression of 247 probes

(FDR-adjusted p-value ,0.01) between treated and untreated-

noncontroller individuals. The list of genes involved had an

extensive overlap with the list of genes associated with viral

setpoint in the transcriptome analysis above (Supplementary
Table S9). The list also shares 97 genes with the recent study by

Li et al. [20] on changes in the lymph node transcriptome profile

upon initiation of ART. This analysis indicates that successful

treatment appears able to recapitulate the cellular state of a well-

controlled individual, since we did not find support for any probes

being differently expressed between successfully treated and

untreated-controller individuals.

Comparison with uninfected individuals
To compare the treated and untreated individuals with

uninfected individuals, we clustered the expression profiles from

Figure 2. Predicted interaction networks of genes differentially expressed during HIV-1 infection. Differentially expressed genes are
depicted: links have been predicted using STRING (http://string.embl.de/). Predicted interactions are depicted according to the type of available
evidence. The interactions (see color labels) include direct (physical) and indirect (functional) associations; they are derived from four sources:
genomic context, high-throughput experiments, conserved coexpression, and previous knowledge from literature.
doi:10.1371/journal.ppat.1000781.g002

Genome-Wide mRNA Expression and HIV
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samples from a selected group of individuals, including elite

controllers (viral load ,50 copies/ml), samples from successfully

treated individuals and their paired untreated samples, and from

the three uninfected individuals (measured in triplicate, one

triplicate failed analysis). For this, we restricted analysis to the 260

genes found to be differently expressed by viral setpoint. As shown

in Figure 4, both the successfully treated and uninfected

individuals tended to cluster with the controllers individuals.

Two of the individuals from healthy donors were most tightly

grouped with several of the untreated individuals that have the

lowest level of virus at setpoint (i.e. the elite controllers), while one

uninfected individual showed a profile that is less extreme, but still

most similar to the viral control profile. Treated individuals also

preferentially grouped with the viral control pattern, although the

majority showed a mid-range expression level and a smaller

fraction grouped with elite controllers and uninfected individuals.

A bootstrapping analysis showed support (p-value 0.06) for the

consistency of the top-level groupings with one group containing

all the uninfected individuals and the majority of the treated and

elite controller individuals, while the other group contained mostly

non-controller individuals. This indicates that the expression levels

of individuals with the best viral control closely resemble those of

uninfected individuals.

Screen for cis-acting SNPs regulating transcript
expression levels

Among a total of 1.3 million association tests comparing

399,626 gene-centric SNPs (some SNPs were within 100 kb of

multiple transcripts) with 28,828 individual probes measuring a

total of 18,059 unique transcripts, we detected 782 study-wide

significant associations (SNP-probe associations) below the thresh-

old p-value of 3.861028. Stepwise linear regression was used to

prune out redundant associations of SNPs with a particular probe.

This step resulted in evidence for cis-regulation of 208 unique

Figure 3. Differential expression of genes of the interferon response. Representative genes of the interferon response pathway are shown in
panel A. From grey to red, increasing differential expression with increasing viral setpoint. Selected genes are shown in panel B. While genes
associated with interferon receptors, such as TYK2, are not differentially expressed, signaling molecules such STAT1 and interferon-stimulated genes
such as MX1 and TAP1 are significantly upregulated with increasing viral load.
doi:10.1371/journal.ppat.1000781.g003

Genome-Wide mRNA Expression and HIV
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probes, 157 of which were regulated by multiple SNPs in high

linkage disequilibrium between SNPs included in the analysis (51

signals of unique SNPs with a transcript, and 731 signals arising

from the regulation of 157 transcripts by multiple non-unique

SNPs). These 208 associations included 193 SNPs that modulate

190 genes in CD4+ T cells, with the overlap occurring because of

probe cross-hybridization, and also several probes detecting the

same gene (Supplementary Table S10).

This list of study-wide significant associations was compared to

the list of genes whose expression was found associated with viral

load at setpoint. Among genes under differential expression during

HIV-1 infection, several showed evidence for cis-regulation

(Supplementary Table S11) but only one, involving the

interferon stimulated OAS1, reached study-wide significance.

OAS1 was found to be regulated by an intronic SNP (rs3177979)

located near exon 6 (Supplementary Figure S1). Lower

expression was associated with the rs3177979 GG genotype.

The association was detectable in treated and untreated

individuals; however the expression level was lower in samples

from treated individuals. The association of this SNP with OAS1

transcript expression is also detectable in PBMCs collected from

uninfected controls [21].

We did not observe an association of OAS1 rs3177979 with viral

setpoint in the study (untreated) population. However, given the

potential interest of genetic polymorphism in OAS1, we also

assessed the association between rs3177979 and HIV-1 outcomes

in a large population of 2362 individuals [5]. The association

p-values were 0.05 for an association of the OAS1 SNP and viral

setpoint and 0.09 for HIV-1 disease progression, but differences

were subtle: mean HIV-1 load was 4.11 log10 viral copies/ml for

Figure 4. Transcriptome analysis in CD4+ T cells from HIV-infected individuals before and after viral suppression. Analysis was
restricted to the 260 genes found to be differently expressed by viral setpoint. Gene clusters are presented on the left. Patient clusters are presented
at the top. In red, transcriptome profile before viral suppression, and in yellow, transcriptome profile after viral suppression with effective treatment
in 37 individuals with pre- and post-treatment initiation samples. In blue, transcriptome profile of 16 elite controllers. In black, transcriptome profile
from 3 HIV-negative healthy controls (8 samples).
doi:10.1371/journal.ppat.1000781.g004

Genome-Wide mRNA Expression and HIV
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the AA genotype, 4.07 for AG, and 4.01 for GG. Because

rs3177979 is in linkage disequilibrium with rs10774671, a SNP

associated with a splicing variant ([22] and Text S1) reported to

have greater activity against West Nile virus [23], we re-genotyped

the population for this putative functional SNP, without finding

any stronger association: we have therefore no definitive evidence

of an association of cis-acting genetic variation in OAS1 with HIV-

1 viral control or disease progression.

One additional gene, RANBP1, encoding a Ran GTPase-binding

protein that interferes with Rev-mediated expression of HIV-1 [24],

presented both increased expression at higher setpoint, and a cis-

acting SNP (rs2008591) that modulates its expression (Supple-
mentary Table S11). We assessed the association between

rs2008591 and viral setpoint and disease progression in the large

population of 2362 individuals [5]. Here, rs2008591 did not

associate with viral setpoint (p = 0.45) or disease progression

(p = 0.35). Overall, these analyses identified a significant number

of cis-acting genetic variants influencing gene expression in CD4+ T

cells; however, expression polymorphism, genome-wide or among

genes that are modulated during HIV-1 infection, did not

contribute in a significant fashion to viral control.

Discussion

This study represents the largest effort to date to characterize

the mRNA expression profile in CD4+ T cells in vivo in HIV-1

infected individuals. The study population, only including

individuals with known date of seroconversion or elite controllers,

represents the complete range of viral load control: from

undetectable viral load to sustained high levels of viral replication.

The study also analyzed changes in transcriptome upon successful

antiretroviral therapy. In addition, we searched for cis-acting

variants – SNPs that would possibly associate with the observed

differences in gene expression in the course of HIV-1 infection.

Overall, changes in RNA expression reflect responses to viral

replication rather than a mechanism that might explain control of

viral replication. As such, the reactive transcriptome profile we

observed shares common responses with other viral infections, eg.

to dengue virus [25–28] (Supplementary Table S12).

In vivo HIV-1 infection results in a distinctive mRNA

transcriptome profile in CD4+ T cells that involves 260 genes in

an analysis that differentiates individuals with high and those with

low viral setpoint. Under conditions of high viral load, there is a

distinct upregulation of the interferon pathways, cell cycle and the

ubiquitin-proteasome degradation machinery. The study confirms

and extends previous analyses of in vitro infection of T cell lines, or

of CD4+ T cells in vivo that were performed on a limited number of

individuals [7–10,29,30].

This study underscores that the observed increase in transcrip-

tion of ISGs is not associated with a better control of viremia [7].

This contrasts with the reported efficacy and possible therapeutic

role of interferon (IFN-a, IFN-a2b) suggested by results from in

vitro studies, while exogenous administration of interferon in

clinical trials led to doubts about its efficacy in the clinical setting

(reviewed in [31]). Our observations lend support to the hypothesis

that interferon activation plays a deleterious role in retroviral

pathogenesis, as proposed by many recent reports (reviewed in

[31]). Elevated ISG expression is associated with disease

progression in pathogenic SIV infection of non-human primates

[32–35], while the type I interferon response subsided after peak

viral load during non-pathogenic infection [36,37]. Sedaghat et al.

[7] compared the transcriptional programs of in vivo-activated

CD4+ T cells from untreated HIV-positive individuals with those

of activated CD4+ T cells from HIV-negative individuals. From

this study, they concluded that CD4+ T cells from infected

individuals are in a hyperproliferative state that is modulated by

type I interferons, and that this would lead, during chronic

infection, to CD4+ T-cell preferential differentiation and deple-

tion. Imbeault et al. [10] suggested that interferon could lead to a

sustained increase in p53 mRNA levels and therefore to a higher

susceptibility of CD4+ T cells to pro-apoptotic signals. Herbeuval

and Shearer [31] proposed that interferon, through binding to its

receptor on primary CD4+ T cells would result in membrane

expression of the TNF-Related Apoptosis-Inducing Ligand,

TRAIL, death molecule leading to the selective death of HIV-

exposed CD4+ T cells. More recently, Sato et al. [38] showed that

type I interferon induce proliferation and exhaustion in hemato-

poietic stem cells; chronic and excessive type I interferon signaling

may cause hematopoietic stem cells reduction. Overall, interferon

response appears a poorly effective antiretroviral mechanism, and

may actually contribute to HIV-1 disease [7,39].

Among genes previously associated with HIV-1 pathogenesis,

the analysis identified a number of significant associations, in

particular for genes of the intrinsic cellular defense against

retroviruses. Many of these respond to interferon, and thus have

the same profile of increased expression with increasing viral load

as ISG. Thus, these genes appear ineffective both by their poor

specificity against HIV-1 and by the apparent limited response of

HIV-1 to increasing titration of the transcripts. We also analysed

genes issued from four genome-wide siRNA/shRNA screens

[16–19]. Fifteen genes that were associated with decreased cellular

permissiveness to infection after silencing, were upregulated with

increasing viremia in vivo in the current study. They deserve further

inspection for a role in HIV-1 pathogenesis. Although the scope of

the present work was not to complete a meta-analytical study of all

available genome-wide transcriptome studies and siRNA screens

[40], we are aware of the interest to progressively integrate large

scale datasets [41].

We aimed at identifying patterns of gene expression associated

with effective viral control. However, the nature of the analysis

could not establish whether high levels of viral replication would

lead to the observed transcriptional profile, or whether genetic

modifiers of transcriptional profile were determinants for the

control of viral replication. This was addressed first by comparing

the transcriptional profile of CD4+ T cell from elite controllers

with that of successfully treated individuals and healthy donors.

Here, we observed that the expression profile of genes associated

with active viral replication was, after effective treatment, similar

to that of individuals with spontaneous control of viral replication,

and close to that of healthy donors. This suggests that infection

drives gene expression rather than the contrary. Second, we tested

the hypothesis that genetic variants influence expression levels of

genes, thus leading to differences in viral control. The analysis

identified a number of variants that would possibly act in cis to

modulate gene expression – most notably a variant in OAS1 that

has been associated with improved control of West Nile virus

infection [23]. It may be argued that if a variant influences

expression of a gene, and if expression of that gene correlates with

viral load, then the two analyses will be partially redundant.

However, we emphasize that this approach allows for independent

information because the variation in expression of few if any genes

is determined exclusively by cis-acting variants. In addition, the

identification of strong cis-acting variants would contribute to

disentangle causation and correlation. Thus if a gene expression

correlates with viral load, it could be that the change in expression

is a response to the amount of virus, or it that the gene directly

controls the viral level. In the former case, a cis-acting variant will

show no association with viral load, whereas in the latter it will. In

Genome-Wide mRNA Expression and HIV
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the present study, none of the candidate cis-acting SNPs, or SNPs

in the implicated genes was associated with differences in viral

setpoint in a genome-wide association analysis. These results do

not contradict current evidence of mechanisms of viral control

through differences in expression levels of particular genes, most

notably CCR5 [42]. Rather, the analysis indicates that polymor-

phisms in genes implicated in the differential expression programs

do not represent a strong source of variation at the population

level.

There are a number of technical and conceptual limits to the

study. The study failed to identify a transcriptome profile

characteristic of elite controllers. This may be attributed to the

large scale approach, as the current technology covers a total of

25,440 annotated human genes. While this allows for pathway or

network analyses, it may fail in the identification of subtle

expression changes, in particular at the level of the individual gene.

On one hand, the analysis would require greater study power (ie,

additional elite controllers) to compensate the penalty of correction

for multiple testing. On the other hand, the precision of several of

analyses described earlier in this section could be improved

through the added resolution of new technology such as RNA-Seq

[31], or the targeted multiplexed measurement of gene expression

in selected pathways [43]. High-throughput deep sequencing

results in a superior dynamic range, and allows quantitative

analysis of coding and non-coding region transcripts, such as small

RNAs. It should also be pointed out that the use of cryopreserved

cells may result in changes in the transcriptome and in transcript

stability. However, this allowed the investigation of a large number

of samples from seroconverting individuals in batch analyses. We

argue that the internal consistency of the results and the general

agreement across studies supports the robust nature of the

transcription profiles that were generated.

In conclusion, while this study suggests that the generalized

upregulation of ISG, an important component of viral defense,

does not lead to consistently improved viral control throughout the

course of infection, it does not implicate any specific gene

expression network in viral control. There are several possible

explanations for these observations. First, the most important

cellular populations for determining control may be effector cells

such as CD8+ T cells or NK cells whose expression patterns have

not been evaluated here. Second, the key expression patterns that

determine eventual control may be only detectable early in

infection and thus largely missed in studies focusing on cells taken

during the setpoint period. These possibilities argue strongly that

the next phase of expression work in the study of HIV-1 control

must focus on large scale analysis of isolated populations of effector

cells taken from individuals as early in the course of infection as

possible and in a standardized fashion. We believe the approach

taken here provides a general template for such studies.

Materials and Methods

Ethics statement
Study participants were followed in the Swiss HIV Cohort

Study (www.shcs.ch). The Genetics Project of the Swiss HIV

Cohort Study was approved by the ethics committees of all

participating centers, and the permission for genomic work was

approved by the Institutional Review Board/Ethics Committee of

the University Hospital of Lausanne. Participants gave written,

informed consent for genetic testing.

Participants
198 HIV-1 infected individuals from the Swiss HIV Cohort

study with a known date of seroconversion (n = 182), or elite

controllers (n = 16) were included in the study. Seroconversion was

defined on the basis of a documented positive test and date and a

documented negative test less than two years before the first

positive test. The viral setpoint was calculated for each participant

by using a median of 4 (range 2 to 8) plasma HIV-1 RNA

determinations obtained in the absence of antiretroviral treatment

between 3 months and 3 years after seroconversion, as previously

described [2]. See Text S1 for the detail definition of viral

setpoint and of elite controllers. When available, HIV-1 infected

participants contributed samples during stable viral setpoint before

and under effective ART (median [IQR] from treatment initiation

to sample collection was 1297 (434–2730) days). In addition three

healthy blood donors provided three control samples used as

biological replicas. Quality control steps at the level of cellular

viability, RNA integrity, microarray and hybridization quality,

and data analysis led to a final number of 190 samples from 153

participants and 8 samples from 3 healthy controls (68% of valid

samples, 78% of successful recruitment). The demographic

characteristics of the patients and the flow chart of enrollment

and sample validation is presented in Text S1. Representative

examples of QC checks are presented in Supplementary
Figure S2.

Cell isolation and RNA extraction
CD4+ T cells were positively selected from frozen PBMCs

(median time [IQR] of cryopreservation was 616 [333–1448] days)

using magnetically labeled CD4 microbeads and subsequent

column purification according to the manufacturer’s protocol

(Miltenyi Biotec). CD4+ T cell purity, verified by flow cytometry,

was 95.6% (86.4–98.1%) [median (range)]. CD4+ T cell viability

was assessed by the trypan blue dye exclusion method using the

Vi-CELL (Beckman Coulter). Total RNA was extracted from

purified CD4+ T cells using mirVana miRNA isolation kit

(Ambion) according to the manufacturer’s protocol for total

RNA extraction. RNA amount was estimated by spectrophotom-

etry using the Nanodrop 1000 (Thermo Fisher). RNA quality was

determined by Agilent RNA 6000 pico kit on an Agilent 2100

Bioanalyzer. We used cryopreserved samples because of the

interest to analyse a large population of seroconverting individuals

during the precise window of stable viral setpoint. Samples were

collected between 1995 and 2007, and investigated in 2008. The

median (range) of CD4+ T cell viability for samples that were

successfully analysed was 78.5% (IQR 70.5–85.3). Viability was

minimally dependent on time of cryopreservation, and more

dependent on collection center. These covariates were included in

the analyses (see below).

Transcriptome analysis and genome-wide genotyping
200 ng of total RNA was amplified and labeled using the

Illumina TotalPrep RNA Amplification kit (Ambion). cRNA

quality was assessed by capillary electrophoresis on Agilent 2100

Bioanalyzer. Expression levels of over 48,000 mRNA transcripts

were assessed by the Human-6 v3 Expression BeadChips

(Illumina). Hybridization was carried out according to the

manufacturer’s instructions. Genome-wide SNP data had been

generated from genomic DNA using the HumanHap550 Geno-

typing BeadChip (Illumina) with 555,352 SNPs [2].

Selection of candidate genes for subanalysis
We screened the literature for genes associated with biology of

HIV-1 (reviewed in [44–47] and recent studies [15,48,49]), as well

as HIV-1 dependency factors emerging from genome-wide siRNA

screens [16–19], and genes considered polymorphic and involved

in HIV-1 pathogenesis (compiled in www.hiv-pharmacogenomics.
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org). For the three large siRNA screens, that resulted in over 600

candidates, we restricted analysis to (i) genes identified in at least

two of three screens, or to (ii) genes with SNPs that reached a

nominal significant p value in a recent genome-wide association

study of determinants of susceptibility to HIV-1 [2].

Data pre-processing
Bead summary data was output from Illumina’s BeadStudio

software without background correction, as this has previously

been shown to have detrimental effects [50]. Data pre-processing,

including a variance-stabilizing transformation [51] and robust-

spline normalization were applied as implemented in the lumi

package [52] of R. Four outlier samples identified based on

aberrant expression of control probes and aberrant median-

interquartile range values compared to other samples were

removed.

Differential expression analysis
We applied an empirical Bayes analysis approach within a linear

mixed-model framework to identify associations between variation

in gene expression and in viral setpoint. The Empirical Bayes

approach has been developed to model the variation profiles of all

genes and use that information as prior knowledge to better estimate

the variance of each gene expression [53–55]. In addition, we used a

more conservative gene-by-gene modeling approach for result

comparison with the empirical Bayes approach. We controlled for

variation caused by gender, age, CD4+ T cell viability, location of

sample collection, and laboratory batch effects. Effect of chip batch

was modeled as a random effect; all others were fixed or continuous.

All samples from untreated individuals were tested for association of

expression with viral setpoint. We used a false discovery rate (FDR)

method [56] to control for multiple testing. Probes selected for

further analysis had an FDR-adjusted p-value ,0.01. A separate

analysis compared expression in samples from treated and

untreated individuals, using a similar mixed-model approach as

above, but also incorporating viral load as a factor in the analysis.

We tested for effect of treatment by separately comparing

samples from treated individuals to each of the untreated groups,

using the limma (linear models for microarray data) package in R

with FDR adjustment as above. This analysis explicitly excluded

samples from the same individuals because the statistical approach

did not allow control for both the correlation between paired

samples and the strong correlation (batch) effect of chip. To

compare samples from treated and untreated individuals with

samples from uninfected controls, we clustered the expression

profiles for a selected group of individuals. We performed 1000

replicate clusterings on the Pearson correlation coefficient, using

the ‘‘ward’’ clustering method as implemented in the pvclust

package in R.

Pathway and network analyses
The Search Tool for the Retrieval of Interacting Genes/

Proteins (STRING) (http://string.embl.de/) was used to identify

known and predicted interactions (derived from four sources:

genomic context, high-throughput experiments, co-expression,

and previous knowledge). DAVID Bioinformatic resources

(http://david.abcc.ncifcrf.gov/) using the annotation sources

GOTERM-BP (biological process), and GOTERM-MF (molecu-

lar function) identified functional categories [57]. Ingenuity

Pathway Analysis 7.0 (IPA) (http://www.ingenuity.com/) was

used for the analysis of pathway enrichment. Analysis was

limited to genes significantly associated with viral load (FDR

p-value ,0.01).

Screen for cis-acting SNPs regulating transcript
expression levels in HIV-infected CD4+ T cells

Normalized expression data was exported for all untreated,

HIV-1 infected individuals (n = 125). Only probes that tar-

geted fully annotated genes were included in the analysis. A

principal components analysis was run to assess batch effects.

The cis-screen consisted of a scan for common SNPs, within

100 kb of the defined gene start and stop positions, for effects on

transcript expression levels. The analysis was limited to SNPs

with a minor allele frequency greater than 0.04, requiring at least

ten alleles to be present to detect associations with a low false

positive rate. This analysis was performed using a standard linear

regression, incorporating age, gender, and 11 eigenstrat axes to

correct for population stratification. In total, there were

1,330,529 tests run, therefore using a Bonferroni correction, a

p,3.861028 was used to declare a statistically significant

association.

Microarray data accession number
All microarray results have been deposited in the Gene

Expression Omnibus database (GSE18233).

Supporting Information

Figure S1 OAS1 was found to be regulated by an intronic SNP

(rs3177979) located near exon 6.

Found at: doi:10.1371/journal.ppat.1000781.s001 (7.16 MB TIF)

Figure S2 Quality control. Outlier samples were identified

based on aberrant expression of control probes and aberrant

median-interquartile range values.

Found at: doi:10.1371/journal.ppat.1000781.s002 (0.34 MB TIF)

Table S1 Genes differentially expressed (at adjusted p#0.01)

according to the empirical Bayes approach. (A) 209 genes that are

upregulated at high viral load. (B) 51 genes that are downregulated

at high viral load.

Found at: doi:10.1371/journal.ppat.1000781.s003 (0.06 MB XLS)

Table S2 Enrichment of biological process and molecular

function determined using DAVID. (A) Enrichment for the 209

genes that are upregulated at high viral load. (B) Enrichment for

the 51 genes that are downregulated at high viral load.

Found at: doi:10.1371/journal.ppat.1000781.s004 (0.04 MB XLS)

Table S3 Pathway enrichment for the 260 differentially

expressed genes according to Ingenuity.

Found at: doi:10.1371/journal.ppat.1000781.s005 (0.02 MB XLS)

Table S4 Genes differentially expressed (at adjusted p#0.01)

according to the more conservative gene-by-gene modeling

approach.

Found at: doi:10.1371/journal.ppat.1000781.s006 (0.02 MB XLS)

Table S5 Genes differentially expressed when analysis is

adjusted by expression of CD25 as covariate.

Found at: doi:10.1371/journal.ppat.1000781.s007 (0.08 MB XLS)

Table S6 List of interferon regulated genes.

Found at: doi:10.1371/journal.ppat.1000781.s008 (0.03 MB XLS)

Table S7 Analysis of expression profile of genes associated with

HIV life cycle and pathogenesis.

Found at: doi:10.1371/journal.ppat.1000781.s009 (0.04 MB XLS)

Table S8 Genes identified in the current study that have been

previously reported in genome-wide siRNA screens.

Found at: doi:10.1371/journal.ppat.1000781.s010 (0.02 MB XLS)
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Table S9 Overlapping genes associated with difference in viral

setpoint and associated with changes in transcriptome profile after

treatment.

Found at: doi:10.1371/journal.ppat.1000781.s011 (0.04 MB XLS)

Table S10 Study-wide significant SNP-probe associations.

Found at: doi:10.1371/journal.ppat.1000781.s012 (0.32 MB XLS)

Table S11 Genes showing cis-regulation (eQTLs) in CD4 T cells

among 260 genes with expression associated with viral set point.

Found at: doi:10.1371/journal.ppat.1000781.s013 (0.03 MB XLS)

Table S12 Genes identified in the current study that have been

previously reported in genome-wide studies in Dengue.

Found at: doi:10.1371/journal.ppat.1000781.s014 (0.03 MB XLS)

Text S1 Supplementary materials

Found at: doi:10.1371/journal.ppat.1000781.s015 (0.88 MB

DOC)

Acknowledgments

We thank S. Colombo, D. Bielser and I. Durussel for coordination and

technical support.

The members of the Swiss HIV Cohort Study are M. Battegay, E.
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