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Iterative scheme for computing exactly the total field
propagating in dielectric structures of arbitrary shape

Olivier J. F. Martin

IBM Research Division, Zurich Research Laboratory, 8803 Rueschlikon, Switzerland

Alain Dereux

Institute for Studies in Interface Sciences, Facult6 Universitaire Notre-Dame de la Paix,
61, Rue de Bruxelles, 5000 Namur, Belgium

Christian Girard

Laboratoire de Physique Mol6culaire Unit6 Associee Centre de la Research Scientifique 772,
Universit6 de Franche Comt6, 25030 Besan~on Cedex, France

Received March 25, 1993; revised manuscript received September 27, 1993, accepted September 28, 1993

We present a new approach to the computation of an electrical field propagating in a dielectric structure.
We use the Green's-function technique to compute an exact solution of the wave equation. No paraxial
approximation is made, and our method can handle any kind of dielectric medium (air, semiconductor, metal,
etc.). An original iterative numerical scheme based on the parallel use of Lippman-Schwinger and Dyson's
equations is demonstrated. The influence of the numerical parameters on the accuracy of the results is
studied in detail, and the high precision and stability of the method are assessed. Examples for one and
two dimensions establish the versatility of the method and its ability to handle structures of arbitrary shape.
The application of the method to the computation of eigenmode spectra for dielectric structures is illustrated.

1. INTRODUCTION

Since the original work of Feit and Fleck' significant
progress has been made in the domain of the beam-
propagation method (BPM). And since the assessment of
its applicability4' 5 this method has certainly become one of
the most widely used modeling tools for integrated optics.

Improvements in the original Fourier-transform-based
algorithm with the use of either finite differences6'7 or
finite elements,8'9 have increased its efficiency. Alterna-
tive approaches, such as those based on the method of
line' 0 or the finite-difference time-domain method," have
also been proposed.

In the past few years the development of the BPM
has taken two directions. First, extensive efforts have
been devoted to overcoming the limitation of the paraxial
approximation121 4 and to deriving an exact solution of
the scalar-wave equation.15 Second, semivectorial meth-
ods have been proposed 16' 8 that can treat the various
components of the electrical field simultaneously but not
the coupling among these components. More recently,
fully vectorial methods have been demonstrated19 2 4 that
can model such vectorial effects as polarization within the
limited framework of the paraxial approximation.

Because the paraxial approximation is not well founded
for numerous devices of integrated optics and because
these devices make use of vectorial effects such as polar-
ization splitting, there is a quest for a nonparaxial method
that can treat vectorial fields propagating in arbitrary
dielectric media. We propose an original approach to
this problem and demonstrate a new method for solving

exactly the wave equation for arbitrary dielectric media.
For the sake of simplicity we present the method for
scalar fields in one- and two-dimensional media, but it can
also be generalized to vectorial fields in three-dimensional
media, as is discussed at the end of Section 2.

Our method is based on the Green's function technique.
This formalism has been shown to be very powerful for
studying the eigenmodes of dielectric structures invariant
along the propagation direction2 52 7 as well for describ-
ing nonradiative energy transfers occurring in near-field
microscopy.28 29 To the best of our knowledge, however,
it has not yet been used to compute the field propagating
in an arbitrary structure.

In Section 2 we develop the basic formalism and explain
the algorithm that we used. In Sections 3 and 4 we
give one- and two-dimensional examples that assess the
accuracy and applicability of the method. Finally, in
Section 5 we summarize our results.

2. NUMERICAL METHOD

The objective of our method is to find a solution qr(r) of
the scalar-wave equation

V2o(r) + W2 /Losos(r)q1(r) = 0 (1)

for an arbitrary complex dielectric medium s(r) of homo-
geneous permittivity /.to. In Eq. (1) we assume the usual
time dependence exp(- iwt) for the electrical field if(r).
Such a scalar field describes, for example, the transverse
electric modes propagating in a slab waveguide. 0
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Fig. 1. Geometry used in the model. The dielectric medium for
which we seek a solution of the wave equation can be split into a
homogeneous reference medium ref and an arbitrary perturba-
tion sp embedded in the reference medium. The discretization
grid is also shown.

The only assumption that we make regarding the di-
electric medium is that it can be split into two parts
(Fig. 1): a homogeneous reference medium of dielectric
constant 8ref and a perturbation sp(r) confined to the
inside of the reference medium. Hence the dielectric
function of the system can be written as

s(r) = ref + A-p(r), (2)

with Asp(r) = p(r) - ref. This assumption can easily
be fulfilled where both the reference medium and the
perturbation depend on the problem investigated. For
example, if we study an optical fiber in vacuum, the refer-
ence medium is a vacuum and the perturbation describes
the fiber. For a ridge waveguide the reference medium
is the substrate and the perturbation is the ridge. Note
that ref is simply the value of the homogeneous reference
medium; it is not, as in the BPM, the value associated
with the wave number of the propagated field.

It is important to point out that no restrictions are
imposed on the perturbation Ep; it can have any shape and
describe any kind of dielectric medium. Absorption can
easily be introduced into the imaginary part of sp, while
a metallic perturbation can be accounted for with the use
of negative value for the real part of i,, (see Fig. 6 below).
Furthermore, no assumptions are required regarding the
difference between ref and Ep, as is the case for the BPM.

If we know a solution q10(r) of Eq. (1) corresponding to
the homogeneous medium ref without perturbation, we
can compute a solution for the perturbated system using
the Lippman-Schwinger equation,31

ca(r) = 0'(r) + f dr'G 0(r, r')V(r')qf(r'), (3)

where we have introduced the dyadic Green's operator
GO(r, r') associated with the homogeneous reference sys-
tem. The function V(r) describes the perturbation and
is defined by

V(r) = -ko 2 in(r), (4)

where k0
2 is the wave number in vacuum:

k02 = C&)2 oo. (

The integration domain in Eq. (3) is limited to the
perturbation. Thus this equation is implicit for all points
located inside the perturbation. Once the field inside
the perturbation has been computed, it can be generated
explicitly for any point of the reference medium with
Eq. (3).

We now define a grid over our system (see Fig. 1). The
discretization procedure is identical in one, two, or three
dimensions; for clarity we use only one figure to mark the
position of a mesh, and we designate its volume by Aj.
A regular grid is not required, and for many applications
a variable Gaussian grid may be advantageous.3 2 We
suppose that the discretized system contains N meshes
from which N, describe the perturbation (N, ' N). We
designate the discretized field, the Green's operator, and
the perturbation by hi, Gjj, and Vi, respectively.

The discretized form of Eq. (3) leads to a large system
of linear equations for the electrical field:

Np

'Pi = 'i 0 + E Gi kVkAk'Pk.
k=1

(6)

The direct numerical resolution of Eq. (6) is particularly
time consuming and may lead to numerical instabilities
because of the singular behavior of G19i (the renormaliza-
tion of the self-field is discussed at the end of this section).
To avoid these problems we propose an iterative scheme
for computing the electrical field. For this purpose we
introduce Dyson's equation,3 1

G(r, r') = G0(r, r')

+ f dr"G0 (r, r)V(r")G(r", r')
+ perturbation

and its discretized form,

= + Np GI 1j + E Vk kGkj -

(7)

(8)

Dyson's equation is the counterpart of the
Lippman-Schwinger equation for operators. It yields
Green's function G(r, r') of the perturbated system,
given Green's function G(r, r) of the homogeneous
reference system. In our iterative procedure we use
both equations in parallel, as described in the next
paragraph.

Instead of computing the solution of Eq. (1) correspond-
ing to the whole perturbation, we first consider only one
mesh of the perturbation, say, k (see Fig. 1), and compute
the field il and Green's function G j corresponding to a
homogeneous medium ref plus the infinitesimal pertur-
bation k. Equations (6) and (8) become, respectively,

Gi
1

= 'Pi0 + GiklVklAkiVk 

G = G + G9i kiAklGlj.

(9)

(10)

Equations (9) and (10) require no resolution of a system
of equations. They are first worked out for i = k, and
this result is used to compute il and GWj for i k1.
This procedure is straightforward and very efficient from
a numerical point of view.

We then consider a second mesh of the perturbation,
say, k2, and compute the corresponding field i02 and
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Fig. 2. Plane wave impinging upon a dielectric barrier. The
reference medium ref corresponds to the fundamental level,
whereas the perturbation se describes the barrier.

Green's function Gj, using the results of the preced-
ing step:

pi= ,il + Gi, k2Vk2 Ak 2q k2 , (11)

G? =GW + Gk 2VkSAk 2 G^2,J. (12)

Applying this scheme successively to each mesh in the
perturbation, we construct the field LiNt corresponding to
the whole perturbated system. It is interesting to note
that at each step I it is necessary to compute Green's
function Gb j only for j equal to the remaining perturba-
tions. Therefore the number of operations and the size
of the matrix G, j required for each step decrease as the
calculation proceeds. As we have mentioned, it is ini-
tially possible to limit the above-mentioned procedure to
compute only the field inside the perturbation and to use
this result to generate, at a later stage, the field outside
the perturbation with Lippman-Schwinger equation (6).

The form of Green's functions corresponding to one- and
two-dimensional media is given in Ref. 31. For a two-
dimensional medium, Green's function diverges for r = r'.
To overcome this problem we introduce a renormalization
of Green's function. This procedure has been explained
in detail by Yaghjian.3 3 It consists of integrating ana-
lytically GO(r, r) over one mesh of the system and then
using this value for GO(r, r).

For a vectorial field f(r) the algorithm is similar. In
that case the discretized Green's function G j is a 3 X 3
matrix, and each discretized Dyson's equation [Eqs. (10)
and (12)] leads to a system of nine algebraic equations
(one per Gjj component) that must be solved at each com-
putational step to produce Gl,j. As for the Lippman-
Schwinger equation [Eqs. (9) and (11)], it becomes a
system of three algebraic equations (one per field
component).

Unfortunately, a von Neumann analysis3 4 cannot
be applied to our method to assess its accuracy. We
nevertheless show in Sections 3 and 4, using one- and
two-dimensional examples, respectively, how the grid
refinement influences the accuracy of the results.

3. ONE-DIMENSIONAL EXAMPLES

In this section we consider a square dielectric barrier
(Fig. 2). For such a system the reference medium Sref

is the fundamental level, whereas the perturbation sp(z)
describes the barrier. When a plane wave

to(z) = exp(ikrefz)

with a wave number corresponding to the reference
medium impinges upon the barrier, one part is trans-
mitted and one part is reflected, thus interfering with the
incoming wave. This behavior is easily obtained with our
method, as can be seen from Fig. 3, where we present the
amplitude of the computed field. Three different cases
are investigated: a nonabsorbing barrier (P = 4.0), a
barrier with limited absorption (sP = 4 + il.0), and a bar-
rier with strong absorption (sP = 4 + i4.0). For each case
the reference medium is a vacuum and the wavelength
of the incident wave is AO = 0.8 /.tm. The attenuation
of the wave as a function of the absorption in the
barrier is clearly visible in Fig. 3. Complementary re-
sults, such as the variation of transmission and reflection
coefficients as a function of the barrier thickness,3 5 are
also accurately reproduced with our method.

The advantage of this simple system is that an ana-
lytical solution 0(z) can easily be obtained. 6 Thus the
norm of the difference between numerical and analytical
solutions allows the accuracy of the computational method
to be evaluated:

L

11 $ _k112
= f dz[b(z) - 0(z)]*['k(z) - i(z)]. (14)

When 11 - P 112 = 0 the agreement between analytical
and numerical results is exact.

For a given wavelength and height of the barrier sp,
11 0O- (k 112 depends on the mesh size Az (Fig. 4). From
least-squares fits to these data we find that 11 - 'P 112
is proportional to A, at a power of 3. The value of
Az necessary for achieving excellent agreement between
numerical and analytical results also varies with sp: a
higher barrier requires a finer grid. But whatever the
barrier is, it is possible to obtain extremely accurate
results (Fig. 4).

The determinant parameter here is not simply the
barrier height but the effective wavelength in the barrier
Aeff = AO(P) -/2. This can be seen in Fig. 5, where we
show 11 - 'P 112 as a function of the mesh size for different
effective wavelengths. From these data it is clear that
the mesh size that one requires to obtain a given accuracy
is inversely proportional to Aeff. For any value of the

2.0

C1)

C)

C)

1.5

1.0

0.5

0.0_
0.0 0.5 1.0 1.5 2.0

z [lm]
Fig. 3. Amplitude of the computed field corresponding to the
geometry depicted in Fig. 2, normalized to the incident field.
Three dielectric barriers sp with different absorption values
are investigated. The reference medium is a vacuum, and the
wavelength of the incoming wave is Ao = 0.8 Am. The mesh
size for the calculation was A, = 0.01 Am.
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Fig. 4. Norm of the difference between numerical and analytical
results as a function of the mesh size A. The corresponding
geometry is depicted in Fig. 2. Three barriers of 1-4Am thick-
ness and varying dielectric constant p are investigated. The
wavelength in a vacuum is 0.8 pum.
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If we use a gold aggregate (s, = -42.8 + il.3), the
field pattern is completely different [Fig. 6(b)]. Most of
the incoming wave is reflected, whereby the metallic pad
acts as a point source emitting in the negative z direction
(note the curvature of the phase fronts on the interfer-
ence pattern). The field vanishes in the metal, and the
skin effect38 is accurately reproduced at its surface. This
emphasizes the versatility of our method.

In Fig. 7 we describe the interaction of the same plane
wave with a metallic plate (p = -42.8 + il.3) of 0.1-1 am
thickness. The plate forms a 450 angle with the propa-
gation direction of the incoming wave. Most of the in-

3

2

1

Az [m]
Fig. 5. Norm of the difference between numerical and analytical
results as a function of the mesh size A, for different effective
wavelengths in the barrier depicted in Fig. 2.

effective wavelength, I i - 2 is proportional to A3
(Fig. 5).

Our method is also perfectly stable; an excessively
small grid does not lead to numerical instabilities but
always enhances precision. We believe that this stability
is due to the fact that at each step we consider only one
perturbation and therefore must handle only one renor-
malized element G(r, r) at a time. The discretization
procedure being exactly identical in one, two, or three
dimensions, we can assume a similar behavior of the
accuracy of the algorithm for two- and three-dimensional
systems.

4. TWO-DIMENSIONAL EXAMPLES
We consider first the interaction of a plane wave in
vacuum (ff = 1) with a microscopic square dielectric pad
of homogeneous dielectric constant s = 2. The ampli-
tude of the corresponding computed field is depicted in
Fig. 6(a). The wavelength of the incoming wave is 1 im.
As for a one-dimensional barrier, some of the initial
field is reflected and interferes with the incoming wave.
Owing to the limited lateral extension of the obstacle,
a diffraction pattern appears in the right-hand part of
Fig. 6(a). The fine structure of the electrical field in the
pad and in its vicinity is also resolved; this information
is useful in connection with experiments such as those in
scanning near-field optical microscopy.3 7

0
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z m]

0 1 2 3
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Fig. 6. Interaction of a plane wave in a vacuum (ref = 1)
(a) with a dielectric pad (p = 2) and (b) with a gold pad
(sp = -42.8 + il.3). The spacing between the isoamplitude
curves is 10% of the corresponding maximum-minimum ampli-
tude range. The wavelength of the incoming wave is Ao = 1 ,m
and the mesh size is A, = A, = 0.05 pum.
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3
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Fig. 7. Interaction of a plane wave in a vacuum (ef = 1)
with a gold plate (thickness 0.1 ,um, sp = -42.8 + il.3)
oriented at a 450 angle to the direction of the incoming wave.
The spacing between the isoamplitude curves is 10% of the
maximum-minimum amplitude range. The wavelength is
Ao = 1 gim, and the mesh size is Ax = A, = 0.05 m.

cident field is now reflected orthogonally to the surface
of the plate. This illustrates the ability of our method to
handle arbitrary geometries and nonparaxial propagation
situations.

Additional information on these systems can be ob-
tained from the time-averaged Poynting vector (S).3 5 For
the polarization of interest, (S) lies in the x-z plane and
can easily be represented. In Fig. 8 we give the time-
averaged Poynting vector corresponding to Figs. 6(a) and
7, illustrating how the energy flows in these systems.
Such information is mandatory for studying the trans-
mission of a signal in integrated structures.

It is important to point out that the boundary conditions
are exactly fulfilled by our method. Moreover, as is
visible in Figs. 6-9, no energy is reflected at the edges
of the computational window. This does not require any
special treatment of the boundary points but is automati-
cally taken into account by the formalism underlying the
method. Indeed, the nonlocality of Green's function that
connects each point in the system to each point of the
perturbation guarantees that the boundary conditions are
globally fulfilled. This guarantee constitutes a signifi-
cant advantage of our method.

Since every mesh of the system is connected to all the
meshes of the perturbation, the resulting matrix is full.
Therefore the CPU time required for obtaining a solution
increases significantly with the number of meshes in
the perturbation. For the results presented in Fig. 6 the
CPU time required on an IBM RISC 6000 model 970 work-
station was 14 s for a (30 x 30) grid (Ax = A,, = 0.1 jim),

54 s for a (60 X 60) grid (A., = A,, = 0.05 gim), and

200 s for a (120 X 120) grid (A., = A,, = 0.025 um);

these values include the calculation of the Hankel
functions required for the computation of GL, j. For
small jobs this calculation constitutes the major part

2

of the total required CPU time, and the iterative
computation of the field itself took 1, 4, and 19 s,
respectively, for the above-mentioned cases.

We now turn our attention to dielectric waveguides.
These structures are key components for integrated
optics, and our method can handle them accurately.
Figure 9 shows the computed field for a monomode
symmetrical slab waveguide of 1-,um thickness. The
core has a dielectric constant of sp = 1.1 and claddings
of 8ref = 1. A plane wave of wavelength AO = 1 um was
used as the starting field.

The form of the field obtained corresponds to an inter-
ference pattern, not to a pure propagating wave, because
of the assumption that the perturbation sp (in this case

(

0

0 1 2 3
z Mm]

- _. -- - _ _ A7 A _ _ -

___ -///A..."'......... /_

_ _ _ ,3 t ;rAt_. 

0 31 2
z m]

Fig. 8. Representation of the time-averaged Poynting vector (S)
corresponding (a) to Fig. 6(a) and (b) to Fig. 7. The orientation
and the size of the arrows give the direction and the relative
amplitude of (S), respectively.
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Fig. 9. Field computed for a monomode slab waveguide with
a 1-,um core of dielectric constant sp = 1.1 and of claddings
sref = 1. The wavelength is Ao = 1 jm, and the mesh size
is A = A = 0.05 ptm. The spacing between the isoamplitude
curves is 10% of the maximum-minimum amplitude range.
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3 [jim1I
Fig. 10. Mode spectrum of a slab waveguide with a 0.5-,um core
of dielectric constant sp = 2.25 and of claddings ref = 1 for
a wavelength of 1 um. For this calculation the computational
window extended only over the width of the core and was 25 .4&m
long in the z direction; the mesh size was A = 0.025 um, and
Az = 0.2 m.

the core of the guide) is embedded into the reference
medium ref. Therefore, even if the computational win-
dow is limited between z = 0 and z = 5 um, the reference
medium extends beyond these limits. This introduces
two core-cladding interfaces at z = 0 and z = 5 um that
produce multiple reflections of the field. Such a configu-
ration is close to reality, a real device being generally
limited and not infinite. Note that this situation does not
correspond to the end of the guide in air but simply to a
section of the guide embedded in a homogeneous medium
with the same dielectric constant as the claddings.

With this system it is possible to compute the eigen-
mode spectrum of the waveguide. For this purpose we
introduce the integral of the field (x, z) over the width
of the guide:

77(z) = f dx (x,z).

are guided by the structure, as is visible in Fig. 10, where
we present (k) for a slab waveguide of core se, = 2.25,
cladding 8 ref = 1, and thickness 0.5 ,utm. For a wave-
length of 1 Lm an infinitely long waveguide with such
a dielectric profile has two transverse electric modes of
wave numbers f60 = 8.572 /um- and f31 = 6.385 um-. 30

These two modes are clearly visible in Fig. 10. Because
of the interfaces at the ends of the computational win-
dow, each eigenmode propagates in the ± z direction,
which doubles the number of peaks in the spectrum,
each one appearing with a plus and a minus. The pre-
ponderance of the modes with positive 1S is due to the
starting field, which had a positive wave number. The
opposite result is obtained with a starting field propa-
gating in the -z direction. A completely symmetrical
spectrum follows from the use of the superposition of
+z and -z propagating starting fields. A fast-Fourier-
transform algorithm was used to obtain this spectrum,
and a Blackman-Harris window was used to enhance its
resolution.39 One could also obtain the mode spectrum
by simply Fourier transforming (x, z) for a fixed value
of x. But we have observed that the lateral integra-
tion of the field enhances the spectrum and makes the
localization of the peaks easier. Because the core of
the guide is embedded in a reference medium with the
same dielectric constant as the claddings, the reflection
of the field at both ends of the computational window
occurs only at the interface of the core and the reference
medium. No field is reflected at the interface between
the cladding and the reference medium. Therefore the
ratio of the peak amplitudes corresponding to forward-
and backward-propagating modes in Fig. 10 does not give
the reflection coefficient for the corresponding mode.

In contrast to the case with the conventional BPM, a
very long propagation distance is not required for filtering
out the eigenmodes from the starting field.2 3 Indeed,
we obtained the spectrum presented in Fig. 10 by using
a computational window that was 25 pum long and as
large as the core of the guide; the mesh sizes were x =
0.025 /um and A, = 0.2 ,um. A wider computational win-
dow (extending to the claddings of the guide) yielded
the same results. Hence computing only the field in the
core (i.e., in the perturbation) gives sufficient information
on the various guided modes of the structure. For the
results presented in Fig. 10, we needed 10 min to compute
G2j and 47 min to compute the field iteratively on an IBM
RISC 6000 model 970 workstation.

0.0 0.1 0.2 0.3 0.4 0.5
Az [m]

Fig. 11. Error of the computed wave number ,8 relative to its
theoretical value .Ptheo as a function of the mesh size.

p 10-2

o1 10-3

(15)

The z variation of -q(z) describes the interference pattern
of the field (Fig. 9). Since this pattern is due to the in-
teraction of the various modes of the guide, (z) contains
information on these modes. Indeed, the Fourier trans-
form (k) of 7(z) gives the spectrum of the modes that

°--- A=0.05000 gim
D--0 A=0.03125 m
A-A A=0.02500 m
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One can obtain the exact value of the wave num-
bers /3 accurately by fitting a cubic polynomial to the
corresponding peak of the spectrum.4 0 This value de-
pends on the mesh size used for the computation. In
Fig. 11 we present the error of the computed wave number
,80 relative to the theoretical value f

3
theo = 8.572 ,um-1

for different mesh sizes A and A, and for the above-
mentioned computational window. These results show
that the dominant parameter affecting the accuracy of
the wave number is the mesh size along the z direction.
For small values of A, the value of A,, also influences
the exactness of the results (Fig. 11). It is important
to emphasize that accurate results are obtained despite
the very large step of the dielectric constant between the
core and the cladding of the guide. Again the relation
between the accuracy of the results and the mesh size
depends on the effective wavelength in the core. For
example, a guide with the same cladding (ref = 1) but
a smaller step of dielectric constant ( = 1.05) yields
values one order of magnitude more accurate with the
same numerical parameters than in Fig. 11.

5. CONCLUSIONS

We have presented a new approach to the computation
of the electrical field propagating in dielectric media.
Using the Green's function technique, we have found that
our method yields the exact solution of the wave equation.
No approximations regarding the form of the field are
required, and we showed that situations far beyond the
scope of the conventionally used paraxial approximation
can be simulated with this method. Dielectric media as
different as air, semiconductors, and metal can be simu-
lated, and no restrictions are imposed on the variations
of the dielectric function in the system under study.

The boundary conditions in the system and at the edges
of the computational window are exactly fulfilled by our
method, and no radiated energy is reflected back into
the system.

An efficient and extremely stable iterative numerical
scheme was proposed. The influence of the numerical
parameters on the accuracy of the results was stud-
ied, and we showed that extremely accurate results can
be obtained with use of an appropriate discretization
refinement.

Application of the method to the determination of the
spectrum of eigenmodes of a waveguide was discussed
in detail.

Finally, we believe that our iterative scheme based
on the parallel use of Lippman-Schwinger's and Dyson
equations is relevant to other problems in numerical
physics. The study of its application to the computation
of the field susceptibility of a composite atomic system is
in progress.4 '
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