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Accurate and efficient computation of the Green’s tensor for stratified media
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We present a technique for the computation of the Green’s tensor in three-dimensional stratified media
composed of an arbitrary number of layers with different permittivities and permeabilities~including metals
with a complex permittivity!. The practical implementation of this technique is discussed in detail. In particu-
lar, we show how to efficiently handle the singularities occurring in Sommerfeld integrals, by deforming the
integration path in the complex plane. Examples assess the accuracy of this approach and illustrate the physical
properties of the Green’s tensor, which represents the field radiated by three orthogonal dipoles embedded in
the multilayered medium.

PACS number~s!: 42.25.Bs, 42.25.Fx, 42.25.Gy, 42.68.Mj
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I. INTRODUCTION

The Green’s tensorG(r ,r 8) represents the electric fiel
radiated at positionr by three orthogonal dipoles located
r 8. For an infinite homogeneous background, this dyadic
be computed analytically@1,2#. The situation is much more
complex in a stratified medium, where the Green’s ten
must take into account all the reflections and refractions
occur at the different interfaces.

The simplest geometry of interest here is that of a dipo
source above a surface. This problem was first treated
Sommerfeld@3# and then extensively studied in connecti
with antennae radiation@4–7#.

In this context of a single interface, the intrinsic propert
of the Green’s tensor were also used to investigate the va
tion of spontaneous emission for a dipolar transition in
presence of a surface@8–11#. Similar properties were also
utilized to determine the polariton spectrum in semicond
tor superlattices@12#.

The Green’s tensor plays a key role in scattering calcu
tions. As a matter of fact, when a scatterer is discretized
small enough elements, the response of each element
external field is essentially dipolar@13# and the Green’s ten
sor gives the interaction between these discretized elem
This technique, known also as the coupled dipole appro
mation, has been successfully applied to many scatte
problems in infinite homogeneous backgrounds@14–16#. Us-
ing the Green’s tensor associated with a surface, it was
used to investigate scattering on a surface@17–21#.

In this paper we present an efficient technique for
accurate computation of the Green’s tensor for arbitra
layered media~i.e., not limited to a single interface!. The
formalism is derived in Sec. II. It leads to so-called Somm
feld integrals that must be performed numerically in t
complex plane. Our numerical implementation is describ
in Sec. III. In Sec. IV we illustrate the physical properties
the Green’s tensor and summarize our work in Sec. V. A

*Correspondence author. Email address: martin@ifh.ee.ethz.
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pendixes A and B give the detailed formulas for the practi
implementation of this technique.

II. FORMALISM

The Green’s tensorG(r ,r 8) for an arbitrary scattering
system described by the dielectric permittivitye(r ) and the
magnetic permeabilitym(r ) is the solution of the vector
wave equation with a point source term@1#:

“3m21~r !“3G~r ,r 8!2k0
2e~r !“3G~r ,r 8!

5m21~r !1d~r2r 8!, ~1!

wherek0
25v2e0m0 is the vacuum wave number@throughout

the paper we assume time harmonic fields with
exp(2ivt) dependence#.

In this paper we specifically consider planar stratified s
tems, where each layerl 51, . . . ,N can be characterized b
the permittivity e l and the permeabilitym l as illustrated in
Fig. 1. For convenience, we chose our coordinate sys
such that the layers are parallel to thexy plane.

For the derivation ofG(r ,r 8) associated with a stratified
background, we start with the expression for the free-sp
Green’s tensorGH(r ,r 8) of a homogeneous systemeB
5e0e r , mB5m0m r . It is given by@16#

GH~r ,r 8!5S 11
““

kB
2 D exp~ ikBR!

4pR
~2!

5S 11
ikBR21

kB
2R2

11
323ikBR2kB

2R2

kB
2R4

RRD
3

exp~ ikBR!

4pR
, ~3!

where R5uRu5ur2r 8u is the relative distance andkB
2

5v2eBmB corresponds to the wave number in the bac
ground medium.
5797 ©2000 The American Physical Society
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To deduceG(r ,r 8) for a stratified background, it is mor
convenient to use an integral representation ofGH(r ,r 8).
Fourier transforming Eq.~2! leads to

GH~r ,r 8!5
1

8p3kB
2E E E dkS 1kB

22kk

k22kB
2 D exp~ ik•R!.

~4!

Since we assume that the layers, which will be added la
are perpendicular to thez axis, we first perform the integra
tion overkz using calculus of residues. Hence, we must
sure that the integrand vanishes forkz→` and rewrite Eq.
~4! as

GH~r ,r 8!5
1

8p3kB
2E E E dkS 1kB

22kk

k22kB
2

1 ẑẑD exp~ ik•R!

2
ẑẑ

8p3kB
2E E E dk exp~ ik•R!

5
i

8p2kB
2E E dkxdkyS 1kB

22kB

kBz
D

3exp~ ikB•R!2
ẑẑ

kB
2

d~R!, ~5!

wherekBz5(kB
22kx

22ky
2)1/2 is thez component of the wave

vector and

kB~kBz!5H kxx̂1kyŷ1kBzẑ for z.z8,

kxx̂1kyŷ2kBzẑ for z,z8
. ~6!

FIG. 1. Stratified medium consisting ofN layers with
(e1 ,m1), . . . ,(eN ,mN) separated by interfaces at z
5d1 , . . . ,dN21. The vectorR5r2r 8 defines the relative distanc
betweenr and r 8 and r5(x2x8,y2y8)5(r cosf,r sinf) is the
projection ofR onto thexy plane.
r,

-

Now that we have the plane-wave expansion of
Green’s tensor for an infinite homogeneous backgrou
eB ,mB , it is a simple matter to include additional layer
Indeed, the effect of these layers will be to add two pla
waves, one propagating upward and one downward, to e
Fourier component, as illustrated in Fig. 2@note that the
propagation vector (kx ,ky ,kz) is similar for the three plane
waves, only the sign ofkz changes#. The amplitudes of these
additional components are determined by the boundary c
ditions at the different interfaces. Since the Green’s ten
represents the electric field radiated atr by three orthogonal
point sources atr 8, the boundary conditions depend on th
polarization of the corresponding Fourier component. It
therefore advantageous to introduce a new orthonormal
tem k̂(kBz), l̂(kBz), andm̂(kBz) @22#,

k̂~kBz!5
kB~kBz!

kB
, ~7a!

l̂~kBz!5
k̂~kBz!3 ẑ

uk̂~kBz!3 ẑu
, ~7b!

m̂~kBz!5 k̂~kBz!3 l̂~kBz!. ~7c!

Equivalently, another orthonormal system is formed
k̂(2kBz), l̂(2kBz), andm̂(2kBz). Remark thatl̂ is perpen-
dicular to the plane defined byk̂ and ẑ, whereasm̂ lies
within this plane. For a givenkB , the electric-field compo-
nent parallel tol̂ corresponds, therefore, tos polarization and
that parallel tom̂ corresponds top polarization. Using the
fact thatk̂k̂1 l̂ l̂1m̂m̂51, Eq. ~5! can be rewritten as

GH~r ,r 8!52
ẑẑ

kB
2

d~R!1
i

8p2E E dkx dkyS l̂ l̂1m̂m̂

kBz
D

3exp~ ikB•R!. ~8!

To obtain the Green’s tensorG(r ,r 8) for a stratified me-
dium, we can now superpose to the free-space Green’s te
of a homogeneous mediume l ,m l the additional terms by
formally writing

G~r ,r 8!52
ẑẑ

kl
2
d~R!1

i

8p2E E dkx dky exp$ i @kx~x2x8!

1ky~y2y8!#%
1

klz
@ l̂ l̂ exp~ ik lzuz2z8u!

1Rs↑ exp~ ik lzz!1Rs↓ exp~2 ik lzz!

FIG. 2. The effect of the surrounding layers on a given Four
componentk l in layer l is to add an upgoing and a downgoing pla
wave with similark vectors.
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PRE 62 5799ACCURATE AND EFFICIENT COMPUTATION OF THE . . .
1m̂m̂ exp~ ik lzuz2z8u!1Rp↑ exp~ ik lzz!

1Rp↓ exp~2 ik lzz!#, ~9!

where kl
25v2e lm l and klz5(kl

22kx
22ky

2)1/2. The tensors
Rs↑, Rs↓, Rp↑, and Rp↓ can obviously be interpreted a
generalized reflection coefficients that take into account
flections from all existing surfaces.

For the explicit calculation ofG(r ,r 8) it is necessary to
consider separately the two casesz.z8 andz,z8. In Eq. ~9!
each component of the Green’s tensor is expressed in te
of s- and p-polarized upgoing and downgoing plane wav
with amplitude coefficientsAl ,ab

s , Bl ,ab
s , Al ,ab

p , andBl ,ab
p :

Gab~r ,r 8!5
i

8p2E E dkx dky exp$ i @kx~x2x8!

1ky~y2y8!#%
1

klz
$@ l̂ a~6klz!Al ,ab

s exp~ ik lzz!

1 l̂ a~7klz!Bl ,ab
s exp~2 ik lzz!# l̂ b~klz!

1@m̂a~6klz!Al ,ab
p exp~ ik lzz!

1m̂a~7klz!Bl ,ab
p exp~2 ik lzz!#m̂b~klz!%,

~10!

where the upper sign refers to the casez.z8 and the lower
sign toz,z8. For simplicity, the contribution of thed func-
tion is omitted in Eq.~10!. The amplitude coefficientsAl ,ab

s ,
Bl ,ab

s , Al ,ab
p , andBl ,ab

p are functions of (klz ;r ,r 8) and are
derived in Appendix A.

Equation~10! can be further simplified by introducing
cylindrical coordinate system. In thexy and kxky plane we
introduce the transverse coordinater,

R5~r,z2z8!5~x2x8,y2y8,z2z8!, ~11!

r5~r cosf,r sinf!, ~12!

and the transverse wave vectorkr ,

k5~kr ,kz!5~kx ,ky ,kz!, ~13!

kr5~kr coskf ,kr sinkf!. ~14!

The integration overkf in Eq. ~10! is then performed ana
lytically with the help of Bessel functions@23#:

Jn~krr!5
i 2n

2pE
0

2p

dkf exp~ ikrr coskf!cos~nkf!.

~15!

Thus, only a one-dimensional integral over the radial co
ponentkr must be calculated numerically:

G~r ,r 8!52
ẑẑ

kl
2
d~R!

1
i

4pE0

`

dkr@ f s~kr ;r ,r 8!1f p~kr ;r ,r 8!#. ~16!
-

ms

-

The components of the tensorsf s andf p, obtained after care-
ful evaluation of Eq.~10!, are given in Appendix B.

III. PRACTICAL IMPLEMENTATION

The objective of this paper being to provide a use
framework for the computation of the Green’s tensor
stratified media, we discuss in this section the practical
tails related to the numerical evaluation of Eq.~16!.

A. Singularities

In the preceding section the Green’s tensor for stratifi
media was expressed as a set of one-dimensional s
infinite integrals, so-called Sommerfeld integrals@Eqs. ~16!
and ~B1!–~B18!#. A typical integrand has the form

G~kr ;r ,r 8!5g~kr ;r ,r 8!Jn~krr!@A~kr ,z8!

3exp~ ik lzz!1B~kr ,z8!exp~2 ik lzz!#. ~17!

An integral of this kind cannot be performed analytically, b
has to be evaluated numerically. However, a straightforw
implementation would fail because of the mathematica
awkward behavior of the integrand. To avoid these diffic
ties we use Cauchy’s integral theorem and deform the in
gration path in the complexkr plane. The objective of this
section is to determine such an optimum path.

The singularities ofG(kr ;r ,r 8) can be classified in two
types: branch point singularities and pole singulariti
Branch point singularities are related to theklz5(kl

2

2kr
2)1/2 dependence of the integrands. Sinceklz is the square

root of a complex number, it is double valued and bran
cuts defined by Im(klz)50 intersect the plane of integratio
@1#. Each branch cut ends in a branch point atkr56kl . If
the medium is lossless, these singularities are located on
real kr axis, i.e., on the integration path~Fig. 3!.

One could expect that a branch cut exists for each la
i.e., for eachkl . However, it can be shown that the fun
tional dependence ofG(kr ;r ,r 8) on klz is even for all l
except the two outermost regions@24,25#. Therefore, branch
cuts and branch points appear only forkr56k1 ,6kN .

FIG. 3. Plane of integration: The singularities are surrounded
an elliptical path~solid line!. At kr52kmaj the integration is re-
sumed along the realkr axis using Bessel functions~dashed line! or
parallel to the imaginarykr axis using Hankel functions~dash-
dotted line!.
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Since the integral runs from zero to infinity, we can furth
restrict our discussion to singularities with a non-negat
real part.

To choose now the appropriate value fork1z and kNz ,
thereby ensuring that the integration is performed on the
rect Riemann sheet defined by the branch cut Im(klz)50, we
simply apply the radiation conditions: We must use the va
with Im(klz).0 to make the integrands vanish forz→6`.

The second class of singularities, pole singularities, is
to vanishing denominators ofG(kr ;r ,r 8). These poles cor-
respond physically to modes guided by the layered struct
as will be illustrated in Sec. IV. For dielectric media, su
modes have propagation vectorskr smaller than kl

max

5maxlRe(kl) @26#.
For lossy materials with Im(e).0, it can be shown tha

both branch points and pole singularities are shifted into
first quadrant of the complexkr plane. However, if the losse
are small, the singularities remain close enough to the Rekr)
axis and can still cause serious problems.

B. Numerical quadrature

To avoid singularities, our integration path must therefo
run inside the fourth quadrant in the complexkr plane. A
possible choice would be to leave the real axis only in cl
vicinity of the singularities, e.g., by a semicircle around ea
singularity. This requires us to precisely determine the lo
tion of each pole, which is a tedious and time-consum
task @27#.

In our implementation we use an easier way of surrou
ing the singularities: an elliptical path starting atkr50 with
the major semiaxiskr

maj and the minor semiaxiskr
min ~Fig. 3!.

Of course, we must ensure thatkr
maj is chosen large enoug

to enclose all the singularities. From the discussion in
preceding section we take 2kr

maj5kl
max1k0, where the

vacuum wave numberk0 is added as a safety margin.
The parameterkr

min is empirically chosen such that th
integration path is sufficiently far away from the singulariti
without extending too much in negative imaginarykr direc-
tion, because the Bessel functionJn(krr) increases then very
rapidly. We have observed thatkr

min51023kr
maj was a good

choice for this parameter. A typical integrand is shown
Fig. 4, together with the deformed integration path.

For the remaining integration, we usually follow the re
kr axis. However, whenz2z8 is small, the exponentia
damping in Eq.~17! becomes weak and the quadrature tak
along the real axis converges very slowly. In that case,
more advantageous to transform the integral using Han
functions:

Jn~krr!5 1
2 @Hn

(1)~krr!1Hn
(2)~krr!#

5 1
2 $Hn

(1)~krr!1@Hn
(1)
„~krr!* …#* %. ~18!

Because of the asymptotic behavior of the Hankel functi
for large values ofkrr,

lim
ukrru→`

Hn
(1)~krr!5A 2

pkrr
exp@ ikrr2 1

2 ip~n1 1
2 !#,

~19!
r
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we can deflect the integration path from the real axis to
path parallel to the imaginary axis: for the first term in E
~18! in the positive imaginary direction, for the second ter
in the negative imaginary direction~Fig. 3!. Thus, for each
ukrru the Hankel function must only be calculated for th
argument with the positive imaginary part. The exponen
term in Eq.~19! ensures then a much faster convergence
the integrand. This is illustrated in Fig. 5, where we comp
the integrand using Bessel functions along the realkr axis
with that corresponding to Hankel functions parallel to t
imaginary kr axis. Evidently, the integration using Hank
functions converges much faster.

From a practical point of view, we use the Gauss-Kronr
quadrature to evaluate the integrals along the deformed
@28#. This efficient algorithm can easily handle the oscilla
ing behavior of the Bessel and Hankel functions for lar
krr. We are using the 15-point Gauss-Kronrod quadrat
and stop the integration when a relative accuracy of 1029 is

FIG. 4. Real part of the integrandf xx(kr) @Eqs.~B1! and~B2!#.
In this example, a nonmagnetic three-layer system withe151, e2

54, ande352 is used. The elliptical integration path used to avo
the singularities is shown on the integrand~white line! and on the
projection plane.

FIG. 5. Comparison of the imaginary part of the integra
f xx(kr) along the real axis and the imaginary axis, respective
using a formulation in terms of Bessel~solid line! and Hankel func-
tions~dashed line!, respectively. The system is identical to that us
in Fig. 4.
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PRE 62 5801ACCURATE AND EFFICIENT COMPUTATION OF THE . . .
achieved. The application of a much more costly 64-po
Gauss-Kronrod quadrature would roughly double the com
tation time without an appreciable gain in precision. D
creasing the desired relative accuracy to 1026 typically
speeds up the computation by a factor 1.5.

A very useful trick to expedite the computation of th
Green’s tensor for a stratified medium is to integrate sim
taneously the different components ofG(r ,r 8). However, we
do not evaluate directly the individual components but rat
choose a numerically more appropriate decomposition:
integrands in Eqs.~B1!–~B18! can be ordered ins- and
p-polarized terms with first- and second-order Bessel or H
kel functions. Thus, seven independent terms can be defi
We have observed that for a given (r ,r 8) pair these terms
have a similar behavior in thekr plane, which makes pos
sible their simultaneous integration. In our practical imp
mentation, we integrate in parallel 14 real functions that c
respond to the real and imaginary parts of these indepen
contributions to the Green’s tensor. As a measure for
Gauss-Kronrod quadrature~stop criterion!, we simply use
the sum of these 14 functions.

On our system~IBM PS/6000 7012-397, 160 MHz! the
calculation of the complete Green’s tensor for 1000 (r ,r 8)
pairs takes for the example shown in Fig. 9 approximat
380 s of CPU time. Note, however, that this calculation tim
strongly depends on the relative position ofr and r 8.

To demonstrate the accuracy of our integration sche
we first perform calculations for a system consisting of v
tual layers, i.e., layers with identical permittivity and perm
ability. These results must be identical to the explicit so
tion given by the free-space Green’s tensor of
homogeneous medium, Eq.~3!. Figure 6 shows a compariso
for a virtual four-layer medium. Obviously, the agreeme
between the two calculations is perfect.

IV. ILLUSTRATIVE EXAMPLES

To illustrate the physical substance of our mathemat
formalism, let us consider the most simple case of a nonm

FIG. 6. Accuracy of the method: Comparison of the Gree
tensor for a homogeneous medium obtained by numerical qua
ture assuming four layers with identical permittivity~solid line!
with that obtained from the explicit free-space solution@Eq. ~3!,
crosses#. The uGzxu component is shown.
t
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netic two-layer systeme1 ,e2 separated by a single interfac
at d50. Assuming thatr 8 lies within layer 1 andr within
layer 2, the integrandGzz(kr ;r,f) reduces to

Gzz~kr ;r ,r 8!5
kr

3

k2
2k1z

J0~krr!T 12
p exp@ i ~k1zz82k2zz!#, ~20!

whereT 12
p 511F 12

p 5e2k1z /(e2k1z1e1k2z) is the transmis-
sion coefficient of the surface.

As already mentioned, branch point singularities exist
kr56k1 ,6k2. By definition, for anykr lying on one of
these branch cutskz is pure real, forming a wave propagatin
in z→6` direction. These waves form a continuum
modes called radiation modes.

In addition, pole singularities appear when the denomi
tor of T 12

p vanishes, i.e., forkr such that

e2Ak1
22kr

21e1Ak2
22kr

250. ~21!

The solutions of Eq.~21! are formally given by

kr56A e1e2

e11e2
k0 . ~22!

However, one has to verify if this solution is physical
meaningful. If we choosee1 ande2 purely real and positive,
obviously kr,k1 ,k2. Hence, the square roots being al
purely real and positive, Eq.~21! is not fulfilled. If we now
assume thate2,0 ande1,ue2u, a solution does exist. Fo
such a plasma medium, the wave vectors in thez direction
k1z andk2z at the location of the polekr become

kiz5Aki
22kr

25Ae i2
e1e2

e11e2
k05A e i

2

e11e2
k0

for i 51,2. ~23!

Refering to the discussion in Sec. III A, the sign of th
square root in Eq.~23! has to be chosen such that the ima
nary part is non-negative. Hence,k1z andk2z are pure imagi-
nary and the field decays exponentially from the interfa
The pole constitutes a surface-plasmon mode. Similarly,
an appropriate choice of the material properties other sur
modes can be found by analyzing the pole locations@29#.

In a three-layer structure, in addition to the branch po
singularities atkr56k1 ,6k3, pole singularities associate
with guided modes can occur. Ifkr

2.k1
2 and kr

2.k3
2 , the

wave vectors in thez direction k1z5(k1
22kr

2)1/2 and k3z

5(k3
22kr

2)1/2 are imaginary and the field decreases expon
tially in these outermost layers. Hence,kr corresponds to the
modes guided by the slab. Their number, i.e., the numbe
poles, depends on the wavelength and the thickness of
intermediate layer@30#.

As an illustration, Fig. 7 shows thes-polarized contribu-
tion of the integrand along the real axis for a symmet
planar GaAs/Al0.15Ga0.85As/GaAs waveguide structure at
l51.5 mm wavelength. According to a guided mode ana
sis, a similar structure with aD50.5 mm thick AlGaAs
layer has one singles-polarized mode, located atkr

514.6 mm21. For a thicker AlGaAs layer,D52 mm,
three s-polarized modes exist with, respectively,kr

s
ra-
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5802 PRE 62PAULUS, GAY-BALMAZ, AND MARTIN
514.9 mm21, 14.7 mm21, and 14.5mm21. In Fig. 7 we
observe that the integrands’ divergences coincide perfe
with these eigenmodes.

We can also investigate more complicated structures, s
as a planar waveguide coupler: We consider a symme
GaAs/AlGaAs/GaAs/AlGaAs/GaAs system with the tw
guiding Al0.15Ga0.85As layers having identical thicknesse
D50.5 mm. The s-polarized contribution of the integran
along the real axis is plotted in Fig. 8. For a thick separat
GaAs layer,D852 mm, the AlGaAs slabs are decouple
only one s-polarized mode can be excited atkr

514.6 mm21, as in the previous example. However, wi
decreasing separating layer thickness, the modes of the
waveguides can couple via their evanescent tails. The m
is split and the behavior of the structure develops towa
that of a single-layer waveguide. For a thin separating Ga
layer, D850.05 mm, the poles are located atkr

FIG. 7. Integrand (s polarization! for a symmetric
GaAs/Al0.15Ga0.85As/GaAs planar waveguide, for three differe
widths D of the AlGaAs layer. The wavelength isl51.5 mm.

FIG. 8. Integrand (s polarization! for a GaAs/
AlGaAs/GaAs/AlGaAs/GaAs multilayer structure, for three diffe
ent widthsD8 of the separating GaAs layer. The wavelength isl
51.5 mm.
tly

ch
ic

g

wo
de
s
s

514.8 mm21 and 14.4 mm21, which corresponds to the
modes of a single-layer waveguide withD50.5 mm
10.5 mm51 mm.

As the last example, we consider a four-layer mediu
with e151, e252, e3510, and e451 at a l5633 nm
wavelength. The thickness of each inner layer is 500 n
Two components of the Green’s tensor,Gxx(r ,r 8) and
Gzx(r ,r 8), are given as a function of the altitudez of the
observation point r5(r,F,z)5(l,p/4,z), whereas the
source pointr 85(0,0,750 nm) is held constant in the to
layer. Physically, these functions represent thex andz com-
ponents of the electric field radiated by anx-oriented electric
dipole. In the slab regions the dipole source excites stand
waves with a periodL25224 nm andL35100 nm, which
correspond to the half-effective wavelength in the accord
layer.~Note, however, that our source is a dipole, not a pla
wave.! Figure 9 also illustrates the continuity properti
across the interfaces. The tangential component of the e
tric field is continuous across all interfaces@Eq. ~A1a!#,
whereas the normal component of the electric displacem
is continuous@Eq. ~A1b!#. Hence,Gzx(r ,r 8) jumps at the
interfaces by a factore3 /e255 ande3 /e4510, respectively.

V. SUMMARY

We have presented a technique for the computation of
Green’s tensor in stratified media. The computation det
have been extensively discussed, which should make
practical implementation of this technique on a compu
straightforward.

Several examples demonstrated the accuracy of this
proach and illustrated the intrinsic physical properties of
Green’s tensor in a stratified medium. This dyadic can a
be used in conjunction with the Green’s tensor technique
efficient scattering calculations in media composed of an
bitrary number of layers@16#.

FIG. 9. uGxxu and uGzxu components of the Green’s tensor for
four-layer structure withe151, e252, e3510, ande451. The
second layer extends fromz50 nm to z52500 nm, the third
layer toz521000 nm.z85750 nm is located in the top layer an
held fixed.
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APPENDIX A

In this appendix we compute the amplitude coefficie
Al ,ab

s/p andBl ,ab
s/p , respectively, fors/p-polarized upgoing and

downgoing waves in the different layers forming the stru
ture @see Eqs.~10! and ~B1!–~B18!#. These coefficients can
be summarized in the matricesA l

s , Bl
s , A l

p , andBl
p .

At each interface the Green’s tensor must fulfill the co
tinuity equations resulting from Maxwell’s equations:

ẑ3~G12G2!50, ~A1a!

ẑ•~e1G12e2G2!50, ~A1b!
d.
e
an
t
-

s

-

-

ẑ3“3S G1

m1
2

G2

m2 D 50, ~A1c!

ẑ•“3~G12G2!50, ~A1d!

whereG1, e1, andm1 denote the quantities just above an
G2, e2, andm2 just below the interface. Equations~A1a!
and ~A1b! are the boundary conditions for the electric fiel
whereas Eqs.~A1c! and ~A1d! are the boundary condition
for the magnetic field.

Using Eqs.~A1a!–~A1d!, we can deduce iteratively th
amplitude ratios of upgoing and downgoing waves in ea
layer l. For that purpose, we consider separately the c
when r is abover 8 and that when it is below.

Whenz.z8, we use the fact that no field is reflected fro
infinity (z→1`), so thatB1,ab50. Thus, we can iteratively
determine the amplitude ratio of the downgoing/upgoi
wave in each layerl 52, . . . ,l 8 using the relation
S Bl

Al
D

z.z8

s/p

5

Fl ,l 21
s/p exp@ idl 21~kl 21z1klz!#1S Bl 21

Al 21
D

z.z8

s/p

exp@2 idl 21~kl 21z2klz!#

exp@ idl 21~kl 21z2klz!#1Fl ,l 21
s/p S Bl 21

Al 21
D

z.z8

s/p

exp@2 idl 21~kl 21z1klz!#

. ~A2a!

In a similar way, forz,z8, we use the factAN,ab50 ~no field is reflected fromz→2`). Now we obtain for the amplitude
ratio of the upgoing/downgoing wave in each layerl 5N21, . . . ,l 8,

S Al

Bl
D

z,z8

s/p

5

Fl ,l 11
s/p exp@2 idl~kl 11z1klz!#1S Al 11

Bl 11
D

z,z8

s/p

exp@ idl~kl 11z2klz!#

exp@2 idl~kl 11z2klz!#1Fl ,l 11
s/p S Al 11

Bl 11
D

z,z8

s/p

exp@ idl~kl 11z1klz!#

. ~A2b!
s

ison
The coefficientsFl ,l 21
s/p andFl ,l 11

s/p in Eqs. ~A2a! and ~A2b!
are the Fresnel reflection coefficients:

Fl ,l 61
s 5

m l 61klz2m lkl 61z

m l 61klz1m lkl 61z
, ~A3a!

Fl ,l 61
p 5

e l 61klz2e lkl 61z

e l 61klz1e lkl 61z
. ~A3b!

We dropped theab indices in Eqs.~A2a! and~A2b! because
the ratio is the same for each component.

In the layerl 8 the amplitudes can be explicitly calculate
According to Eq.~9!, the total field in this region can b
written as a superposition of the direct nonreflected wave
the reflected upgoing and downgoing waves:

A l 8,ab
s/p exp~ ik l 8zz!1B l 8,ab

s/p exp~2 ik l 8zz!
d

5C l 8,ab
s/p exp~ ik l 8zuz2z8u!

1Rl 8,ab
s/p↑ exp~ ik l 8zz!1Rl 8,ab

s/p↓ exp~2 ik l 8zz!, ~A4!

whereA l 8,ab
s/p is the amplitude of the upgoing wave,B l 8,ab

s/p

the amplitude of the downgoing wave, andC l 8,ab
s/p the ampli-

tude of the direct wave@see Eq.~9!#:

C l 8,ab
s

5 l̂ a~kl 8z! l̂ b~kl 8z!, ~A5a!

C l 8,ab
p

5m̂a~kl 8z!m̂b~kl 8z!. ~A5b!

Evaluating the products in Eqs.~A5a! and ~A5b! using Eqs.
~6! and~7! shows immediately thatC l 8,xz

p , C l 8,yz
p , C l 8,zx

p , and
C l 8,zy

p are odd aboutz5z8, whereas all the other amplitude
are even aboutz5z8. Note that the amplitudesA l 8,ab

s/p and
B l 8,ab

s/p are not identical to the coefficientsAl 8,ab
s/p andBl 8,ab

s/p

used above. However, they can be connected by compar
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with the integrands given in Appendix B. For example, f
the p-polarized part of thexx component, they are couple
via

A l 8,xx
p

5Rl 8,xx
p↑

1Q~z2z8!C l 8,xx
p exp~2 ik l 8zz8!

56C l 8,xx
p Al 8,xx

p , ~A6a!

B l 8,xx
p

5Rl 8,xx
p↓

1Q~z82z!C l 8,xx
p exp~ ik l 8zz8!

57C l 8,xx
p Bl 8,xx

p , ~A6b!

where the upper sign refers toz.z8 and the lower sign to
z,z8.

Using Eq. ~A4!, the amplitude ratio of the downgoing
upgoing wave reads forz.z8

S Bl 8,ab

Al 8,ab
D

z.z8

s/p

5
Rl 8,ab

s/p↓

C l 8,ab
s/p exp~2 ik l 8zz8!1Rl 8,ab

s/p↑ , ~A7a!

and the amplitude ratio of the upgoing/downgoing wave
comes forz,z8

S Al 8,ab

Bl 8,ab
D

z,z8

s/p

5
Rl 8,ab

s/p↑

C l 8,ab
s/p exp~ ik l 8zz8!1Rl 8,ab

s/p↓ .

~A7b!

Solving Eqs.~A7a! and ~A7b! for Rl 8,ab
s/p↓ and Rl 8,ab

s/p↑ and
substituting the result into the equations formed in analog
Eqs. ~A6a! and ~A6b! gives the components ofA l 8

s/p and
Bl 8

s/p . One only has to replace the amplitude ratios formed
A l 8,ab

s/p andB l 8,ab
s/p with the ratios of the corresponding coe

ficients Al 8,ab
s/p and Bl 8,ab

s/p , keeping in mind the difference
betweenz.z8 andz,z8. It turns out that forp polarization
two cases must be distinguished. ForbÞz the solution reads

Al 8,ab
p

56S Al 8

Bl 8
D

z,z8

p F12S Bl 8

Al 8
D

z.z8

p S Al 8

Bl 8
D

z,z8

p G21

3F S Bl 8

Al 8
D

z.z8

p

exp~2 ik l 8zz8!2exp~ ik l 8zz8!G
6Q~z2z8!exp~2 ik l 8zz8!, ~A8a!

Bl 8,ab
p

57S Bl 8

Al 8
D

z.z8

p F12S Bl 8

Al 8
D

z.z8

p S Al 8

Bl 8
D

z,z8

p G21

3F S Al 8

Bl 8
D

z,z8

p

exp~ ik l 8zz8!2exp~2 ik l 8zz8!G
7Q~z82z!exp~ ik l 8zz8!, ~A8b!

whereas forb5z, Al 8,ab
p andBl 8,ab

p are given by
-

o

y

Al 8,az
p

5S Al 8

Bl 8
D

z,z8

p F12S Bl 8

Al 8
D

z.z8

p S Al 8

Bl 8
D

z,z8

p G21

3F S Bl 8

Al 8
D

z.z8

p

exp~2 ik l 8zz8!1exp~ ik l 8zz8!G
1Q~z2z8!exp~2 ik l 8zz8!, ~A8c!

Bl 8,az
p

5S Bl 8

Al 8
D

z.z8

p F12S Bl 8

Al 8
D

z.z8

p S Al 8

Bl 8
D

z,z8

p G21

3F S Al 8

Bl 8
D

z,z8

p

exp~ ik l 8zz8!1exp~2 ik l 8zz8!G
1Q~z82z!exp~ ik l 8zz8!. ~A8d!

Physically, this difference is due to the fact that the comp
nents with b5z represent the field of a vertical dipol
whereas the other components come from a horizontal
pole.

Since ans-polarized wave is only generated by a horizo
tal dipole, such a distinction does not occur:

Al 8,ab
s

5S Al 8

Bl 8
D

z,z8

s F12S Bl 8

Al 8
D

z.z8

s S Al 8

Bl 8
D

z,z8

s G21

3F S Bl 8

Al 8
D

z.z8

s

exp~2 ik l 8zz8!1exp~ ik l 8zz8!G
1Q~z2z8!exp~2 ik l 8zz8!, ~A9a!

Bl 8,ab
s

5S Bl 8

Al 8
D

z.z8

s F12S Bl 8

Al 8
D

z.z8

s S Al 8

Bl 8
D

z,z8

s G21

3F S Al 8

Bl 8
D

z,z8

s

exp~ ik l 8zz8!1exp~2 ik l 8zz8!G
1Q~z82z!exp~ ik l 8zz8!. ~A9b!

In this case,Al 8,ab
s and Bl 8,ab

s are only defined fora5x,y
and b5x,y, whereas the five other components are set
zero.

In Eqs.~A8! and ~A9! the amplitude coefficients in laye
l 8 are expressed in terms of amplitude ratios which we h
already calculated in Eqs.~A2b! and~A2a!. Since the ampli-
tude coefficients of the upgoing and downgoing waves in
layer l are iteratively connected to the amplitude coefficie
in l 8 via the boundary conditions~A1!, we can explicitly
calculate the components ofA l

s/p andBl
s/p , keeping in mind

that the boundary conditions are different for thex, y, and for
the z components~note, however, that thes-polarized wave
has noz component!. This relationship can be formulate
using propagation matrices@31# with different factorsg. For
z.z8 we have
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S Al ,ab
s/p

Bl ,ab
s/p D 5gz.z8

s/p S exp@ idl~kl 11z2klz!# F l ,l 11
s/p exp@2 idl~kl 11z1klz!#

F l ,l 11
s/p exp@ idl~kl 11z1klz!# exp@2 idl~kl 11z2klz!#

D S Al 11,ab
s/p

Bl 11,ab
s/p D , ~A10!

where

gz.z8
s

5
1

2

m l 11klz1m lkl 11z

m l 11kl 11z
for a5x,y, b5x,y, ~A11a!

gz.z8
p

5H 1

2

m l

m l 11

kl 11z

klz

e l 11klz1e lkl 11z

e l 11kl 11z
for a5x,y, b5x,y,z,

1

2

m l

m l 11

e l 11klz1e lkl 11z

e l 11kl 11z
for a5z, b5x,y,z.

~A11b!

Similarly, for z,z8 we obtain the following expressions:

S Al ,ab
s/p

Bl ,ab
s/p D 5gz,z8

s/p S exp@ idl 21~kl 21z2klz!# Fl ,l 21
s/p exp@2 idl 21~kl 21z1klz!#

Fl ,l 21
s/p exp@ idl 21~kl 21z1klz!# exp@2 idl 21~kl 21z2klz!#

D S Al 21,ab
s/p

Bl 21,ab
s/p D , ~A12!

where

gz,z8
s

5
1

2

m l 21klz1m lkl 21z

m l 21kl 21z
for a5x,y, b5x,y, ~A13a!

gz,z8
p

5H 1

2

m l

m l 21

kl 21z

klz

e l 21klz1e lkl 21z

e l 21kl 21z
for a5x,y, b5x,y,z,

1

2

m l

m l 21

e l 21klz1e lkl 21z

e l 21kl 21z
for a5z, b5x,y,z.

~A13b!

Like this, we obtain the amplitude ofs- andp-polarized upgoing/downgoing waves in each layer.

APPENDIX B

Using l̂(2klz)5 l̂(klz) and m̂(2klz)5„2m̂x(klz),2m̂y(klz),m̂z(klz)… the components of the integrand for the Gree
tensor~10! read, after evaluation of the angular integral,

f xx
s ~kr ;r,f!5

1

klz
S krJ0~krr!sin2f1

1

r
J1~krr!cos 2f D @Al

s exp~ ik lzz!1Bl
s exp~2 ik lzz!#, ~B1!

f xx
p ~kr ;r,f!56

klz

kl
2 S krJ0~krr!cos2f2

1

r
J1~krr!cos 2f D @Al ,xx

p exp~ ik lzz!2Bl ,xx
p exp~2 ik lzz!#, ~B2!

f xy
s ~kr ;r,f!5

1

klz
S 2krJ0~krr!1

2

r
J1~krr! D sinf cosf@Al

s exp~ ik lzz!1Bl
s exp~2 ik lzz!#, ~B3!

f xy
p ~kr ;r,f!56

klz

kl
2 S krJ0~krr!2

2

r
J1~krr! D sinf cosf@Al ,xy

p exp~ ik lzz!2Bl ,xy
p exp~2 ik lzz!#, ~B4!

f xz
s ~kr ;r,f!50, ~B5!

f xz
p ~kr ;r,f!52

ikr
2

kl
2

J1~krr!cosf@Al ,xz
p exp~ ik lzz!2Bl ,xz

p exp~2 ik lzz!#, ~B6!

f yx
s ~kr ;r,f!5 f xy

s , ~B7!

f yx
p ~kr ;r,f!5 f xy

p , ~B8!
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f yy
s ~kr ;r,f!5

1

klz
S krJ0~krr!cos2f2

1

r
J1~krr!cos 2f D @Al

s exp~ ik lzz!1Bl
s exp~2 ik lzz!#, ~B9!

f yy
p ~kr ;r,f!56

klz

kl
2 S krJ0~krr!sin2f1

1

r
J1~krr!cos 2f D @Al ,yy

p exp~ ik lzz!2Bl ,yy
p exp~2 ik lzz!#, ~B10!

f yz
s ~kr ;r,f!50, ~B11!

f yz
p ~kr ;r,f!52

ikr
2

kl
2

J1~krr!sinf@Al ,yz
p exp~ ik lzz!2Bl ,yz

p exp~2 ik lzz!#, ~B12!

f zx
s ~kr ;r,f!50, ~B13!

f zx
p ~kr ;r,f!57

ikr
2

kl
2

J1~krr!cosf@Al ,zx
p exp~ ik lzz!1Bl ,zx

p exp~2 ik lzz!#, ~B14!

f zy
s ~kr ;r,f!50, ~B15!

f zy
p ~kr ;r,f!57

ikr
2

kl
2

J1~krr!sinf@Al ,zy
p exp~ ik lzz!1Bl ,zy

p exp~2 ik lzz!#, ~B16!

f zz
s ~kr ;r,f!50, ~B17!

f zz
p ~kr ;r,f!5

kr
3

kl
2klz

J0~krr!@Al ,zz
p exp~ ik lzz!1Bl ,zz

p exp~2 ik lzz!#. ~B18!
-
th

e

r

The upper sign in these equations refers toz.z8 and the
lower sign to z,z8. As mentioned in Appendix A@Eqs.
~A9!, ~A11a!, and~A13a!#, all nonvanishing amplitude coef
ficients of s-polarized waves are equal, as denoted by
scalarAl

s andBl
s . Note further thatAl ,ab

s/p andBl ,ab
s/p are also

functions ofklz and hence, because ofklz5(kl
22kr

2)1/2, func-
tions of kr .

For r50, some of the integrands are no longer defin
because the denominatorr and the numeratorJ1(krr) van-
s

ry

g

s

li-
e

d

ish. Furthermore,f is not defined forr50. However, ex-
plicit evaluation of Eq.~10! for r50 shows that the uppe
formulas are still valid if we take their value forf50 and
make use of the limit

lim
r→0

J1~krr!

r
5

1

2
kr . ~B19!
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