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Accurate and efficient computation of the Green’s tensor for stratified media
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We present a technique for the computation of the Green’s tensor in three-dimensional stratified media
composed of an arbitrary number of layers with different permittivities and permeabflitidading metals
with a complex permittivity. The practical implementation of this technique is discussed in detail. In particu-
lar, we show how to efficiently handle the singularities occurring in Sommerfeld integrals, by deforming the
integration path in the complex plane. Examples assess the accuracy of this approach and illustrate the physical
properties of the Green’s tensor, which represents the field radiated by three orthogonal dipoles embedded in
the multilayered medium.

PACS numbe): 42.25.Bs, 42.25.Fx, 42.25.Gy, 42.68.Mj

[. INTRODUCTION pendixes A and B give the detailed formulas for the practical
implementation of this technique.
The Green's tenso6G(r,r') represents the electric field
radiated at ppgitiom by three orthogonal dipole; Iocate.d at Il. FORMALISM
r’. For an infinite homogeneous background, this dyadic can ) ) )
be computed analyticalljl,2]. The situation is much more ~ The Green's tensoG(r,r’) for an arbitrary scattering
complex in a stratified medium, where the Green'’s tensofyStém described by the dielectric permittivitr) and the
must take into account all the reflections and refractions thai@gnetic permeabilityu(r) is the solution of the vector
oceur at the different interfaces. wave equation with a point source tefr:
The simplest geometry of interest here is that of a dipolar . ) ) )
source above a surface. This problem was first treated by VX u= () VXG(r,r') —kpe(r) VX G(r,r')
Spmmerfeld[B] anq t.hen extensively studied in connection =wYr)18(r—r"), 1)
with antennae radiatiopd—7].
ftl;: thGls con,tei(t of a single |r|1terface;j, :he. Intrlr;§lctprtohpertle§Wherekg: w?egug is the vacuum wave numbgthroughout
of the Lreen s tensor were aiso Used 1o Investigate e varigg paper we assume time harmonic fields with an
tion of spontaneous emission for a dipolar transition in th

o ) eexp(—imt) dependence
presence of a surfad@—11]. Similar properties were also 'y, this"paper we specifically consider planar stratified sys-

utilized to determine the polariton spectrum in semiconducigms where each layér=1, ... N can be characterized by

tor superlattice$12]. . _ the permittivity ¢, and the permeabilitys; as illustrated in
The Green’s tensor plays a key role in scattering calculagig 1. For convenience, we chose our coordinate system

tions. As a matter of fact, when a scatterer is discretized int@ch that the layers are parallel to thg plane.

small enough elements, the response of each element to an For the derivation of5(r,r’) associated with a stratified

external field is essentially dipol@t3] and the Green’s ten-  packground, we start with the expression for the free-space

sor gives the interaction between these discretized elementsreen’s tensorGy(r,r’) of a homogeneous systerag

This technique, known also as the coupled dipole approxi=eye,, ug=mou, . It is given by[16]

mation, has been successfully applied to many scattering

problems in infinite homogeneous backgrounti$—16. Us- VV | exp(ikgR)
ing the Green'’s tensor associated with a surface, it was alsGy(r,r')=| 1+ —- 2R 2
used to investigate scattering on a surfpte-21]. kg m

In this paper we present an efficient technique for the
accurate computation of the Green’s tensor for arbitrarily ikeR—1 3—3ikgR—K2R?
layered mediai.e., not limited to a single interfageThe :( 75 1+ > 2
formalism is derived in Sec. Il. It leads to so-called Sommer- kgR kgR
feld integrals that must be performed numerically in the .

. B C . expikgR)

complex plane. Our numerical implementation is described = 57 ®)

in Sec. lll. In Sec. IV we illustrate the physical properties of 4mR
the Green’s tensor and summarize our work in Sec. V. Ap-
where R=|R|=|r—r'| is the relative distance ané3
=w?egug corresponds to the wave number in the back-
*Correspondence author. Email address: martin@ifh.ee.ethz.ch ground medium.
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FIG. 1. Stratified medium consisting oN layers with
(€1,1), - .. ,(en, )  Separated by interfaces atz
=d;, ..., dy_1. The vectorR=r—r’ defines the relative distance
betweenr andr’ and p=(x—x',y—y’)=(p cos¢,psin¢) is the
projection ofR onto thexy plane.

To deduceG(r,r') for a stratified background, it is more
convenient to use an integral representationGef(r,r’).
Fourier transforming Eq(2) leads to

ounr= 5 [ [ o

1k§—kk) HiCR)
exXpIK- .
k?—k§

4)
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FIG. 2. The effect of the surrounding layers on a given Fourier
componenk; in layerl is to add an upgoing and a downgoing plane
wave with similark vectors.

Now that we have the plane-wave expansion of the
Green’s tensor for an infinite homogeneous background
€g,Mmg, it is a simple matter to include additional layers.
Indeed, the effect of these layers will be to add two plane
waves, one propagating upward and one downward, to each
Fourier component, as illustrated in Fig.[Bote that the
propagation vectork,ky ,k,) is similar for the three plane
waves, only the sign df, changeg The amplitudes of these
additional components are determined by the boundary con-
ditions at the different interfaces. Since the Green'’s tensor
represents the electric field radiated diy three orthogonal
point sources at’, the boundary conditions depend on the
polarization of the corresponding Fourier component. It is
therefore advantageous to introduce a new orthonormal sys-

temk(kg,), 1(kg,), andm(kg,) [22],

. kg(Kg,
Rl = <222 (7a
B
. k(kg,) Xz
I(kg) = ———=, 7b)
ke = R g <2 (
M(Kg,) = k(kg,) X 1(Kg,). (79

Since we assume that the layers, which will be added |ateIEquiva|ent|y, another orthonormal system is formed by

are perpendicular to theaxis, we first perform the integra-
tion overk, using calculus of residues. Hence, we must en
sure that the integrand vanishes fgr—~ and rewrite Eq.

(4) as
Gy(rr)=— fffdk the—kk Hik-R)
r,r')= +2zz|exp(ik-
: 8mK2 K2—K2
2 [ [ [ akexicer)
— exXpiIK-
8mk3
i 1k§—k5)
=— dkdk(—
8w2k§ff T ke

. 7z
xexplikg-R)=— d(R),
I(B

©)

wherekg,= (kj—kZ—k3)*? is thez component of the wave
vector and

kx+kyy+kg,z for z>7',
kB<sz>=[ D 6)

kx+k,y—kg,z for z<z'~

k(—Kgy), 1(—kg,), andm(—kg,). Remark that is perpen-

dicular to the plane defined blg and z, whereasm lies
within this plane. For a givelg, the electric-field compo-
nent parallel td corresponds, therefore, spolarization and
that parallel tom corresponds t@ polarization. Using the
fact thatkk +11+mm=1, Eq. (5) can be rewritten as

Cm T+
Gy(r,r )__k_%g(R)—i_Qf Jdkxdky -

sz
X exp(ikg- R). 8

To obtain the Green’s tens@(r,r’) for a stratified me-
dium, we can now superpose to the free-space Green’s tensor
of a homogeneous medium ,u, the additional terms by
formally writing

G(r,r')y=-— i—;é(R)ﬁL#j f dk, dk, exp{i[ky(x—x")

1 .
+ky(y—y’)]}k—lz[ll explik,,|z—2'|)

+ RS exp(ik;,z) + RS exp( — ik ,2)
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+mm explik,|z—2'|) + RP! exp(ik;,2) [
+RPLexp(—ik;,2)], 9

where ki'=w?eu and k= (kf—ki—k5)"2 The tensors
RS!, RS, RP!, and RP! can obwously be interpreted as
generalized reflection coefficients that take into account re-
flections from all existing surfaces.

For the explicit calculation of5(r,r’) it is necessary to

consider separately the two cagesz’ andz<z'. In Eq.(9) k:l Re(k,)
each component of the Green’s tensor is expressed in terms »
of s and p-polarized upgoing and downgoing plane waves

with amplitude coefficients\} 5, BY .5, Al .5, andBf ,5:

Branch cuts

Im(kp)

i ) FIG. 3. Plane of integration: The singularities are surrounded by
Gaﬁ(r’r,):_zf f dky dky exp{i[ky(x—=x") an elliptical path(solid line). At k,=2k™ the integration is re-
87 sumed along the redl, axis using Bessel functiorislashed lingor
parallel to the imaginark, axis using Hankel functiongdash-

1 .
+ky(y—y’ )]}W{[l (== k|Z)A|S,aﬁ expik,,2) dotted ling.

T (FKIBS . extl —ikez) i (k The components of the tensdrsandf P, obtained after care-
(K1) B X~ 1k1z2) ]l (ki) ful evaluation of Eq.(10), are given in Appendix B.
+[ Mg+ ki) AP, explik),2)
~ . R I1l. PRACTICAL IMPLEMENTATION
+m,(FKi2)BP g expl —ik(,2) Img(kiz)}, o , _ _
The objective of this paper being to provide a useful
(10 framework for the computation of the Green’s tensor for
stratified media, we discuss in this section the practical de-

where the upper sign refers to the casez’ and the lower . . >
PP g tails related to the numerical evaluation of Eg6).

sign toz<z'. For simplicity, the contribution of thé func-
tion is omitted in Eq(10). The amplitude coefficienb&ﬁaﬁ, _ N
P g Alup, andBp, are functions of ki, ;r,r') and are A. Singularities
derived in Appendix A. In the preceding section the Green’s tensor for stratified
Equation(10) can be further simplified by introducing a media was expressed as a set of one-dimensional semi-
cylindrical coordinate system. In they andk,k, plane we infinite integrals, so-called Sommerfeld integréii&gs. (16)

introduce the transverse coordingte and (B1)—(B18)]. A typical integrand has the form
R=(p,z=2")=(x-x"y-y',z=2'), (1) G(k,;r,r)=g(k,;r,r")Ia(k,p)[ Ak, ,z")
p=(pcos¢,psing), (12 xexplik,z)+B(k,,z" ) exp(—ik,2)]. (17)

and the transverse wave vectgy, An integral of this kind cannot be performed analytically, but
has to be evaluated numerically. However, a straightforward

k=(k, k) =(Kky,ky,K;), (13)  implementation would fail because of the mathematically

. awkward behavior of the integrand. To avoid these difficul-
k,=(k,cosk,, k,sink,). (14 ties we use Cauchy’s integral theorem and deform the inte-

gration path in the complek, plane. The objective of this

Th_e integ_ration ovek, in Eq. (10) is _then performed ana- gection is to determine such an optimum path.
lytically with the help of Bessel function23]: The singularities ofG(k,;r,r’) can be classified in two
types: branch point singularities and pole singularities.

—n
In(K,p)= Iz_szdk"S expik ,p coskz)cognky). Braznch point singularitiesj are relate(_j tq the, = (k7
mJo —k?2)*2 dependence of the integrands. Sikgeis the square
(19  root of a complex number, it is double valued and branch
cuts defined by In{,)=0 intersect the plane of integration
[1]. Each branch cut ends in a branch poinkgt * k. If
the medium is lossless, these singularities are located on the
55 realk, axis, i.e., on the integration patkig. 3).
G(r,r')=——=4R) One could expect that a branch cut exists for each layer,
i i.e., for eachk,. However, it can be shown that the func-
tlonal dependence oG(k,;r,r’) on k;, is even for alll
j Ao [F5(k,r,r" )+ FP(k,r,r)]. (16) except the two outermost regiof4,25. Therefore, branch
P P cuts and branch points appear only flg=*k;,*ky.

Thus, only a one-dimensional integral over the radial coms
ponentk, must be calculated numerically:
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Since the integral runs from zero to infinity, we can further
restrict our discussion to singularities with a non-negative
real part. B

To choose now the appropriate value for, and ky,, 100+~
thereby ensuring that the integration is performed on the cor<
rect Riemann sheet defined by the branch cukly€0, we E
simply apply the radiation conditions: We must use the value s
with Im(k,)>0 to make the integrands vanish for + «, -

The second class of singularities, pole singularities, is duegs -50-
to vanishing denominators @&(k,;r,r’). These poles cor-
respond physically to modes guided by the layered structure ,
as will be illustrated in Sec. IV. For dielectric media, such ) -1 Jm(k,) [nm™]
modes have propagation vectoks, smaller than k™
=maxRe() [26].

For lossy materials with In&>0, it can be shown that FIG. 4. Real part of the integrarfg,(k,) [Egs.(B1) and(B2)].
both branch points and poIe singularities are shifted into th% this example, a nonmagnetic three-layer system wijth 1, €,
first quadrant of the complek, plane. However, if the losses =4, ande;=2 is used. The elliptical integration path used to avoid
are small, the singularities remain close enough to th&jJRe( the singularities is shown on the integrawhite line) and on the
axis and can still cause serious problems. projection plane.

(fre

-3x107°

-100-
0

we can deflect the integration path from the real axis to a
path parallel to the imaginary axis: for the first term in Eq.
To avoid singularities, our integration path must therefore(18) in the positive imaginary direction, for the second term
run inside the fourth quadrant in the complex plane. A in the negative imaginary directioffrig. 3. Thus, for each
possible choice would be to leave the real axis only in closgk,p| the Hankel function must only be calculated for the
vicinity of the singularities, e.g., by a semicircle around eachargument with the positive imaginary part. The exponential
singularity. This requires us to precisely determine the locaterm in Eq.(19) ensures then a much faster convergence of
tion of each pole, which is a tedious and time-consuminghe integrand. This is illustrated in Fig. 5, where we compare
task[27]. the integrand using Bessel functions along the keabxis
In our implementation we use an easier way of surroundwith that corresponding to Hankel functions parallel to the
ing the singularities: an elliptical path startingkgt=0 with  imaginaryk, axis. Evidently, the integration using Hankel
the major semiaxik?a' and the minor semiaxilsg“n (Fig. 3.  functions converges much faster.
Of course, we must ensure thfal is chosen large enough From a practical point of view, we use the Gauss-Kronrod
to enclose all the singularities. From the discussion in théluadrature to evaluate the integrals along the deformed path
preceding section we take kP¥=k"™™+k, where the _[28]. This _eff|C|ent algorithm can easily handlg the oscillat-
vacuum wave numbek, is added as a safety margin. ing behavior of the Bessel and Hankel functions for large
The parametek™ is empirically chosen such that the kpp. We are using the 15-point Gauss-Kronrod qu%o!rature
integration path is sufficiently far away from the singularities@nd Stop the integration when a relative accuracy of"1i8
without extending too much in negative imagindrydirec-
tion, because the Bessel functidy(k,p) increases then very
rapidly. We have observed thif"=10"%k® was a good
choice for this parameter. A typical integrand is shown in
Fig. 4, together with the deformed integration path. —
For the remaining integration, we usually follow the real
k, axis. However, wherz—z' is small, the exponential E.
damping in Eq(17) becomes weak and the quadrature taken-—
along the real axis converges very slowly. In that case, it is«8
more advantageous to transform the integral using Hanke‘g
functions: !

In(k,p)=3[HP(K,p) +HP (K p)]
=H{HWB K, +[HP(k,p)*)]*}. (18

B. Numerical quadrature

5 : : : :

—— Quadrature along real axis
- —- Quadrature along imaginary axis

0 0.01 0.02 0.03 0.04 0.05

Because of the asymptotic behavior of the Hankel functions Integration variable [nm'1]

for large values ok p,
FIG. 5. Comparison of the imaginary part of the integrand

2 fux(k,) along the real axis and the imaginary axis, respectively,
lim Hﬁl)(kpp) =/ . exfik,p— im(n+3)], using a formulation in terms of Besse@blid line) and Hankel func-
kol TRpP tions(dashed ling respectively. The system is identical to that used

(19 in Fig. 4.
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107 , , , netic two-layer systeng, , e, separated by a single interface
at d=0. Assuming that’ lies within layer 1 and within
layer 2, the integran, (K, ;p, ¢) reduces to

3

k
Gzz(kp:r,r’)=ﬁJo(kpp)T?zeXr{i(kuZ’—kZZZ)]. (20)
2Rz

whereT b= 14 F{,= e-ky,/ (€K, + €,Ky,) is the transmis-
sion coefficient of the surface.

As already mentioned, branch point singularities exist for
K,=*Kky,*k,. By definition, for anyk, lying on one of

— Integral solution these branch cuts, is pure real, forming a wave propagating
xox - Explicit solution in z— *co direction. These waves form a continuum of
107 , , , modes called radiation modes.
-1000 -500 0 500 1000 In addition, pole singularities appear when the denomina-
z [nm] tor of 7%, vanishes, i.e., fok, such that
FIG. 6. Accuracy of the method: Comparison of the Green's 52\/kf—k§+ 51\/k§—k’§=0, (21)

tensor for a homogeneous medium obtained by numerical quadra-
ture assuming four layers with identical permittivitgolid line) The solutions of Eq(21) are formally given by
with that obtained from the explicit free-space solutidty. (3),

crosse$ The|G,,| component is shown. €16
(G2 com K=+ \——2 k. (22
€1t e,

achieved. The application of a much more costly 64-point
Gauss-Kronrod quadrature would roughly double the compugwever, one has to verify if this solution is physically
tation time without an appreciable gain in precision. De-meaningful. If we choose; ande, purely real and positive,
creasing the desired re_latlve accuracy to 4Qypically obviously k,<kj,k,. Hence, the square roots being also
speeds up the computation by a factor 1.5. _ purely real and positive, Eq21) is not fulfilled. If we now

A very useful trick to gxpedlte .the computation of.the assume that,<0 ande;<|e,|, a solution does exist. For
Green’s tensor for a stratified medium is to integrate simuly,ch a plasma medium, the wave vectors in ftirection

taneously the diff_erent compon_ents@(r,r’). However, we ki, andk,, at the location of the polk, become
do not evaluate directly the individual components but rather

choose a numerically more appropriate decomposition: The €16, 6i2
integrands in Eqs(B1)—(B18) can be ordered irs- and ki, = VK — k5= &~ ko= \ T ko
p-polarized terms with first- and second-order Bessel or Han- 1052 17 %2

kel functions. Thus, seven independent terms can be defined.
We have observed that for a given, () pair these terms

have a similar behavior in thie, plane, which makes pos- Refering to the discussion in Sec. Il A, the sign of the
sible their simultaneous integration. In our practical imple-square root in Eq(23) has to be chosen such that the imagi-
mentation, we integrate in parallel 14 real functions that cornary part is non-negative. Hendg, andk,, are pure imagi-
respond to the real and imaginary parts of these independefhry and the field decays exponentially from the interface.
contributions to the Green’s tensor. As a measure for thehe pole constitutes a surface-plasmon mode. Similarly, for
Gauss-Kronrod quadraturstop criterion, we simply use  an appropriate choice of the material properties other surface
the sum of these 14 functions. modes can be found by analyzing the pole locati®®%.

On our systemBM PS/6000 7012-397, 160 Mhizhe In a three-layer structure, in addition to the branch point
calculation of the complete Green's tensor for 1000°)  singularities atk,= =k, ,*+ks, pole singularities associated

pairs takes for the example shown in Fig. 9 approximatelyyith guided modes can occur. h‘2p>kf and k2>k2 the
380 s of CPU time. Note, however, that this calculation time,5ve vectors in thez direction klz:(k%_ki)llz and ks,

strEIJ_nggl depentdst or:hthe relative p(])csmon_rot:{md rt'. h = (kg— kf,) Y2 are imaginary and the field decreases exponen-
o cdemonstrate the accuracy of our integration sc emqially in these outermost layers. Hendg,corresponds to the

! modes guided by the slab. Their number, i.e., the number of

we first perform calculations for a system consisting of vir-
tual layers, i.e., layers with identical permittivity and perme-poleS, depends on the wavelength and the thickness of the
intermediate layef30].

ability. These results must be identical to the explicit solu-
As an illustration, Fig. 7 shows thepolarized contribu-

tion given by the free-space Green’'s tensor of
Poormaog/ier?f;luf?){::-elgluerp,rrs(e(?j)i.u%gu(r)eb\?isgglws t?]gog"?:g;oer:]ttion of the integrand along the real ax!s for a symmetric
between the two caﬁculations is. perfect Y, 9 planar GaAs/Ad_lg,Gao_ggAs/GaAs_ Wavegwd_e structure at a
' A=1.5 um wavelength. According to a guided mode analy-

sis, a similar structure with &=0.5 um thick AlGaAs

layer has one singles-polarized mode, located ak,

To illustrate the physical substance of our mathematica=14.6 um~*. For a thicker AlGaAs layerA=2 um,

formalism, let us consider the most simple case of a nonmaghree s-polarized modes exist with, respectively,

for i=1,2. (23

IV. ILLUSTRATIVE EXAMPLES
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k, [pm] z [nm]

FIG. 7. Integrand § polarization for a symmetric FIG. 9. |G,y and|G_ZX| components of the Green’s tensor for a
GaAs/Al ,Ga, gAs/GaAs planar waveguide, for three different four-layer structure withe; =1, €;=2, €3=10, ande,=1. The
widths A of the AlGaAs layer. The wavelength js=1.5 pm. second layer extends from=0 nm to z=-—500 nm, the third

layer toz=—1000 nm.z’=750 nm is located in the top layer and
held fixed.

=149 um 1, 14.7 pum™1, and 14.5um 1. In Fig. 7 we

observe that the integrands’ divergences coincide perfectly

with these eigenmodes. =14.8 um ! and 14.4 um™!, which corresponds to the
We can also investigate more complicated structures, suaimodes of a single-layer waveguide with=0.5 um

as a planar waveguide coupler: We consider a symmetrig-0.5 um=1 um.

GaAs/AlGaAs/GaAs/AlGaAs/GaAs system with the two  As the last example, we consider a four-layer medium

guiding Aly15GaygsAs layers having identical thicknesses with e;,=1, e,=2, e5=10, ande;=1 at aA=633 nm

A=0.5 um. The s-polarized contribution of the integrand \avelength. The thickness of each inner layer is 500 nm.

along the real axis is plotted in Fig. 8. For a thick separatingrq components of the Green's tensdB,,(r,r') and

GaAs layer,A"=2 um, the AlGaAs slabs are decoupled: g (¢ ") are given as a function of the altitudeof the

only one spolarized mode can be excited a, pservation pointr=(p,®,z)=(\,m/42), whereas the

— -1 i ; ;

514'6 pm -, as ”;. thel prevtlrc:_ui exam{)r:e. Ho(;/veve;,t;]/vn? source pointr’=(0,0,750 nm) is held constant in the top
ecreasing separating 1ayer thickness, the modes ot the yer. Physically, these functions representxrendz com-

waveguides can couple via their evanescent tails. The mode

. > . gonents of the electric field radiated by sriented electric
is split and the behavior of the structure develops towards;. . : . .
dipole. In the slab regions the dipole source excites standing

that of a single-layer waveguide. For a thin separating GaAs . X .
layer A’=%.05 xm theg poles are Iocaﬁed a%( waves with a period\,=224 nm andA ;=100 nm, which

' ' P correspond to the half-effective wavelength in the according
150 ' . . ' layer.(Note, however, that our source is a dipole, not a plane

wave) Figure 9 also illustrates the continuity properties

across the interfaces. The tangential component of the elec-
1007 | tric field is continuous across all interfacégq. (Ala)],
Pl : whereas the normal component of the electric displacement
501 sy is continuous[Eq. (Alb)]. Hence,G,(r,r’) jumps at the
§ : interfaces by a facto¢;/e,=5 ande;/e,= 10, respectively.
E o
o
T el V. SUMMARY
— A=20um . .
. A=05pm We have pres_ented g_techmqge for the computation of t_he
-1007 1 Green’s tensor in stratified media. The computation details
""" A'=0.05 um have been extensively discussed, which should make the
_15(% . , , . practical implementation of this technique on a computer
4 14.2 14.4 14.6 14.8 15 straightforward.
k, [Hm'1] Several examples demonstrated the accuracy of this ap-

proach and illustrated the intrinsic physical properties of the

FIG. 8. Integrand § polarization for a GaAs/ Green’s tensor in a stratified medium. This dyadic can also

AlGaAs/GaAs/AlGaAs/GaAs multilayer structure, for three differ- be used in conjunction with the Green’s tensor technique for

ent widthsA’ of the separating GaAs layer. The wavelengtinis  €efficient scattering calculations in media composed of an ar-
=15 um. bitrary number of layer§l16).
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APPENDIX A whereG™, €, andu™ denote the quantities just above and

G™, €, andu” just below the interface. Equatiori8l1a)

In this appendix we compute the amplitude coefficientsand (A1b) are the boundary conditions for the electric field,
A]'?; andBy® ;, respectively, fos/p-polarized upgoing and  whereas Egs(Alc) and (Ald) are the boundary conditions
downgoing waves in the different layers forming the struc-for the magnetic field.
ture[see Eqs(10) and (B1)—(B18)]. These coefficients can  Using Eqgs.(Ala)—(Ald), we can deduce iteratively the

be summarized in the matricég, B}, AP, andBp. amplitude ratios of upgoing and downgoing waves in each
At each interface the Green’s tensor must fulfill the con-layer I. For that purpose, we consider separately the case
tinuity equations resulting from Maxwell's equations: whenr is abover’ and that when it is below.
. Whenz>z', we use the fact that no field is reflected from
zZX(G"-G")=0, (Ala) infinity (z— +°), so thatB, ,5=0. Thus, we can iteratively
) determine the amplitude ratio of the downgoing/upgoing
z-(e"GT—e G7)=0, (Alb)  wave in each layer=2, ... |’ using the relation
|
/ . BI—l sip .
ap  Tricaexdidig(k_1z+ k|z)]+(A—) exf —id|_1(kj—1,—kiz)]
B| =1/ 7551
Kl = sip . (A2a)

exd —id;_1(ki—1,17Kp)]

>7 ; s/p Bi—1
exdid_1(k_1,— ki) 1+ F 2, A,

1 7>q

In a similar way, forz<z', we use the fachy ,;=0 (no field is reflected fronz— —). Now we obtain for the amplitude
ratio of the upgoing/downgoing wave in each layerN—1, ... ",

. AP .
}ﬁ/ﬁl exd —idi(kj; 1.+ ki) ]+ ( B::i) exdid (K 1, k)]

AI)S/p z<7'
— = . A2b
( B| z<7' . S/p A|+1 S/p . ( )
exd —id;(Kj+1,— k|z)]+}—|,|+1 m exflid(kj+1,tKi)]
z<z'

The coefficients7P ; and 775% ; in Egs. (A2a) and (A2b) =3P exsliky Jz—2'])
are the Fresnel reflection coefficients:
+RP explik;2)+ RO exp(—iki,2),  (Ad)

17, aB
+ k - k+
]:Iflilzﬂ'*lk':“'k'*lz, (A33)  where A} is the amplitude of the upgoing wavs;’® ,
1Bzt ff =1z the amplitude of the downgoing wave, aﬁﬂf’aﬁ the ampli-
tude of the direct wavgsee Eq.(9)]:
€1+1K,— €k 1,
FRerm=—F0——. A3b < -
MEL € gkt ekia, (A3b) Cfr,a,g:b(kl'z)'ﬁ(sz), (A5a)
We dropped ther3 indices in Eqs(A2a) and(A2b) because CP ap= My(Kir)Mp(K; ). (ASD)

the ratio is the same for each component.
In the layerl " the amplitudes can be explicitly calculated. Evaluating the products in EqéA5a) and (A5b) using Egs.

According to Eq.(9), the total field in this region can be (6) and(7) shows immediately that®, ,cP . cP . and
written as a superposition of the direct nonreflected wave angp are odd abouz=2z' whereas all the gther émplitudes
the reflected upgoing and downgoing waves: I".zy '

are even abour=z'. Note that the amplitudesllsfpaﬁ and

B} ; are not identical to the coefficients’” , andB;P,

s/p . s/p . .
A op ORIK ) 2) B, s expl — iK1 ;2) used above. However, they can be connected by comparison
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with the integrands given in Appendix B. For example, for A p B P A p -1
the p-polarized part of thexx component, they are coupled Alp, == 1-|— —
via Bl’ z<z’ Al’ z>7' B" z<z’'
B, |"
AP (=R +0(z=2)C)  exp(—ik,2') X (A—) exp( — ik ') +explik; ,2")
A
==xch AL, (A6a)
100 +0(z—2")exp —ik,Z'), (A8c)
Blp’,xx: Rlp’l,xx_l_G)(Z,_Z)Clp',xxexqikVZZ,) B, \P B, \P AL\ P -1
_ P2 B o
= +C|p!,xXB|p’,xx’ (AGb) Bl/,aZ <A|r> |:1 A|r B|r ]
z>7' z>7' z<z’
where the upper sign refers >z' and the lower sign to AL\ P
z<7'. . _ _ X (—') exp(ik;,z") +exp —ik;,z")
Using Eqg.(A4), the amplitude ratio of the downgoing/ Bi/,_,
upgoing wave reads far>z' ) , ,
+0(z' —z)explik;,z"). (A8d)
/ /
By ap o R|S',pi,3 Physically, this difference is due to the fact that the compo-
~ sip ; / s/pT (A78) nents with 3=z represent the field of a vertical dipole
A apl 5oy Clrapg@XR—iKZ )+ R 5

whereas the other components come from a horizontal di-

. . . . pole.
and the amplitude ratio of the upgoing/downgoing wave be- Since ars-polarized wave is only generated by a horizon-

<z . S
comes forz<z tal dipole, such a distinction does not occur:

s/p s/pl
A|/,aﬁ R|',aﬁ S S -1
1—
z<z' z<z'

zcs/p
B |° _ _
X ~ exp(—ik;.,z") +explik,,z")
II

S

Ay
BI/

B,
AII

A
Bl/

S

explik; 2 )+ R Al ap™
(A7b)

Bl’,aﬁ

z<z’ " aB

z>7'

Solving Egs.(A7a) and (A7b) for Rf{f)iﬁ and R,Sff)iﬁ and

substituting the result into the equations formed in analogy to
Egs. (A6a) and (A6b) gives the components o%f{p and

z>7'

+0(z—z")exp(—ik;,z'), A9a
Blsfp. One only has to replace the amplitude ratios formed by ( Jexpl 22') (A%3)
AP, andBFP  with the ratios of the corresponding coef-
ficientsA,Sff’aB and Bfff)aﬁ, keeping in mind the differences s _[Br s B.\° (A/N° 7!
betweenz>z" andz<z'. It turns out that foip polarization B ap™ E B E a
two cases must be distinguished. B z the solution reads 27! z=z! z<z!
AI, ) H ’ H !
A p B, p A p -1 X 5. explik; ,z")+exp(—ik;/,z2")
AP 4 1—| =/ - 1" z2<zr
1" aB —
B/, A/, \Bi) ' - '
z<z 7>z z<z +0(2' —2)expik,,2"). (A9b)
B, |"
Sivw exp(—ik,,zz’)—exp(ikmz’)] In this caseA}, ,, andBy, , are only defined foiw=x,y
V"7 7>z and B=Xx,y, whereas the five other components are set to
+0(z—2")exp —ik;,z'), A8a)  ZET0 _ o
( Jexu 1122') (AB3) In Egs.(A8) and(A9) the amplitude coefficients in layer
| are expressed in terms of amplitude ratios which we have
) B |" B |" AP -1 already cqlgulated in Eq(;AZt_)) and(A2a). Sinc;e the amp'li-
Bl ap=+| — 1-|— — tude coefficients of the upgoing and downgoing waves in the
Al ey Airf o \Bir) oy layer| are iteratively connected to the amplitude coefficients
o in |’ via the boundary conditiongAl), we can explicitly
l) explik; ,2') — exp(— ik, ,2') calculate the components AF'P and BY'P, keeping in mind
1) Yy that the boundary conditions are different for #hg, and for
the z componentgnote, however, that thepolarized wave
FO(Z' —z)expik;,z"), (A8b) has noz component This relationship can be formulated
using propagation matric¢81] with different factorsy. For
whereas forB=z, Af’,yaﬁ and Blp,‘aﬁ are given by z>7' we have
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AISIE,B explid (K1, Kiz)] ||+19Xli id (K + 121 kiz)] |+1aﬁ
s/p y§/>pz’ s/p : s/p ’ (Alo)
Bilas Frirrexdidi(k1.1+kiz)] ex —id (K11, Kiz)] B 1ap
where
1 ikt wikiya,
S
, for a=x,y, B=X,y, All
Yz 2 i+ 1K1 12 y. B y ( 3
1 o Kiiaz @akizt ek, for a=xy, B=x.y.z,
P 2 wiv1 ki, € 41K+ 17 (A11b)
Y2z 1w €1kt ek ; _ _
= or a=z, B=X,Y,Z.
2 i €+1Ki 117
Similarly, for z<z' we obtain the following expressions:
(AIS,/EB) S,p< exflid)—1(k-1,—k;)] FoP g exd —id)_ (k- 1z+klz)])< - 1a/3) (A1)
=Y, . . .
BiRs T\ AP exdid_a(ki_1,t k)] exd—idiy(Ki_i—ki)] I BYP,
where
1 gkt k-1,
S — =
Yi<zr ™ 2 o K 1 for a=x,y, B=X,Y, (Al13a)
1 K _ _1K+ gk -
T M Ki-1g €l -1KizT €K1-17 for a=xy, B=x,Y.z,
P 2 p-1 ki €-1K _1;
Vyeyr = (A13b)

1w ek tek_q, for a=z, B=x.y.z

EMI—l €-1Ki-12
Like this, we obtain the amplitude & and p-polarized upgoing/downgoing waves in each layer.
APPENDIX B

Using T(—ki,) =1(k;,) and m(—k;,)=(—m,(ki,),—my(ki,),m,(k,)) the components of the integrand for the Green’s
tensor(10) read, after evaluation of the angular integral,

(K, ip, )= kl k Jo(kpp)sm2¢+ Ji(k,p)cos 2¢)[A5exp(|k|zz)+Bsexp(—lk,zz)] (B1)
fox(Kp o)== k—lz(ka( pp)0052¢——J1(kpp)0082¢)[A| wx €XHik.2) — BP, exp( —iki;2)], (B2)
[
. 1 2 , s , s .
fxy(kp ,p,(ﬁ):k_lz( _kaO(ka)+ ;Jl(kpp))5|n¢cos¢[Al eXF(|k|ZZ)+ B| exn_lkhz)]! (BS)
p . klZ 2 . P .
fxy(k,o 1P1¢): ik_|2 kaO(kpp)_;Jl(k ) SIn¢COS¢[A| xyequklzz)_ Bl,xyexq_lklzz)]v (84)
fdKyip,4)=0, (BS)
ik2 _
Ky ip, )= 2 Ji(k,p)cosg APy, explik,z) — Bf,, exp( —iki,2)], (B6)
[
fox(Kyip, ) =15y, (B7)

Ko p B =15y, (B8)
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£5,(k,:p, ) :kilz( k,Jo(K,p)coSp— %Jl(kpp)cos 2¢> [A®exp(ik,z) + BP exp( —ik;,2) ], (B9)
f2.(K,p, )= it—'l,j( kao(kpp)Sinzd)-i-%Jl(kpp)COS 2¢) [AP,, expliki,z)—Bf,, exp( —ik;,2)], (B10)
2K, 10, $)=0, (B1Y)
12
0K, p.p)=— k—lszl(kpp)sin S AP, exnlik,,2) — BP, exp( —ik;,2)], (B12)
f3(K,:p,¢)=0, (B13)
fox(Kpip, )= 1g%(kpp)COS¢[Aﬁzx9Xp(ik|zZ) +BPexp—ik;;2)], (B14)
13K, :p,) =0, (B15)
ok, 0, 0)= I%h(kpp)sm B[AP, expliki,2) +BF,, exp —ik(;2)], (B16)
150K, ip, $)=0, (B17)
foAKpip, )= k:E Jo(k,p)[Af,, expliki,2) +Bf, exp — ik ,2)]. (B18)

| Rz

The upper sign in these equations refersztoz’ and the ish. Furthermoreg is not defined forp=0. However, ex-

lower sign toz<<z'. As mentioned in Appendix AEqgs. plicit evaluation of Eq.(10) for p=0 shows that the upper

(A9), (Alla), and(A13a)], all nonvanishing amplitude coef- formulas are still valid if we take their value faf=0 and

ficients of s-polarized waves are equal, as denoted by thegnake use of the limit

scalarA} andBy}. Note further thaw\ﬁ’fjﬁ andB;’?; are also

functions ofk;, and hence, becauselqf= (k —k3)*?, func-

tions ofk,, . _Jikpp) 1
For p=0, some of the integrands are no longer defined “mT: Ekp- (B19)

because the denominatprand the numeratai,(k,p) van- =0
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