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Abstract. We study the plasmon resonances for small two-dimensional silver
particles (nanowires) with elliptical or triangular shapes in the 20 nm size range.
While the elliptical particle has only two resonances, a well known fact, we
demonstrate that the triangular particle displays a much more complex behaviour
with several resonances over a broad wavelength range. Using animations
of the field amplitude and field polarization, we investigate the properties of
these different resonances. The field distribution associated with each plasmon
resonance can be related to the polarization charges on the surface of the particles.
Implications for the design of plasmon resonant structures with specific properties,
for example, for nano-optics or surface enhanced Raman scattering are discussed.

1. Introduction

For metals like silver and gold, the plasma frequency ωp of the electron gas lies in the optical
range. This renders very strong the interaction of these metals with light and leads to a highly
dispersive dielectric function at optical frequencies [1, 2]. In particular, the real part of the
permittivity ε(ω) changes sign when the illumination frequency ω passes close to ωp. For
particles smaller than the skin depth, this microscopic interaction can result in a resonance of
the entire particle, known as a plasmon resonance or a surface mode of the particle [1, 3].

The boundary conditions imposed by Maxwell’s equations on the surface of the particle
determine whether such a resonance can build up. Therefore, the shape- and the frequency-
dependent permittivity of the particle command the spectrum of resonances that can be excited
in the particle. For example, it is well known that a spherical nanoparticle has its single resonance
frequency when ε(ω) = −2, whereas a cylindrical particle is resonant when ε(ω) = −1 [1].
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Contrary to these simple shapes with a single resonance, scatterers with a more complex
boundary can have several resonances. The simplest case is that of an ellipse, where two
different modes can be excited [1]. For more complex geometries this problem cannot be solved
analytically and one must resort to numerical methods. The resonances of cubic particles, for
example, have been investigated in the electrostatic limit by Fuchs [4], while Jensen et al studied
truncated tetrahedra in the 100 nm range [5].

We recently developed a new computational technique for the study of the resonances of
structures with an arbitrary shape [6]. In [7], we investigated, from a phenomenological point of
view, the plasmon resonances of non-regular silver particles in the 10–100 nm range and discussed
their dependency on the particle shape and size as well as on the direction of illumination.

In the present publication, we shall concentrate on two exemplary particle shapes, a regular
one (ellipse) and a non-regular one (triangle), and investigate the phenomena that give rise to
the much more complex resonance spectrum for the latter particle type. For this purpose, after
determining the resonance spectra from scattering cross sections (SCSs) for these two classes
of particles, we will present movies with the temporal evolution of the field distribution and the
polarization charge distributions associated with each resonance.

2. Model

We investigate two-dimensional (2D) silver scatterers, i.e. particles with a translation symmetry
along the third (not shown) space dimension (nanowires). The particles are illuminated using a
plane wave propagating in the plane of the figure with the electric field also in the plane of the
figure (so-called transverse electric wave).

We choose particles in the 20 nm size range, leading to narrow and well separated resonances
(larger particles have much broader resonances [7]). Moreover, this size range is of particular
interest because it is associated with the strongest local field enhancements [8], and structures
of that scale can now be fabricated in a controlled manner [9]–[12].

For our numerical simulations we use a recently developed technique for the solution of the
volume integral equation [6]

E(r; ω) = E0(r; ω) +
∫
V

dr′ GB(r, r′; ω) · k2
0(ε(r

′; ω) − εB)E(r′; ω) (1)

that gives the total electric field E(r) scattered by a system with permittivity ε(r; ω) embedded
in an infinite homogeneous background εB when it is illuminated with an incident field E0. For
a detailed derivation of (1), see [13] where expressions for the Green tensor GB associated with
2D and 3D backgrounds are given.

To accurately accommodate the very strong field variations that occur in plasmon resonant
particles we use finite elements to approximate the electric field E(r), as well as a new
regularization scheme to handle the singularity of the Green tensor when r → r′. The scatterer
is discretized using a few thousand triangular elements. We refer the reader to [6], where this
numerical technique is described in detail and its accuracy assessed.

For the frequency-dependent permittivity ε(r; ω) of the silver scatterers, we use the
experimental data of Johnson and Christy [14].

Let us note that particles down to 2 nm can be well modelled using a local dielectric function
[15]. However, this dielectric function might differ from its bulk value and depend on the particle
geometry since the mean free path of the electrons decreases due to scattering at the surface. It
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Figure 1. SCS for an ellipse (overall size 20 nm×10 nm, as a function of the
illumination wavelength.

turns out that for silver particles only the imaginary part of ε(r; ω) is affected [15]–[17] and, for
the particle dimensions in the present study, the bulk permittivity remains a good approximation.

3. Numerical results

To ease comparison we use the same colour scale throughout the paper for the maps of the
electrical field amplitude. Since we observe very important variations in the scattered field
from one case to another, we take a logarithmic colour scale to highlight the details of each
field distribution. The amplitude of the incident field is always one. In the movies, each arrow
that represents the orientation of the electric field is normalized to the local field amplitude.
This allows one to visualize the orientation of the electric field despite the strong variation
of its amplitude. For the polarization charge distribution we use a colour representation that
emphasizes the charge motion during one period, and this is different for each figure.

We first consider a 20 nm×10 nm elliptical particle, illuminated along the (11) direction. We
recover the well known result that such an ellipse has two resonances, as illustrated in figure 1,
where the SCS is given as a function of the wavelength [1]. We also give in this figure the SCSs
for illumination directions parallel to either of the ellipse axes. In such a case the two resonances
are decoupled: the resonance at λ = 331 nm being related to the electric field parallel to the
minor axis and that at λ = 358 nm to the electric field parallel to the major axis (figure 1).

In figure 2 we show the field distribution for three different wavelengths. The illumination
direction is the (11) direction (i.e. the incident electric field is polarized in the (1̄1) direction).
The movies linked to figure 2 illustrate the variation of the field polarization over one period,
each arrow indicating the instantaneous direction and the relative magnitude of the electric field.

When out of resonance, at λ = 300 nm where the real part of the permittivity of silver
ε = 0.84 + i2.7 is still positive, the scattered field remains parallel to the illumination field
(figure 2(a)). A small amplitude field enhancement, in the order of twice the illumination
amplitude, is observed in the regions where the electric field is normal to the particle interface.
This effect can be related to the continuity of the displacement field [18]. On the other hand,
no enhancement appears where the electric field is parallel to the interface since the boundary
conditions now require this field to be continuous (figure 2(a)).
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Figure 2. Electrical field amplitude distribution for a 20 nm×10 nm ellipse
during one period: (a) out of resonance, λ = 300 nm (QuickTime movie, 3.2 MB),
(b) resonance at λ = 331 nm (QuickTime movie 3.1 MB), (c) resonance at
λ = 358 nm (QuickTime movie 2.9 MB). Incident field propagating along the
(11) direction (i.e. incident electric field polarized along the (1̄1) direction).

For the resonance at λ = 331 nm we observe that the field amplitude is enhanced
homogeneously by a factor of about 10 inside the particle (figure 2(b)). Furthermore, the electric
field inside the particle is parallel to the minor axis, although the incident field is polarized in
the (1̄1) direction. This can be easily understood. As seen in figure 1, the (01) electric field
component is in resonance, and its influence on the near-field overweights that of the ‘non-
resonant’ (10) component (figure 2(b)). For the other resonance, at λ = 358 nm, we have the
converse effect: the (10) component is resonant and the electric field becomes parallel to the
major axis (figure 2(c)). The field amplitude enhancement at the vicinity of the particle reaches
now about 15.

Note, also, that there is a phase shift of approximately π/4 at the main resonance between
the incident field and the scattered field near the particle (figure 2(c)). This phenomenon is
well known from classical mechanics, where such a phase shift is observed when the driving
frequency and the eigenfrequency of the system are close.

In figure 3 we show the polarization charge distribution, which is simply given by the
divergence of the electric field [19]. (The numerical evaluation of this divergence is quite
sensitive to the discretization used, which explains the roughness observed in some of the
polarization charge images.) When out of resonance the particle is polarized parallel to the
incident (1̄1) electric field and oscillates in phase (figure 3(a)). For the resonance at λ = 331 nm,
the positive and negative charge distribution is nearly symmetrical with respect to the major axis,
again indicating the dominating role played by this resonance (figure 3(b)). As expected, this is
conversely the case for the resonance at λ = 358 nm (figure 3(c)).

The SCS for a 10 nm base, 20 nm perpendicular right-angled triangle, illuminated along
the (11) direction is reproduced in figure 4. Dealing with sharp corners introduces additional
numerical difficulties since the field becomes singular at short distances from an infinitely sharp
and perfectly conducting corner [20]. However, the sharpness of a real particle is limited by
the surface and boundary energies. We therefore rounded off each corner by 0.25 nm, thereby
providing a more realistic model and removing numerical instabilities. The results reported in
figure 4 were obtained with 3000 triangular discretization elements. We verified that 2000 or
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Figure 3. Polarization charge distribution for a 20 nm×10 nm ellipse over
a period: (a) out of resonance, λ = 300 nm (QuickTime movie, 0.6 MB),
(b) resonance at λ = 331 nm (QuickTime movie, 0.6 MB), and (c) resonance
at λ = 358 nm (QuickTime movie, 0.6 MB). Incident field propagating along the
(11) direction.
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Figure 4. SCS for a 10 nm base, 20 nm perpendicular right-angled triangle, as
a function of the illumination wavelength.

4000 discretization elements produced exactly the same numerical results.
We now observe a much more complex structure with several resonances covering a broad

wavelength range, from 329 nm to 458 nm. The response of the particle varies extremely rapidly
and, for example, a 40 nm variation in the illumination wavelength (from 418 nm to 458 nm)
leads to a change of more than two orders of magnitude in the SCS (figure 4).

It is difficult from the data in figures 1 and 4 to draw conclusions on the influence of the
particle shape on the linewidth of the plasmon resonances. For example, the full-width at half-
maximum (FWHM) of the main resonance in figure 4 (λ = 458 nm, FWHM ≈ 10 nm) is close
to the value obtained for the ellipse (λ = 358 nm, FWHM ≈ 13 nm, figure 1). However, it is
important to note that both particles do not have exactly the same area, a parameter that strongly
influences the resonance linewidth (for a constant shape, the plasmon resonances broaden when
the particle size increases [7]).

The field distribution corresponding to the four resonances labelled in figure 4 is reported
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Figure 5. Electrical field distribution for a 10 nm base, 20 nm perpendicular
right-angled triangle: (a) λ = 300 nm (QuickTime movie, 3.3 MB), (b) main
resonance at λ = 458 nm (QuickTime movie, 2.8 MB), (c) resonance at
λ = 392 nm (QuickTime movie, 3.0 MB), (d) resonance at λ = 369 nm
(QuickTime movie, 3.2 MB) and (e) resonance at λ = 329 nm (QuickTime
movie, 3.2 MB). Incident field propagating along the (11) direction (i.e. incident
electric field polarized along the (1̄1) direction).

in figure 5, together with the field distribution out of resonance (λ = 300 nm, figure 5(a)). In
this last case, the field distribution inside the particle is homogeneous, as for the ellipse. This is
not the case at the main resonance, where we observe a 400-fold amplitude enhancement at the
sharp corner, while the field vanishes along the triangle’s base. Although the field is strongly
localized at a vicinity close to particle, its amplitude remains 10 times that of the incident field
at a 10 nm distance from the sharp corner (figure 5(b)). In the corresponding movie, we observe
that the phase shift between the incident field and the scattered near field is nearly π/4.

The resonance at λ = 392 nm is also associated with a large enhancement near the sharp
corner. The field distribution, however, is completely different and the field amplitude decreases
much faster outside the particle (figure 5(c)). The third resonance, λ = 369 nm, is associated
with a moderate enhancement (in the order of 60) at the lower right-hand corner (figure 5(d)).

Perhaps, the most surprising resonance is that obtained for λ = 329 nm (figure 5(e)).
Although the corresponding near-field enhancement is comparatively modest (about 10), the field
maximum is obtained at the corner longitudinal to the incidence (remark that for the previously
discussed resonances, the maximum enhancement was obtained at a corner located transversely
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Figure 6. Polarization charge distribution for a 10 nm base, 20 nm perpendicular
right-angled triangle: (a) out of resonance, λ = 300 nm (QuickTime movie,
0.6 MB), (b) main resonance at λ = 458 nm (QuickTime movie, 0.6 MB),
(c) resonance at λ = 392 nm (QuickTime movie, 0.6 MB), (d) resonance at
λ = 369 nm (QuickTime movie, 0.6 MB) and (e) resonance at λ = 329 nm
(QuickTime movie, 0.6 MB).

to the propagation direction of the incident field, see figures 5(b)–(d)). As discussed in [7], this
resonance has other surprising properties: in a triangular particle it exists for every direction
of incidence and has its field maximum always in the corner longitudinal to the incidence.
Moreover, in contrast to the other resonances, this mode is not red shifted when the particle size
increases. These properties, plus the fact that the (negative) particle permittivity is close to zero
at this wavelength, indicate that this resonance is related to the bulk mode [21].

To better understand the intrinsic properties of the different resonances illustrated in figure 5,
we report in figure 6 the corresponding polarization charge distributions. We also give the charge
distribution out of resonance, at λ = 300 nm (figure 6(a)). In this case we observe that the charges
just oscillate, parallel to the direction of the incident field, between the two opposite corners.

For the three plasmon resonances, figure 6(b)–(e), we notice that each resonance is
associated with a different charge distribution. In the main resonance, λ = 458 nm, we observe
that charges of a given sign build up at the sharp corner, while opposite charges are distributed
on the entire circumference of the particle (figure 6(b)). This distribution oscillates over time,
the sign of the accumulated charges on the sharp corner changing every half-period.

For the next resonance, λ = 392 nm, both charge species accumulate simultaneously at

New Journal of Physics 2 (2000) 27.1–27.9 (http://www.njp.org/)

http://www.iop.org/EJ/redirect/S/mmedia/1367-2630/2/1/327/Fig6a.mov
http://www.iop.org/EJ/redirect/S/mmedia/1367-2630/2/1/327/Fig6b.mov
http://www.iop.org/EJ/redirect/S/mmedia/1367-2630/2/1/327/Fig6c.mov
http://www.iop.org/EJ/redirect/S/mmedia/1367-2630/2/1/327/Fig6d.mov
http://www.iop.org/EJ/redirect/S/mmedia/1367-2630/2/1/327/Fig6e.mov
http://www.njp.org/


27.8

the sharp corner: one species accumulates at the very tip, while the species of opposite sign is
distributed along the adjacent sides (figure 6(c)). This dipolar-like charge distribution determines
the field at the sharp corner. As mentioned previously, at this wavelength the field intensity in
the vicinity of the corner decreases much faster than in the main resonance, which is associated
with a point-like charge distribution (compare with figure 6(b)). This difference of distance
dependence as a function of excited resonance, i.e. as a function of illumination wavelength,
could be evidenced by the approach curves in scanning near-field optical microscopy experiments
[22].

For the third resonance, λ = 369 nm, a similar behaviour is observed, with both positive
and negative charges accumulating simultaneously at the sharp corner and also now at the lower
right-hand side corner (figure 6(d)).

Finally, for the bulk mode, at λ = 329 nm, we obtain a rather complex charge distribution
(figure 6(e)): little charge now accumulates at both sharp corners, whereas a fair amount of
charges is located near the lower left-hand side corner. Note, also, that in contrast to the previously
discussed resonances, opposite charges accumulate on each side adjacent to this corner.

Let us finally mention that, since the spectrum of resonances is fairly dense and the
resonances have a given width, each charge distribution in figure 6 does not correspond to a
single isolated resonance, but can be influenced by neighbouring resonances (except maybe for
the main resonance at λ = 458 nm).

4. Conclusions

We have studied the plasmon resonances associated with regularly shaped (elliptical) and non-
regularly shaped (triangular) particles and have shown that the latter have a much more complex
spectrum, with more resonances and which also covers a broader wavelength range.

The strong fields associated with these resonances can be related to the polarization charges
accumulating on the particle surface. These charges determine the strength and polarization of
the field distribution inside the particle and at its vicinity. This field distribution strongly depends
on the resonance excited in the particle, i.e. on the illumination wavelength.

The calculations presented here, together with on-going work, should provide some insight
into the plasmon resonances of metallic nanoparticles with non-regular shapes. They should
help in the design and engineering of nanostructures with particular properties, which are used
to generate strongly confined electromagnetic fields. Such fields play, for instance, a key role in
surface enhanced Raman scattering, where the Raman signal of molecules located on plasmon
resonant metal particles is enhanced by several order of magnitudes [23]–[26]. Furthermore,
the study of metallic nanowires sustaining plasmon resonances is also becoming a very active
research field, with exciting applications in nano-optics [27]–[29].
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