Journal article

Fluorescence resonant energy transfer in the optical near field

We develop a versatile theoretical framework for the study of fluorescence resonant energy transfer (FRET, or Forster transfer) in complex environments, under arbitrary illumination, including optical near fields. By combining the field-susceptibility formalism with the optical Bloch equations method, we derive general equations for the computation of the energy transfer between pairs of donor-acceptor molecules excited by optical near fields and placed in a complex geometry. This approach allows accounting for both the variations of the molecular population rates and the influence of the environment. Several examples illustrate the ability of the technique to analyze recent FRET experiments performed in the optical near field.

Related material