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Abstract—Light or electromagnetic wave scattered by a single
sphere or a coated sphere has been considered as a classic Mie
theory. There have been some further extensions that were made
further based on the Mie theory. Recently, a closed-form analyti-
cal model of the scattering cross section of a single nanoshell has
been considered. The present paper is documented further, based
on the work in 2006 by Alam and Massoud, to derive another dif-
ferent closed-form solution to the problem of light scattered by
the nanoshells using polynomials of up to order 6. Validation is
made by comparing the present closed-form solution to the exact
Mie scattering solution and also to the other closed-form solution
by Alam and Massoud. This study is found to be, however, more
generalized and also more accurate for the coated spheres of ei-
ther tiny/small or medium sizes than that of Alam and Massoud.
Therefore, the derived formulas can be used for accurately char-
acterizing both surface plasmon resonances of nanoparticles (of
small sizes) or nanoantenna near-field properties (of medium sizes
comparable with half wavelength).

Index Terms—Closed-form, light scattering, Mie theory,
nanoshells.

I. INTRODUCTION

L IGHT scattering by spherical particles has been a classical
subject that has attracted lots of interests over the past a few

decades and was also formulated rigorously using the Mie theory
[1]. Calculations of derivatives of Mie scattering coefficients
were clearly shown in [2]. As the electrical parameter/size k0a
(where k0 denotes the wavenumber of the free space and a stands
for the radius of the sphere) of a scattering object becomes much
smaller than 1, the Rayleigh scattering dominates [3], [4] and it
is expressed approximately by the first-order expression in Mie
scattering theory.
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Using the same method for matching boundary conditions, the
results of electric and magnetic fields scattered by multilayered
spherical structures can be easily extended [5]–[10].1 Scattering
of electromagnetic waves from two concentric spheres was first
worked out by Aden and Kerker [5]. Scattering by multilayered
spheres was well studied [6], [7] both in the near field and the
far field. Scattering of an inhomogeneous sphere was also con-
sidered [8] where the sphere is discretized into a multilayered
sphere of different permittivities along the radial direction. In
addition, a sphere placed in a unbounded medium is also consid-
ered in [10], where how the incident plane wave is formulated
and considered in the classical Mie scattering field theory was
also addressed in detail. A number of applications was reported
by Kerker [12].

Electromagnetic radiation problem associated with a mul-
tilayered sphere was also considered [13], [14]. The dyadic
Green’s functions used to define electric and magnetic fields in
spherically multilayered media were derived [13], which helps
to formulate the dipole or antenna radiation problem easily and
straightforwardly. Applications of the electromagnetic radiation
due to a loop antenna in the presence of a sphere was also con-
sidered [14], which could be applied to the medical radiation
treatment to human head.

Light or electromagnetic scattering by composite spheres is
another interest in the scientific and engineering communities
[15]–[22]. Electromagnetic scattering by a plasma anisotropic
sphere was analyzed [15]. The analysis was extended to Mie
scattering by an uniaxial anisotropic sphere [16]. Furthermore,
scattering by an inhomogeneous plasma anisotropic sphere of
multilayers was also formulated and investigated [17]. It can be
easily extended to light scattering by an inhomogeneous plasma
anisotropic sphere where the exact solutions could be applied
to obtain the field distributions in the multilayered spherical
structures. Along the analysis line of [15]–[17], the standard
eigenfunction expansion technique is utilized and the theory
for the anisotropic media can still follow closely to theory
used for the isotropic media. To characterize eigenvalues in
the anisotropic media different from those in the isotropic me-
dia, potential formulation and parametric studies for scattering
by rotationally symmetric anisotropic spheres were also carried
out recently [18]. In addition, Sun discussed light scattering by
coated sphere immersed in absorbing medium and compared
finite-difference time-domain (FDTD) method with analytic so-
lutions [19]. Scatterers consisting of concentric and noncon-
centric multilayered spheres were also considered [20]. An

1In case of [8], the full content appears in [9], and in case of [10], the full
content appears in [11].
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Fig. 1. Geometry of light scattering by a spherical nanoshell in hosting
medium.

improved algorithm for electromagnetic scattering of plane
wave and shaped beams by multilayered spheres was devel-
oped [21] and the geometrical-optics approximation of forward
scattering by coated particles was then discussed [22].

With new developments of nanoscience and nanotechnology,
it becomes desirable to investigate the microcosmic world of the
scattering problems. Nanoscaled objects have thus attracted con-
siderable attentions recently, primarily because they have shown
some interesting optical properties and are found to be impor-
tant for modern photonic applications [22]–[26]. Nanoscaled
metallic particles exhibit interesting optical characteristics and
behave differently from those of normal-scaled dimensions. In-
teractions of collective and individual particles of metals (such
as copper, silver, and gold) were studied long time ago [27], [28].
Johnson and Christy plotted both the real and imaginary parts of
relative permittivities of copper, silver, and gold nanoparticles
as a function of photon energy in a large range according to
different frequencies [29].

Recently, a closed-form analytical model of the scattering
cross section of a single spherical nanoshell has been consid-
ered [30], while some fine experimental works were conducted
in [31] and [32]. The results given in [30] seemed to agree with
the exact solutions very well in accordance with the results in
Figs. 2 and 3. Our recent careful investigations realize that the
relative errors in their results are not so small, especially when
the electric size of the nanoshell is not large. The present pa-
per is therefore to derive another different closed-form solution
for describing the lightwave scattered by the nanoshells using a
polynomial of up to order 6. Validation will be made by compar-
ing the present closed-form solution to the exact Mie scattering
solution and also to the other closed-form solution by Alam and
Massoud.

II. BASIC FORMULAS

The geometry of the problem defined in this paper is shown
in Fig. 1, where we will follow closely with the definitions
in [30]. So the outmost to innermost regions are denoted as

regions i = 3, 2, and 1, whose permittivities and permeabilities
are assumed to εi and µi = µ0 (as nonmagnetic materials),
respectively. The incident plane wave is propagating along
+z-direction. The inner radius of the coated sphere is a and
outer radius is b; in other words, the spherical geometrical
thickness of the nanoshell is c = b − a. For convenience of
the formulation, we take x = k0a = ω

√
ε0µ0a = aω/c and

y = k0b = ω
√

ε0µ0b = bω/c to be the electrical parameters
for the inner and outer radii of the spherical nanoshell (where
c denotes the speed of light in free space).2 It should be noted
that here x and y are used to simplify the presentations and they
have nothing to do with the Cartesian coordinates (x, y, z). In
addition, the refractive indexes of the spherical nanocore and
the nanoshell are denoted by m1 =

√
ε1/ε0 and m2 =

√
ε2/ε0 ,

respectively. The refractive index of the background hosting
medium is m3 =

√
ε3/ε0 and it is assumed herein that it is not

necessarily unity, but it can be simplified as m3 = 1 for free
space. Correspondingly, the wavenumbers in the regions are
denoted by kj = ω

√
εjµ0 , where j = 1, 2, and 3, for the inner,

the intermediate, and the outer regions of the problem geometry.
Electric field of an electromagnetic plane wave with an am-

plitude of E0 in unbounded hosting medium can be written in
terms of the spherical vector wave functions M (TE wave) and
N (TM wave) as follows:

Ei =
∞∑

n=1

in
2n + 1

n(n + 1)

(
M

(1)
o1n − iN

(1)
e1n

)
(1)

where an incident wave amplitude E0 is assumed to be unity
for simplification of the formulation. This assumption will not
affect the further discussion and results. When it is scattered by
the nanoshell, the electric wave outside of the nanoshell in the
hosting medium is written in terms of the outgoing TE and TM
waves in the following similar form:

Escat,3 =
∞∑

n=1

in
2n + 1

n(n + 1)

(
anM

(3)
o1n (k3r) − ibnN

(3)
e1n (k3r)

)
(2a)

while the field inside the nanoshell is expressed by

Escat,2 =
∞∑

n=1

in
2n+ 1

n(n+ 1)

[(
a′

nM
(3)
o1n (k2r)+ c′nM

(1)
o1n (k2r)

)

− i

(
b′nN

(3)
e1n + d′nN

(1)
e1n

)]
(2b)

and the electric field inside the nanospherical core region is
given due to the TE and TM standing waves by

Escat,1 =
∞∑

n=1

in
2n + 1

n(n + 1)

(
cnM

(1)
o1n (k1r)−idnN

(1)
e1n (k1r)

)
.

(2c)
In the aforementioned field expressions, where the eigenvalue

m = 1, the spherical vector wave functions M
(i)
emn and M

(i)
omn

for even and odd TE modes, and N
(i)
emn and N

(i)
omn for even and

2The definition in [30] is not precisely correct unless the hosting or back-
ground medium is free space. Details of the proof will be given later.



LI et al.: NEW CLOSED-FORM SOLUTION TO LIGHT SCATTERING BY SPHERICAL NANOSHELLS 619

odd TM modes are defined for i = 1, 2, 3, and 4 as

M (i)
emn (kr) = −z(i)

n (ρ)
mPm

n (cos θ)
sin θ

sinmφθ̂

− z(i)
n (ρ)

dPm
n (cos θ)

dθ
cos mφφ̂ (3a)

M (i)
omn (kr) = z(i)

n (ρ)
mPm

n (cos θ)
sin θ

cos mφθ̂

− z(i)
n (ρ)

dPm
n (cos θ)

dθ
sinmφφ̂ (3b)

N (i)
emn (kr) =

n(n + 1)z(i)
n (ρ)

ρ
Pm

n (cos θ) cos mφr̂

+
d

ρdρ

[
ρz(i)

n (ρ)
] [

dPm
n (cos θ)

dθ
cos mφθ̂

−mPm
n (cos θ)
sin θ

sinmφφ̂

]
(3c)

N (i)
omn (kr) =

n(n + 1)z(i)
n (ρ)

ρ
Pm

n (cos θ) sin mφr̂

+
d

ρdρ

[
ρz(i)

n (ρ)
] [

dPm
n (cos θ)

dθ
sinmφθ̂

+
mPm

n (cos θ)
sin θ

cos mφφ̂

]
. (3d)

In the previous definitions, the superscripts (1), (2), (3), and (4)
of z

(i)
n (ρ) (where ρ = kr denotes the argument of the spherical

Bessel functions) refer to the first kind of spherical Bessel func-
tion, the second kind of spherical Bessel function, the first kind
of spherical Hankel function, and the second kind of spherical
Hankel function, respectively.

Apparently, there exist eight sets of unknown parameters,
(an , bn , cn , and dn ) and also (a′

n , b′n , c′n , and d′n ), to be deter-
mined. From continuity relations of electric field and magnetic
field tangential components, we will have four boundary condi-
tions on the inner spherical interface and the other four boundary
conditions on the outer spherical interface. So, all the unknown
coefficients can be determined uniquely. The solution procedure
is rather standard, although lengthy. So, we will not provide the
details of all the solutions, instead we will provide the obtained
scattering coefficients in the hosting medium only, an and bn .
They are given by

an =
anum

n

aden
n

and bn =
bnum
n

aden
n

(4)

where the numerators Na,b
n and denominators Da,b

n of the two
scattering coefficients are explicitly given as follows:

anum
n = m3ψn (m3y) [ψ′

n (m2y) − Anχ′
n (m2y)]

− m2ψ
′
n (m3y) [ψn (m2y) − Anχn (m2y)] (5a)

aden
n = m3ξn (m3y) [ψ′

n (m2y) − Anχ′
n (m2y)]

− m2ξ
′
n (m3y) [ψn (m2y) − Anχn (m2y)] (5b)

bnum
n = m2ψn (m3y) [ψ′

n (m2y) − Bnχ′
n (m2y)]

− m3ψ
′
n (m3y) [ψn (m2y) − Bnχn (m2y)] (5c)

aden
n = m2ξn (m3y) [ψ′

n (m2y) − Bnχ′
n (m2y)]

− m3ξ
′
n (m3y) [ψn (m2y) − Bnχn (m2y)] (5d)

with the intermediate parameters An and Bn defined3 as

An =
m2ψn (m2x)ψ′

n (m1x) − m1ψ
′
n (m2x)ψn (m1x)

m2χn (m2x)ψ′
n (m1x) − m1χ′

n (m2x)ψn (m1x)
(6a)

Bn =
m2ψn (m1x)ψ′

n (m2x) − m1ψ
′
n (m1x)ψn (m2x)

m2χ′
n (m2x)ψn (m1x) − m1χn (m2x)ψ′

n (m1x)
(6b)

and the Riccati–Bessel functions were defined4 as

ψn (ρ) = ρjn (ρ) (7a)

χn (ρ) = ρyn (ρ) (7b)

ξn (ρ) = ρh(1)
n (ρ) = ρ [jn (ρ) + iyn (ρ)] (7c)

with the prime to denote their first-order derivative of the
Riccati–Bessel functions. For the nonmagnetic medium, we
have the free-space permeability for all the regions, i.e., µ1 =
µ2 = µ3 = µ0 . Again, ε1 and ε2 denote the permittivities of the
spherical nanocore and the nanoshell, while ε3 stands for the
permittivity in the outer region of the structure. The formulas
given in (5a)–(5d) are slightly different from those forms in [30],
because we herein enclose m3 in the formulation without loss of
any generality while the formulas [30, eqs. (1) and (2)] are only
applicable to the case where the outer region is free space; but in
the later applications in [30], the authors assumed ε3 = 1.78ε0 .

III. NEW CLOSED-FORM SOLUTION TO INTERMEDIATE

COEFFICIENTS An AND Bn

As the scattering coefficients an and bn are of our specific
interests here, although they look very complicated and involved
with the spherical Bessel functions of various kinds. To do so, we
also follow the similar procedure of approximating the scattering
coefficients an and bn by taking the series expansions of the
following first and second kinds of spherical Bessel functions
as follows:

jn (z) =
zn

(2n + 1)!!

×
[
1− z2/2

1!(2n+ 3)
+

(
z2/2

)2

2!(2n+ 3)(2n+ 5)
+ · · ·

]
(8a)

yn (z) =
(2n − 1)!!

zn+1

×
[
1− z2/2

1!(1− 2n)
+

(
z2/2

)2

2!(1− 2n)(3− 2n)
+ · · ·

]
(8b)

where, and subsequently, n!! denotes the factorial by a step of
2 (for instance, 7!! = 7 · 5 · 3 · 1 while 8!! = 8 · 6 · 4 · 2). The

3Subscripts of some ψn (ρ) and its derivative were missing in [30, eqs. (12)
and (13)].

4χn (ρ) was not generally defined in [30].
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numerical tests show that when x = 0.6 and n = {1, 2, 3}, we
will have the following exact values of jn (z) = {0.192892,
0.023389, 0.00201634}. If we use the approximation in [30], the
following values are obtained: jn (z) ={0.149956, 0.0196055,
0.00175972}; but if we use the approximations in (8a) and
(8b) of this paper where only the explicit first three terms
are included, we will obtain fairly accurate results of jn (z) =
{0.192893, 0.023389, 0.00201634}. Similarly, for the same
given conditions (x = 0.6 and n = {1, 2, 3}), we have the exact
values of yn (z) ={3.23367, 14.7928, 120.04}, the approximate
values of yn (z) = {3.95662, 24.7842, 155.333} by [30], and the
approximate values of yn (z) = {3.23278, 14.7972, 120.032} by
this paper.

A. Approximate Expression of Coefficient An

With the confidence built, we are now moving toward deriving
the closed-form solution for the coefficient An as follows:

An ≈ Anum
n

Aden
n

(9)

where we have the closed-form solutions to the numerator Anum
n

and denominator Aden
n as follows:

Anum
n = − (2n − 5)(2n − 3)(2n − 1)πx2n+1m2n+1

2

(
m2

2

−m2
1
) {

x4 (
4n3 + 24n2 + 41n − 2x2m2

2 + 21
)
m4

1

− 2x2 [
x4m4

2 −
(
4n3 + 28n2 + 67n + 63

)
x2m2

2

+ 2
(
8n4 + 68n3 + 202n2 + 247n + 105

)]
m2

1

+
(
4n3 + 24n2 + 41n + 21

) [
x4m4

2 − 4(2n + 5)

×x2m2
2 + 8

(
4n2 + 16n + 15

)]}
(10a)

Aden
n = 4n

(
4n2 + 8n + 3

)
Γ2

(
n +

1
2

) {(
4n2 + 24n

+ 35) x4 [
4n3 − 19n + (1 − 2n)x2m2

1 − 15
]
m6

2

+
(
4n2 + 4n − 35

)
x2 [

2(2n + 1)x4m4
1 −

(
4n3

+ 32n2 + 43n − 30
)
x2m2

1 + 4
(
8n4 + 28n3 + 2n2

− 63n − 45)] m4
2 +

(
4n2 − 16n + 15

)
[−(2n + 3)

× x6m6
1 +

(
−4n3 + 79n + 105

)
x4m4

1 − 12
(
8n3

+ 52n2 + 94n + 35
)
x2m2

1 + 8
(
16n5 + 128n4

+ 336n3 + 292n2 − 37n − 105
)]

m2
2 + n

(
16n4

− 16n3 − 160n2 + 292n − 105
)
m2

1
[
x4m4

1 − 4(2n

+ 5)x2m2
1 + 8

(
4n2 + 16n + 15

)]}
. (10b)

It is noted that a factor of

FA
n =

mn
1

(
32n5 +48n4−400n3−216n2 +1250n−525

)−1

128 × 22n × mn+1
2 × Γ2 (n + (5/2))

(11)
has been involved in both the numerator and the denominator of
coefficient An in (6a) and has been canceled in (9).

It is seen that the solution derived here is general enough
for all the different values of n and x values, more complete
in form than that given in [30]. Also, it is seen that the closed-
form solution is very simple, given in terms of only some simple
additions of algebraic functions. Also, it is to be shown later that
they are quite accurate; and it is valid for complex argument x as
well. For those who use Fortran or C language to write their own
codes for computations, this has made the code implementation
extremely easier and faster.

Specifically, we need to generate the solution for the first few
orders. First, we have the case of n = 1, and easily we have the
following simplified solution:

Anum
1 = 27πx3m3

2
(
m2

1 − m2
2
) [

2800 − 280
(
m2

1 + m2
2
)
x2

+
(
10m4

1 + 36m2
2m

2
1 + 10m4

2
)
x4] (12a)

Aden
1 =

15π

4
[
30240

(
m2

1 + 2m2
2
)
− 3024

(
m2

1 − m2
2
) (

m2
1

+ 10m2
2
)
x2 + 4

(
27m6

1 + 540m2
2m

4
1 + 1323m4

2m
2
1

− 1890m6
2
)
x4 + 4

(
−15m2

2m
6
1 − 162m4

2m
4
1

− 63m6
2m

2
1
)
x6] (12b)

and when n = 2

Anum
2 = −33πx5m5

2
(
m2

1 − m2
2
) [

10584 − 756
(
m2

1 + m2
2
)

× x2 +
(
21m4

1 + 62m2
2m

2
1 + 21m4

2
)
x4] (13a)

Aden
2 =

315π

16
[
−266112

(
2m2

1 + 3m2
2
)

+ 6336
(
m2

1 − m2
2
)

(
6m2

1 + 21m2
2
)
x2 + 16

(
−66m6

1 − 231m2
2m

4
1

+ 2376m4
2m

2
1 − 2079m6

2
)
x4 + 16

(
7m2

2m
6
1

− 110m4
2m

4
1 − 297m6

2m
2
1
)
x6] . (13b)

B. Approximate Expression of Coefficient Bn

Similarly, the closed-form solution for the coefficient Bn is
given by

Bn ≈ Bnum
n

Bden
n

(14)

where we have the following closed-form solutions to the nu-
merator Bnum

n and denominator Bden
n :

Bnum
n =

(
128n7 + 448n6 − 1120n5 − 3920n4 + 2072n3

+ 7252n2 − 450n − 1575
)
πx2n+3m2n+1

2

(
m2

1

−m2
2
) {

(2n + 3)x4m4
1 + 2x2 [

(2n + 5)x2m2
2

− 4
(
4n2 + 20n + 21

)]
m2

1 + (2n + 3)
[
x4m4

2

− 8(2n + 7)x2m2
2 + 16

(
4n2 + 24n + 35

)]}
(15a)

Bden
n = 4n (2n + 1)2(2n + 3)2 (

4n2 + 24n + 35
)

× Γ2
(

n +
1
2

){
−

(
8n3 − 36n2 + 46n − 15

)
× x6m6

1 +
(
8n3 − 4n2 − 82n + 105

)
x4 (

8n2
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+ 16n + x2m2
2 − 10

)
m4

1 −
(
8n3 + 28n2 − 50n

− 175) x2 [
−x4m4

2 + 4
(
4n2 − 4n − 3

)
x2m2

2

+ 8
(
8n3 − 4n2 − 18n + 9

)]
m2

1 +
(
8n3 + 60n2

+ 142n + 105)
[
−x6m6

2 + 2
(
4n2 − 16n + 15

)
× x4m4

2 + 8
(
8n3 − 36n2 + 46n − 15

)
x2m2

2

+ 16
(
16n4 − 64n3 + 56n2 + 16n − 15

)]}
. (15b)

Similarly, it is also noted that a factor of

FB
n =

2−2(n+6)mn+1
1 m−n

2

(2n−5)(2n−3)(2n−1)(2n+1)(2n+3)Γ2 (n+(9/2))

(16)
has been involved in both the numerator and the denominator of
coefficient Bn in (6b) and has been canceled in (14).

To make it applicable and specific in solution, we consider the
solution to the coefficient B1 next. Again, we split its expression
into the numerator and denominator and they are respectively
given as follows:

Bnum
1 = −x5m3

2
(
m2

1 − m2
2
) {[

5x2m4
1 + 2

(
7x2m2

2 − 180
)

×m2
1 + 5m2

2
(
x2m2

2 − 72
)]

x2 + 5040
}

(17a)

Bden
1 = 15

[
x6m6

1 − 9x4 (
x2m2

2 + 14
)
m4

1 + 63x2 (
x4m4

2

+ 12x2m2
2 + 40

)
m2

1 + 105
(
x6m6

2 − 6x4m4
2

− 24x2m2
2 − 144

)]
. (17b)

The previous fractional form suggests that the solution to the
coefficient B1 is not as simple as the expression of the linear
function of x5 given in [30]. To gain more insight into the
accuracy of the expressions, we will discuss on the details of
comparisons among the three sets of data, the exact solution
from Mie theory, the closed-form solution in [30], and the new
closed-form solution in this paper.

C. Validations and Accuracy

To gain insight into the accuracy of the present closed-form
solution to the coefficients An and Bn , we have considered
relative errors of the numerical results obtained using the present
closed-form solution as compared with the exact results obtained
directly from the Mie scattering theory. In addition, we have also
considered the relative errors of the previously obtained closed-
form solution results in [30]. To gain the consistent results, we
also assume the same parameters as used in [30], where ε1 =
(5.44/1.78)ε0 , ε3 = ε0 , and ε2 = (ε1 + ε3)/2. A comparison
has been shown in Fig. 2(a) for the coefficient A1 , in Fig. 2(b)
for the coefficient A2 , and in Fig. 2(c) for the coefficient B1 . It
is clearly shown that the present results of closed-form solution
to these coefficients are far more accurate than those in [30]
where the relative error of A1 is always larger than 25% and
can reach 30%; the relative error of A2 increase up to 25% at a
speed faster than cubic power; and the relative error of B1 also
increases from 17% to 35%.

Fig. 2. Relative errors of coefficients A1 , A2 , and B1 obtained in this pa-
per and also in [30], all compared with the exact solution obtained using the
Mie scattering theory. The bullet-dotted curve “−− • −−” denotes the re-
sults in [30] while the solid curve “——–” stands for the result in this paper.
(a) Coefficient A1 . (b) Coefficient A2 . (c) Coefficient B1 .

IV. NEW CLOSED-FORM SOLUTIONS TO SCATTERING

COEFFICIENTS an AND bn

Now, we turn to the approximations finally to the scattering
coefficients an and bn . Substituting (8a) and (8b) into (7a) and
(7b) and further into (7c), we could approximate (5a) and (5b)
as follows.

A. Approximate Expression of Coefficient an

1) Generalized Case for Any n and Arbitrary Material Prop-
erties: Without loss of any generality, we would keep all the
intermediates inside. From the Taylor series expansions and
keeping the terms up to the order 6, we have

an = y2n+1 αn,n

αn,d
= y2n+1

∑6
�=0 α

(�)
n,ny�∑6

�=0 α
(�)
n,dy

�
(18)

where the coefficients for the numerator are

α(0)
n,n = −Anm−n−1

2 mn
3

(n + 1)m2
2 + nm2

3

2n + 1
(19a)

α(1)
n,n = 0 (19b)
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α(2)
n,n = Anm−n−1

2 mn
3

(
m2

3 − m2
2
)

×
(
2n2 + 5n + 3

)
m2

2 + n(2n − 1)m2
3

2 (8n3 + 12n2 − 2n − 3)
(19c)

α(3)
n,n = −

4−n (n + 1)πmn
2 mn

3
(
m2

2 − m2
3
)

(2n + 1)2Γ2 (n+ (1/2))
y2(n−1) (19d)

α(4)
n,n = Anm−n−1

2 mn
3

(
m2

3 − m2
2
)
[(n + 1)(2n + 3)(2n

+ 5)m4
2 − 3[4n(n + 1) − 15]m2

3m
2
2 − n[4n(n

− 2) + 3] m4
3
]
/
[
8(4n2 − 9)(4n2 − 1)(2n + 5)

]
(19e)

α(5)
n,n =

2−2n−1(n + 1)πmn
2 mn

3
(
m4

2 − m4
3
)

(2n + 1)2(2n + 3)Γ2
(
n + 1

2

) y2(n−1) (19f)

α(6)
n,n = Anm1−n

2 mn+2
3

[
(2n − 1)(2n + 5)(2n + 7)m4

2

− 2(2n − 5)(2n + 1)(2n + 7)m2
3m

2
2 + (2n − 5)

(2n − 3)(2n + 3)m4
3
]
/
[
8(4n2 − 25)(4n2 − 9)

× (4n2 − 1)(2n + 7)
]

(19g)

while the coefficients for the denominator are

α
(0)
n,d = − i4nn

π
Γ2

(
n +

1
2

)
Anm−n−1

2 m−n−1
3

(
m2

2 − m2
3
)

(20a)

α
(1)
n,d = 0 (20b)

α
(2)
n,d = − i22n−3n

π
(2n − 1)Γ2

(
n − 1

2

)
An

× m−n−1
2 m−n−1

3

(
m4

2 − m4
3
)

(20c)

α
(3)
n,d =

y2(n−1)m−n−1
2 m−n−1

3

2n + 1
{
−i

[
nm2

2 + (n + 1)m2
3
]

×m2n+1
2 − Anm2n+1

3

[
(n + 1)m2

2 + nm2
3
]}

(20d)

α
(4)
n,d = − i22n−3

(1 − 2n)2(2n − 3)π
Γ2

(
n +

1
2

)
Anm−n−1

2

× m−n−1
3

(
m2

2 − m2
3
) {

n(2n − 1)m4
2 + 2[n(2n

− 3) + 4]m2
3m

2
2 + n(2n − 1)m4

3
}

(20e)

α
(5)
n,d =

y2(n−1)m−n−1
2 m−n−1

3

2(4n2 − 1)(2n + 3)
(
m2

2 − m2
3
)
[i(n + 1)(2n

+ 3)m2
3m

2n+1
2 + in(2n − 1)m2n+3

2 − (n + 1)

× (2n + 3)Anm2n+1
3 m2

2 − n(2n − 1)Anm2n+3
3

]
(20f)

α
(6)
n,d = − i4n−4

π
[4(n − 4)n + 15]Γ2

(
n − 5

2

)
Anm1−n

2

×
(
m4

2 − m4
3
)
m1−n

3 − 4−n−1(n + 1)πy4(n−1)mn
2

Γ2 (n + (3/2))

×
(
m2

2 − m2
3
)
mn

3 . (20g)

Fig. 3. Exact coefficient a1 versus the spherical core radius x ∈ (0.01, 1.0)
and the spherical nanoshell thickness t ∈ (0.01, 0.4). The other electrical
parameters are ε1 = (5.44/1.78)ε0 , ε3 = ε0 , and ε2 = (ε1 + ε3 )/2, while
µ1 = µ2 = µ3 = µ0 . (a) Real part of a1 . (b) Imaginary part of a1 . (c) Magni-
tude of a1 . (d) Phase (in degrees) of a1 .

These coefficients look complicated, because we considered the
general cases of the materials and also the expansion polynomial
series up to power 6. They could be significantly simplified, as
will be demonstrated later. It should be noted that the expressions
of numerator and denominator in (18) do not simply follow the
power series exactly because the order number n involves also in
the power series. For instance, y2(n−1) and y4(n−1) are contained
in the intermediate series coefficients, but they will disappear
when the first order n = 1 is considered. When the second or
higher orders are considered, then we have to see if they should
be excluded because we basically keep the series expansion up
to the order 6.

To see the general variation of the coefficient an , we look into
the first and dominant coefficient a1 and plotted their real [see
Fig. 3(a)] and imaginary [see Fig. 3(b)] parts in Fig. 3, of which
the real part is directly used to calculate the extinction cross
sections. It is shown that they change monotonically within the
range of the electrical spherical core radius x ∈ (0.01, 1.0) and
the electrical spherical nanoshell radius y = x + t ∈ (0.02, 1.4)
where the spherical nanoshell thickness t ∈ (0.01, 0.4). As the
scattering cross section involves the magnitude, therefore we
also consider the magnitude [see Fig. 3(c)] and phase [in degrees
in Fig. 3(d)] variations of the coefficient a1 . It is clearly seen that
within the ranges of the physical parameters, these variations are
also monotonic. These provide certain sense for the accuracy
versus the expansion order of the coefficients, and thus confirm
the feasibility of this study.
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2) Special Case I (n = 1): To simplify the previous expres-
sion of an , we let n = 1 but still leave m3 to be general. There-
fore, the following significantly simplified terms are obtained:

a1 = y3 α1,n

α1,d
(21)

where

α1,n = −A1m3

3
(
2m2

2 + m2
3
)

+
A1m3

30
(
−10m4

2

+ 9m2
3m

2
2 + m4

3
)
y2 − 2m3

2m3

9
(
m2

2 − m2
3
)
y3

− A1m3

840
(
−70m6

2 + 49m2
3m

4
2 + 20m4

3m
2
2

+ m6
3
)
y4 − m3

45
(
m3

2m
4
3 − m7

2
)
y5

+
A1m

2
2m

3
3

7560
(
21m4

2 + 54m2
3m

2
2 + 5m4

3
)
y6 (22a)

α1,d = +
iA1

m2
3

(
m2

3 − m2
2
)

+
iA1

2m2
3

(
m4

3 − m4
2
)
y2

− 1
3

(
im5

2

m2
3

+ 2im3
2 + 2A1m3m

2
2 + A1m

3
3

)
y3

+
iA1

(
m6

2 + 5m2
3m

4
2 − 5m4

3m
2
2 − m6

3
)

8m2
3

y4

+
i
(
m2

2 − m2
3
)

30m2
3

(
m5

2 + 10m2
3m

3
2 + 10iA1m

3
3m

2
2

+ iA1m
5
3
)
y5 +

1
36

m2
2
[
−8m3m

3
2 + 8m3

3m2

− 3iA1
(
m4

2 − m4
3
)]

y6 . (22b)

In (21) together with (22a) and (22b), the intermediate param-
eter A1 was defined in (9) (where n = 1) together with their
numerator and denominator defined in (12a) and (12b), respec-
tively. Please note that the previous specific coefficients in (21)
given in (22a) and (22b) can be directly simplified from the
expression in (18) except for the cancelation of a factor m2

2 in
both denominators of α1,n and α1,d . The coefficient a1 shown in
(21) together with its intermediate coefficients in (22a) and (22b)
can be simplified by letting m3 = 1, the same as what was done
in [30]. Doing so, we could further simplify the expressions.

After the approximate coefficient a1 is obtained, we may
wish to validate it and confirm its accuracy range versus the
electrical inner radius x ∈ (0.01, 1.0) and electrical outer radius
y of the spherical nanoshell. For ease of understanding and
calculation, we consider the nanoshell thickness t ∈ (0.01, 0.4)
to represent the outer radius y = x + t ∈ (0.02, 1.4), as shown
in Fig. 4. When we consider the relative error limit of 0.68 for
the real part of coefficient Re[a1], it is seen in Fig. 4(a) that
the maximum relative error of this study is below 0.68, while
it is much smaller for scientific and engineering applications
when the nanocore radius is not electrically large or when the
nanoshell is not electrically thick. At the meantime, we limit
the same relative error of 0.68 for the results in [30] and it
is seen that the inaccurate area (as cut on the top of the 3-D

Fig. 4. Relative errors (with respect to the exact solution) of approximate
coefficient a1 formulas derived here in this paper versus the spherical core
radius x ∈ (0.01, 1.0) and the spherical nanoshell thickness t ∈ (0.01, 0.4).
The other electrical parameters used here are the same as those in Figs. 2 and
3, and they will be used for the future numerical results, and thus omitted later.
(a) Error of Re[a1 ] here. (b) Error of |a1 | here.

figure) becomes very large. There is only a small region where
the relative error of Re[a1] in [30] is smaller than 0.68. As
the scattering cross section is proportional to the magnitude
square of the coefficient, |a1 |2 , therefore, we also look into the
relative errors of |a1 | in this paper and also the work in [30], but
limit both of them to the allowable errors of 0.15 for engineering
applications. It is found from Fig. 4(b) that the approximate
results produced in this paper are fairly accurate. For the results
produced in this paper, there is only a very small inaccurate
area with relative error slightly larger than 0.15, as shown in
Fig. 4(b).

3) Special Case II (n = 2): Similarly, we could also sim-
plify the previous general expression of an by letting n = 2 to
obtain the coefficient a2 . As a result, the following simplified
formula is obtained:

a2 = y5 α2,n

α2,d
(23)

where

α2,n = −1
5
A2m

2
3
(
3m2

2 + 2m2
3
)

+
1
70
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2
3
(
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2
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3m

2
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3
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3
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3m

4
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2
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3
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2
3
(
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3
)
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2
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(
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3
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y6 (24a)

α2,d =
18iA2
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2
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3iA2
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2
)
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3iA2

4m3
3

×
(
m2

3 − m2
2
) (

m2
2 + m2

3
)2

y4 − 1
5m3

3

(
2im7

2

+ 3im2
3m

5
2 + 3A2m

5
3m

2
2 + 2A2m

7
3
)
y5 +

iA2m
2
2

4m3

×
(
m4

2 − m4
3
)
y6 . (24b)

In (23) together with (24a) and (24b), the intermediate pa-
rameter A2 was defined in (9) (where n = 2) together with
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Fig. 5. Variation of |a2 | and the relative error (with respect to the exact so-
lution) of the formulas derived in this paper versus the spherical core radius
x ∈ (0.01, 1.0) and the spherical nanoshell thickness t ∈ (0.01, 0.4). (a) Vari-
ation of exact expression |a2 |. (b) Error of |a2 | in this paper.

their numerator and denominator defined in (13a) and (13b),
respectively.

Using this result, we also calculated the absolute values of
the coefficient |a2 | and made a comparison on accuracies of
the present results and the results published in [30], as shown
in Fig. 5. It is seen in Fig. 5(a) that the coefficient |a2 | is also
monotonically changing and its magnitude is much smaller than
that of |a1 | by about ten times especially when the sphere core
radius is electrically small or the nanoshell thickness is electri-
cally very thin. Shown also in Fig. 5(b) is the relative error of
the approximated a2 values calculated using the approximate
formulas in this paper. It is apparent that when the relative error
of 0.15 is kept, the present formulas are quite accurate. Because
the contribution of |a2 | to the overall values of the extinction
and scattering cross sections is only about 10%, so this makes
the overall of the present error is even smaller.

B. Approximate Expression of Coefficient bn

1) Coefficient bn : Similarly, the coefficient bn can be gen-
erally derived. However, it is realized that in many papers on
nanoparticle scattering formulations, the coefficient bn is not
calculated at all. Nevertheless, the procedure for deriving the
coefficients an and bn in (4) is the same, also the formula struc-
tures for an and bn are the same. Except for the change of the
ratio m3/m2 in an into m2/m3 in bn and the replacement of
An in an by Bn in bn symbolically, all the other formulations
are identical. Therefore, we will not repeat this procedure, but
simply provide the useful first-order coefficient b1 for the com-
parison purpose.

By letting n = 1 in (4), we have the first term of the coefficient
bn simplified as

b1 = y
β1,n

β1,d
(25)

where

β1,n = −B1m
2
3

m2
+

B1m
2
3

6m2

(
m2

3 − m2
2
)
y2 − B1m

2
3

120m2

×
(
5m4

2 − 6m2
3m

2
2 + m4

3
)
y4 +

1
45

m2
2m

2
3
(
m2

3

−m2
2
)
y5 +

B1m
2
3

15120m2

(
105m6

2 + 63m2
3m

4
2

Fig. 6. Relative error (with respect to the exact solution) of the formulas |b1 |
derived in this paper versus the spherical core radius x ∈ (0.01, 1.0) and the
spherical nanoshell thickness t ∈ (0.01, 0.4).
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In (25) together with (26a) and (26b), the parameter B1 was
defined in (14) (n = 1) together with their numerator and de-
nominator defined in (17a) and (17b), respectively.

To check the accuracy, we have also calculated the coefficient
b1 . Shown in Fig. 6 is the relative error of b1 values computed
using the present solution in this paper. The parameters used in
the calculations are the same as shown before in Figs. 4 and 5.
It is seen clearly that when the relative error is controlled within
0.45, the area with high accuracy of the results in this paper is
very large.

V. DISCUSSIONS AND CONCLUSION

The extinction total cross section (TCS) is defined as the
ratio of the sum of absorbed and scattered energy of incident
waves. Mathematically, the extinction TCS and the scattering
cross section are expressed as

Qext =
2π

k2
0

∞∑
n=1

(2n + 1)�e[an + bn ] (27a)

Qsca =
2π

k2
0

∞∑
n=1

(2n + 1)
[
|an |2 + |bn |2

]
. (27b)

From these definitions, we could see that the closed-form ex-
pressions for the extinction cross section and the scattering cross
section can be given analytically but approximately as follows:

Qext ≈
2π

k2
0

[3�e[a1 ] + 5�e[a2 ] + 3�e[b1 ]] (28a)

Qsca ≈ 2π

k2
0

[
3|a1 |2 + 5|a2 |2 + 3|b1 |2

]
. (28b)
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Apparently, these cross sections are dominated by the value of
a1 . The coefficients a2 and b1 also contribute to the extinction
and scattering cross sections, and their contributions will im-
prove the accuracy of calculating these cross sections although
they are much smaller in value.

In summary, we have derived in this paper a new set of closed-
form expressions of the classic Mie scattering coefficients of a
spherical nanoshell using a power series up to order 6, which
follows closely to the other set in [30]. The derived expres-
sions are very general in nature, because the term number n of
the Mie scattering coefficient series is still kept inside for the
other potential applications, in addition to the general expres-
sions consisting of the information of the three region electrical
parameters (permittivities and permeabilities) and geometrical
parameters (the electric inner and outer radii of the structure).
This set of approximate expressions is found to be very accu-
rate in the large range of various potential engineering applica-
tions including optical nanoparticle characterizations and other
nanotechnology applications, validated step by step along the
derivation procedure. Computations using this closed form of
solutions are very fast and accurate for both lossy and lossless
media, but it requires very little effort in the calculations of the
cross-section results.
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