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Abstract By introducing the difference permittivity ratio
η = (ε2 − ε0)/(ε1 − ε0), the Green matrix method for com-
puting surface plasmon resonances is extended to binary
nanostructures. Based on the near field coupling, the inter-
play of plasmon resonances in two closely packed nanostrips
is investigated. At a fixed wavelength, with varying η the
resonances exhibit different regions: the dielectric effect re-
gion, resonance chaos region, collective resonance region,
resonance flat region, and new branches region. Simultane-
ously, avoiding crossing and mode transfer phenomena be-
tween the resonance branches are observed. These findings
will be helpful to design hybrid plasmonic subwavelength
structures.

PACS 73.20.Mf · 78.67.-n · 78.68.+m

1 Introduction

Surface plasmon resonances (SPRs) of metallic nanoparti-
cles have attracted great interest due to their applications
in surface-enhanced Raman scattering [1], biosensor and
nanometer plasmonic waveguide [2], optical antenna [3], so-
lar cells [4], nonlinear optical frequency mixing [5–7] and
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so on. With the development of nanofabrication and nano-
lithography techniques, various metallic nanoparticles, such
as nanospheres, nanoshells, nanorices, nanorings, nanostars,
nanocages, and nanotriangles, have been successfully fab-
ricated, exhibiting a variety of resonant behaviors [2]. The
resonance frequencies of nanoshells can be tuned from visi-
ble to infrared frequencies by adjusting the core–shell ratio
[2], and the nanocrescents have shown multiple, adjustable
resonances and stronger enhanced near fields due to their
unique structure with tips and ring [8]. Simultaneously, the
red and blue shifts of resonances, based on the near field
coupling among nanoparticles, have been reported [9–12],
as well as the scaling rules of these shifts [13, 14]. However,
the interplay of SPR among nanoparticles with different ma-
terial parameters is scarcely studied. The goal of this work
is to explore the resonance combination of surface plasmon
in binary nanostructures.

The Green tensor method has successfully solved the op-
tical near field of the isolated nanostructures [15]. And the
Green function formalism can give the dielectric resonance
information only in the quasistatic limit [16]. Recently, by
combining the Green tensor method with the Green func-
tion formalism, we have developed the Green matrix method
(GMM) to deal with the surface plasmon resonances and
near field of the arbitrary shaped subwavelength metallic
structures [17]. Instead of the traditional methods which give
the resonance peaks in the wavelength region, by using the
resonance capacity of surface plasmon [17], GMM can give
the resonance spectrum with respect to a set of dielectric
permittivities. Here the GMM can be used to design novel
plasmonic, or hybrid plasmonic–dielectric, structures with
desired resonance properties. This is different from all con-
ventional numerical techniques, which can only compute the
response of a given structure and not determine the mater-
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ial parameters, required for this structure to exhibit specific
resonances.

In the following, by introducing the difference permittiv-
ity ratio η = (ε2 − ε0)/(ε1 − ε0), we extended the Green
matrix method from single-component to two-component
structures with permittivities ε1 and ε2 in a homogeneous
background ε0. Based on the formalism and resonance ca-
pacity concept [17], we investigate the interplay of surface
plasmon resonances in two closely located nanostrips with
the same geometry. With varying η at a fixed wavelength,
the resonance branches experience different regions: the di-
electric effect region, resonance chaos region, collective res-
onance region, resonance flat region, and new branches re-
gion. When η < 0, i.e., one nanostrip is dielectric and the
other is metallic, the resonances are dominated by the metal-
lic nanostrip, and there are small shifts and splits of res-
onances due to the influence of the dielectric. For η > 0,
i.e., both nanostrips are metallic, several resonance branches
with large shifts and splits appear and generally one or two
strong resonances dominate, exhibiting a collective reso-
nance or a one nanostrip-dominated resonance. Simultane-
ously, both for η < 0 and η > 0, avoiding crossing and mode
transfer phenomena between the resonance branches are ob-
served. Other combined nanostructures, such as two nano-
structures with different geometry are also studied. When
η < 0, almost the same behavior is found as previously.
However, for η > 0, many SPR branches appear, and it looks
like the strong resonances are destroyed into many weak
ones.

2 Green matrix method for two-component
subwavelength structures

Consider the arbitrary shaped two-component subwave-
length structures (or nanostructures in the optical fre-
quency region) with the dielectric permittivities ε1(r,ω)

and ε2(r,ω), embedded in the homogeneous bulk mater-
ial ε0(ω), as shown in Fig. 1. These nanostructures are not
necessarily connected, but outside the structures, the tensors
εsi(r,ω) (= εi(r,ω) − ε0(ω) for i = 1 or 2) are vanishing.
Dielectric permittivities ε1(r,ω) and ε2(r,ω) are generally
complex and frequency dependent. If a monochromatic field

Fig. 1 Scheme of two 60×20×20 nm3 nanostrips for (a) the parallel
case and (b) the perpendicular case

E0(r)e−iωt impinges on the system, the scattered field E(r)
is a solution of the wave equation

− � × � ×E(r) + k2ε0(ω)E(r)

+ k2εsi(r,ω)E(r) = 0 (1)

where k is the vacuum wave number.
By introducing the Green operator G0(r, r′,ω) associ-

ated with the bulk material,

� × � × G0(r, r′,ω) − k2ε0(ω)G0(r, r′,ω) = I, (2)

and G(r, r′,ω) associated with the scattering nanocluster
[18],

� × � × G(r, r′,ω) − [
k2ε0(ω) + k2εsi(r,ω)

]

× G(r, r′,ω) = I, (3)

where I is the unit operator and following some trans-
formations, the Lippmann–Schwinger equation [15, 19] of
the field E(r) at any point r can be extended to the two-
component subwavelength clusters:

E(r) = E0(r) + k2
∫

c1

dr′G0(r, r′,ω)εs1(ω) · E(r′)

+ ηk2
∫

c2

dr′G0(r, r′,ω)εs1(ω) · E(r′), (4)

where C = C1 ∪ C2 denotes the cluster subspace, and η =
(ε2 − ε0)/(ε1 − ε0) is called the difference permittivity ratio
[20]. In the subspace C1 or C2, ε1(r,ω) or ε2(r,ω) is simpli-
fied as ε1(ω) or ε2(ω). Green’s tensor in a three dimensional
system is analytically known [18]:

G0(r, r′,ω) =
(

I − 1 − ik0R

k2
0R2

I−−3 + 3ik0R + k2
0R2

k2
0R4

RR
)

× exp[ik0R]
4πR

, (5)

where R = |R| = |r − r′| and k2
0 = k2ε0(ω). Equation (4)

means that the field inside the nanocluster can be solved self-
consistently in the cluster subspace, while the field outside
the cluster can be expressed explicitly through the Green
propagator G0(r, r′,ω). Let us note the similar field expres-
sion in (7) of [16], where the Green function formalism was
established to obtain the dielectric resonance spectrum and
local field distribution in the quasistatic limit. With almost
the same procedure as in [16], the Green matrix method has
been established to deal with surface plasmon resonances
of arbitrary shaped nanocluster beyond the quasistatic limit,
[17]. Here, starting from (4), we extend the GMM from
single-component to two-component subwavelength struc-
tures embedded in the bulk material.
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If the nanocluster subspace is discretized into N pieces
with volume δV (in principle δV � V ) , let G̃0(r, r′,ω) =
δV k2G0(r, r′,ω)δr′,r1+ ηδV k2G0(r, r′,ω)δr′,r2 for r1 ∈
C1 and r2 ∈ C2 in the clusters subspace C = C1 ∪ C2, (4)
becomes

∑

r′ ∈C

[
εs1(ω)G̃0(r, r′,ω) − δr,r′

]
Ẽ(r) = −Ẽ0(r). (6)

Here the Green tensor G̃0(r, r′,ω) is extending all over the

points in C. The Green matrix G̃0 is a 3N × 3N square ma-
trix. Equation (6) can be rewritten the following form:

∑

r′ ∈C

[
G̃0(r, r′,ω) − sI

]
Ẽ(r) =−Ẽ0(r)

εs1(ω)
, (7)

where s = 1
εs1(ω)

= 1
ε1(ω)−ε0(ω)

. Since G̃0 is symmetrical,
mathematically, there are 3N real eigenvalues. Physically,
only those eigenvalues with the large residue of electric field
correspond to the strong resonances, which are selected by
the calculations of the resonance capacity [17]. Let us em-
phasize a major difference between the approach proposed
here and conventional calculations. Usually, (6) is solved
to compute the scatted field Ẽ(r) for a given illumination
Ẽ0(r) and a given scattering system. By considering (7) and
solving an eigenvalue problem, we are able to determine the
conditions where the system will exhibit a resonant behav-
ior. The mathematical eigenvalues depend on the numerical
discretization, while the physical resonances do not. Fur-
thermore, the regions of eigenvalue sn are clearly related
to the ratio η. Different from the single-component nano-
structure case, where most of the eigen dielectric permittiv-
ities εn(r,ω) (= 1

sn
+ ε0(ω)) fall into the negative real axis

[17], here at least one of the eigen dielectric permittivities,
ε1n(ω) (= 1

sn
+ ε0(ω)) or ε2n(ω) (= η. 1

sn
+ ε0(ω)), should

have a negative value. Hence it is natural that the coopera-
tion of positive permittivity (here ε0 = 1.0) and negative per-
mittivity ε1n(ω) or ε2n(ω) leads to the resonances of surface
plasmon. Different from the quasistatic limit where the di-
electric resonances only relate to the dielectric permittivities
of cluster and reference media [16], here with the retardation
effect, the SPRs are directly related to the wave number k.

Generally we assume that the field Ẽ(r) (a 3N × 1 ma-
trix) in the cluster subspace has the form:

Ẽ(r) =
3N∑

n=1

An(s).Rn, (8)

where Rn is the right eigenvector of the nth eigenvalue
of G̃0. By substituting (8) in (7) and multiplying the left

eigenvector Ln (= RT
n ) in (7), An(s) is obtained and Ẽ(r)

in the nanocluster reads

Ẽ(r) =
3N∑

n=1

Ln · Ẽ0(r)
εs1(ω)(s − sn)

.Rn. (9)

For any point r outside the nanocluster, we have

E(r) = E0(r) + k2
3N∑

n=1

Ln · Ẽ0(r)
(s − sn)

·
[( ∑

r′ ∈C1

G0(r, r′,ω) + η
∑

r′ ∈C2

G0(r, r′,ω)

)
· Rn

]
.

(10)

Until now, for any ε1(ω) and ε2(ω), the optical near field
can be expressed by the Green tensor G0(r, r′,ω), eigen-

values sn and eigenvectors Rn,Ln of the Green matrix G̃0.
Obviously, the far field can also be directly given from the
above, (9) and (10).

When s approaches one of the eigenvalues sn, i.e., s →
sn, the electric field diverges to infinity in the case of no loss.
Only those eigenstates (or resonances) with strong electric
near field are physically meaningful and have some applica-
tions [1–7]. To select those SPRs, we have defined the res-
onance capacity based on the internal energy of the nano-
structures [17]. In two-component nanostructures, for each
sn, the resonance capacity of component i is

Cin =
∫
Ci

dr′|εin|.[res|E(r′)|]2
n∫

Ci
dr′|ε0(ω)|.|E0(r′)|2 , (11)

where the residue of the field is [res|E(r′)|]n =
|Ln.E0(r′)

ε1n(r,ω)
.Rn|, ε1n = 1

sn
+ ε0(ω), ε2n = η

sn
+ ε0, and i = 1,2.

Large resonance capacity values usually represent the strong
resonances with a more enhanced near field. Conceptually,
the extinction peaks of far field should correspond to the
SPRs with high value of resonance capacity. In the follow-
ing, by performing some numerical calculations, we inves-
tigate the evolution of the resonance capacity and near field
distributions for varying difference permittivity ratios η.

3 Surface plasmon resonances and near field
distributions

The SPR properties of two closely packed metallic nanopar-
ticles with the same geometry and same dielectric permit-
tivity have been widely investigated [9–14]. When the cen-
tral line of both particles is parallel to the polarization of
the electric field, a red shift of the resonance wavelength
is found; while, when the central line of both particles is
perpendicular to the polarization of the electric field, a blue
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shift is found [9–12]. It is known that the resonance occurs
at the matching conditions for the geometry, incident light,
metallic permittivity and dielectric environment. Hence the
position and intensity of the resonances can be affected by
its neighboring nanoparticles embedded in the dielectric en-
vironment. In the following, SPR and near field distributions
of two nanostrips are studied as a function of the difference
permittivity ratio η.

As shown in Fig. 1(a), when the central line of both
nanostrips is parallel to the polarization of external elec-
tric field, we call it the parallel case; while, in Fig. 1(b),
when their central line is perpendicular to the polarization
of electric field, we call it the perpendicular case. Here the
input wavelength is λ = 632.8 nm, the size of each nano-
strip is 60 × 20 × 20 nm3, and both gaps are 10 nm with
the discretization mesh 5 nm. The electric field is propa-
gating along the z direction and polarized along the x di-
rection. For the calculations of the near field distributions
associated with resonances, we have selected the xy plane
10 nm above the nanostrips and included an imaginary parts
of 0.15i in the parallel case and 0.05i in the perpendicular
case. When the incident wavelength is λ = 632.8 nm, for a
single 60 × 20 × 20 nm3 nanostrip, there is only one reso-
nance at ε1(ω) ≈ −11.7, corresponding to the gold material
at this wavelength [17].

Before giving a detailed discussion, let us outline the
main results of this section, as well as clarify the mode clas-
sification and the nomination of resonance branches in the
η–s diagrams in Figs. 2 and 4, where s is one of the eigen-

values of the Green matrix G̃0 of the system. Due to the
geometrical symmetry of both nanostrips, we only need to
consider here the resonances dominated by nanostrip 1. The
4 main branches represent 4 types of resonances associated
to nanostrip 1, which intensities are expressed as C1. When
η < 0, i.e. nanostrip 2 is a dielectric being closely located
to the resonant nanostrip 1, resonances are barely affected
by the dielectric nanoparticle, hence this is the dielectric ef-
fect region, flagged as branch 1. However, when nanostrip
2 is metallic, i.e., η > 0, there will be a large influence on
the resonant properties of metallic nanostrip 1 due to the
existence of free electrons in metallic nanostrip 2. When
η ∈ [0,0.95], the resonance capacity of nanostrip 1 is very
sensitive to η, this is called resonance chaos region, marked
as subbranch 21. For η ∈ [0.65,1.3], i.e., when two metallic
nanostrips have comparable dielectric permittivities, collec-
tive resonances occur and this is called the collective reso-
nance region, marked as subbranch 22. When η > 1.5, the
resonance capacity becomes large and stable, which is called
the resonance flat region, marked as subbranch 23. Finally,
when η > 3.0, the system enters the new branches region,
where the new resonance branches 3 and 4 appear. Except
the disordered subbranch 21, for one subbranch, there is
always a smooth curve of resonance capacity which starts

from zero, passes a maximum value, and finally reaches
to zero again; and generally one branch is up with another
branch down, as shown in Fig. 2(b). For a large difference
between both permittivities, generally we observe that the
one particle dominates the resonance; however, it is not al-
ways the metallic particle with the largest permittivity de-
termines the resonances, sometimes the smallest one domi-
nates. In the above mentioned regions characterized by dif-
ferent values of η, a variety of resonant behaviors are visible,
including the avoided crossing between resonant branches,
collective resonances of two particles, and the mode transfer
phenomenon. In the following, we discuss these different
resonant behaviors for parallel and perpendicular geome-
tries.

3.1 Parallel case

Dielectric effect region Figure 2 displays 4 main reso-
nance branches of nanostrip 1, the resonance capacity C1

and C2 of nanostrip 1 and nanostrip 2, and the correspond-
ing ε1 and ε2 as a function of η. It is flagged by resonance
branch 1, where η ∈ [−2.3,0), and ε1 ∈ [−11.36,−10.12],
ε2 ∈ [26.58,1]. In this region, resonances are dominated by
nanostrip 1 and only marginally affected by the dielectric
nanostrip 2 since the electromagnetic wave can penetrate
the dielectric. When a resonance occurs, the dielectric per-
mittivity ε1 experiences a little shift due to the existence of
ε2, and there is a little increment in the resonance capac-
ity C1 with increasing ε2. Of course, the resonance capacity
C2 is very small since the nanostrip 2 is dielectric. At about
η = −1.56 in branch 1, there is avoiding crossing between
subbranches 11 and 12 in Fig. 2(a). In Fig. 2(b), we can see
a minimum of resonance capacity at η = −1.56. Simultane-
ously, near η = −1.56, when the branch 11 is transferred to
branch 12, the splitting of SPR is also found, i.e., for one
η, there are two close large resonances. The near field dis-
tributions around the area A are illustrated in Fig. 3(a). It
is seen that, with decreasing η from −1.5 to −1.6, there
is a depression in the intensity of near field at η = −1.56.
In all three parameters, the near fields are localized within
the nanostrip 1. It is noted that this depression only happens
when |ε2| > |ε1|, which means that the dielectric nanostrip
2 with a large positive dielectric constant can also have an
important effect on the nanostrip 1. However, in the optical
frequencies, it is difficult to find the corresponding experi-
mentally accessible materials.

Resonance chaos region It is flagged by subbranch 21,
where η ∈ [0,0.95], and ε1 ∈ [−11.23,−9.60], ε2 ∈ [−0.47,
−9.0726]. In this region, the resonance capacity of nanos-
trip 1 is very sensitive to η, although we could not find the
explicit features, the resonances are clearly dominated by
nanostrip 1 with the conditions |ε1| > |ε2|. We think that
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Fig. 2 Resonance combination for the parallel case with varying η.
(a) Resonance branches s, (b) resonance capacity for nanostrip 1,
(c) resonance capacity for nanostrip 2, (d) eigen dielectric permittiv-

ity ε1, and (e) eigen dielectric permittivity ε2. Here 4 main branches
represent 4 types of resonances referred to nanostrip 1, which intensi-
ties are expressed as the C1 for nanostrip 1 and C2 for nanostrip 2

this “chaotic” phenomenon comes from very high density of
branches. It is not easy to classify each resonance subbranch
and we have only selected those with the strongest reso-
nances. Our numerical calculations for symmetrical three
nanostrips also support that for a small η region with η > 0

this phenomenon exists [21]. Figure 3(b) illustrates the near
field distributions at η = −0.30,0.36,and 0.40, and near
field sensitivity to η is clearly shown. Compared with the
branch 1, the total near fields are weaker, but the near field
in nanostrip 2 is stronger. Sometimes the resonance capacity
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Fig. 3 Near field distributions above 10 nm of nanostrips around (a) area A, (b) area B , (c) area C, and (d) area D. Here the scale means the
intensity of near field gathering at resonances caused by the same imaginary part 0.15i

C2 can be comparable with C1 of nanostrip 1, as shown in
Fig. 2(c).

Collective resonance region When the dielectric permit-
tivities of two nanostrips have comparable values, the fol-

lowing characterization of the collective resonances can be

made. That is subbranch 22, where η ∈ [0.65,1.3], and

ε1 ∈ [−17.55,−13.19], ε2 ∈ [−11.06,−17.44]. As shown

in Figs. 2(d) and 2(e), when η = 1, ε1 = ε2 = −15.32, if

the permittivity region is mapped to the wavelength region,
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compared with the result of a single nanostrip, there is a
large red shift in the resonance frequency [9–12]. For η =
0.9, when resonances happen, |ε1| < |ε2| and the resonance
capacity of nanostrip 2 is larger than that of nanostrip 1;
while for η = 1.1, when resonances happen, |ε1| > |ε2| and
the resonance capacity of nanostrip 1 is larger than that of
nanostrip 2. The detailed near field distributions are illus-
trated in Fig. 3(c), corresponding to the area C in Fig. 2(b).
For η = 0.9, the electric field near nanostrip 2 is stronger
than that of nanostrip 1. In contrast, for η = 1.1, the electric
field near nanostrip 1 is stronger. It is noted that for η = 1
the strong near fields are distributed in the outside of two
nanostrips, rather than in the center of them. Further numer-
ical results indicate that if we choose the xy plane within
the metal, the electric field is enhanced within the gap, in
line with nanoantenna results [3].

Resonance flat region After the collective resonance re-
gion, the resonance will enter the resonance flat region,
marked as branch 23. When η > 1.5, the values of res-
onance capacity become high and stable. In this region,
η ∈ [1.05,3.6], and ε1 ∈ [−14.68,−16.97], ε2 ∈ [−17.70,
−63.67]. We found that, though now |ε1| < |ε2|, the reso-
nances of nanostrip 1 dominate the system. This is different
from what was found in branch 21, where |ε1| > |ε2| and
still the nanostrip 1 dominated. From the resonance capac-
ity in Fig. 2(b), it is seen that in a very wide region from
η = 1.35 to η = 2.8, there is a large near field distribution
and not much changes in the average near field. To verify
this point, Fig. 3(d) illustrates the near field distributions
around the area D. It is also found that in branch 23 there
are still considerable electric fields near nanostrip 2.

New resonance branches When η > 3.0, near branch 23,
the new branches 3 and 4 emerge. Branch 23 disappears
and main resonant behavior is determined by branches 3
and 4. Especially, at η = 3.4, the resonance capacities
of surface plasmon in branch 23, branch 3 and branch 4
almost have the same values, exhibiting resonance split-
ting or multiple resonance phenomena. Previously, mul-
tiple resonance of surface plasmon has been reported in
the nanocrescent and C-type structures [22, 23]. Moreover,
when η ∈ [2.0,3.5], there are three branches: for branch 23,
ε1 ∈ [−14.99,−16.97], ε2 ∈ [−30.98,−63.67]; for branch
3, ε1 ∈ [−17.76,−18.67], ε2 ∈ [−36.51,−69.81]; and for
branch 4, ε1 ∈ [−3.13,−2.54], ε2 ∈ [−7.26,−11.76]. It is
found that near η = 2.8 the avoiding of crossing and mode
transfer phenomena between branch 41 and branch 42 ap-
pear. We noted the same phenomena of dielectric resonance
occurring in the quasistatic limit [20, 24]. When η is very
large, the resonant dielectric permittivities of both nanos-
trips go beyond the optical frequency region and are of lim-
ited practical use in optics.

3.2 Perpendicular case

In the parallel case, there are 4 main branches, including 8
subbranches. Except for the Resonance chaos region flagged
by branch 21, there are clearly boundaries between other
subbranches, as well as smooth resonance capacity curves.
While, for the perpendicular case, the situation is very dif-
ferent. Roughly speaking, there are 4 main branches, but it
is very difficult to distinguish those subbranches. Branch 1
is still the dielectric effect region, branch 2 roughly includes
the resonance chaos region, collective resonance region, and
resonance flat region, and branches 3 and 4 belong to the
new branches regions. Compared with the parallel case, the
resonant behavior of the perpendicular case is more compli-
cated.

Figure 4 displays 4 resonance branches of nanostrip 1,
the resonance capacities C1 and C2 of nanostrip 1 and
nanostrip 2, and the corresponding ε1 and ε2 in the per-
pendicular case as a function of η. This paragraph is fo-
cused on the dielectric effect region and new branches re-
gion, as shown in Figs. 4(a) and 4(b). In the following,
the resonance regions in branch 2 are emphasized individ-
ually. It is similar to what was found in the parallel case,
in the dielectric effect region, the dielectric nanostrip 2
has only a small influence on the resonance position and
intensity. In branch 1, we have found avoiding of cross-
ing twice with decreasing η. In the new branches region,
branches 3 and 4 have a similar behavior to that in the
parallel case. Moreover, the area E in branch 4 has taken
on the interesting mode transfer behavior. As shown in
Fig. 5(a), at η = 2.20 (with ε1 = −3.48057, ε2 = −8.85725)
the strong near field concentrates on above the nanostrip
1, via η = 2.30 (with ε1 = −3.34877, ε2 = −9.00216 and
ε1 = −3.45445, ε2 = −9.24524) where both modes have
the weaker near field distributions, and finally at η = 2.40
(with ε1 = −3.32179, ε2 = −9.37229) the strong near fields
are transferred from nanostrip 1 to nanostrip 2. This is a typ-
ical mode transfer phenomenon, which is also reported in
the quasistatic dielectric resonance spectra [24]. The strong
near field above nanostrip 2 for η = 2.40 can be explained
as follows. Though on average the nanostrip 1 has gathered
more electric fields, the strongest field parts are within the
gap between nanostrip 1 and nanostrip 2, and the collec-
tive effect of nanostrip 1 and nanostrip 2 leads to the near
field distribution shown in Fig. 5(a). Simultaneously, we also
found that the resonance capacity values of nanostrip 1 in
the perpendicular case are larger than those in the parallel
case. A simple explanation may be that they have suffered
different types of near field effects from nanostrip 2.

The resonant character of branch 2 is individually exhib-
ited in Fig. 4(c). Though some similar properties exist in
the parallel and perpendicular cases, they are also many dif-
ferences. Different from that in the parallel case, the whole
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Fig. 4 Resonance combination for the perpendicular case with vary-
ing η. (a) Resonance branches, (b) resonance capacity for branches
1,3, and 4, (c) resonance capacity for branch 2, (d) eigen dielectric
permittivity ε1, and (e) eigen dielectric permittivity ε2. Here the main

branches represent the different types of resonances referred to nano-
strip 1, which intensities are expressed as the C1 for nanostrip 1 and
C2 for nanostrip 2

branch 2 is almost connected. Roughly speaking, at the re-
gion η ∈ [0.0,0.5] and at the region η ∈ [0.6,1.5], similar
to the parallel case, the resonance chaos region and col-
lective resonance region appear. When η = 1.0 with ε1 =
ε2 = −9.16, if the permittivity region is mapped to the wave-
length region, a blue shift of resonance frequency should

be found [9–12]. One of the important differences is that
with varying η, resonance splitting exists everywhere, which
means that multi-branches coexist. While, in the parallel
case, except for the resonance chaos region, two branches
coexist in most cases. Because in the perpendicular case we
could not clearly distinguish those subbranches, in Fig. 4(c)
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Fig. 5 Near field distributions above 10 nm of nanostrips around (a) area E and (b) area F . Here the scale means the intensity of near field
gathering at resonances caused by the same imaginary part 0.05i

we put all the resonance points with the large values of C1

together, as well as the C2 values corresponding to those C1.
Here we have drawn some lines to guide one’s eyes. An-
other difference is that, except for the collective resonance
region, in the other regions the C2 values are also large. Dif-
ferent from the resonance flat region in the parallel case, at
η = 2.3, there is a concave C1 curve. Though having the ob-
vious difference from η = 2.15, via η = 2.3, to η = 2.45,
from the near field distributions around the concave area
F in Fig. 5(b), it seems that the fields are localized above
the nanostrip 2. Almost the same explanation is found as in
Fig. 5(a), i.e., the strongest field within the gap lead to the
strong near field above the nanostrip 2.

If the incident wavelength is fixed, theoretically, different
geometrical nanoparticles will possess different resonant di-
electric permittivities. In the spectral region, SPR interaction
between different geometrical nanostructures with the same
material has been studied [11]. Here, rather than consider

two same nanostrips, we also explore the other geometri-
cal sets, such as binary nanostructure including a nanostrip
and a semi-nanoring. It is found that when η < 0, i.e., one
is a metal and another is a dielectric, the resonant behav-
ior is almost the same as the above two nanostrips case.
While, for η > 0, instead of the previous one or two main
resonances-dominated case, one strong resonance usually is
destroyed into many weak ones, i.e., one branch is divided
into many subbranches with small resonance capacity val-
ues. However, for symmetrical binary three nanostrips, res-
onance behavior is found to be similar to the two nanostrips
case [21]. By carefully choosing the geometry and arrange-
ment of each component, hybrid resonant structures can be
used to design multi-resonance plasmonic structures.

If we consider real metals, the dielectric permittivity re-
gion should be mapped into the wavelength region. In the
large wavelength region, a subwavelength structure will pre-
serve the stable resonance spectra with respect to the di-
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Fig. 6 Absorption cross
sections for a Au–Ag nanostrip
system. (a) Parallel case and (b)
perpendicular case. The same
size and polarization parameters
as before are used

electric permittivity. For example, in [17], for the nano-
strip 60 × 20 × 20 nm3, with varying the wavelength from
λ = 500 nm to λ = 632.8 nm, the dielectric constants of
Au and Ag have large changes, such as εAu(500) = −2.54
and εAu(632.8) = −11.78. On the other hand, the resonance
spectra with respect to the dielectric permittivity only have
little modifications, namely, the resonance structure of sur-
face plasmon is very stable with varying incident wave-
length. Let us emphasize that, although in the previous dis-
cussion the wavelength is fixed at λ = 632.8 nm for illustra-
tion purpose, the corresponding resonance phenomena can
be found to any part of the visible spectrum by carefully se-
lecting the materials parameters [25].

Using the Green tensor technique [15], the absorption
cross sections of Au–Ag mixed nanostrip systems are cal-
culated. There are two strong resonances at λ = 530 nm and
λ = 660 nm for the parallel case and one strong resonance at
λ = 535 nm for the perpendicular case, as shown in Fig. 6.
In the following we will see that these peaks are also well
predicted by the Green matrix method. For the parallel case,
at λ = 530 nm, when η = 2.3, the calculations indicate a
strong resonance at εAu = −4.78 with CAu = 0.0102 and
εAg = −12.30 with CAg = 0.03818. It means that the Ag
nanostrip plays the main role in the absorption spectrum, in
agreement with the result in Fig. 6(a), where the cross sec-

tion of Ag is larger than the value of Au. This agreement
is also observed at λ = 660 nm in Fig. 6(a), where the re-
sults of the Green matrix method are εAu = −14.47 with
CAu = 0.07168 and εAg = −21.27 with CAg = 0.03394,
and at λ = 535 nm in Fig. 6(b), where εAu = −5.31 with
CAu = 0.0739 and εAg = −12.79 with CAg = 0.18766. It
is found that there are some differences between the pre-
dicted dielectric permittivities and the values of real metals.
However, when we map these values into the wavelength re-
gion, there is only a 5 ∼ 15 nm difference. The above results
are also in line with the results of heterogeneous Au–Ag
dimers [27]. Hence we have verified the accuracy of our re-
sults using a completely different numerical approach.

Finally, we discuss the validity of numerical results with-
out considering the loss of metal. It is noted that, for a
fixed wavelength and a specific nanostructure, when we
use GMM to predict those resonance dielectric permittivi-
ties ε = ε′ + iε′′, the imaginary part ε′′ is not considered.
Generally, when we consider surface plasmon resonances
in optical wavelength, |ε′| 
 |ε′′|, which means that the
imaginary part of the dielectric permittivity will not have
a large influence in the resonance position. However, ε′′
determines the width of resonance and the intensity of the
near field enhancement in some degree. In [17], by compar-
ing GMM with Discrete dipole approximation (DDA) [26],
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a 20 ∼ 50 nm difference in resonance was observed, indi-
cated a good agreement between both methods. Recently,
for the completely same nanostrips of Au, results obtained
from GMM without considering losses and DDA with con-
sidering losses indicate a 30 nm discrepancy in the reso-
nance wavelength between 500 nm and 1000 nm [25]. We
can therefore conclude that using GMM to predict the sur-
face plasmon resonances is physically meaningful.

4 Summary

In this work, we have first extended the Green matrix
method to two-component nanostructures. We have investi-
gated the resonance combination of surface plasmons in two
nanostrips. It is found that, when one nanostructure is metal
and the other one is dielectric, the effect on the resonances
is expressed as a very small shift. When both nanostructures
are metal, the resonance properties are generally dominated
by one metal or expressed as a collective resonance of both
metals. We have also obtained the avoiding of crossing and
mode transfer phenomena between resonance branches. The
study of the resonance combination should provide the foun-
dation for the design of hybrid plasmonic devices, such as
plasmonic sensors and plasmonic waveguides.
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