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Abstract

Using the local (flux-tube) version of the Eulerian code GENE (Jenko et al
2000 Phys. Plasmas 7 1904), gyrokinetic simulations of microturbulence
were carried out considering parameters relevant to electron-internal transport
barriers (e-ITBs) in the TCV tokamak (Sauter er al 2005 Phys. Rev. Lett.
94 105002), generated under conditions of low or negative shear. For
typical density and temperature gradients measured in such barriers, the
corresponding simulated fluctuation spectra appears to simultaneously contain
longer wavelength trapped electron modes (TEMs, for typically k, p; < 0.5,
k) being the characteristic perpendicular wavenumber and p; the ion Larmor
radius) and shorter wavelength ion temperature gradient modes (ITG, k, p; >
0.5). The contributions to the electron particle flux from these two types
of modes are, respectively, outward/inward and may cancel each other for
experimentally realistic gradients. This mechanism may partly explain the
feasibility of e-ITBs. The non-linear simulation results confirm the predictions
of a previously developed quasi-linear model (Fable et al 2010 Plasma Phys.
Control.  Fusion 52 015007), namely that the stationary condition of zero
particle flux is obtained through the competitive contributions of ITG and TEM.
A quantitative comparison of the electron heat flux with experimental estimates
is presented as well.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Internal transport barriers (ITBs) [1,2] are regions of reduced outward radial energy and/or
particle transport in the core of magnetic fusion relevant plasmas. This reduced transport is
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reflected by increased density and temperature gradients in the barrier region compared with
standard discharges. ITBs may therefore provide a promising approach for achieving high
performance regimes in fusion reactors. A true understanding of the physical processes that
lead to the formation of ITBs is still lacking today and thus presents a major challenge to both
theory and numerical modeling. Gyrokinetic codes, which enable us to simulate the turbulent
transport in magnetic confinement plasmas, should provide a powerful tool to meet this goal.
However, before tackling the actual problem of barrier formation, numerical simulations should
first prove to be successful at reproducing the reduced outward radial transport of already
formed barriers, given the corresponding experimentally measured background conditions,
i.e. in particular, magnetic equilibrium geometry, as well as radial profiles of density n and
temperature T for the different species.

Attempting to model the low transport levels for given experimental conditions is thus the
motivation of this study, considering measurements obtained for electron-internal transport
barriers (e-ITBs) in the TCV tokamak. Such electron barriers have been systematically
obtained in TCV under conditions of low or negative magnetic shear §, leading simultaneously
to sharp density and electron temperature gradients [3—7]. Although heating (in particular,
electron cyclotron resonance heating, ECRH) is applied to the core of the plasma, no external
particle fueling is provided to this central region in these discharges. The e-ITBs are thus
maintained during the discharge over hundreds of diffusion confinement times with a zero
radial electron particle flux, which in itself is a remarkable feature of these barriers [6].

The e-ITBs in the TCV tokamak are characterized by (1) their high global energy
confinement improvement, a factor of 4-6, over TCV L-mode scaling, (2) their high local
electron temperature gradients, R/L7, 2 15, compared with usual values in electron cyclotron
(EC) heated discharges, for which typically R/Ly, 2~ 10, and (3) their high bootstrap current
fraction (40-100%) [3—7]. Here and in the following, L 4 stands for the characteristic gradient
length of profile A and R for the major radius of the tokamak. Ithas been shown experimentally
that the degree of magnetic shear reversal is the key to the formation and sustainment of the
e-ITBs and furthermore that they can be maintained with zero loop voltage [3—5]. One can
thus conclude that the improved density gradient in these barriers is not due to a Ware pinch
effect [6]. Simulations of TCV e-ITBs using the ASTRA transport code have confirmed that
the confinement improvement indeed increases with an increased negative magnetic shear
profile [7].

In certain types of ITBs, a significant background E x B shearing rate appears as an
essential characteristic. This seems not to be the case in the TCV e-ITBs. Indeed, although
there is currently no systematic measurement of this background flow shearing rate, preliminary
measurements [8] indicate that they are not more significant in e-ITB discharges than in standard
Ohmic discharges and thus do not play an essential role in barrier formation and sustainment.

In terms of gyrokinetic modeling, the TCV e-ITBs have only been studied so far using
the linear, global code LORBS [9] and a quasi-linear model based on linear, local (flux-tube)
gyrokinetic results from the GS2 code [10, 11]. The former study, based on mixing length
estimates, has shown that the stabilization of trapped electron modes (TEMs) by (s — «)
effects provides an explanation for the reduced heat transport in the barriers. The latter study
enabled us to show that the stabilization of TEMs can furthermore explain the significant
electron thermo-diffusive pinch and resulting density peaking observed, albeit with strong
central electron heating [6]. More specifically, the quasi-linear model presented in [11]
has shown how the interplay of ion temperature gradient (ITG) and TEMs may lead to a
zero electron particle flux for the correct combination (R/L,_ , R/Lt,, R/Lt) of normalized
electron density, electron temperature and ion temperature gradients, respectively. In this
model, the two types of modes provide different contributions to an effective inward particle
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pinch, resulting in part from a thermo-diffusive mechanism related to the radial temperature
gradient 97, /dp;, which compensates for the outward diffusion related to the density gradient
on./0p;. Here py = /¢ /Pt cdge, With ¢ the toroidal flux, is used as the definition of the local
normalized minor radius.

Non-linear gyrokinetic simulations modeling TCV e-ITBs have, however, not been
performed so far, which is the purpose of this work. The constraint that there is a significant
density peaking in these barriers with no particle source is actually very strong. This study has
thus focused on attempting to simulate the improved heat transport, characterized by a high
R/L7,, while satisfying the zero particle flux constraint with a significant density gradient,
which is more demanding than studying the heat flux alone. Indeed, a large electron heat flux
could sustain the observed R/L7, value. However, at such large R/L7,, TEMs are destabilized
already at small values of R/L,,, which tends to result in a so-called ‘pump-out’ effect [11, 12].
This is why it is important to test the quasi-linear predictions [11] for the e-ITBs with non-
linear simulations as well, namely that e-ITBs can have both large R/L7, and R/L,, values
with dominant electron heating.

In the following, it will be shown how the predictions of the quasi-linear model [11]
for achieving a stationary electron particle flux, I'. = 0, are validated under the particular
conditions relevant to the TCV e-ITB discharges by non-linear gyrokinetic simulations using
the local (flux-tube) version of the GENE code [13]. Preliminary attempts at quantitative
comparisons between simulation results and experimental measurements of the electron heat
transport will be discussed as well. It will be shown that the local flux-tube simulation is
unable to fully reproduce the low heat transport levels in e-ITBs. Indeed, the electron heat
fluxes predicted by the simulations remain larger by at least a factor of two, even for electron
gradient values R/L,, and R/L7, at the lower range of those measured in these barriers. It is
thus concluded that the stabilization from finite size effects (measured by p* = p;/a, p; being
the ion Larmor radius, a the minor radius of the plasma) are expected to be essential and thus
that global simulations are required for a fully realistic modeling of e-ITBs. Identifying the
limits of local flux-tube simulations for modeling the e-ITBs may thus be considered as an
essential prerequisite in view of such global calculations.

The remainder of this paper is organized as follows: section 2 briefly describes the
typical physical conditions observed in TCV e-ITB discharges. Section 3 summarizes the
numerical model considered by the gyrokinetic GENE code. Results from linear simulations
for e-ITB-type conditions are presented in section 4, and corresponding quasi-linear estimates
for the particle flux in section 5. The non-linear simulation results for both particle and heat
fluxes are then presented in section 6. Conclusions are drawn in section 7.

2. e-ITBs in the TCV tokamak

The TCV tokamak is characterized by a major radius R = 0.88 m, minor radius a = 0.25m
(at mid-plane), a magnetic field on axis By = 1.44 T, and a plasma current up to / = 1.0 MA.
One of its particularities is its significant available auxiliary EC heating and current drive
power provided by nine gyrotron sources totaling 4.5 MW. Making use of these sources,
fully EC driven, bootstrap dominated, reversed magnetic shear e-ITB discharges have been
systematically obtained [3-5]. Typical electron temperature 7, and density n. profiles, as
well as safety factor ¢ and corresponding magnetic shear § profiles, obtained in such e-ITB
experiments, are shown in figures 1(a)—(d), respectively, for TCV discharge #29866 [7].
Delimited with vertical lines is the barrier region 0.28 < p; < 0.46, clearly characterized by
steep electron profile gradients. Note, in particular, that the magnetic shear inversion (s = 0)
falls within the barrier at o, >~ 0.4. The measured electron gradients in the e-ITBs are typically
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Figure 1. TCV discharge #29866 with e-ITB in radial region 0.28 < p; < 0.46. Shown profiles
are the experimentally measured (a) electron temperature 7, and (b) electron density n., as well
as (c) safety factor g5 and (d) magnetic shear § from MHD reconstruction provided by CHEASE.

in the range R/Ly, = 10-30 for temperature profiles and R/L,, = 3—15 for density profiles.
Based on a limited number of other TCV discharges using charge exchange recombination
spectroscopy (CXRS), the electron/ion temperature ratio is estimated at T = 7./7; = 3.5.
No accurate ion temperature profile measurements are, however, available so far for the here
considered e-ITB discharges, so that R /L7, remains unknown. The effective ionization degree
is approximately Z.g =~ 2, with carbon (Z¢ = 6) as dominant impurity.

3. Numerical model

The GENE code [13] was used for carrying out the gyrokinetic simulations. GENE is an
Eulerian-based code, i.e. discretizing the distributions of the different plasma species on a
fixed Cartesian grid in phase space, and enables non-linear simulations of microturbulence
in both tokamak and stellarator geometries. Full multi-species kinetic dynamics, as well
as electrostatic and electromagnetic fluctuations, may be considered. Linearized self- and
inter-species collisions are also implemented. Interfacing to MHD equilibrium codes such
as CHEASE [14] is provided. The five-dimensional phase space variables considered in
GENE are the three field-aligned configuration space coordinates (x, y,z) and the two
velocity variables (v, ). Here x stands for the radial, y the bi-normal and z the so-called
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parallel coordinate (corresponding, in fact, to the straight field line poloidal angle, used
for labeling the position along the magnetic line), while v, is the parallel velocity, and
n o= mvﬁ_/ZB the magnetic moment. GENE is massively parallelized using domain
decomposition over all phase space directions as well as over the kinetic species. For
linear mode analysis, it makes use of the PETSc/SLEPC package [15, 16] for eigenvalue
computations.

More recently, GENE has been generalized for tokamak plasmas from a flux-tube
to a global geometry [17-19], with the goal of addressing finite p* effects. The global
GENE version, in particular, includes radial variation of profiles (density, temperature,
geometrical coefficients), non-periodic radial boundaries, as well as particle and heat
sources/sinks which thus enable us to carry out global, quasi-stationary simulations of
microturbulence.

In order to model conditions relevant to e-ITBs observed in TCV, discharge #29866
described in section 2 is considered. Although global simulations might turn out to be essential
for fully modeling e-ITBs, this study was mainly carried out with the flux-tube version of
GENE. These local simulations have been run for the physical parameters at the particular
radial position p; = 0.3, corresponding to a local inverse aspect ratio € = r/R = 0.09. The
computations make use of the magnetic equilibrium reconstruction provided by CHEASE, in
particular, giving the safety factor and shear values ¢; = 3.2 and § = —1.17, respectively, at
pr = 0.3. Three kinetic species with real mass ratios are evolved: electrons (e~), deuterium
(D*) and carbon (C®") as impurities. The following physical parameters are set for the
different species: for electrons, the density and temperature gradient values R/L,, = 3 and
R/L7, = 12 are chosen. Note that these electron gradient values are at the lower end but
nonetheless within the corresponding ranges measured in the TCV e-ITBs. For the electron
density and temperature, used for estimating collisionality, the values n, = 1.2 x 10" m™3
and T, = 4.5keV are considered. Both ion species (D* and C®") are assumed to have identical
temperature profiles, Tp = T¢ = T;, with an electron to ion temperatureratiot = T,/ T; = 3.5.
The unknown ion temperature gradients are scanned over the range R/Lyp = R/Lyc =
R/L7, = 2-10. The ion/electron density ratios are set to np/n. = 0.8 and nc/n. = 0.03,
ensuring both quasi-neutrality, i.e. ne = np+Zcnc,and Zeg = ), niZiz/ > i niZi = 2 (where
the sums are over all ion species), in agreement with the experimental measurements. The
ion density gradients are themselves constrained by quasi-neutrality, leading to the relation
(np/ne)(R/Lyp) + Zc(nc/ne)(R/Lyc) = R/L,,. Furthermore, a study carried out in [20],
based on the same quasi-linear model as in [10], has shown that for R/L,c >~ (1/2)R/L,,
both the electron and the carbon impurity particle fluxes could be simultaneously canceled, i.e.
['e = I'c = 0. These two constraints were thus used for estimating the density gradient
values R/L,p = 3.4 and R/L,c = 1.5, for deuterium and carbon, respectively. The
finite collisionality is accounted for in the simulations and is based on the experimental
values, leading to a normalized collisionality v} = 1/t we€”> = 5.6 x 1072, where
T = 3(27‘[)3/265 TeS/zmi/z/niZ%4 log A is the electron collision time, we = ve/Rqs the
transit frequency, vy, = (T/m)'/? the thermal velocity, m, the electron mass, and having
chosen the value log A = 20 for the Coulomb logarithm. A finite 8 = 10~* is considered,
which is small compared with the experimental value 8 ~ 1072, but enables us to suppress
the high-frequency electrostatic shear-Alfvén modes [21] (thus avoiding the correspondingly
required small time steps) while avoiding electromagnetic effects on the transport, so that
the simulations may be considered as essentially electrostatic. Note that the temperature
ratio T./T; > 1 as well as Z.s > 1 both have a stabilizing effect on the very short
wavelength electron temperature gradient (ETG) modes [22], which thus did not need to be
resolved.
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Figure 2. Linear frequencies and growth rates of most unstable modes as a function of k p; for
(@) R/Ly, =5.0and (b) R/LT, =6.3.

4. Linear simulations

Considering the two different normalized ion temperature gradients R/Ly;;, = 5.0 and
R/Ly, = 6.3, the GENE code was first run in its spectral analysis mode to obtain the
most unstable eigenmodes for each wavenumber k,p; over the range 0.0 < kyp; < 2.2.
The deuterium Larmor radius is defined as p; = vy, i/ 2, with ; = eBy/m; the cyclotron
frequency. Given the definition of the y coordinate considered in GENE, the corresponding
wavenumber can be written as k, = nqs/r, where n is the toroidal wavenumber and r = pia
is the minor radius at the flux-tube position. The linear growth rates y and real frequencies
wr as a function of k,p;, normalized with respect to vy ;/R, are shown in figure 2. For
both values of R/Lyp;, the unstable k, spectra simultaneously contains longer wavelength
TEM modes, i.e. with negative frequency, and shorter wavelength ITG modes, with positive
frequency. More specifically, the most unstable eigenmode for each k, is a TEM for k,, < ko
and an ITG for k, > ko. Note, however, that going from R/Ly, = 5.0 to R/Ly, = 6.3 the
most unstable mode over the whole spectrum changes from TEM to ITG and the transition
wavenumber shifts down from kyp; = 0.7 to kgp; = 0.5. Finally, for the ion temperature
gradient R/Ly, = 6.3 considered in figure 2(b), there are in fact two unstable ITG branches
that coexist simultaneously for kyp; > 1; however, only the frequency and growth rate of the
most unstable ITG mode at each k, has been shown in this plot. The discontinuity in the real
frequency at k,p; = 1.6 corresponds to the wavenumber at which the growth rates of these
two branches cross.

5. Quasi-linear study

Quasi-linear estimates of fluxes are obtained using the same model as considered in [11]. The
quasi-linear flux F9'!, where F stands either for the electron particle flux I, or heat flux Q. is
thus computed as follows:

Fal — Z ﬁ;?,'l' Ak, 1)
k,
where Ak, is the wavenumber spacing and the contribution from the mode k,, is estimated by
. Alky N
B = (ky) . )
’ [ Do, (0>
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The term I:"ky stands for the linear flux, which is computed from the most unstable eigenmode
provided by linear GENE simulations at each k,. For particle and heat fluxes, respectively,
1:";(“‘ is thus given by

~ ! ik, ~ A%

fr = <2%Z [B—>/ d3v5fk”kvc{>k”kv]> , A3)
ke & 70 i

A ik m Aoax

Qk), =S <2§ﬁ Z |:B—;/ d31) EUZkaX,k), Cbkx,ky:|> . (4)
ky

z
In (3) and (4), (A), = [ J¥%(2)A(z)dz/ [ J**(z) dz completes the flux surface-averaging,
with J*% the Jacobian relative to the coordinate system (x, y, z), N takes the real part of the
following complex number and [ ka,k), (2), Cﬁkhk‘, (z)] are the (k, k) Fourier components
of the distribution fluctuation and gyro-averaged electrostatic potential, respectively. In

Fourier space, the gyro-averaged field is conveniently obtained from the relation d_>kx,ky =

Jotkivy/ Q)dADkX,k‘,, where Jj is the zeroth order Bessel function, €2 the cyclotron frequency,
K =g k2 +2 8% koky+g" k3, and gV = V- Vv the geometric coefficients related to the
coordinate system (x, y, z). The amplitudes of linear modes being physically irrelevant, the
linear fluxes must be renormalized, which is the role of the factor A(k,)/| Ci)o,k‘, 0))? appearing
in (2), where the spectral amplitude weighting A(k,) is given for the considered quasi-linear
model [11] by
Vi, 2 5
A = —— ] .

oy =40 ((kb) )
In (5), yx, is the linear growth rate of the most unstable mode at k, and the average squared
perpendicular wavenumber (k? ) is obtained by weighting over the corresponding eigenmode

envelope ‘kax, K, (2):
<k2) B ka f(gxx kf + ng)' kxky + gyy ki) |<i)kk,ky (Z)|2 dz
J_ B F .
>k S 1Pr ok, (DI dz

Figure 3(a) plots the spectral density for the quasi-linear electron particle flux r 2‘1'(/@)
as a function of k,, for the different ion temperature gradients R/Lz, = 5.0, 6.3 and 7.5. This
spectral analysis shows (positive) outward particle flux contributions at the lower k, values
(ky < ko) where TEM modes are most unstable, while (negative) inward flux contributions
are provided at the higher &, values (k, > ko) where the ITG modes are most unstable (see
figure 2). This result stresses the importance of keeping all k, mode contributions in the quasi-
linear estimates (1) of the fluxes. According to the theoretical study of possible turbulent
convective mechanisms carried out in [11] in the frame of the quasi-linear model, the outward
(respectively inward) fluxes in the case of TEM (respectively ITG) modes can be identified as
a thermo-diffusive pinch effect resulting from the trapped particles whose precessional drift
frequency resonates with the wave frequency. One should point out that the condition of zero
particle flux, coinciding with the ITG/TEM transition, has also been identified using other
types of quasi-linear models, such as described e.g. in [23, 24].

The quasi-linear estimates for the total electron particle flux 1“;“' are plotted in figure 3(b)
as a function of R/L7y, clearly showing a transition from an effectively outward flux at lower
ion temperature gradients where the TEM is the overall most unstable mode to an inward flux
for higher gradients where the ITG is the overall most unstable. A stationary state with zero
particle flux, I'e = 0, is thus predicted at the so-called stationary gradient R/Ly; sac. The
estimate by the quasi-linear model for this stationary gradient is thus R/Lyz; st = 6.5.
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Figure 4. Non-linear simulation results: Time evolution of fluxes of the different species (electrons
(e7), deuterium (D*), carbon (C®*) from non-linear simulation at R /L1, = 5.0. (a) Particle fluxes
and (b) heat fluxes.

Note that all particle fluxes shown in figure 3 have been normalized with respect to the total

quasi-linear deuterium heat flux Qiq'l' so as to remove the calibration coefficient Ay appearing
in the spectral weighting (5).

6. Non-linear simulations

Non-linear GENE simulations were then carried out for the same e-ITB relevant conditions
as those considered for the linear and quasi-linear studies. The time traces for the non-linear
particle and heat fluxes for all three species, electrons, deuterium and carbon, are shown in
figure 4 for the ion temperature gradient R/Ly, = 5.0. The TEM is the most unstable linear
mode for this value of R/Ly7 and, in agreement with the quasi-linear estimates, the total
electron particle flux is outward. Note also that the electron heat flux dominates the ion heat
fluxes in this case, which is also consistent with the fact that the TEM is the most unstable
mode. One can furthermore verify that the particle fluxes for the different species are such
that the ambipolarity condition I'p + ZcI'c = I is exactly satisfied.
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Figure 5. Non-linear simulation results: (@) electron particle flux spectra I'e(ky) for different
R/L7, and (b) total particle flux I versus R/Lr;.

The spectral density of the non-linear electron particle flux I, (ky) is shown in figure 5(a)
as a function of k, for essentially the same values of the ion temperature gradients R/Ly;
as considered for the quasi-linear results of figure 3(a). The total electron particle fluxes as
a function of R/L7, are plotted in figure 5(b). These non-linear results clearly validate the
quasi-linear model results, in particular, concerning the detailed spectral features of outward
(respectively inward) fluxes in the linearly TEM (respectively ITG) dominated k, ranges.
Furthermore, the stationary ion temperature gradient R/Ly, s = 5.9 obtained from these
non-linear simulation, i.e. where I, = 0, is in good agreement with the quasi-linear estimate
value R/L7, o = 6.5. This close agreement is also a strong indication that the mechanisms
at play in the non-linear simulations which lead to the particle pinch are essentially the same
as those which had been identified in the frame of the quasi-linear model [11].

As already mentioned, the ion gradient R/ L g is of particular interest as it corresponds,
from the particle transport point of view, to an equilibrium state for a system with no internal
particle sources. In our case of interest, R/Ly; i should thus agree with the ion temperature
gradient in the fully developed e-ITB. The corresponding experimental value is, however,
unavailable at this point. In an attempt to nonetheless further validate the relevance of the
non-linear simulations for modeling the considered e-ITB, one may compare the electron
heat transport computed for R/L7 ¢ With experimental measurements obtained within the
barrier. To this end, the spectral density of the non-linear electron heat diffusivity X.(k,) as
well as the total heat diffusivity x. are shown in figure 6, for the same values of R/Ly, as
in figure 5. The electron heat diffusivity is estimated here as x. = Q./ne{|VT.|), where
((IVT.])) = 0T./0p(|V p|) is the flux surface-averaged electron temperature gradient.

A remarkable feature which appears in the R/Ly, scan of . is the well defined local
minimum of the electron heat transport at R/Lp; .. A very similar effect had already been
observed and discussed in [24]. From the spectral decomposition of the heat diffusivity in
figure 6(a), one observes that the peak related to TEM modes at k, p; 2~ 0.4 is removed when
going from R/Ly; = 5.0 to R/Ly, = 6.0. A new peak then appears in the ITG part of the
spectrum around k, p; 2 0.7, which then increases together with the ion temperature gradient
beyond R/Lz, = 6.0. A nonlinear interaction between ITG and TEM modes in the spectral
region k,0; >~ 0.5, where these two modes have similar linear growth rates, thus appears as
a reasonable explanation for the local minimum of the electron heat flux around R/L7; gta-
According to figure 6(b), the estimate from the non-linear simulations for the electron heat
diffusivity at R/L7 sa is thus of order xe(R/L7 star) = 2m?s~!, which is to be compared
with the experimentally measured value xe © =~ 1 m?s~!. The minimum of x. at R/Lz. sa
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(b)
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Figure 6. Same as in figure 5 but showing (a) electron heat diffusivity spectra xe (k) and (b) total
diffusivity ye in SI units (m?s~").

corresponding to a local relative reduction of 30% (the neighboring R /L7, dependence of . is
quite flat and of order x. = 3.5m?s~!) is thus insufficient in itself in explaining the low heat
transport observed in the barriers. One should nonetheless note that although still significantly
larger by a factor of two, this numerical result for the electron heat transport is at least within
the same order of magnitude as the experimental measurement.

7. Conclusions

Linear and non-linear flux-tube simulations using the GENE code have been carried out
for conditions relevant to e-ITBs in the TCV tokamak. For the electron temperature and
density gradients observed in these barriers, the simulation results show that a particular ion
temperature gradient R/Lrp; , may be found for which the electron particle flux I'e goes to
zero. Such a state with I'. = 0 is expected to exist under conditions of no internal particle
sources, as is the case in the e-ITB discharges of interest. The non-linear simulations clearly
show how the zero electron particle flux results from the coexistence of TEM and ITG modes
in the unstable k, spectrum, respectively, leading to outward and inward contributions which
cancel outat R /L, star. These non-linear results strongly validate predictions obtained with the
quasi-linear model considered in [11], in particular, concerning the detailed spectral features,
as well as in quantitatively estimating the stationary gradient R /L7, ga.

Unfortunately, TCV lacks diagnostics for estimating ion temperature gradients and the
value for the stationary gradient obtained from the simulations can therefore not be directly
confronted to experimental measurements. Instead, the heat diffusivity x. obtained from
the non-linear flux-tube simulations at R/L7, s has been compared with the experimental
values measured in the e-ITB and an agreement within a factor of two was found. It is
to be noted, however, that the electron temperature and density gradients R/L,, = 3 and
R/L7, = 12, which have been considered in the simulations presented here, are at the lower
range of the experimental values observed in TCV e-ITBs (see section 2). A preliminary
sensitivity study has been carried out in which stronger electron density and temperature
gradients, i.e. in the middle range of measured values, were considered. In all cases, an ion
temperature gradient R/L7, = R /L7, ga could still be identified for which the electron particle
flux I's canceled. However, the corresponding electron heat diffusivity . increased with these
steepened gradients, especially with respect to R/L,,, taking on values clearly above the
experimental ones.
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Further work is thus clearly still required to fully explain the transport mechanisms in e-
ITBs. One possible explanation is the finite p* effects, which may be accentuated by the narrow
gradient profiles in ITBs and may lead to significantly reduced transport levels compared with
the ones predicted by local flux-tube simulations [25]. Investigating such finite size effects in
TCV e-ITBs shall be studied in the near future making use of the recently developed global
version of GENE. Finally, more realistic simulations should also allow for electromagnetic
fluctuations by accounting for the finite 8 values in the experiment, whose effect could be
particularly significant in the large pressure gradient region of the e-ITBs.
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