

POLITECNICO DI MILANO

Facoltà di Ingegneria Industriale

Corso di Laurea in
Ingegneria Aeronautica

Free Form Deformation Techniques for 3D Shape Optimization Problems

Relatore: Prof. Alfio QUARTERONI

Correlatore: Dr. Ing. Gianluigi ROZZA

Tesi di Laurea di:

Anwar KOSHAKJI Matr. 720668

Anno Accademico 2009 - 2010

ii

Wherever your heart is,
there you will find your treasure.

— The Alchemist, P. Coelho

..to my family..

iv

Acknowledgments

Questa pagina non dovrebbe essere una semplice pagina ma un capitolo vero
e proprio, tante sono le persone che vorrei ringraziare.

A cominciare dal mio relatore, Prof. Dr. A. Quarteroni, che per primo mi
ha offerto l’opportunità di lavorare a questo progetto e di vivere un’esperienza
così stimolante come quella di Losanna, e dal mio correlatore, Dr. G. Rozza,
per la sua pazienza, attenzione e rigore nel leggere questo lavoro e per il suo
costante sforzo nell’applicare le sue conoscenze per correggerlo, migliorarlo e
perfezionarlo. Voglio ringraziare inoltre il Prof. L. Formaggia che ha sostenuto
la mia partecipazione al progetto di scambio. Un grande grazie va anche a tutto
il gruppo del CMCS: Matteo Lombardi, Paolo Crosetto, Andrea Manzoni, Laura
Iapicino, Matteo Lesinigo, Cristiano Malossi, Fabrizio Gelsomino, per il loro sup-
porto e per aver contribuito a rendere unica e piacevole l’esperienza di Losanna.
Un grazie va anche a quei professori, che spero siano sempre di più, che in questi
anni di formazione hanno saputo andare oltre la semplice lezione, trasmetten-
domi non solo la pura pragmaticità della loro materia di insegnamento, ma anche
lo stimolo della ricerca e il piacere del confronto aperto e rispettoso. Qualcosa a
mio parere molto più importante delle semplici nozioni.

Poi voglio ringraziare chi ho conosciuto in questi anni, con cui ho condiviso
magari anche solo un semestre, un solo un esame, chi invece ho perso lungo il
tragitto e chi alla fine è rimasto. Le prove sono state molte e dure, ma proprio
a causa di queste difficoltà sono nati dei legami che mi auguro continueranno
a durare e a rafforzarsi anche una volta finito questo percorso. A Roby, Andre,
il Leo, Alessio, Marco, Enri, Gabro, Ale Alo, Dvd, Umbe, Alessia, Stefano, i
“Gionnis” Alberto e Davide, Ema e Ivan, Anto e potrei continuare ancora. Grazie
per tutte le chiaccherate, i consigli, le risate insieme, le birre, le pizze e le sclerate
di questi anni, le porterò sempre con me.

Un grazie speciale va ai miei amici di sempre, alla mia famiglia allargata,
Manu, Miky, Albi, Ale, il Raffo e Miky di guanza. Per tutto il bene che vi voglio

v

e per aver condiviso con me alcuni dei momenti più belli e unici che io ricordi.
Per esserci sempre e comunque e perché, pur per strade diverse, siamo parti di
un unico percorso. Per citare gli Articolo 31 in una canzone che canto sempre a
squarciagola “..realizzi che lo stile è quando siamo uniti..”. Ogni volta che sento
quella canzone penso a voi. In particolare un grazie speciale va a te sorellina,
semplicemente per averti conosciuta e per il dono della tua vera, incrollabile,
insostituibile amicizia.

Grazie a te Sam, ormai sempre più uomo, pronto a superarmi non solo in
altezza, per tutti i consigli, le discussioni e perché no anche le litigate (in fondo
siamo due arieti), perché sono convinto contribuiscano a farci crescere entrambi
e perché so che, comunque vada, oggi come domani, possiamo sempre contare
l’uno sull’altro. Sono fortunato ad averti come fratello. A big big thanx anche a
mio zio Henry per il suo aiuto, per tutto il suo affetto, ma soprattutto per essere
lo zio migliore che esista e il primo amico che io abbia mai avuto. Le persone
come te sono rare purtroppo.

Ma coloro che più di ogni altro devo ringraziare sono quelle persone merav-
igliose che sono i miei genitori, Joseph e Nicoletta. A loro devo più di chiunque
altro. Devo semplicemente tutto. Probabilmente nessuna parola o frase sarebbe
all’altezza per dire loro quanto veramente vorrei esprimere....grazie di cuore. Per
tutto l’Amore, il sostegno, il supporto che mi avete sempre dato da 26 anni a
questa parte. Senza di voi non solo questo lavoro non sarebbe stato possibile,
ma io stesso non sarei l’uomo che sono adesso, nel bene e nel male. Questo lo
devo a voi. Grazie.

vi

Abstract
The purpose of this work is to analyse and study an efficient parametrization

technique for a 3D shape optimization problem. After a brief review of the
techniques and approaches already available in literature, we choose to use the
Free Form Deformation parametrization, a recent technique which proved to
be efficient and at the same time versatile, allowing to manage complex shapes
even with few parameters. We tested and studied the technique by developing a
link among different specialized softwares, in order to establish a path, from the
geometry definition, to the method implementation, and finally to the simulation
and to the optimization of the problem. In particular, we have studied a bulb
and a rudder of a race sailing boat as model problems.

Sommario
Lo scopo di questo lavoro è quello di analizzare e studiare una tecnica di

parametrizzazione applicandola ad un problema 3D di ottimizzazione di forma.
Dopo una rassegna delle principali tecniche e approcci già presenti in letteratura,
si è scelto di utilizzare la parametrizzazione Free Form Deformation (FFD), una
tecnica recente che si è dimostrata essere alquanto potente e allo stesso tempo
versatile, consentendo di gestire forme complesse anche con un numero esiguo
di parametri. È stato studiata e sviluppata un’interfaccia tra diversi software
in modo da stabilire un percorso standard utilizzabile per costruire qualsiasi
problema generico, dalla definizione della geometria, all’implementazione del
metodo, fino alla simulazione e alla soluzione del problema di ottimizzazione.
Nello specifico, sono stati utilizzati come modelli un bulbo e un timone di una
barca a vela da competizione.

vii

viii

Outline

Sempre più frequentemente, in molti problemi di interesse ingegneristico è
richiesto di risolvere un sistema di equazioni alle derivate parziali. Quando è
necessario richiamarle molte volte nello stesso ciclo, ad esempio in un problema
di ottimizzazione di forma, a maggior ragione è necessario avere a disposizione
un modo per ridurre i costi computazionali che facilmente possono diventare
proibitivi. Due possono essere le direzioni verso cui agire: la riduzione del mod-
ello matematico e la parametrizzazione efficiente della geometria. Questo lavoro
è rivolto a studiare proprio questo secondo aspetto, e a questo scopo sono state
analizzate diverse tecniche di parametrizzazione da utilizzare in un contesto di
shape optimization. In particolare, sono stati approfonditi aspetti e potenzial-
ità del metodo di parametrizzazione di forma Free Form Deformation (FFD),
il quale è risultato essere molto versatile e al tempo stesso potente ed efficace,
utilizzabile anche per le forme alquanto complesse. Si è partiti da una FFD bidi-
mensionale e la si è estesa al caso tridimensionale, applicandola successivamente
in un processo di ottimizzazione di forma a due componenti idrodinamiche di
un’imbarcazione da competizione: un bulbo e un timone. Le equazioni utilizzate
sono quelle di Navier-Stokes e per la loro risoluzione è stata usata una dis-
cretizzazione agli Elementi Finiti. Per l’ottimizzazione è stato usato il metodo
di ottimizzazione Sequential Quadratic Programming (SQP). Al fine di ottenere
un ciclo automatico di progetto, stabilendo così un percorso standard da poter
utilizzare per i problemi più diversi, è stata studiata una sinergia e una porta-
bilità tra diversi softwares. A cominciare dalla costruzione del modello CAD
(SOLIDWORKS), all’implementazione di FFD e dell’algoritmo di ottimizzazione
(MATLAB) e alla risoluzione delle equazioni di Navier-Stokes (COMSOL Mul-
tiphysics).

Il capitolo 1 illustra le principali tecniche di parametrizzazione, in partico-
lare soffermandosi su quelle più usate e conosciute: le curve di Bezier, B-Splines
e NURBS. Il capitolo 2 è interamente dedicato alla descrizione della FFD, le

ix

sue proprietà, le sue applicazioni e la sua estensione al caso tridimensionale.
Nel capitolo 3 sono illustrate le tecniche e gli strumenti utilizzati per creare e
gestire i modelli geometrici. Il capitolo 4 è dedicato alla formulazione del mod-
ello matematico, ossia delle equazioni di Navier-Stokes e della loro formulazione
debole, le approssimazioni adottate, la discretizzazione agli elementi finiti, le
proprietà delle mesh, le proprietà geometriche, la descrizione dei solutori utiliz-
zati e l’algoritmo di ottimizzazione. Infine nel capitolo 5 si riportano e illustrano
i risultati delle ottimizzazioni di forma effettuate su bulbo e timone, mentre nel
capitolo 6 vengono fatte alcune considerazioni conlusive e proposte di possibili
sviluppi futuri.

x

Contents

1 Introduction 1
1.1 Different approaches . 3
1.2 Bezier curves . 7

1.2.1 Definition . 7
1.2.2 Properties . 7
1.2.3 De Casteljau’s algorithm 10
1.2.4 Subdividing a Bezier curve 12

1.3 B-spline curves . 13
1.3.1 Definition . 14
1.3.2 Properties . 14

1.4 NURBS . 15
1.4.1 Definition . 16
1.4.2 Properties . 17

1.5 Surfaces . 19
1.6 Summarizing . 21

2 Free Form Deformation 23
2.1 Formulating FFD . 26
2.2 Implementing FFD . 28
2.3 FFD Properties . 29
2.4 Extension to the 3D case . 34

3 Geometrical modeling tools 41
3.1 SOLIDWORKS modeling . 43

3.1.1 CAD Models . 45
3.2 COMSOL Multiphysics . 49

xi

4 Mathematical and numerical formulation of the model prob-
lems 51
4.1 Definition of the problem . 51

4.1.1 Weak formulation of the steady Navier-Stokes equations 52
4.1.2 Finite elements . 55
4.1.3 Boundary conditions . 56

4.2 Approximations . 58
4.3 Mesh and discretization of the problem 59
4.4 Solvers . 63
4.5 Optimization Process . 65

4.5.1 General notions of optimal control 65
4.5.2 Shape optimization . 66
4.5.3 Optimization algorithm 69
4.5.4 Cost functionals . 71

5 Simulations and results 75
5.1 The bulb . 75
5.2 The rudder . 81

6 Conclusions 93

A STL format problem 97

xii

List of Figures

1.1 Mach number field on a wing shape optimized [30]. 2
1.2 A bypass configuration before (left) and after the shape optimiza-

tion [66]. 2
1.3 Streamlines and pressure field of around a bulb [54]. 3
1.4 The first three orthogonal basis functions for parametrization of

an airfoil [76]. 4
1.5 Airfoil designed by a set of points [72]. 5
1.6 Splines curve and its control points [72]. 5
1.7 Relationship between Bezier, B-splines and NURBS curves [75]. 6
1.8 The convex hull is the grey zone [75]. 8
1.9 Line in the convex hull intersecting a Bezier Curve [75]. 8
1.10 An image of a fern with self-similarity parts [10]. 9
1.11 Displacement of a control point [75]. 10
1.12 Segment AB and the point C. 10
1.13 Geometrical interpretation of De Casteljau’s algorithm [75]. . . . 11
1.14 Computational passages to the single point on C (u) [75]. 12
1.15 Subdivision of Bezier curve at u = 0.5. 12
1.16 Knots of a B-spline curve [75]. 13
1.17 B-spline for the approximation of a circle [75]. 15
1.18 Changing w9 [75]. 19
1.19 Relation between the uv-coordinate plane and the surface [75]. . 20
1.20 Isoparametric curves on a Bezier surface [75]. 21

2.1 Example of local FFD [74]. 24
2.2 Example of global FFD [74]. 24
2.3 Shape optimization using FFD on an airfoil [45]. 25
2.4 Unperturbed control points and parameters vector. 27
2.5 The transformation map T (x;µ) and its effect [45]. 28

xiii

2.6 Undeformed mesh in 2D domain with control points. 29
2.7 Deformed mesh in 2D domain by moving one control point (µ =

0.6). 30
2.8 Deformed mesh in 2D domain by moving one control point on the

boundary (µ = −0.6). 31
2.9 Deformed mesh in 2D domain by moving one control point on the

boundary (µ = 0.6). 32
2.10 Example of local FFD (µ1 = 0.5 and µ2 = 0.3). 33
2.11 Example of a rotated local FFD (θ = 10°, µ1 = −0.5 and µ2 = 0.6). 34
2.12 Computational time of 2D and 3D FFD. 35
2.13 Ellipsoid embedded in the FFD lattice. 36
2.14 The ellipsoid embedded in the FFD lattice from a lateral point of

view. 37
2.15 Deformed ellipsoid moving two points, one on the top and one on

the bottom. 37
2.16 Deformed ellipsoid by a lateral sight. 38
2.17 A car imported as STL file in MATLAB. 38
2.18 The deformed “stretched” car using FFD. 39
2.19 An A380 imported as STL file in MATLAB. 39
2.20 Deformed “filled” A380 using FFD. 40

3.1 Interaction diagram between the softwares used. 42
3.2 Operations carried out by the softwares. 43
3.3 A whole sailboat with its parts. 45
3.4 Bulb geometrical model created in SOLIDWORKS. 46
3.5 Rudder scheme. 46
3.6 Rudder final form. 47
3.7 Rudder from a lateral side. 47
3.8 STL file of the rudder imported to COMSOL. 48
3.9 IGS file of the rudder imported to COMSOL and meshed. . . . 49

4.1 Boundary conditions for the rudder problem. 57
4.2 Boundary conditions for the bulb problem. 57
4.3 Bulb imported to COMSOL Multiphysics and the domain where

the problem is defined. 60
4.4 Rudder imported to COMSOLMultiphysics and the domain where

the problem is defined. 60

xiv

4.5 Lateral view of the rudder imported to COMSOL Multiphysics
and the domain where the problem is defined. 61

4.6 The bulb and the mesh of the domain. 61
4.7 The rudder and the mesh of the domain. 62
4.8 A particular of the rudder and the refined mesh of the inner sub-

domain. 62
4.9 Scheme for the shape optimization process. 72

5.1 Domain where the bulb is inserted and definition of the “local”
FFD. 76

5.2 Lateral view of the domain and the local FFD. 77
5.3 Frontal view of the domain and the local FFD. 77
5.4 The initial shape of the bulb and the velocity in plane XY [m/s]. 78
5.5 Pressure field of the initial shape of the bulb in plane XY [Pa]. . 78
5.6 XY plane showing the simulation of the velocity field around the

optimized bulb [m/s]. 79
5.7 Pressure field around the optimized bulb in plane XY [Pa]. . . . 79
5.8 Velocity field with low Re number around an optimized bulb [m/s]. 81
5.9 The rudder and the subdomains where the rudder is placed, with

the lattice of the rotated local FFD. 82
5.10 An upside view of the rudder in the XY plane and the displace-

ments considered. 83
5.11 A lateral vision of the rudder in XZ plane and the displacements

considered. 84
5.12 The initial shape of the rudder and the velocity flow field around

it in the plane XZ at y/2 [m/s]. 85
5.13 The initial shape of the rudder and the velocity flow field around

it in the plane XY at z/6 [m/s]. 85
5.14 The initial shape of the rudder and the velocity flow field around

it in the plane XY at z/3 [m/s]. 86
5.15 Pressure field of the initial shape of the rudder in plane XZ at

y/2 [Pa]. 86
5.16 Pressure field of the initial shape of the rudder in plane XY at

z/6 [Pa]. 87
5.17 Pressure field of the initial shape of the rudder in plane XY at

z/3 [Pa]. 87
5.18 XZ plane showing the velocity field around the optimized rudder

at y/2 [m/s]. 88

xv

5.19 XY plane showing the velocity field around the optimized rudder
at z/6 [m/s]. 88

5.20 XY plane showing the velocity field around the optimized rudder
at z/3 [m/s]. 89

5.21 XZ plane showing the pressure field around the optimized rudder
at y/2 [Pa]. 89

5.22 XY plane showing the pressure field around the optimized rudder
at z/6 [Pa]. 90

5.23 XY plane showing the pressure field around the optimized rudder
at z/3 [Pa]. 90

5.24 XZ plane with the amplified deformed rudder. 91

A.1 Example of a tridimensional object created in SOLIDWORKS. . 97
A.2 Frontal vision of a tridimensional object created in SOLIDWORKS. 98
A.3 Lateral vision a tridimensional object created in SOLIDWORKS. 98
A.4 Upside vision of a tridimensional object created in SOLIDWORKS. 98
A.5 Deformed tridimensional object imported in SOLIDWORKS. . . 99
A.6 Lateral vision of a deformed tridimensional object imported in

SOLIDWORKS. 99
A.7 Another lateral vision a deformed tridimensional object imported

in SOLIDWORKS. 100
A.8 Upside vision of a deformed tridimensional object imported in

SOLIDWORKS. 100
A.9 A detail of the deformed object. 101

xvi

Remark

This master thesis has been developed within the EU Socrates Programme
with an exchange period of six months at the École Polytechnique Fédérale de
Lausanne, Mathematics Institute of Computational Sciences and Engineering.
Written with LATEX.

Politecnico di Milano,
École Polytechnique Fédérale de Lausanne,

Milan and Lausanne, 3 March 2011.

xvii

xviii

Chapter 1

Introduction

An important problem in computational science and engineering is to solve
partial differential equations in domains involving arbitrary shapes, more par-
ticularly in shape optimization [14, 45]. In an optimization context, one needs
to solve the same equations several times, however in general this procedure is
time consuming and inefficient. This calls for an improvement of the approach
to the problem, which depends on the selected discretization model (e. g. Fi-
nite Elements method [59]) and on the description and parametrization of the
domain geometry and its possible perturbation.

Let us consider a domain and apply a perturbation to it. Some questions
may arise: what would the range of reachable shapes be? Which level of com-
plexity could be achieved? How much would that cost in computational terms?
Is there an easy and intuitive method to use? Developing such a strategy can
be useful in many applications in shape optimization, due to the high flexibil-
ity and complexity required for this kind of problem and for the high number
of iterations that can be needed to reach the convergence. Examples of prac-
tical applications can be found, for instance, in industrial applications and in
particular in Aeronautics, for example in the shape optimization of an airfoil,
or an entire wing (see figure 1.1), when attempting to obtain a drag reduc-
tion or an efficiency improvement, obeying to some specific optimization laws
[14, 16, 30, 31, 40, 43, 45].

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Mach number field on a wing shape optimized [30].

Other fields of interest can be found in medical applications, such as the
study of aorto-coronaric bypass configuration [60, 66] (figure 1.2), and in naval
engineering [47, 49, 54] (see figure 1.3).

Figure 1.2: A bypass configuration before (left) and after the shape optimization
[66].

1.1. DIFFERENT APPROACHES 3

Figure 1.3: Streamlines and pressure field of around a bulb [54].

The aim of this work is to find a simple and powerful method for the manage-
ment of a large variety of complex and smooth tridimensional deformations, and
test it in order to deform some sample geometries. The method should be flex-
ible to describe a wide range of shapes with minimum geometrical constraints.
Applications will be made to deform the geometry of a rudder and that of a
bulb, two appendages of a sailing yacht, and insert it in a shape optimization
process.

1.1 Different approaches
The way to describe shape perturbations can be divided in two categories:

variational or parametric. In this work we considered only the parametric shape
variation: the perturbed domain is a function of a finite number of real param-
eters. There are several methodologies that will be described in the following
sections, relevant aspects are efficiency, effectiveness and easiness of implemen-
tation and generalization.

Let us mention briefly some of the most typical approaches for parametric do-
mains [72], and the motivations that have led us to choose the most appropriate
one:

Basis shapes approach: By using this approach there is a well-chosen set of
shape perturbations, which is used to model the geometry by a linear
combination. An example of perturbation functions that parametrize an
airfoil geometry can be seen in figure 1.4:

4 CHAPTER 1. INTRODUCTION

Figure 1.4: The first three orthogonal basis functions for parametrization of an
airfoil [76].

The shape changes can be expressed as

R = r +
∑
i

viUi, (1.1)

where R is the design shape, r is the baseline shape, vi is the design variable
vector and Ui is the design perturbation based on several proposed shapes.

This kind of parametrization is usually low-dimensional, so the method will
only explore a limited set of variety of shapes [45]. Besides it is difficult
to generate a set of consistent basis vectors for multiple disciplines, that
is for multidisciplinary shape parametrization [72]. For instance in case
of an airplane we must not only treat the external geometry but also the
internal structural elements, such as spars, ribs and fuel tanks. As a result,
this method can be applied only to problems involving a single discipline
aspects with relatively simple geometry changes.

Discrete approach: This is the most intuitive approach, based on using the
coordinates of the boundary points as design variables (see figure 1.5).

1.1. DIFFERENT APPROACHES 5

Figure 1.5: Airfoil designed by a set of points [72].

This method is easy to implement, and the available shapes are limited
only by the number of the boundary points. However, it is difficult to
maintain a smooth geometry, and to do this, the number of the design
variables becomes very large, which leads to a high computational cost
and a difficult optimization problem to solve [51].

Polynomial and Spline approach: This approach is based on the use of poly-
nomial and spline representations for shape parametrization (see figure
1.6). This can greatly reduce the total number of design variables. The
control of the shape is handled by few special points, called control points,
which by modifying their positions, the value of the polynomial which
describes the curve changes with them.

Figure 1.6: Splines curve and its control points [72].

Those methods are very popular in CAD and in design applications in
general. According to the different features that will be described in details
in the sections 1.2, 1.3 and 1.4, these are called Bezier, B-splines and
NURBS (Non-Uniform Rational B-Spline) curves [12, 75]. Those types of
curves are well suited for shape optimization, as shown in several works
[14, 16, 23, 30, 72].

As it will be mentioned in the next sections, some definitions of such curves
are limited (that is not all the geometries are representable with all these
curves) but they are connected with each other in such a way that one

6 CHAPTER 1. INTRODUCTION

definition goes beyond the limit imposed by the other. The relationship
among these types of curves and the range of shapes that they can reach is
shown in figure 1.7: it is then clear that NURBS curves are the most gen-
eral, followed by Rational Bezier curves, which are slightly more limited,
then by B-spline curves and finally by Bezier curves.

Figure 1.7: Relationship between Bezier, B-splines and NURBS curves [75].

This approach has several drawbacks, see the next sections, basically due
to the fact that the more complex the curve, the higher the number of
degrees of freedom in the parametrization that is required.

Free Form Deformation approach: This method operates on the whole space
that embeds the deformed objects, through the definition of a reference
domain and by moving some suitable control points. This is very inter-
esting, especially because the user can manipulate the control points of
trivariate Bezier1 volumes.

From what we have highlighted, we can see that in all these methods there are
some pros and cons. The one which seems to be the most promising, because of its
power and simplicity, is Free Form Deformation method (or FFD method). This
method has been considered in this work and will be described more precisely
in chapter 2.

A description of the most important features of some of the spline techniques
will first be introduced [21, 55, 56, 62, 64, 75] because they are at the base of
FFD method. We will review Bezier, B-spline and NURBS curves.

1Also B-splines or NURBS can be used to produce the deformation volume.

1.2. BEZIER CURVES 7

1.2 Bezier curves
Bezier curves are widely used in computer graphics to model smooth curves.

The points can be visualized graphically and used to instinctively manipulate
the curve. The most important Bezier curves are the quadratic and cubic ones,
higher degrees are too expensive.

1.2.1 Definition

Given n + 1 control points P0, P1, P2, . . . and Pn in space, with Pi =
(xi, yi, zi) and a local coordinate u ∈ [0, 1], such that the Bezier curve is defined
as [75]:

C (u) =
n∑
i=0

Bn,i (u) Pi, (1.2)

where the coefficients Bn,i are defined as follows:

Bn,i (u) =
n!

i! (n− i)!
ui (1− u)n−i . (1.3)

Therefore, the point that corresponds to u on the Bezier curve is the weighted
average of all control points, where the weights are the coefficients Bn,i (u). These
coefficients are referred to as the Bezier basis functions or Bernstein polynomials
[61].

1.2.2 Properties

Here are some important properties of a Bezier curve [75]:

• n+ 1 control points define a Bezier curve of n degree.

• C (u) passes through P0 and Pn, or better, through the first and the last
control point. Besides, Bezier curves are tangent to their first and last legs.

• All basis functions are non-negative.

• Partition of unity property: the sum of the basis functions at a fixed u is
1.

8 CHAPTER 1. INTRODUCTION

• Convex hull property: the Bezier curve is set completely in the convex hull
of the given control points, that is the smallest convex set that contains
all points (see figure 1.8).

Figure 1.8: The convex hull is the grey zone [75].

This guarantees that the generated curve will be in a clear and computable
region and will not go beyond its limit.

• Variation diminishing property: the control polyline2 is more complex than
the shape of generated curve. This means that if the curve is in a plane,
no straight line intersects a Bezier curve more times than it intersects the
curve control polyline (see figure 1.9).

Figure 1.9: Line in the convex hull intersecting a Bezier Curve [75].

• Affine invariance: in geometry, an affine transformation or affine map be-
tween two vector spaces, or two affine spaces, consists of a linear transfor-

2A polyline is a term that indicates a series of connected line segments and arcs that are
treated as a single entity.

1.2. BEZIER CURVES 9

mation followed by a translation:

x 7−→ Ax+ b, (1.4)

A simple practical example is shown in figure 1.10 where this transforma-
tion can be seen applied to a fern and its smaller parts, which could be
seen as its affine image:

Figure 1.10: An image of a fern with self-similarity parts [10].

For a Bezier curve, the result of an affine transformation applied to it can
be constructed from the affine images of its control points. So, the affine
transformation can be applied to the control points, easier than applying
the transformation to the curve.

• Changing the position of a control point causes the shape of a Bezier curve
to change globally, as shown in figure 1.11.

10 CHAPTER 1. INTRODUCTION

Figure 1.11: Displacement of a control point [75].

1.2.3 De Casteljau’s algorithm

A problem that can arise by calculating C (u) from the equation (1.2) is
a numerical instability due to the introduction of numerical errors during the
evaluation of the Bernstein polynomials [75]. To overcome this problem the De
Casteljau’s algorithm is introduced.

Let the control points be 00 for P0, 01 for P1, . . . , 0i for Pi, . . . , 0n for
Pn. The zeros in these numbers indicate the initial or the 0− th iteration. The
fundamental concept of De Casteljau’s algorithm is to choose a point C in line
segment AB such that C divides the line segment AB in a ratio of u : 1 − u,
that is the ratio of the distance between A and C and the distance between A
and B is u, as shown in figure 1.12:

Figure 1.12: Segment AB and the point C.

The idea of De Casteljau’s algorithm goes as follows: suppose we want to
find C (u), where u is in [0, 1]. Starting with the first polyline, 00-01-02-03-...-
0n , use the above method to find a point 1i on the leg, that is a line segment,
from 0i to 0(i+1) which divides the line segment 0i and 0(i+1) in a ratio
of u : 1 − u. In this way, we will obtain n points 10, 11, 12, ..., 1(n-1). They
define a new polyline of n− 1 legs.

1.2. BEZIER CURVES 11

In figure 1.13, where u = 0.4, 10 is in the leg of 00 and 01, 11 is in the leg
of 01 and 02, ..., and 14 is in the leg of 04 and 05, all the new points are in
blue.

Figure 1.13: Geometrical interpretation of De Casteljau’s algorithm [75].

Applying the procedure to this new polyline, we obtain a second polyline of
n−1 points 20, 21, ..., 2(n-2) and n-2 legs. Starting with this polyline, we can
construct a third one of n− 2 points 30, 31, ..., 3(n-3) and n-3 legs. Repeating
this process n times yields a single point n0 (in figure 1.13 it is the 50 point).
De Casteljau proved that this is the point C (u) on the curve which corresponds
to u.

So the geometric interpretation of the De Casteljau’s idea is to subdivide the
polyline in n−1 legs. Then applying once more the above procedure to this new
polyline, we shall get a second polyline of n − 2 legs. Repeating this process n
times yields a single point.

From a computational point of view, let P0,j be Pj for j = 0, 1, . . . , n. That
is, P0,j is the j-th entry on column 0. The computation of entry j on column i
is the following:

Pi,j = (1− u) Pi−1,j + uPi−1,j+1

{
i = 1, 2, . . . , n,

j = 0, 1, . . . , n− 1.
(1.5)

Figure 1.14 shows this computational process, until the Pn,0 is reached.

12 CHAPTER 1. INTRODUCTION

Figure 1.14: Computational passages to the single point on C (u) [75].

With this approach it is possible to find the Bezier curve C (u) using a
numerical stable way.

1.2.4 Subdividing a Bezier curve

When there is a need to achieve a more complex curve, instead of increasing
the polynomial degree, thus increasing the computational cost, it is possible to
join more curves of lower degree, obeying continuity and smooth conditions [75].

Given a set of n+ 1 control points P0, P1, P2, . . . and Pn and a parameter
value u ∈ [0, 1], two sets of n+1 control points Q0, Q1, Q2, . . . , Qn and R0, R1,
R2, . . . , Rn can be found such that the Bezier curve defined by Qi’s (respectively
Ri’s) is the piece of the original Bezier curve on [0, u] (respectively [u, 1]).

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.15: Subdivision of Bezier curve at u = 0.5.

1.3. B-SPLINE CURVES 13

A curve subdivision has many applications, for instance it can be used to
make curve design easier, rendering Bezier curves. If for example there are two
parts of the curve, one satisfactory and one not, it is possible to ignore the
former and concentrate on the latter in order to improve it.

Subdivision can be applied as many times as one wishes, but the only thing
to keep in mind is that the joining point and its two adjacent neighbors must
be kept co-linear, to preserve the smoothness of the curve [75].

1.3 B-spline curves
To improve the control of the curve’s shape, a new concept is introduced:

instead of subdividing the curve directly, the domain of the curve is subdivided.
Thus, if the domain of a curve is [0, 1], this closed interval is subdivided by
points called knots (figure 1.16). Consequently, modifying the subdivision of
[0, 1] changes the shape of the curve.

Figure 1.16: Knots of a B-spline curve [75].

This is what is called B-spline curve [21, 39, 56]. To summarize, in order to
design a B-spline curve we need a set of control points, a set of knots and a set
of coefficients, that is one for each control point, so that all curve segments are
joined together satisfying certain continuity conditions.

So B-spline basis function will be used and will have the same function of
Bezier basis functions, i.e. weight, but they are much more complex, because:

• the domain is subdivided by knots.

• basis functions are not non-zero on the entire interval. In fact, each B-
spline basis function is non-zero on a few adjacent subintervals and, as a

14 CHAPTER 1. INTRODUCTION

result, B-spline basis functions are quite “local”.

1.3.1 Definition

Let U be a set of m + 1 non-decreasing numbers u0 ≤ u2 ≤ u3 ≤ . . . ≤ um.
The ui’s are called knots, the set U the knot vector, and the half-open interval
[ui, ui+1) the i-th knot span. Note that since some ui’s may be equal, some knot
spans may not exist. If a knot ui appears k times (i.e. ui = ui+1 = . . . = ui+k−1),
where k > 1, ui is a multiple knot of multiplicity k. Otherwise, if ui appears only
once, it is a simple knot. If the knots are equally spaced, the knot vector or the
knot sequence is said uniform, otherwise it is non-uniform [75].

To define B-spline basis function, it is necessary to introduce one more pa-
rameter, the degree of these basis functions, p. The i-th B-spline basis function
of degree p, written as Ni,p (u), is defined recursively as follows:

Ni,0 (u) =

{
1 if ui ≤ u ≤ ui+1,

0 otherwise,
(1.6)

Ni,p (u) =
u− ui
ui+p − ui

Ni,p−1 (u) +
ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1 (u) . (1.7)

So given n + 1 control points P0, P1, P2, . . . , Pn and a knot vector U =
{u0, u1, . . . , um}, the B-spline curve of degree p is defined as:

C (u) =
n∑
i=0

Ni,p (u) Pi. (1.8)

As we can notice, the form of a B-spline curve is very similar to that of a Bezier
curve, but it involves more information. Consequently, B-spline curves are more
general than Bezier curves, as shown previously in figure 1.7. To change the shape
of a B-spline curve, we can modify one or more of these control parameters: the
position of control points, the position of knots and the degree of the curve.

1.3.2 Properties

Here are reported some important properties of a B-spline curve, many of
which resemble those of Bezier basis functions [75]:

• Ni,p (u) is degree p polynomial in u.

1.4. NURBS 15

• Non-negativity property: for all i, p and u, Ni,p (u) is non-negative.

• Local support: Ni,p (u) is a non-zero polynomial on [ui, ui+p+1).

• On any knot span [ui, ui+1), at most p + 1 degree p basis functions are
non-zero, namely: Ni−p,p (u), Ni−p+1,p (u), Ni−p+2,p (u), . . . , Ni−1,p (u) and
Ni,p (u).

• Partition of unity: the sum of all non-zero degree p basis functions on span
[ui, ui+1) is 1.

• If the number of knots is m+ 1, the degree of the basis functions is p, and
the number of degree p basis functions is n+ 1, then m = n+ p+ 1.

• Basis function Ni,p (u) is a composite curve of degree p polynomials with
joining points at knots in [ui, ui+p+1).

• At a knot of multiplicity k, basis function Ni,p (u) is Cp−k.

1.4 NURBS
B-spline and Bezier curves are polynomial curves [75]. While they are flexible

and have many nice properties for curve design, they are not able to represent the
simplest curve: the circle. Indeed, circles can only be represented with rational
functions3. That is why it is necessary to extend the definition of B-spline curves.

In figure 1.17 four closed B-spline curves with 8 control points are shown.
The degrees of the curves, from left to right, are 2, 3, 5 and 10, respectively.

Figure 1.17: B-spline for the approximation of a circle [75].

As the degree increases, the roundness of the curve gets clearer and clearer.
The last curve is a closed curve of order 10 and it is very similar to a circle,

3Functions that are quotients of two polynomials.

16 CHAPTER 1. INTRODUCTION

although obviously not a circle. Besides the degree of 10 is too high to be used
to represent a 2 degree curve.

To solve this problem, B-splines shall be generalized to rational curves using
homogeneous coordinates. There comes the name Non-Uniform Rational B-
Splines curves (or NURBS curves) [39, 55, 64, 75].

1.4.1 Definition

Given n+1 control points P0, P1, . . . , Pn and knot vector U = (u0,u1, . . . , um)
of m+ 1 knots, the B-spline curve of degree p defined by previously introduced
elements is the following:

C (u) =
n∑
i=0

Ni,p (u) Pi. (1.9)

Let control point Pi be rewritten as a column vector with four components with
the fourth one being 1:

Pi =

xi
yi
zi
1

 , (1.10)

Pi can be treated as a homogeneous coordinate. Since multiplying the coordi-
nates of a point (in homogeneous form) with a non-zero number does not change
its position, the coordinates of Pi are multiplied with a weight wi to obtain a
new form in homogeneous coordinates.

Pw
i =

wixi
wiyi
wizi
wi

 . (1.11)

Note that Pw
i and Pi represent the same point in homogeneous coordinate.

Plugging this new homogeneous form into the equation of the B-spline curve,
Cw (u) can be obtained:

Cw (u) =
n∑
i=0

Ni,p (u) Pw
i =

∑n

i=0Ni,p (u) (wixi)∑n
i=0Ni,p (u) (wiyi)∑n
i=0Ni,p (u) (wizi)∑n
i=0Ni,p (u)wi

 . (1.12)

1.4. NURBS 17

Therefore, point Cw (u) is the original B-spline curve in homogeneous coordinate
form. Now Cw (u) is converted back to Cartesian coordinates by dividing it with
the fourth coordinate:

C (u) =
n∑
i=0

Ni,p (u)wi∑n
j=0 Nj,p (u)wj

xi
yi
zi
1

 = . . .

. . . =
1∑n

i=0 Ni,p (u)wi

n∑
i=0

Ni,p (u)wiPi.

(1.13)

This is the NURBS curve of degree p defined by control points P0, P1, . . . ,
Pn, knot vector U = (u0,u1, . . . , um), and weights w0, w1, . . . , wn. Note that
since weight wi is associated with control point Pi as its fourth component, the
number of weights and the number of control points must match.

There are two results available immediately from the above definition:

• If all weights are equal, a NURBS curve reduces to a B-spline curve.

• NURBS curves are rational.

These two results indicate that B-spline curves are special cases of NURBS
curves. Moreover, since NURBS curves are rational, circles, ellipses and may
other curves which are impossible to represent with B-spline curves are instead
possible with NURBS curves.

From a geometric interpretation point of view, NURBS curves are not special
kind of curves, instead they are simply another face of B-spline curves. The
control point (1.11) has four components and can be considered as a point in
the four-dimensional space, and, consequently, C (u) becomes a B-spline curve
in the four-dimensional space.

1.4.2 Properties

Given a set of n+1 control points P0, P1, . . . , Pn, each of which is associated
with a non-negative weight wi and a knot vector U = (u0, u1, . . . , um) of m + 1
knots, the NURBS curve of degree p is defined as follows:

C (u) =
n∑
i=0

Ri,p (u) Pi, (1.14)

18 CHAPTER 1. INTRODUCTION

where Ri,p (u) is defined as follows:

Ri,p (u) =
Ni,p (u)wi∑n
j=0Nj,p (u)wj

. (1.15)

This notation is useful because it rewrites the definition of a NURBS curve in
a form as close to that of a B-spline curve as possible. In the above notation,
Ri,p (u)’s are NURBS basis functions.

Since NURBS is a generalization of B-spline, it should have all properties of
B-splines. The following are some of the most important properties for NURBS
basis functions:

• Ri,p (u) is a degree p rational function in u.

• Non-negativity property: for all i and p, Ri,p (u) is non negative.

• Local support: Ri,p (u) is a non-zero on [ui, ui+p+1).

• On any knot span [ui, ui+p+1), at most p + 1 degree p basis functions are
non-zero.

• Partition of unity: the sum of all non-zero degree p basis functions on span
[ui, ui+1) is 1.

• If the number of knots is m+ 1, the degree of the basis functions is p, and
the number of degree p basis functions is n+ 1, then m = n+ p+ 1.

• Basis function Ri,p (u) is a composite curve of degree p rational functions
with joining points at knots in [ui, ui+p+1).

• At a knot of multiplicity k, basis function Ri,p (u) is Cp−k continuous.

• If wi = c for all i, where c is a non-zero constant, Ri,p (u) = Ni,p (u).

Besides there are some more important properties of NURBS curves that are
worth to be taken into consideration:

• NURBS curves can be open, clamped and closed.

• C (u) is a piecewise curve with each component a degree p rational curve.

• A clamped NURBS curve C (u) passes through the two end control points
P0 and Pn.

1.5. SURFACES 19

• Strong convex hull property: the NURBS curve is contained in the convex
hull of its control points. Moreover, if u is in knot span [ui, ui+1), then
C (u) is in the convex hull of control points Pi−p, Pi−p+1, . . . , Pi.

• Local modification scheme: changing the position of control point Pi only
affects the curve C (u) on the interval [ui, ui+p+1).

• Projective invariance: if a projective transformation is applied to a NURBS
curve, the result can be constructed from the projective images of its con-
trol points. Note that Bezier curves and B-spline curves only satisfy the
affine invariance property.

Another interesting property is that increasing or decreasing the value of weight
wi pulls or pushes the curve toward or away from control point Pi, as showed
in figure 1.18.

Figure 1.18: Changing w9 [75].

1.5 Surfaces
The methods examined so far can also be applied also to the treatment of

surfaces in tridimensional domain.
There are two types of surfaces that are commonly used in modeling systems:

parametric and implicit. The focus of this work is to be able to manipulate the
first kind of surface.

In general, parametric surfaces are defined by a set of three functions, one
for each coordinate, as follows [75]:

f (u, v) = (x (u, v) , y (u, v) , z (u, v)) , (1.16)

where parameters u and v are in certain domain. For simplicity, they are assumed
both in the range of 0 and 1. Thus, (u, v) is a point in the square defined by

20 CHAPTER 1. INTRODUCTION

(0, 0), (1, 0), (0, 1) and (1, 1) in the uv-coordinate plane, as shown in the next
figure:

Figure 1.19: Relation between the uv-coordinate plane and the surface [75].

A parametric surface patch can be considered as a union of infinite number
of curves, as can Bezier curves or other spline curves be.

There are many ways to form these unions of curves, but the simplest one
being the so-called isoparametric curves : given a parametric surface f (u, v), if u
is fixed to a value and let v vary, this will generate a curve on the surface whose
u coordinate is a constant. Similarly, fixing v to a value and letting u vary, we
obtain an isoparametric curve whose v direction is a constant.

Thus a Bezier surface S (u, v) is defined by a grid of control points Pi,j,
where 0 6 i 6 m, 0 6 j 6 n and 0 6 u 6 1, 0 6 v 6 1.

S (u, v) =
∑
i

∑
j

Bm,i (u)Bn,j (v)Pi,j, (1.17)

where Bm,i (u) and Bn,j (v) are the Bezier basis functions for the surface (see
section 1.2). Since they are degree m and degree n, we shall say this is a Bezier
surface of degree (m,n). The set of control points is usually referred to as the
Bezier net or control net [75]. De Casteljau’s algorithm can be extended easily
to Bezier surface as well. This is a tensor product, which constructs surfaces
by multiplying two curves, that can be either two Bezier curves or two B-spline
or NURBS curves. That is the tensor product method constructs a surface by
multiplying the basis functions of the first curve with the basis functions of the
second, and use the results as the basis functions for a set of two-dimensional
control points. Surfaces generated in this way are called tensor product surfaces
[75]. This concept will be extended in the next chapter, because we will be

1.6. SUMMARIZING 21

talking about the reference domain where FFD is defined, which is in effect a
volume, not a surface, but it is defined by a tri-tensorial product.

The expression of the surface can be rearranged as follows [75]:

S (u, v) =
m∑
i=0

n∑
j=0

Bm,j (u)Bn,j (v) Pi,j = . . .

· · · =
m∑
i=0

Bm,i (u)

[
n∑
j=0

Bn,j (v) Pi,j

]
=

m∑
i=0

Bm,i (u) Qi (v) .

(1.18)

If v is fixed, this is a Bezier curve in u defined by m + 1 control points Q0 (v),
Q1 (v), . . . , Qm (v). Therefore, we conclude that any isoparametric curve with
v fixed is a Bezier curve defined by a set of control points that can be computed
from the equation of the surface. Interchanging the role of u and v, we will have
the same conclusion for isoparametric curves in the v direction. Figure 1.20
shows isoparametric curves on a Bezier surface in both directions.

Figure 1.20: Isoparametric curves on a Bezier surface [75].

1.6 Summarizing
As we have seen, there are several methods used to parametrize a surface

or a tridimensional body. Those we have examined are the most powerful ones,
because they reduce the total number of design variables. On the other hand,
the more the complexity of the shape is growing, the more the degree of the
polynomials increases dramatically, making the calculations very expensive and
even harder and harder to carry out the shape optimization process.

22 CHAPTER 1. INTRODUCTION

As we mentioned, Free Form Deformation, or more briefly FFD, can be
considered as a valid alternative. As it will be described in the next chapter,
FFD can be a very flexible and powerful method and, at the same time, very
simple to be used and implemented.

Chapter 2

Free Form Deformation

One of the most important steps in the correct definition of a shape parametriza-
tion problem is the choice of the parametrization technique. As seen in chapter 1,
several parametrization techniques are available. The problem of defining a solid
geometric model of an object bounded by a complex surface has long been iden-
tified as an important research problem [22]. In recent years, new and versatile
parametrization techniques have emerged, among them: Free Form Deforma-
tion (FFD). Initially FFD was used with solid modeling system [74], recently it
has been proposed in a more general context, for example the parametrization
of airfoils and wings in a shape optimization context for potential flows [14],
in thermal flows [69] and in viscous flows [70], for instance for cardiovascular
devices [50].

While other commonly used techniques directly manipulate an object, FFD
deforms a lattice that is built around the object itself, and consequently, manip-
ulates the whole space in which the object is embedded. Here are some examples
found in literature [45, 74].

23

24 CHAPTER 2. FREE FORM DEFORMATION

Figure 2.1: Example of local FFD [74].

Figure 2.2: Example of global FFD [74].

25

Figure 2.3: Shape optimization using FFD on an airfoil [45].

The lattice has the topology of a cube when deforming 3D objects or a
rectangle when deforming two-dimensional objects.

One of the advantages concern the choice of the parameters, which is up to
the user. Experiments [14] show that FFD is a low dimensional parametriza-
tion that gives a good accuracy even with few parameters and it has a good
sensitivity.

FFD can treat surfaces of any formulation or degree and it is independent
from the domain or the mesh which is applied to.

A distinguishing aspect of this method is that, by deforming the whole vol-
ume around (or inside) the object, the computational grids are also being auto-
matically deformed with the object, which is a valuable characteristic for auto-
mated design optimization procedures.

FFD can be applied locally or globally and preserves the shape smoothness
(and derivative continuity). In the next sections, after formulating FFD method,
some examples will be presented and some properties will be described [14, 16,
31, 45, 72, 74, 79].

Another benefit of using FFD is that the computation is subdivided into an
offline stage, which is more time consuming, and an online part, which can be
computed several times once the product of the offline part is stored and it is
much cheaper. This fact matches the need of the model reduction method, such
as the Reduced basis method (RB) [27, 28, 44, 50, 67, 68, 69, 70]. Without giving
details, RB method is based on an offline and on an online part, as well. So the
two methods can be connected, remarkably improving the computational time
and the efficiency of the computation.

26 CHAPTER 2. FREE FORM DEFORMATION

A possible drawback of FFD is that the design variables may have no physical
significance: for instance giving a value of 0.3 to a parameter, this does not
correspond to a physical displacement of the corresponding control point of 0.3
unit length, and also the boundary of the shape cannot be controlled because it is
a free-boundary value problem. But for the purpose of doing shape optimization,
this is not a serious drawback, because the variation of the parameters is directly
executed by the optimization process.

Just to mention it, there is an alternative parameterization method that
could be coupled with RB method: that is the so-called radial basis function, or
briefly RBF, which uses more control points and is more expensive, but permits
to have the control of the boundary displacement [34, 52, 57].

In sections 2.1 and 2.2 the mathematical formulation of FFD method and
its implementation will be described, in section 2.3 some of the FFD properties
will be treated with a simple bidimensional case, while in the last section 2.4
the extension to the tridimensional case will be shown.

2.1 Formulating FFD
A good physical interpretation for FFD is to consider a rectangle (in 2D) or

a parallelepiped (in 3D) of clear, flexible plastic in which an object or several
objects are embedded, which are intended to be deformed [45]. We have studied
the 3D method, so here follows the tridimensional case.

Defined a reference domain Ω0 and a subset that we wish to perturbD0 ⊂ Ω0,
a differentiable and invertible map is introduced Ψ : (x1, x2, x3) → (s, t, p), so
that Ψ : (D) → (0, 1) × (0, 1) × (0, 1). The FFD is defined in the reference
coordinates (s, t, p) of the unit cube. Let us select a regular grid of unperturbed
control points P0

l,m,n, where l = 0, . . . , L, m = 0, . . . ,M and n = 0, . . . , N so
that

P0
l,m,n =

 l/L
m/M
n/N

 . (2.1)

A parameter vector µl,m,n is introduced, whose dimension is 3 × (L+ 1) ×
(M + 1)× (N + 1), because for each control point we consider the possibility to
move in three different directions (s, t and p). In figure 2.4 we can show how
they are distributed.

2.1. FORMULATING FFD 27

Figure 2.4: Unperturbed control points and parameters vector.

Each control point is perturbed by the corresponding value of the parameters
vector:

Pl,m,n

(
µl,m,n

)
= P0

l,m,n + µl,m,n. (2.2)

After which the parametric domain map is constructed T : D0 → D (µ) as

T (Ψ (x) ;µ) = Ψ−1

(
L∑
l=0

M∑
m=0

N∑
n=0

bL,M,N
l,m,n (s, t, p) Pl,m,n

(
µl,m,n

))
, (2.3)

where

bL,M,N
l,m,n (s, t, p) = bLl (s) bMm (t) bNn (p) = . . .

· · · =
(
L
l

)(
M
m

)(
N
n

)
(1− s)(L−l) sl (1− t)(M−m) tm

· (1− p)(N−n) pn,

(2.4)

are tensor products of the 1-d Bernstein basis polynomials

bLl (s) =

(
L
l

)
(1− s)(L−l) sl,

bMm (t) =

(
M
m

)
(1− t)(M−m) tm,

bNn (p) =

(
N
n

)
(1− p)(N−n) pn,

(2.5)

defined on the unit square with local variables (s, t, p) ∈ [0, 1] × [0, 1] × [0, 1],
and the function Ψ maps (x1, x2, x3) 7→ (s, t, p). In figure 2.5 we present the
transformation T and its operational function.

28 CHAPTER 2. FREE FORM DEFORMATION

Figure 2.5: The transformation map T (x;µ) and its effect [45].

Properties of Bernstein polynomials or Bezier basis functions have been de-
scribed previously in section 1.2. It is possible to extend FFD to NURBS or
B-spline basis functions [45]. For the purpose of this work, Bernstein basis func-
tions are enough to obtain good and efficacious results and simplify the topic.

As mentioned, in order to effectively calculate the global map T there are
two parts: one offline, that is the precomputation of the transformation by the
use of a symbolic expression, and the other is online, that is the evaluation of
the function for the parameters and the coordinates of the real system. This
second part is cheaper than ever, even in the 3D case. So once the offline part
is completed, that is the part which takes the majority of the cost, the map T
is calculated, so it is enough to evaluate it. For optimization problems, which
implies to reiterate the calculus several times, it is an excellent tool.

2.2 Implementing FFD
For the implementation of FFD method the numerical computing environ-

ment MATLAB has been used. MATLAB supplies a large variety of tools and
it is a very powerful computing instrument due to its high intuitivity. It allows
the use of symbolic expressions and, least but not last, supplies interfacing with
other programs, such as COMSOL Multiphysics [25], as it will be described in
chapter 3.

The inputs are the boundaries of the domain [a, b]× [c, d]× [e, f] to allow the

2.3. FFD PROPERTIES 29

transformation in reference domain [0, 1] × [0, 1] × [0, 1], the number of control
points in each direction and finally which parameters decide to influence the
transformation. The parameter order is arranged in order to increase, from the
first control point to the last, counting the directions (two in 2D, three in 3D).
The offline part can start, creating the symbolic expression of T and relate it
from the reference domain to the original, and then storing it. So it is enough
to pass the geometry to T, which can be a mesh or the points defining a CAD
object, and define the value of the parameter µ. Having stored the T as a string,
which is just a function evaluation manner: that is the online part.

In chapter 3 the interaction between difference programs will be shown.

2.3 FFD Properties
Before considering the extension to the 3D case, some tests have been carried

out on a simple 2D case to better highlight the FFD’s potential properties. In
figure 2.6 the original meshed domain is represented.

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.6: Undeformed mesh in 2D domain with control points.

Black points are the control points, and as we mentioned each one has two
degrees of freedom, the longitudinal and the transverse direction. Chose which
direction and how many parameters consider is up to the user.

30 CHAPTER 2. FREE FORM DEFORMATION

In figure 2.7 the control point in red has been moved along the x direction
from its unperturbed position, or we can better say that a perturbation of µ =
0.6 has been imposed through the longitudinal axis at the unperturbed control
point using the (2.2) equation, and the result in terms of shape perturbation
due to the transformation map is shown.

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.7: Deformed mesh in 2D domain by moving one control point (µ = 0.6).

FFD is a method that involves all the domain, as a lattice created by Bern-
stein polynomials where all the objects inside are deformed and follow the de-
formation rule imposed by them. This is demonstrated in figure 2.7, where by
just moving one control point in one direction implies the deformation of all the
domain. The blue points are the undeformed control points P0

l,m,n, the black
ones are the new deformed control points Pl,m,n. As we can see, not only the
red one has moved, but everything in the domain is moving accordingly with
this displacement, assuring a smooth and continuous deformation, no matter
how it could be complex. The value of the parameter µ is 0.6, but as we pre-
viously mentioned it is absolutely neither physical nor correlated with any unit
length, which means that it does not correspond to a physical displacement of
0.6, because the control points and the (2.2) equation are defined in the refer-
ence domain (0, 1) × (0, 1), and not in the physical one after the imposition of
the (2.3) transformation.

Another remark arising while looking at figure 2.7 and regarding one im-
portant property of Bernstein polynomial, is that it becomes equal to zero on

2.3. FFD PROPERTIES 31

the boundary. In fact the point just near the red one that lies on the boundary
of the domain is not moving. This means that all the deformation takes place
only inside the boundary domain, unless we do not exaggerate with the param-
eter’s values, which are usually small. But in that case there would be nodes
superimposition, so the deformation would not be acceptable in any case.

The only way to move control points on the boundary is to impose over
them the displacement, as shown in figure 2.8. As we have mentioned, the other
method that permits to move boundary control points is RBF method [34, 52,
57].

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

Figure 2.8: Deformed mesh in 2D domain by moving one control point on the
boundary (µ = −0.6).

This is the only way to move them. And all the domain follows the deforma-
tion, just like a lattice. In this case, the first control point, the red one, is moved
in y direction, by imposing a parameter’s value of µ = −0.6. Note that also the
other control points on the boundary are moving in this case too. This is due to
the Bernstein polynomial properties describing the boundary and influenced by
the parameter of the control point moved.

But moving control points on the boundary can be more dangerous than
moving the ones inside. It is better to do two local FFDs if it is required. An
example is showed in figure 2.9. The control point is the same as the one of
figure 2.8, but moved by a value of µ = 0.6 instead of −0.6 in y direction. In

32 CHAPTER 2. FREE FORM DEFORMATION

this case there is superimposition of mesh points. Note that the deformation of
the domain has the behavior of a paper that coils on itself.

It is easier to run into this type of error using boundary control points, that
is why we take into consideration only the ones inside the lattice.

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.9: Deformed mesh in 2D domain by moving one control point on the
boundary (µ = 0.6).

Another thing to highlight is that the use of FFD also reduces the number
of shape parameters: in [69] it has been estimated that compared to a local
boundary variations approach by moving individual mesh nodes we can obtain
a reduction of 238:1 in the number of geometric parameters. This is another
strong point in favor of this method, which makes it still more complete and
efficient at the same time.

Last but not least, FFD can be applied also locally, in order to deform just
a part of the domain and to focus only on it. In figure 2.10 an example of local
FFD is presented.

2.3. FFD PROPERTIES 33

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.10: Example of local FFD (µ1 = 0.5 and µ2 = 0.3).

It has been obtained by moving two control points, which are in red in the
figure, imposing on the first control point a vertical perturbation µ1 = 0.5 and
on the second a horizontal perturbation of µ2 = 0.3. The figure shows the sum
of the two deformations. Also, following this idea, multiple FFD blocks can be
chained together to enhance the deformation of an object, the control points
where the two FFD blocks are joined cannot be deformed. So FFD can be
adapted according to the type of the problem and to what one looks to obtain,
and from this point of view it is a very versatile method.

As we have seen, it may also allow to maintain the same mesh during the
optimization process, due to the fact that the smooth deformation involves all
the domain where the FFD lattice is defined, including the mesh points. This
is another important feature, because one does not need to remesh for every
iteration, but the new mesh follows the deformation. In other words, since FFD is
a technique to deform the space, it can be used to deform the mesh and the shape
simultaneously [31]. However, one should proceed carefully, in order to ensure
that a smooth deformation is imposed, which does not generate overlapping
effects in the mesh. The smoothness of the deformation is ensured inside the
lattice, since deformation is ruled by Bernstein polynomials. That is why we
have chosen to operate just with the internal point of the FFD domain, as we
have mentioned.

Another feature that can be taken into consideration is the possibility of im-
plementing a rotation of the FFD lattice. This could be helpful for example in

34 CHAPTER 2. FREE FORM DEFORMATION

case the object to be deformed is rotated over a certain angle or it is necessary
to deform this object in order to maintain a symmetry not aligned with the or-
togonal axes. The mentioned rotation can be obtained by applying an additional
rotational matrix R to compute the global map T, which for a 3D problem is
defined as

R =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , (2.6)

where θ is the angle we want to rotate and, in this case, the rotational axis is
the third one1. In figure 2.11 an example of a rotated local FFD is shown.

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.11: Example of a rotated local FFD (θ = 10°, µ1 = −0.5 and µ2 = 0.6).

With this feature, the number of applications grew even more and this makes
FFD become more general.

2.4 Extension to the 3D case
We have started with a MATLAB code that have been implemented pre-

viously by Dr. T. Lassila, EPFL researcher who works on a two-dimensional
FFD. The program has been very useful to study the property of this powerful

1To obtain R for the 2D case it is sufficient not to consider the third column and the third
row of the matrix (2.6).

2.4. EXTENSION TO THE 3D CASE 35

methodology and it has also been a good base from where to start. Then we
have added the third dimension, and the result was that all the properties that
have been tested and mentioned before, continued to be valid. It is a direct con-
sequence of the tensorial product technique, as explained in 1.5 and drove it to
the tridimensional case, not speaking about a surface anymore but of a volume,
defined by the third-order Bezier tensorial product.

The only difference between the two is that the number of control points
drastically increases and, with them, the number of degree of freedom, due to
the direction added to the parameters. But the computational cost of the calculus
still remains not so onerous, once the offline part is done. Just to give an idea
of the gap between the 2D and the 3D case, in figure 2.12 the increase of the
computational time for the global T map is presented, obtained by varying the
number of the parameter chosen to move2.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

n° parametri

t cp
u [s

]

3D
2D

Figure 2.12: Computational time of 2D and 3D FFD.

As can be seen, in 2D it does not matter how many parameters are chosen
to be moved, the computational time of T remains very small and constant,
that is the offline part. Instead, in 3D case, the more are the parameters chosen,

2Curves otained using the same computer machine.

36 CHAPTER 2. FREE FORM DEFORMATION

the more is the time that is required to obtain T. However, even if the time
increases, we can still obtain a rather good range of parameters in a relatively
limited period of time.

In figures 2.13 and 2.14 an ellipsoid is presented with diameters a = 1, b = 0.5
and c = 0.3. In figure 2.15 and 2.16 it is shown deformed by using two control
points, one on the upper side and lower side.

Figure 2.13: Ellipsoid embedded in the FFD lattice.

2.4. EXTENSION TO THE 3D CASE 37

Figure 2.14: The ellipsoid embedded in the FFD lattice from a lateral point of
view.

Figure 2.15: Deformed ellipsoid moving two points, one on the top and one on
the bottom.

38 CHAPTER 2. FREE FORM DEFORMATION

Figure 2.16: Deformed ellipsoid by a lateral sight.

In figures 2.17 and 2.19 more complex objects are presented, a sport car and
a civil modern airplane, imported in MATLAB as STL file, and for example
they have been deformed in figures 2.18 and 2.20, just to point out that the
complexity of the shape is not relevant and that FFD can be applied to every
kind of object.

Figure 2.17: A car imported as STL file in MATLAB.

2.4. EXTENSION TO THE 3D CASE 39

Figure 2.18: The deformed “stretched” car using FFD.

Figure 2.19: An A380 imported as STL file in MATLAB.

40 CHAPTER 2. FREE FORM DEFORMATION

Figure 2.20: Deformed “filled” A380 using FFD.

Chapter 3

Geometrical modeling tools

In order to achieve the purposes of this work, that is studying and applying
an efficient method of deformation and using it in an automatic shape opti-
mization process, it is necessary to have the appropriate tools to work with and
have efficient interactions among them. So there is the necessity to create an
initial geometry, define the problem we want to solve and implement by the
FFD method. For this reason, many options and softwares have been used and
explored, and it has been necessary to study a connection between them, so that
they can interact and communicate with proper interfaces and consistent data.

A CAD software (Computer-Aided Design) has been necessary for the setting
up and design of the models and their geometries that we want to optimize. For
this purpose, many CAD softwares are available, such as Rhino [8], AutoCad
[2], Maya [3]. SOLIDWORKS [1], used in this work, is the starting point, where
all the initial design decisions are taken. This aspect will be discussed in section
3.1, where the models that we have taken into consideration are also presented.

Secondly, the geometries are exported in a suitable format and imported into
the equation solver program. COMSOL Multiphysics has been used to define the
problem and to solve it at every iteration of the optimization process. COMSOL
Multiphysics has also a natural attitude to be linked with the numerical com-
puting environment MATLAB, where FFD method is implemented and inserted
it in an optimization algorithm. An overview of COMSOL Multiphysics will be
given in section 3.2.

In figure 3.1 we show the interaction between the softwares considered and
the available connections that has been studied and extended in this work.

41

42 CHAPTER 3. GEOMETRICAL MODELING TOOLS

Figure 3.1: Interaction diagram between the softwares used.

These interactions cast the whole cycle of the shape design in an optimization
contest possible: every block represents a different action on the process. We can
see it from figure 3.2, where the colors of the blocks are associated to the program
that fulfills the operation and the relative program is indicated in brackets, same
as figure 3.1.

3.1. SOLIDWORKS MODELING 43

Figure 3.2: Operations carried out by the softwares.

3.1 SOLIDWORKS modeling
SOLIDWORKS is a 3D mechanical CAD program. It uses a parametric

feature-based approach to create models and to assemble than. It is very in-
tuitive and handful to use.

SOLIDWORKS has a very high number of formats available in which they
could be saved. The ones that we highlight are:

STL is a widely used file format, native to the stereolothography CAD software.
This kind of file describes only a raw unstructured triangulated surface ge-
ometry of a three dimensional object from the unit normal and vertices
(ordered by the right-hand rule) of the triangles using a three-dimensional
Cartesian coordinate system. STL files are supposed to be closed and con-
nected like a combinatorial surface, where every edge is part of exactly two
triangles, and not self-intersecting [71].

44 CHAPTER 3. GEOMETRICAL MODELING TOOLS

IGS/IGES the Initial Graphics Exchange Specification (IGES or IGS) defines a
neutral data format that allows the digital exchange of information among
CAD systems, different from one another, and so having different internal
data set and representation. It is one of the most adopted format which
is used to save CAD models [48], others can be VDA-FS [9], STEP [5] or
DXF [4].

These are the main two formats that we have used to save the geometrical models
and to import them to the other programs. The STL files can be imported both in
MATLAB and COMSOL Multiphysics, however it is preferable to work with the
IGES files [48], because with these files the geometry is not reduced to a surface
approximating the original one by triangles, which is a limit for simulations and
can compromise the results. In COMSOL Multiphysics it is possible to import
the IGES files, and work directly on the geometry as it were in SOLIDWORKS.
Once the geometry is imported into COMSOL Multiphysics, it is possible to
create the mesh and to define the mathematical problem, designating the solving
equations and the boundary conditions on the domain. These aspects will be
treated in chapter 4.

In conclusion the model is created in SOLIDWORKS and it is saved as an
IGES file. Consequently the file is imported to COMSOL Multiphysics, which
can be used from a MATLAB interface, in order to combine the tools and the
good features and versatility of both.

STL files still can be imported directly in MATLAB, thanks to an M-file that
converts the information inside the STL file into loadable points that can be used
in MATLAB. For this reason and thanks to the fact that they are compatible
with many different softwares, STL files are easier to export and to use. However,
as we have mentioned, the drawback of this kind of geometrical representation
of the model is the approximation of the real geometry by triangulation. For a
more detailed explanation, in appendix A there is an example of how this can
be a limit to properly describe a deformed shape. Through the STL format a
lot of information is lost, and it is impossible to save an object with its internal
volume, but just its surface [71].

3.1. SOLIDWORKS MODELING 45

3.1.1 CAD Models

In figure1 3.3 a complete underwater part of a sailboat, with all its compo-
nents, is shown.

Figure 3.3: A whole sailboat with its parts.

In particular, in this work we have focused on the shape optimization of
two of its parts: the bulb and the rudder, which have both been created in
SOLIDWORKS. First in figure 3.4 the bulb is presented, which has a much less
complex shape than the shape of the rudder. It is just an initial surface, which
will be given as an initial guess in the optimization process. Keel and winglets
(see figure 3.3) are not present because usually a shape optimization of a bulb
under a uniform flow includes just the geometry of the bulb itself [32, 49].

1Image courtesy of CMCS (Chair of Modelling and Scientific Compacting - EPFL - Lau-
sanne).

46 CHAPTER 3. GEOMETRICAL MODELING TOOLS

SolidWorks Educational Edition.
 Solo per uso istruttivo.

Figure 3.4: Bulb geometrical model created in SOLIDWORKS.

Secondly, in figure 3.5 the construction scheme of the rudder is shown. In
figure 3.6 and 3.7 the final version of the rudder is represented from different
sides.

Figure 3.5: Rudder scheme.

3.1. SOLIDWORKS MODELING 47

Figure 3.6: Rudder final form.

Figure 3.7: Rudder from a lateral side.

In order to achieve this, a mean spanwise airfoil NACA 63012 [11], a root

48 CHAPTER 3. GEOMETRICAL MODELING TOOLS

cord of 0.5 m and a total length of 3.02 m have been used.
As we have said, it is possible to save the models both in STL and in IGS.

After importing them in COMSOL Multiphysics, it is necessary to create the
mesh in order to solve the problem. If it is a STL file, it can be imported
directly to COMSOL Multiphysics as a mesh file, but in this case, it is harder to
refine or set a better mesh, and it is not possible to create another one. On the
other hand, if the IGES file is imported, in this case only the geometry object
is available, consequently the mesh can be created and made suitable for the
particular geometry, using the instruments provided by COMSOL Multiphysics.

In the next figures we show a comparison between the mesh of the two formats
of the rudder geometry imported to COMSOL Multiphysics. As we mentioned
before, in the case of the STL file (figure 3.8) it is already the mesh and it
cannot be significantly modified. On the contrary, with the IGS file (figure 3.9)
the mesh is created by the user, refined in the areas which requires refinements.

Figure 3.8: STL file of the rudder imported to COMSOL.

3.2. COMSOL MULTIPHYSICS 49

Figure 3.9: IGS file of the rudder imported to COMSOL and meshed.

This is another reason why we have chosen to operate with IGS file in order
to guarantee a certain versatility in the mesh generation and management.

3.2 COMSOL Multiphysics
After creating the geometry in SOLIDWORKS, we are ready to import it to

COMSOL Multiphysics, which is a powerful interactive environment in modeling
and solving all kinds of scientific and engineering problems based on partial
differential equations (PDEs) [25].

Below there is a brief description of what this software can do and can be
used for. Thanks to the built-in physics modes it is possible to build models
by defining the relevant physical quantities, such as material properties, loads,
constraints, sources, and fluxes, rather than by defining the underlying equa-
tions. One can always apply these variables, expressions, or numbers directly to
solid domains, boundaries, edges, and points independently of the computational
mesh. COMSOL Multiphysics internally compiles a set of PDEs representing the
entire model. The mathematical formulation of our model and the PDEs involved
will be described in chapter 4.

In creating models you also have a great flexibility in setting up various con-
stants and variables using a number of variables as well as mathematical and

50 CHAPTER 3. GEOMETRICAL MODELING TOOLS

logical functions. When the geometry is complete and the parameters are de-
fined, the geometry can be discretized to have a computational mesh. COMSOL
Multiphysics can create mesh on the geometry imported and act with many kinds
of mesh, such as free, mapped, extruded, revolved, swept and boundary layer
meshes [25]. However, it is possible to operate directly on the mesh-generation
process through a set of control parameters, such as maximum element size, or
element growth rate. A more detailed description will be given at section 4.3.

When solving the models, COMSOL Multiphysics is based on the finite el-
ement method (FEM) [59, 61]. The software runs the finite element analysis
together with adaptive meshing and error control using a variety of numerical
solvers, such as UMFPACK, PARDISO, GMRES [25, 61]. These solvers can be
employed for stationary, eigenvalue and time-dependent problems. In order to
solve linear systems, the software features both direct and iterative solvers and
a range of preconditioners are available for the iterative solvers [25]. A more
detailed methodological description will be given in chapter 4.

COMSOL Multiphysics can be used in many application areas, just to give
a few examples:

• Acoustics;

• Heat transfer;

• Chemical reactions;

• Optics;

• Electromagnetics;

• Fluid dynamics;

and many others. Many real-world applications involve simultaneous multi-
physics couplings represented by a system of PDEs. COMSOL Multiphysics
enables the solution of the former by coupling different problem applications.

And last but not least, as we have mentioned, COMSOL Multiphysics has a
practical MATLAB interface [6, 25] so that the FFD algorithm can be applied
directly on the model with the use of both softwares properly combined and
allow to implement an efficient and automatic shape optimization process.

Chapter 4

Mathematical and numerical
formulation of the model problems

In chapter 3 we have described the base of the FFD method and illustrated
how the geometrical models have been created and imported for the simulation.
The FFD has been tested on them and inserted in a shape optimization process.
In this chapter this process will be described, together with the tools used to
implement the problem, the mathematical formulation of the model problem
and the description of the optimization method used.

4.1 Definition of the problem
We wanted to solve viscous flows around geometries of interest, which is a

bulb and a rudder for a boat, for example. Given a domain Ω ⊂ R3, the equations
that we have considered are the incompressible steady Navier-Stokes equations,
which are valid for a viscous flow modelled by a newtonian fluid [15, 20, 58, 59]:{

(u · ∇) u +∇p−∇ ·
[
ν
(
∇u + (∇u)T

)]
= f, x ∈ Ω

∇ · u = 0, x ∈ Ω,
(4.1)

where ρ is the fluid density, which is constant, u is the velocity field of the
fluid, p is the pression divided by the density, ν is the kinematic viscosity, given
by ν = µ

ρ
, where µ is the dynamic viscosity and f is a forcing term per mass

unit. As it is well known, the first equation of the system is the momentum
equation, the second is the conservation of mass equation, which is known also

51

52 CHAPTER 4. FORMULATION OF THE MODEL PROBLEMS

as continuity equation. The nonlinear term (u · ∇) u describes the convective
term, while ∇ ·

[
ν
(
∇u + (∇u)T

)]
is the molecular diffusion term.

In case of ν constant, applying the continuity equation, we can write:

∇ ·
[
ν
(
∇u + (∇u)T

)]
= ν (∆u +∇ (∇ · u)) = ν∆u, (4.2)

so the system (4.1) can be rewritten in a more compact way as{
(u · ∇) u +∇p− ν∆u = f, x ∈ Ω

∇ · u = 0, x ∈ Ω.
(4.3)

In order to have a well posed problem, boundary conditions must be assigned
(see section 4.1.3). From a generical point of view, we can summirize them into
the following expressions:

u (x) = ϕ (x) , ∀x ∈ ΓD(
ν
∂u
∂n
− pn

)
(x) = ψ (x) , ∀x ∈ ΓN ,

(4.4)

where ϕ and ψ are assigned vector functions, while ΓD and ΓN are portions of
the boundary ∂Ω of Ω, such that ΓD ∪ ΓN = ∂Ω and n is the normal vector
exiting from ∂Ω. In the case where the equations used are the (4.1), the second
equation in (4.4) is replaced by[

1

2
ν
(
∇u + (∇u)T

)
· n− pn

]
(x) = ψ (x) , ∀x ∈ ΓN . (4.5)

4.1.1 Weak formulation of the steady Navier-Stokes equa-
tions

In order to obtain a weak formulation of the problem, we proceed formally
and multiply the first of the (4.3) by a function test v, belonging to an appro-
priate space V which will be specified, and then integrate on Ω:

ˆ
Ω

[(u · ∇) u] · vdΩ +

ˆ
Ω

∇p · vdΩ−
ˆ

Ω

ν∆u · vdΩ =

ˆ
Ω

f · vdΩ. (4.6)

4.1. DEFINITION OF THE PROBLEM 53

Using the Green formula we find

−
ˆ

Ω

ν∆u · vdΩ =

ˆ
Ω

ν∇u · ∇vdΩ−
ˆ
∂Ω

ν
∂u
∂n
· vdγ (4.7)

ˆ
Ω

∇p · vdΩ = −
ˆ

Ω

p∇ · vdΩ +

ˆ
∂Ω

pv · ndγ. (4.8)

Replacing these relations in the first equation of (4.3), we obtainˆ
Ω

[(u · ∇) u] · vdΩ−
ˆ

Ω

p∇ · vdΩ +

ˆ
Ω

ν∇u · ∇vdΩ

=

ˆ
Ω

f · vdΩ +

ˆ
∂Ω

(
ν
∂u
∂n
− pn

)
· vdγ ∀v ∈ V.

(4.9)

Similarly, we can multiply the second equation of (4.3) by a test function q,
belonging to space Q, which is the same space that p belongs to. Integrating on
Ω we obtain: ˆ

Ω

q∇ · udΩ = 0 ∀q ∈ Q. (4.10)

We choose V so that the test functions will be equal to zero on the portion of
the boundary of the domain where the solution is known.

V =
[
H1

ΓD
(Ω)
]3

=
{
v ∈

[
H1 (Ω)

]3
: v|ΓD

= 0
}
. (4.11)

This will coincide with
[
H1

0 (Ω)
]3 if ΓD = ∂Ω. Let us suppose that ΓN 6= ∅, then

we can choose Q = L2 (Ω). Also, we will search for u ∈
[
H1 (Ω)

]3, with u = ϕ
on ΓD and p ∈ Q. With this space chosen, we can observe thatˆ

∂Ω

(
ν
∂u
∂n
− pn

)
· vdγ =

ˆ
ΓN

ψ · vdγ ∀v ∈ VΓD
. (4.12)

In [59] all the terms are demonstrated, even the nonlinear one, to be well defined
and that all the integrals exist and are limited.

So the weak formulation of the equations is: find u ∈
[
H1

ΓD
(Ω)
]3, p ∈ Q such

that ˆ
Ω

[(u · ∇) u] · vdΩ−
ˆ

Ω

p∇ · vdΩ + ν

ˆ
Ω

∇u · ∇vdΩ

=

ˆ
Ω

f · vdΩ+

ˆ
ΓN

ψ · vdγ ∀v ∈ V
ˆ

Ω

q∇ · udΩ = 0 ∀q ∈ Q.

(4.13)

54 CHAPTER 4. FORMULATION OF THE MODEL PROBLEMS

with u|ΓD
= ϕD and V =

[
H1

ΓD
(Ω)
]3 and Q = L2 (Ω) if ΓN 6= ∅ has been

imposed, otherwise Q = L2
0 (Ω) if ΓN = ∅. The existence and the uniqueness of

the solution is proven in [35, 37, 59].
By eliminating the pressure, we can rewrite the Navier-Stokes equations in a

reduced form only in the variable u. This can be obtained, starting from the weak
formulation and using the following subspaces of the functional space

[
H1 (Ω)

]3
Vdiv =

{
v ∈

[
H1 (Ω)

]3
: ∇ · v = 0

}
, V0

div = {v ∈ Vdiv : v = 0 on ΓD} . (4.14)

We require that the test function v in the momentum equation (4.13) belongs
to the space Vdiv, the term associated to the pressure gradient vanishes. So we
can find the following reduced problem for the velocity: find u ∈ Vdiv such thatˆ

Ω

[(u · ∇) u] · v dΩ+ν

ˆ
Ω

∇u · ∇v dΩ

=

ˆ
Ω

f · v dΩ +

ˆ
ΓN

ψ · v dγ ∀v ∈ V0
div,

(4.15)

with u|ΓD = ϕD.
If ΓD = ∂Ω and ΓN = ∅ then we can consider the two Hilbert spaces V =[

H1
0 (Ω)

]3 and Q = L2
0 (Ω) and the weak formulation can be stated as follows:

given f ∈
[
L2 (Ω)

]3, find u ∈ V , p ∈ Q such that{
a (u,v) + c (u; u,v) + b (v, p) = (f,v) ∀v ∈ V
b (u, q) = 0 ∀q ∈ Q,

(4.16)

where a : V × V → R, b : V ×Q→ R are the bilinear forms, and F : V → R a
linear continuous functional. They are defined by

a (w,v)
.
= ν (∇w,∇v) =

ˆ
Ω

ν∇w · ∇v dΩ (4.17)

b (v, q) .
= − (q,∇ · v) = −

ˆ
Ω

q∇ · v dΩ (4.18)

F (v)
.
= (f,v) =

ˆ
Ω

f · v dΩ. (4.19)

(., .) denotes the scalar product in L2 (Ω) or
(
L2 (Ω)

)3. The trilinear form c :
V × V × V → R is defined by

c (w; z,v) =

ˆ
Ω

[(w · ∇) z] · v dΩ ∀w, z,v ∈ V. (4.20)

4.1. DEFINITION OF THE PROBLEM 55

This is the trilinear form associated with the nonlinear convective term. In [35,
63, 59] it is demonstrated that if a (·, ·), b (·, ·) and c (., ., .) are continuous and
a (·, ·) is coercive, under certain conditions (see (4.21)), and the solution (u, p)
is a solution of the problem exists and is unique.

Besides, let us recall, for the well posedness of the problem, that the following
inf-sup condition must be fulfilled:

inf
q∈Q,q 6=0

sup
v∈V,v 6=0

b (v, q)
‖ v ‖H1(Ω)‖ q ‖L2(Ω)

≥ β > 0. (4.21)

In numerical discretization context (4.21) will involve an appropriate compatible
choice of the finite element spaces for velocity and pressure [63].

4.1.2 Finite elements

In order to solve the problem, a numerical approximation of the Navier-
Stokes equations is needed. It can be obtained by applying a Galerkin method
to the variational formulation (4.15). So, considering two finite elements space
Vh ⊂ V , Qh ⊂ Q which satisfies the discrete inf-sup condition, the Galerkin
approximation of the state problem can be expressed in: find (uh, ph) ∈ Vh×Qh

such that

a (uh,vh) + c (uh; uh,vh) + b (vh, ph) = (f,vh) ∀vh ∈ Vh
b (uh, qh) = 0 ∀qh ∈ Qh.

(4.22)

For the discretization of both problems, the pair of finite elements, Taylor-Hood
elements, (P2 − P1) has been chosen [63], with continuous pressure which results
stable and satisfies the discrete inf-sup condition. Spaces V =

[
H1

ΓD
(Ω)
]3 and

Q = L2 (Ω) are approximated by the pair of finite elements space (Vh, Qh) =(
[X2

h]
3
, X1

h

)
, where

Xr
h =

{
v ∈ C0 (Ω) , v|K ∈ Pr (K) ∀K ∈ Th

}
, (4.23)

Th denotes the triangulation of the domain Ω. Expanding the solution on an
appropriate base and expressing

uh (x) =
Nu∑
j=1

ujϕj (x) , ph (x) =

Np∑
j=1

pkψk (x) , (4.24)

56 CHAPTER 4. FORMULATION OF THE MODEL PROBLEMS

taking vh = ϕi and qh = ψl as test functions, we obtain the following algebraic
nonlinear system with Nu +Np unknowns:{

AU +N (U) + BTP = F
BU = 0,

(4.25)

where Ai,j = a (ϕj, ϕi), Bli = b (ϕi, ψl), Fi = (f, ϕi) and N (U) =
∑

s,j usuj
c (ϕs;ϕj, ϕi). This is the system of equations that we want to solve numerically.

4.1.3 Boundary conditions

As we have anticipated in section 4.1, in order to solve the problem that we
have previously defined, boundary conditions have to be applied. In particular,
the problem we are considering, by using the introduced Navier-Stokes equations,
is to solve the flows around two geometries of a sailing boat, a bulb and a rudder
(see figures 3.4 and 3.6). We assume the boundary conditions that correspond
to a cruising situation, listed here below:

1. Inlet: uniform velocity u = −U0n;

2. Open boundary: normal stress
[
−pI + µ

(
∇u + (∇u)T

)]
n = 0;

3. Outlet: pressure p = p0 and no viscous stress µ
(
∇u + (∇u)T

)
n = 0;

4. Wall: no slip u = 0;

where n is the normal to the face of the domain considered, u is the velocity
vector and p is the pressure. The constants µ, U0 and p0 have been introduced
in section 4.1. In figures 4.1 and 4.2 we show the boundary conditions and on
which face of the domain they have been imposed: the numbers on the domain
correspond to the particular condition mentioned before.

4.1. DEFINITION OF THE PROBLEM 57

Figure 4.1: Boundary conditions for the rudder problem.

Figure 4.2: Boundary conditions for the bulb problem.

58 CHAPTER 4. FORMULATION OF THE MODEL PROBLEMS

4.2 Approximations
The choice made is taking neither in consideration the instationarity nor

any turbulence model, even if the objects we are analyzing are immersed in
water. In fact, for these components of the sailboat, high Reynolds number
can be easily reached. This is a strong approximation, however, the aim of this
work is not to have a perfect real mathematical and physical model, but to
analyze the potentialities of the geometrical deformation method, applying it
into an optimization process. The approximation permits to relatively lighten
the calculus for each iteration of the process, which is still very onerous, and to
concentrate more on the FFD aspects.

Another approximation is given from the Reynolds number. Assuming den-
sity of water ρ = 1000 kg

m3 , a root cord of the rudder of c = 0.5m and a minimum
velocity of V = 10m

s
, the Reynolds number is ∼ 3 ·106, with a dynamic viscosity

of µ = 1.51mPa·s. This means that the computational problem to solve the com-
plete Navier-Stokes equation would be a hard task to solve, due to the fact that
the power of a common computer machine is not adequately sufficient. It has
been tested that to solve the problem with these equations, the maximum Re
reachable with COMSOL Multiphysics on a single device is about Relim ' 5000.
For this reason we have decided to contain the Reynolds number and not to in-
troduce turbulence models, which allow an approximate description of this flow
behavior through either algebraic or differential equations. This can be a topic
for subsequent works.

All the simulations have been done using an Intel with a i3 processor of
2.4GHz. Disposing of a high sufficient computational power, such as parallel
computing, and associating it with a model reduction technique, such as reduced
basis method (see chapter 2) the proposed procedure could be used on several
kinds of applications and with a great saving of time and costs. It could be a
very interesting matter of research and a case for subsequent works.

In order to contain the Reynolds number and not to introduce (for test pur-
poses) turbulence models, we have assigned the values for the physical variables,
which are indicated in table 4.1.

Table 4.1: Constants set used.
ρ [kg/m3] µ [mPa · s] U0 [m/s] L [m] Re

Rudder 1 1 10 0.5 5000
Bulb 1 10 10 1 1000

4.3. MESH AND DISCRETIZATION OF THE PROBLEM 59

where ρ is the fluid density, µ is the dynamic viscosity, U0 is the free-stream
velocity. The reference pressure p0 has been imposed zero, assuming that it is a
difference of pressure in respect to the undisturbed field.

4.3 Mesh and discretization of the problem
After having defined the problem and the mathematical model that we intend

to apply to our case, and after having imported the geometries into COMSOL
Multiphysics, we can proceed to mesh them.

COMSOL Multiphysics provides many possibilities to mesh the model and it
can also fit in very many different needs, as we mentioned in section 3.2. However
often there is a limit to the maximum number of the elements allowed, which
is imposed by the computer memory, for this reason parallel computing setting
would be useful.

We can use different meshing techniques in 3D, for example creating a free
mesh which contains tetrahedral elements1. Or else one can even create a bound-
ary layer mesh by inserting structured layers of elements along specific bound-
aries into an existing mesh. When one creates a free mesh, the number of mesh
elements is determined from the shape of the geometry, and from various mesh
parameters that can be controlled, which can be for instance local mesh-element
sizes or element distribution, mesh curvature factor, the resolution of narrow
regions.

The rudder (figure 4.7) has been more delicate to mesh because of its leading
edge and its roundness which must be preserved. So the mesh has been refined
in that region in order not to incur into meshing error problems. To avoid this
problem and to have a relatively fine mesh close to the rudder, the main domain
has been subdivided in two parts, an internal one where the mesh is intended
to be finer, and an external one where the mesh is supposed to be coarser (see
figure 4.8). For the bulb (figure 4.6) this operation has not been necessary to
do, because its geometry is much less complex and it can be meshed without
particular problems.

In figures 4.3 and 4.4 the geometries and the domains are shown, and in
figure 4.5 a lateral vision of the rudder for clarity is proposed, while figures 4.6
and 4.7 represent their mesh.

1Even hexahedral and prismatic mesh elements are available.

60 CHAPTER 4. FORMULATION OF THE MODEL PROBLEMS

Figure 4.3: Bulb imported to COMSOL Multiphysics and the domain where the
problem is defined.

Figure 4.4: Rudder imported to COMSOL Multiphysics and the domain where
the problem is defined.

4.3. MESH AND DISCRETIZATION OF THE PROBLEM 61

Figure 4.5: Lateral view of the rudder imported to COMSOL Multiphysics and
the domain where the problem is defined.

Figure 4.6: The bulb and the mesh of the domain.

62 CHAPTER 4. FORMULATION OF THE MODEL PROBLEMS

Figure 4.7: The rudder and the mesh of the domain.

Figure 4.8: A particular of the rudder and the refined mesh of the inner subdo-
main.

In table 4.2 we can see the information on the meshes of the two models.

4.4. SOLVERS 63

Table 4.2: Global mesh statistics.
Bulb Rudder

Number of mesh points 1857 42482
Number of elements 8904 222138

Number of boundary elements 1434 28124
Minimum element quality 0.364 0.2804
Element volume ratio 4.51E-4 8.01E-7

4.4 Solvers
We have seen what the set of equations to solve is and how it is reconducted

in a weak formulation. By default, COMSOL Multiphysics solves both linear and
nonlinear problems using the weak solution form. It comes with the nonlinearity
of the NS equations that the solver will break the problem down into one or
several linear systems of equations [24]. The linear solver solves a corresponding
linearized model evaluated at a specified linearization point, which can be a
given (already computed) solution. In this work we chose to use as specified
given solution the one computed in the previous step.

In COMSOL Multiphysics different typology of solvers are available. Because
the number of unknowns in these systems is usually very large, the most impor-
tant solver parameter setting concerns the choice of a linear solver, which is the
most effective linear system solver for the model under study. The linear solves
are divided into direct solvers or iterative solvers. The formers are preferable
for 1D and 2D problems, and for 3D problems with few degrees of freedom,
which is not our case. Some of them are for example UMFPACK (Unsymmetric
MultiFrontal method PACKage) [26], SPOOLES (SParse Object Oriented Lin-
ear Equation Solver) [18], PARDISO (PARallel sparse DIrect linear SOlver) [7].
The direct solvers solve a linear system by Gaussian elimination [59, 61]. This
stable and reliable process is well suited for ill-conditioned systems [24].

For models with many degrees of freedom, which is our case, the direct
solvers typically need too much memory. So, the more memory efficient iterative
solvers GMRES (Generalized Minimum RESidual) [29, 78], FGMRES (Flexible
GMRES) [29, 78] Conjugate gradient [29, 78], BiCGStab (BiConjugate Gradient
Stabilized method) [29, 77, 78], can perform better. However, iterative solvers
are less stable than direct solvers because they do not always converge. To
improve the convergence, an appropriate preconditioner must be chosen, and

64 CHAPTER 4. FORMULATION OF THE MODEL PROBLEMS

the ones available in COMSOL Multiphysics are several, such as Incomplete
LU, Geometric multigrid, Incomplete Cholesky or Algebraic multigrid [25].

In the following a list and a valutation of these solvers is provided [25], with
a brief explanation of their potential usage:

Table 4.3: Direct and iterative linear system solvers with their usage.

Direct solvers

UMFPACK A highly efficient direct solver for
nonsymmetric systems.

SPOOLES
An efficient direct solver for symmetric and
nonsymmetric systems. It uses less memory

than UMFPACK.

PARDISO
A highly efficient direct solver fo symmetric
and nonsymmetric systems. It often uses

less memory than UMFPACK.
Iterative solvers

GMRES An iterative solver for nonsymmetric
problems.

FGMRES

An iterative solver for nonsymmetric
problems. It can handle more general

preconditioners but also uses more memory
than GMRES.

Conjugate gradient An iterative solver for symmetric positive
definite problems.

BiCGStab

An iterative solver for nonsymmetric
problems. It uses a fixed amount of memory
independent of the number of iterations.
Therefore, it typically uses less memory

than GMRES.

The recommended solver type for small and medium-sized fluid-flow prob-
lems is a direct solver [24], and the PARDISO direct solver is the default solver
for 1D and 2D models. 3D problems are often too large to solve using a direct
solver, and this is our case. The solver used for the simulations concerning the
rudder is BiCGStab, an iterative one which can be seen as if using a BiCG and
at every step applying a GMRES [77]. The preconditioner used is the geometric

4.5. OPTIMIZATION PROCESS 65

multigrid (GMG) preconditioner. This choice permits to solve a problem saving
memory compared to the other solvers mentioned.

For the bulb it has been possible to use the PARDISO solver, due to the fact
that the bulb flux is simpler to solve than the rudder flux, due to its symmetry.
As we have mentioned, PARDISO, or in general the direct solvers, guarantee a
better numerical stability.

4.5 Optimization Process
After defining the problem and the way we intend to carry out the simula-

tions, an introduction of some optimal control and shape optimization notions
is recalled below. For further informations see [49, 51, 65]. In section 4.5.3 the
optimization process used in this work will be described.

4.5.1 General notions of optimal control

An optimal control problem has three fundamental elements:

• an objective, represented by an appropriate functional, which is called cost
functional,

• one or more control parameters (design parameters),

• a set of constraints which define the behavior of the system under study
and it has to be satisfied by the state variables.

So, the purpose of the problem is to compute the state and design variables which
minimize the cost functional and simultaneously satisfying the state equations.
For that we define some mathematical entities.

• A set of design parameters µ ∈ U , where U is a space named space of the
eligible controls. In our case, µ is the set of displacements of the control
points defined in chapter 2.1.

• A state of the system γ (µ), which has to be controlled properly, is asso-
ciated at a given control µ. γ (µ) represents the solution of a differential
problem of partial derivative equations, that is in our case the Navier-
Stokes equations system:

Λγ (µ) = f, (4.26)

66 CHAPTER 4. FORMULATION OF THE MODEL PROBLEMS

where Λ is the operator which specifies the problem. This equation de-
scribes the physical system to control and to optimize it. At this system
you have to add appropriate boundary conditions (section 4.1.3) and ini-
tial conditions, if the problem is evolutive. We refer to this problem as
state problem.

• An observation function z (µ) which is function of γ (µ) through an oper-
ator C: z (µ) = Cy (µ). The observation can be on the boundary or at the
internal of the domain or in a part of it; for that reason, C is in general a
restrictional operator and it collects physical information from the system.

• A cost functional or objective J (µ) to minimize, which is defined in the
space of the function observed, which we indicate with Z, such that z (µ)→
Φ (z (µ)) ≥ 0, that is

J (µ) = Φ (z (µ)) . (4.27)

A general formulation of an optimal control problem is: find a function µ ∈ U
such that the next inequality is valid [46]:

J (µ) ≤ J (ξ) ∀ξ ∈ U, (4.28)

or, in equivalent terms: find a function µ ∈ U such that:

J (µ) = inf J (ξ) ∀ξ ∈ U. (4.29)

4.5.2 Shape optimization

When the control is applied on the boundary, the problem becomes of shape
optimization. Indeed, the shape moves fulfilling optimization criteria represented
by cost functionals, by respecting also certain constraints imposed by geometrical
considerations. In our case (see chapter 5) these constraints will regard the
maximum accepted variation of the volume of the object in consideration and
the symmetries that should be preserved on the shape of the object.

The shape is represented directly by the FFD parametrization through its
lattice definition in which the object is embedded, so that the control parameters
involved are the µi described in chapter 2. At this point, one can choose a cost
functional J to minimize appropriate quantities, for example the drag over a
body as it has been done in this work. Thus, the functional J depends on {µi}

4.5. OPTIMIZATION PROCESS 67

parameters, and its sensitivity can be determined by considering the difference
quotient in correspondence with small variations of δµi of each parameter:

∂J

∂µi
=
J (µi + δµi)− J (µi)

δµi
. (4.30)

The gradient vector
{
∂J
∂µi

}
can be used to determine a direction of improvement

of the shape for the next iteration, by a variation δµn of the parameters, such
that:

µn+1 = µn + δµn, (4.31)

and
δµn = −λn

∂J

∂µn
, (4.32)

with λn an appropriate relaxation parameter (see [51]). There are some efficient
methods to estimate a good value for λn, such as the Armjio rule, among many
other [61].

The value of the cost functional at the next iteration is given by:

Jn+1 = Jn + δJn = Jn +
∂JT

∂µn
δµn = Jn − λn

∂JT

∂µn
∂J

∂µn
. (4.33)

The disadvantage of this approach is to demand, in order estimate the gradient,
a number of numerical solutions for the flow around the object under analysis
proportional to the number of the design variables. Computational costs can
become unsustainable when the number of variables is significantly incremented,
that is the reason to consider reduced order modelling methods, like reduced
basis.

Another more sophisticated approach is to impose the problem of the project
as a research of a shape that can generate a desired distribution of some fluid
dynamics variables which are involved directly in the problem, that is inverse
problem setting [40]. This approach needs only one numerical simulation, and not
a number of simulations equal to the number of design variables. On the other
hand, it is not sure that the shape optimized obtained is physically reachable,
so the problem must be formulated very carefully.

A one possible automatic and versatile approach can be the Jameson’s ap-
proach, which recurs to the formulation of an adjoint problem for the compu-
tation of the cost functional derivative [41]. The adjoint problem is made by a
procedure of constrained minimization (using the state equations) which use the

68 CHAPTER 4. FORMULATION OF THE MODEL PROBLEMS

Lagrange multiplier method [38]. For a flow around a bulb or a rudder, the cost
functional would depend on the fluid dynamics variables involvedW and on the
physical position of the contour F ,

J = J (W ,F) , (4.34)

and to every variation of F , corresponds a variation for the functional

δJ =
∂J

∂W

T

δW +
∂J

∂F

T

δF . (4.35)

By using the control theory, the equations governing the flow field are introduced
as constraints, such that the final expression of the gradient does not require
the re-evaluation of the flow field. In this way δW must be eliminated from
(4.35). We suppose that the governing equations (in our case the Navier-Stokes
equations) are expressed on the domain by the following expression:

R (W ,F) = 0. (4.36)

The quantity δW is determined by

δR =

[
∂R
∂W

]
δW +

[
∂R
∂F

]
δF = 0. (4.37)

By introducing the Lagrange multiplier ψ we have

δJ =
∂J

∂W

T

δW +
∂J

∂F

T

δF − ψT
([

∂R
∂W

]
δW +

[
∂R
∂F

]
δF
)
. (4.38)

By collecting the terms in δW and in δF we have

δJ =

(
∂JT

∂W
− ψT

[
∂R
∂W

])
δW +

(
∂J

∂F

T

− ψT
[
∂R
∂F

])
δF . (4.39)

We choose ψ to satisfy the next adjoint equation

∂J

∂W
= ψ

[
∂R
∂W

]T
, (4.40)

and we find that
δJ = GδF , (4.41)

4.5. OPTIMIZATION PROCESS 69

where

G =
∂J

∂F

T

− ψT
[
∂R
∂F

]
. (4.42)

The equation (4.41) is independent from δW and so the gradient of J can be
computed without the use of further numerical simulations of the flow around
the body. If R (W ,F) is a system of PDEs, also the adjoint problem (4.40) is
made up by PDEs.

4.5.3 Optimization algorithm

The next step is the description of the iterative optimization algorithm. In
literature many optimization methods have been proposed [42, 51]. Among them,
the most common ones are the gradient-like method [13], genetic algorithms
[19] and neural networks [17]. Gradient-like methods require the gradient of the
scalar cost function and constraints (dependent variables), respecting the shape
design (independent) variables. The problem of these kinds of methods is that
they may converge to local optimum and not to the global one. Besides, Genetic
Algorithms (GAs) have proven their strength against local limits, however they
may require a very high number of parameters evaluation to converge. In our
case, the cost of GA methods is still not affordable, thus we will focus on the
first, preferring also a deterministic approach to the problem.

In this work we exploited the interface between MATLAB and COMSOL
Multiphysics, so it has been possible to implement the FFD using symbolic
expressions, to solve the problem with COMSOL Multiphysics and in order to
reiterate. The built-in MATLAB function fmincon comes to our purpose [6]. It
is a function based on gradient-like method, which finds a constrained minimum
of a scalar function of several variables, starting from an initial estimate.

For a smooth constrained problem, let g and h be vector functions repre-
senting all inequality and equality constraints respectively. The definition of the
optimization process can be written as

min
µ
J (µ) ,

subject to g (µ) ≤ 0,

h (µ) = 0,

(4.43)

where µ is the set of FFD parameters defined in chapter 2, the design variables
which are correlated with the control points displacement. A priori, one has to

70 CHAPTER 4. FORMULATION OF THE MODEL PROBLEMS

decide which parameters to choose and in which direction they should move,
and this is absolutely arbitrary.

Then, we define the Lagrangian function as

L (µ,λ) = J (µ) +
∑

λg,igi (µ) +
∑

λh,ihi (µ) , (4.44)

where λ, which is the concatenation of λg and λh, is the Lagrange multiplier
vector. Its length is the total number of constraints. The Hessian of this function
is shown below

W = ∇2
µµL (µ,λ) = ∇2J (µ) +

∑
λg,i∇2gi (µ) +

∑
λh,i∇2hi (µ) , (4.45)

where ∇2
µµ is the Laplacian in respect to vector µ. The function fmincon uses

a Sequential Quadratic Programming (SQP) method, that is one of the most
popular and robust algorithms for nonlinear continuous optimization [53], and
it is appropriate for small or large problems. The method solves a series of
subproblems designed to minimize a quadratic model of the objective function
using a linearization of the constraints [36]. A non-linear program in which the
objective function is quadratic and the constraints are linear is called a Quadratic
Program (QP). An SOP method solves a QP at each iteration. In particular, if
the problem is unconstrained, then the method reduces to Newton’s method [61]
to find a point where the gradient of the objective vanishes. If the problem has
only equality constraints, then the method is equivalent to applying Newton’s
method to the first-order optimality conditions (or Karush-Kuhn-Tucker (KKT)
conditions [53]) of the problem.

In order to define the k-th subproblem, both the inequality and equality con-
straints have to be linearized. If p = µk+1−µk, we obtain the local subproblem

min
1

2
pTWkp +∇JTk p,

subject to ∇hi (µk)
T p + hi (µk) = 0,

∇gi (µk)
T p + gi (µk) ≥ 0,

(4.46)

A QP method is now used to solve this problem [53].

4.5. OPTIMIZATION PROCESS 71

4.5.4 Cost functionals

Similarly to what have been done in previous works [16, 30, 31], we have
chosen to minimize the following functionals:

Jb (µ) =
D (µ)

D0

, (4.47)

Jr (µ) =
1

2

(
D (µ)

D0

+
E0

E (µ)

)
, (4.48)

where Jb is the functional for the bulb, Jr is the functional for the rudder, D
is the drag force that comes from the solution of the Navier-Stokes equations,
E = L/D is the efficiency where L is the lift of the rudder, and D0 and E0 are
reference quantities (generally the values of the first step). D and L are obtained
by making a pressure integration on the rudder surface (for the bulb it is done
only for the drag) in a streamwise and spanwise direction, respectively.

In conclusion, all the operations involved in the optimization process are
summarized in figure 4.9. Starting from the definition of the model problem and
the design variables, through the choice of the cost functional and the iterations
of the optimization process, till the final optimized shape.

72 CHAPTER 4. FORMULATION OF THE MODEL PROBLEMS

Definition of the model

problem

FFD and

Parameters definition

Definition of the cost

functional

Solution of the model problem

Sequential Quadratic

Programming method

Shape and parameters

modification

Final shape

Functional estimation

Navier-Stokes equation,

Boundary conditions,

Geometries, Mesh, etc.

Number,

Directions to move

Determination of the

optimal condition project

Application of the

optimization method

FFD application with the

new parameters

Solution with the

modified shape

Depends on the

new solution

Number of parameters,

Directions to move

Determination of the

optimal condition of the

project

Figure 4.9: Scheme for the shape optimization process.

One last thing to note is that in all this procedure, there is no need of a

4.5. OPTIMIZATION PROCESS 73

block to remesh after deformation. This is due to the fact that the deformation
applied from the FFD techniques involves not only the geometry but also the
mesh itself, and by remaining in small deformation fields, the mesh continues to
maintain its validity.

74 CHAPTER 4. FORMULATION OF THE MODEL PROBLEMS

Chapter 5

Simulations and results

In this chapter numerical results of the simulations carried out in this work
are presented in section 5.1 and section 5.2 for the bulbs and the rudder, respec-
tively. A local FFD has been applied on a subdomain in order to increase the
deformation control and to reduce the parameters number. Besides, in the case
of the rudder, it has been necessary to rotate the local FFD in order to maintain
the spanwise symmetry of the mean airfoil. Constraints have been imposed on
the displacements of the control points. Simulations have been done for a shape
optimization process: at every step, the Navier-Stokes equations are solved (see
chapter 4) and FFD is applied to minimize the specified cost functionals.

5.1 The bulb
First we present the results concerning the bulb. In the simulation, the cost

functional described in section 4.5 has been used. A local FFD has been applied
(see fig. 5.1, 5.2, 5.3). The total number of control points is 343 (L = 6, M = 6
and N = 6, referred to x, y, and z direction respectively), and the ones involved
in the simulation are 12, with the use of 20 parameters.

Besides, the following constraints have been imposed:

• Concerning the possibility of the volume V to vary, we allow a variation
of 20% of its initial value. This is to avoid the most obvious condition of
minimum resistance, when the bulb degenerates to a point in the space.

• In order to maintain the symmetry along the z direction additional con-
straints have been imposed to displacements of control points indicated

75

76 CHAPTER 5. SIMULATIONS AND RESULTS

as A and B in figure 5.2 and 5.3, such that µA = −µB. Instead, no con-
straints to the control points have been imposed to maintain the symmetry
along the y direction, to test if the result still remain symmetric without
imposing the symmetry.

• The parameters vary between [−2, 2], to maintain the deformation con-
tained and to avoid mesh problems.

In figures 5.2 and 5.3, the displacementes of the control points chosen as param-
eters for the optimization are shown.

Figure 5.1: Domain where the bulb is inserted and definition of the “local” FFD.

5.1. THE BULB 77

Figure 5.2: Lateral view of the domain and the local FFD.

Figure 5.3: Frontal view of the domain and the local FFD.

Results after the optimization process follow. The boundary conditions are
the ones exposed in section 4.1.3. For a better view of the results, we present
just the flow field belonging to the XY plane, being a symmetric flow. In figures
5.4 and 5.5 the initial velocity and pressure field around the undeformed bulb
are shown, while in figures 5.6 and 5.7 we report the results after the shape
optimization, for the velocity and pressure field.

78 CHAPTER 5. SIMULATIONS AND RESULTS

Figure 5.4: The initial shape of the bulb and the velocity in plane XY [m/s].

Figure 5.5: Pressure field of the initial shape of the bulb in plane XY [Pa].

5.1. THE BULB 79

Figure 5.6: XY plane showing the simulation of the velocity field around the
optimized bulb [m/s].

Figure 5.7: Pressure field around the optimized bulb in plane XY [Pa].

As it can be seen from the previous figures, the optimization headed to
reduce the wake past the bulb. In fact, the drag force D is composed by two
contributions: one given by skin friction force and the other given by the pressure
force [15]. Depending on the shape of the object, and of course on the Reynolds
number as well, one contribution becomes more important than the other one.
In the case of a bulb, or a blunt body, and in presence of a sufficient high Re,
as in our case the major contribution derives from the pressure force. So by

80 CHAPTER 5. SIMULATIONS AND RESULTS

trying to contain this contribution, the frontal area of the bulb is reduced, as
we expected, and it becomes more and more similar to an airfoil, where the skin
friction drag, or the viscous one, is predominant.

In table 5.1 the values of the parameters and of the cost functional J obtained
as results, which are defined in section 4.5.4, are reported. To recall, D0, V0 and
J0 are the drag, the volume and the cost functional, respectively, referred to the
undeformed bulb, while D, V and J are the ones obtained at the end of the
optimization. The percentual gain of drag decrease is denoted with %∆.

Table 5.1: Value obtained before and after the shape optimization for the bulb.

D0 [N] D [N] V0 [m3] V [m3] J0 J %∆

1.389 1.005 0.7156 0.5725 1 0.724 27.6

As it can be observed, there is an important reduction of the drag with the
new shape, a gain of 27.6% respect to the initial shape. The final volume is
the 80% of the initial one, and this indicates that the optimization has stopped
because it has reached the limit of volume reduction. The FFD parameters values
obtained at the end of the optimization are indicated here below.

Table 5.2: FFD parameters values obtained after the shape optimization process
of the bulb.

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10

-1.926 0.051 2.000 0.418 1.331 -1.176 0.920 2.000 0.529 1.278

µ11 µ12 µ13 µ14 µ15 µ16 µ17 µ18 µ19 µ20

-1.278 -0.783 -0.082 2.000 -0.329 -1.006 -1.499 -1.051 2.000 -0.651

Another test that has been conducted, to verify if the optimization is going
in the right direction, is to consider the opposite situation, that is to consider
a very low Reynolds number. With Re = 1, the main contribution to the drag
force becomes the skin friction force, so the total wet surface should decrease.
In figure 5.8 the final optimized shape of the bulb is shown.

5.2. THE RUDDER 81

Figure 5.8: Velocity field with low Re number around an optimized bulb [m/s].

What is interesting, and predicted by the theory, is that the bulb gets smaller,
decreasing its total wet surface in order to reduce the skin friction drag. This is
the opposite result compared with the former and it is a confirmation that the
optimization process is working properly.

5.2 The rudder
We now show the results for the rudder. The simulations have been more

difficult, due to the fact that the rudder has a more complex and refined geome-
try. It has also been rotated by an angle of α = 5° with respect to the flow field
around the z axis. Also in this case, a local FFD has been applied, as shown in
figures 5.9, 5.10 and 5.11.

82 CHAPTER 5. SIMULATIONS AND RESULTS

Figure 5.9: The rudder and the subdomains where the rudder is placed, with
the lattice of the rotated local FFD.

As we anticipated in section 3.1, the mean airfoil is a NACA 63012, which
is a symmetric one. To maintain this symmetry, a constraint on the displace-
ments of the parameters has been imposed, such that all the displacements are
proportionally connected along the z axis. Thus the constraints imposed are:

• As in the case of the bulb, the volume of the rudder cannot diminish more

5.2. THE RUDDER 83

than 20% of its initial volume.

• µizk = k
5
µiz5 , where i is the i-th parameter, k is the layer of each plane XY

formed by the control points considered along the z axis. In this case we
have considered 5 layers, so k can vary from 1 to 5, where 5 is the highest
XY plane of control points taken into consideration (see figure 5.11). So
the displacements at the inferior layers will be proportional to the highest
one.

• At every level k, it has been imposed that µA = −µB (figure 5.10) to
maintain the symmetry in the plane of the airfoil.

• Deformations are more delicate, so the range of the parameters is restricted
to [−1, 1].

As the rudder is rotated, it has been necessary to rotate also the local FFD, in
order to respect the symmetry condition, as shown in figure 5.10.

Figure 5.10: An upside view of the rudder in the XY plane and the displacements
considered.

84 CHAPTER 5. SIMULATIONS AND RESULTS

Figure 5.11: A lateral vision of the rudder in XZ plane and the displacements
considered.

The lattice has 175 control points (L = 4, M = 4 and N = 6, referred to x,
y, and z direction respectively), and the ones chosen for the optimization and
the parameters are 15, which are all indicated in figures 5.10 and 5.11. In the
next figures the initial shape of the rudder is shown from two different planes,
the XZ and the XY, first for the velocity field (figures 5.12, 5.13, 5.14) and then
for the pressure field (figures 5.15, 5.16, 5.17). The results correspond to the
situation in the center of the domain, that is one is taken at y/2, the others at
z/6 and z/3 respectively.

5.2. THE RUDDER 85

Figure 5.12: The initial shape of the rudder and the velocity flow field around it
in the plane XZ at y/2 [m/s].

Figure 5.13: The initial shape of the rudder and the velocity flow field around it
in the plane XY at z/6 [m/s].

86 CHAPTER 5. SIMULATIONS AND RESULTS

Figure 5.14: The initial shape of the rudder and the velocity flow field around it
in the plane XY at z/3 [m/s].

Figure 5.15: Pressure field of the initial shape of the rudder in plane XZ at y/2
[Pa].

5.2. THE RUDDER 87

Figure 5.16: Pressure field of the initial shape of the rudder in plane XY at z/6
[Pa].

Figure 5.17: Pressure field of the initial shape of the rudder in plane XY at z/3
[Pa].

In figures 5.18, 5.19 and 5.20 the results for the velocity field after the opti-

88 CHAPTER 5. SIMULATIONS AND RESULTS

mization are shown, always in the same planes as the previous figures, instead
in figures 5.21, 5.22 and 5.23 the results for the pressure field are shown.

Figure 5.18: XZ plane showing the velocity field around the optimized rudder at
y/2 [m/s].

Figure 5.19: XY plane showing the velocity field around the optimized rudder
at z/6 [m/s].

5.2. THE RUDDER 89

Figure 5.20: XY plane showing the velocity field around the optimized rudder
at z/3 [m/s].

Figure 5.21: XZ plane showing the pressure field around the optimized rudder
at y/2 [Pa].

90 CHAPTER 5. SIMULATIONS AND RESULTS

Figure 5.22: XY plane showing the pressure field around the optimized rudder
at z/6 [Pa].

Figure 5.23: XY plane showing the pressure field around the optimized rudder
at z/3 [Pa].

The shape is modified, however the deformation is not large enough to ap-
preciate the entity of the variations. In figure 5.24 we show an amplification of
twice the deformations obtained, just to give an idea of their magnitude.

5.2. THE RUDDER 91

Figure 5.24: XZ plane with the amplified deformed rudder.

The values of the physical variables, which have been defined in section 4.5.3,
are shown in table 5.3. D0, E0, V0 and J0 are the variables referred to the initial
shape of the rudder, then D, E, V and J are the ones referred to the final
optimized shape, which are the drag, the efficiency and the volume respectively
(see section 4.5.4). %∆tot is the relative gain obtained with the new shape, which
includes the contributions of the combination of drag D and efficiency E.

Table 5.3: Value obtained before and after the shape optimization for the rudder.

D0 [N] D [N] E0 E V0 [m3] V [m3] J0 J %∆tot

2.993 2.915 2.559 3.7464 0.0298 0.0207 1 0.829 17.1

In this case the optimization has stopped after reaching the maximum range
value of the parameters of the highest layer (k = 5). But even if the deformation

92 CHAPTER 5. SIMULATIONS AND RESULTS

involved on the final form of the rudder is small, the wake after it looks smaller
than the original one and there is a total gain of 17.1%, which corresponds to a
2.6% gain in drag and a 31.7% gain in efficiency E, maintaining the construction
symmetries. The parameters values obtained after the shape optimization are
indicated in table 5.4.

Table 5.4: FFD parameters values obtained after the shape optimization process
of the rudder.

µ1 µ2 µ3 µ4 µ5 µ6 µ7

0.2 0.2 -0.2 0.4 -0.4 -0.4 0.6

µ8 µ9 µ10 µ11 µ12 µ13 µ14 µ15

-0.6 -0.6 0.8 -0.8 -0.8 1 -1 -1

In order to sum up, we can conclude that FFD versatility suits well the
optimization process, adapting without problems to the different kinds of ge-
ometries and constraints, improving the performance of the object taken into
consideration. The major cost of the computational process is the solution of
the Navier-Stokes equations, and it can become very high by the use of more
FFD parameters, since for the optimization process described in section 4.5.3
they are solved as many times as the parameters number. The use of some
reduced order modelling techniques, such as reduced basis method [44, 67, 69],
can help diminishing the computational cost of the solution of the Navier-Stokes
equations.

However, the test cases considered can be a good starting point for a shape
optimization design process of a generic CAD object, adapting the model equa-
tions and the quantities present in the cost functional, which can be weighted
differently in function of the optimization that one wants to obtain, to the case
taken into consideration.

Chapter 6

Conclusions

The FFD has proved to be a powerful and efficient parametrization method
which could be used in several applications, such as the shape optimization of
a wing or an airfoil or a bypass conduct or a part of a sailing boat as well. In
this work, FFD has been tested on 3D cases (all the properties owned by the
2D FFD have been tested and are still valid). We have considered two shape
optimization processes dealing with a bulb and a rudder on a yacht. It has
been applied locally to just one part of the domain in order to have a better
control of the deformation around the object and not in the part of the domain
that is not taken into consideration. Moreover, regarding the rudder, FFD has
also been rotated/distorted in order to maintain the symmetry constraint of the
deformation along its spanwise direction.

The FFD method has been tested on various shapes (see chapter 2) and as
a result, it fits very well to every kind of form, going from the easiest to the
most complex one, permitting the deformation of the global domain (and local
domain too, if the FFD is made locally). One aspect that could be tested in
order to improve the control of the deformation is to subdivide the domain into
two or more FFD settings defined only locally, so that we may have two or more
different deformations sets/regions.

A strong point of the FFD method is that the deformation involves also the
mesh defined in the inside of the lattice of points (bounding box), and for small
and smooth deformation, there is no particular need to make a new mesh at
each iteration of the shape optimization problem. Thus FFD has demonstrated
to be independent of the mesh, geometry and even the PDE model to which it
is applied. FFD is also a technique suitable to be used in multiple contexts, e.
g. for aeronautical problems, in the case of the preliminary design phase of a

93

94 CHAPTER 6. CONCLUSIONS

complete aircraft, that is a multidisciplinary shape optimization problem.
These features make FFD a very flexible and efficient method. The results

presented in chapter 5 show that, applying the Navier-Stokes equations to solve
the flow in a cruising condition, a new optimized shape is obtained both for
the bulb and for the rudder, with an improvement of the fluid dynamics per-
formances and indexes related with state variables chosen properly to mini-
mize/maximize, which is drag and a combination of drag and efficiency, respec-
tively, obtaining a percentual gain of 27.6% drag reduction for the bulb and a
17.1% of improvement of the combination of drag and efficiency for the rudder.

The choice of the degree of freedom of the admissible deformations and the
number of the parameters are all up to the user, after carrying out proper in-
vestigations. One aspect that can make the object of further investigation is the
setup of a method that, by identifying where the shapes need to be deformed,
allows the choice of control points to improve the shape optimization with the
least number and maximize the efficiency of the deformation. This could reduce
even more the computational costs needed for the shape optimization process,
which is determined by the number of chosen variables. To reach our goal we
have developed a platform by combining several capabilities already available
in order to combine different tools for geometrical modelling, shape variation
management, mathematical and numerical modelling and then simulation and
optimization.

Moreover, there are many other versatile aspects that could be dealt with
in a future work. The main topic could be the use of parallel computing, which
can permit to solve a more realistic problem with larger Re numbers and with
the implementation of appropriate turbulence models. A better improvement
of the computational capacity permits also to perform mesh, refinement and
adaptivity.

Anyway, the cost of the optimization by solving Navier-Stokes equations
discretized by finite elements at every iteration and for every design variables
may become prohibitive. In this perspective, an aspect of great interest could
be to couple FFD method with reduced order modelling techniques, such as the
reduced basis method [44, 67, 69]. This will simplify the complexity problem
and gain even more in efficiency of computational performance. An alternative
geometrical parametrization method called Radial Basis Function (RBF) could
be taken into consideration and compared with the FFD techniques [34, 52, 57].
This would permit to localize the deformation and not to involve the whole
domain where FFD is defined (globally or locally), but having the control of a

95

single displacement of a control point.
Another aspect of investigation can be the comparison of FFD based on

different parametrization polynomials: in this work we have chosen to operate
with FFD based on Bezier curves, but FFD can be based also on B-Spline or
NURBS curves [33, 79]. It would be interesting to see the difference between the
results obtained with different parametrizations.

Last but not least, as we said, a drawback of the FFD is the lack of the phys-
ical meaning associated to the displacements of its parameters, which is neither
physical nor correlated with any unit length. In the aerodynamics case, an alter-
native parametrization namedMASSOUD (Multidisciplinary Aero/Struc Shaper
Optimization Using Deformation), a sort of evolution of the FFD, has been pro-
posed by Samareh in [73], which modifies the FFD method in order to avoid this
problem by parameterizing the shape perturbations rather than the geometry
itself. This can be a starting point in order to make FFD more general, adding
more physics to the optimization process.

Shape optimization problems have met an increasing interest in many indus-
trial problems to optimize/improve productions, processes and performances.
Aeronautics has always provided a very interesting ground for these kind of
problems, but also applications in hydrodynamics and life sciences are growing
thanks to availability of powerful tools to face heavy computational loads.

96 CHAPTER 6. CONCLUSIONS

Appendix A

STL format problem

In chapter 3 we have mentioned that there are some problems with STL file
format. Here is an example to better show what we mean.

A geometrical object has been created which could be a part of a more
complex system. The object is shown in the figures A.1, A.2, A.3, A.4:

Figure A.1: Example of a tridimensional object created in SOLIDWORKS.

97

98 APPENDIX A. STL FORMAT PROBLEM

Figure A.2: Frontal vision of a tridimensional object created in SOLIDWORKS.

Figure A.3: Lateral vision a tridimensional object created in SOLIDWORKS.

Figure A.4: Upside vision of a tridimensional object created in SOLIDWORKS.

99

The geometry has been saved as STL file and imported to MATLAB, where
FFD (see chapter 2) could have been applied to. The test has been done by
moving an external control point, stretching the geometry in order to see the
effect of a significant deformation. After having applied the FFD to the object,
the result, which is presented in the next figures, have been saved as an STL file
and reimported in SOLIDWORKS:

Figure A.5: Deformed tridimensional object imported in SOLIDWORKS.

Figure A.6: Lateral vision of a deformed tridimensional object imported in
SOLIDWORKS.

100 APPENDIX A. STL FORMAT PROBLEM

Figure A.7: Another lateral vision a deformed tridimensional object imported in
SOLIDWORKS.

Figure A.8: Upside vision of a deformed tridimensional object imported in
SOLIDWORKS.

So we can say that the object can be created in SOLIDWORKS, imported
to MATLAB, deformed, then reimported to SOLIDWORKS. But the drawback
of the STL format, the only format file directly importable and exportable to
MATLAB, is evident in these figures and, in order to see it better, figure A.9
shows a detail of a lateral face, being the most deformed one.

101

Figure A.9: A detail of the deformed object.

It is a clear evidence of the STL approximation and its limit: automatically,
the plane face has been composed by two triangles. This is not enough to rep-
resent properly the deformation and the new geometry, as can be seen in figure
A.9. So, what we have deformed is just an approximation of the real geometry
by moving the triangles which composed it. So the fact that deformation may
be good or not depends on how many triangles are used, and this generally is
not up to the user. Typically, on planar surface, there are very few triangles,
because they are enough to represent it, from an undeformed point of view.

This problem could be avoided by using of appropriate programs that are
able to edit and better perform the STL files, allowing the user to decide the
number of triangles to use. But this can cause an increase in the complexity of
the approximation which is not very practical. An easier way to proceed is to
use the IGS files, as done in this work, which are more universal among CAD
programs, as pointed out in chapter 3.

102 APPENDIX A. STL FORMAT PROBLEM

Bibliography

[1] Available from: http://help.solidworks.com.

[2] Available from: http://www.autodesk.it/adsk/servlet/pc/index?siteid=45
7036&id=14626681.

[3] Available from: http://www.autodesk.it/adsk/servlet/pc/index?siteid=45
7036&id=14646075.

[4] Available from: http://www.faqs.org/faqs/graphics/fileformats-faq/part3/
section-45.html.

[5] Available from: http://www.iso.org/iso/home.html.

[6] Available from: http://www.mathworks.com/help/techdoc/index.html.

[7] Available from: http://www.pardiso-project.org.

[8] Available from: http://www.rhino3d.com.

[9] Available from: http://www.vda-qmc.de.

[10] Available from: http://www.wikipedia.org.

[11] I. H. Abbot and A. E. Von Doenhoff. Theory of Wing Sections. Dover
Publications Inc., New York, 1959.

[12] R. A. Adams and C. Essex. Calculus: a complete course. Pearson Education,
Canada, 7 edition, 2009.

[13] V. I. Agoshkov. Optimal Control Methods and Adjoint Equations in Math-
ematical Physics Problems. Institute of Numerical Mathematics, Russian
Academy of Science, Moscow, 2003.

103

104 BIBLIOGRAPHY

[14] E. I. Amoiralis and I. K. Nikolos. Freeform Deformation Versus B-Spline
Representation in Inverse Airfoil Design. J. Comput. Inform. Sci. Eng.,
8(2):024001–1–024001–13, June 2008.

[15] J. D. Anderson Jr. Fundamentals of Aerodynamics. McGraw-Hill, 2001.

[16] M. Andreoli, A. Janka, and J. A. Désidéri. Free-form-deformation param-
eterization for multilevel 3d shape optimization in aerodynamics. INRIA
Research Report no. 5019, November 2003.

[17] M. A. Arbib (Ed.). The Handbook of Brain Theory and Neural Networks.
1995.

[18] C. Ashcraft, R. Grimes, J. Liu, J. Patterson, D. Pierce, Y. Pierce,
P. Schartz, J. Schulze, W. P. Tang, D. Wah, and J. Wu.
SPOOLES 2.2: SParse Object Oriented Linear Equation Solver,
http://www.netlib.org/linalg/spooles/spooles.2.2.html, January 1999.

[19] W. Banzhaf, R. E. Nordin, P. Keller, and F. D. Francone. Genetic Pro-
gramming - An introduction. Morgan Kaufmann, San Francisco, CA, 1998.

[20] A. Baron. Fluid dynamics. Course material, Politecnico di Milano, 2001.

[21] R. H. Bartels, J. C. Beatty, and B. A. Barsky. An introduction to Splines
for use in computer graphics and geometric modeling. Morgan Kaufmann,
1995.

[22] M. Botsch and L. Kobbelt. An intuitive framework for real-time freeform
modeling. ACM Trans. on Graphics, 23(3):630–634, 2004. Proc. ACM
SIGGRAPH.

[23] A. Buffa, G. Sangalli, and R. Vazquez. Isogeometric analysis in electromag-
netics: B-splines approximation. Comp. Meth. Appl. Mech. Eng., 199(17-
20):1143–1152, 2010.

[24] Comsol. COMSOL Multiphysics Modeling Guide. COMSOL AB, 3.5a edi-
tion, 2007.

[25] Comsol. COMSOL Multiphysics User’s Guide. COMSOL AB, 3.5a edition,
2007.

BIBLIOGRAPHY 105

[26] T. A. Davis. UMFPACK version 4.1, http://www.cise.ufl.edu/research/
sparse/umfpack, April 2003.

[27] L. Dedé. Reduced basis method for parametrized elliptic advection-reaction
problems. Journal of Comp. Math., 28(1):122–148, 2010.

[28] M. D’Elia, L. Dedé, and A. Quarteroni. Reduced basis method for
parametrized differential algebraic equations. Boletin de la Sociedad Es-
pañola de Matematica Aplicada, 46:45–73, 2009.

[29] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Numer-
ical Linear Algebra for High-Performance Computers. SIAM Publication,
Philadelphia, 1998.

[30] J. A. Désidéri, R. Duvigneau, B. Abou El Majd, and Z. Tang. Algorithms
for efficient shape optimization in aerodynamics and coupled disciplines. In
42nd AAAF Congress on Applied Aerodynamics, Sophia-Antipolis, France,
March 2007.

[31] R. Duvigneau. Adaptive parameterization using Free-form deformation for
aerodynamic shape optimization. INRIA Research Report RR-5949, July
2006.

[32] C. Fassardi and K. Hochkirch. Sailboat design by response surface opti-
mization. In High Performance yacht Design Conference, Auckland, New
Zealand, 2006.

[33] J. Feng. B-spline free-form deformation of polygonal objects through fast
functional composition. In Geometric Modeling and Processing, Theory and
Applications, Proceedings, pages 408 – 414, Hong Kong , China, 2000.

[34] K. C. Giannakoglou. Design of optimal aerodynamic shapes using stochastic
optimization methods and computational intelligence. Progress Aerospace
Sci., 38:43–76, 2002.

[35] V. Girault and P. A. Raviart. Finite Element Methods for Navier-Stokes
Equations. Springer-Verlag, Berlin-Heidelberg, 1986.

[36] M. S. Gockenbach. Introduction to sequential quadratic programming.
Course material, Michigan Technological University.

106 BIBLIOGRAPHY

[37] M. D. Gunzburger and H. Kim. Existence of an optimal solution of a prob-
lem for the stationary Navier-Stokes equations. SIAM J. Control Optim.,
36(3):895–909, 1998.

[38] G. F. Hadley. Nonlinear and dynamic programming. Addison-Wesley, 1964.

[39] T. J. R. Hughes, A. Reali, and G. Sangalli. Efficient quadrature for NURBS-
based isogeometric analysis. Comp. Meth. Appl. Mech. Eng., 199(5-8):301–
313, 2010.

[40] A. Jameson. Optimum Aerodynamic Design using CFD and Control The-
ory. In AIAA Paper 95-1729, 12th AIAA Computational Fluid Dynamics
Conference, 1995.

[41] A. Jameson. Aerodynamic Design via Control Theory. Journal of Scientific
Computing, 3:233–260, 1998.

[42] A. Jameson and L. Martinelli. Aerodynamic shape optimization techniques
based on control theory, volume 1739/2000 of Lecture Notes in Mathemat-
ics. Computational Mathematics Driven by Industrial Problems, Springer
Berlin / Heidelberg, 2000.

[43] A. Jameson, N. Pierce, and L. Martinelli. Optimum Aerodynamic Design
using the Navier-Stokes Equations. AIAA Paper 97-0101, 1997.

[44] T. Lassila, A. Quarteroni, and G. Rozza. A reduced basis model with
parametric coupling for fluid-structure interaction problems. Submitted to
SIAM Journal of Scientific Computing, 2010.

[45] T. Lassila and G. Rozza. Parametric free-form shape design with PDE mod-
els and reduced basis method. Comp. Meth. Appl. Mech. Eng., 199:1583–
1592, 2010.

[46] J. L. Lions. Optimal Control of Systems Governed by Partial Differential
Equations. Springer-Verlag, 1971.

[47] M. Lombardi, N. Parolini, G. Rozza, and A. Quarteroni. Numerical sim-
ulation of sailing boats dynamics and shape optimization. In preparation,
2011.

[48] G. I. Magoon and C. Pfrommer. Ironing out IGES. Computer-Aided Engi-
neering, 8(1):52–54, 1989.

BIBLIOGRAPHY 107

[49] A. Manzoni. Ottimizzazione di forma per problemi di fluidodinamica: anal-
isi teorica e metodi numerici. Master degree thesis, Politecnico di Milano,
2008.

[50] A. Manzoni, A. Quarteroni, and G. Rozza. Shape optimization for viscous
flows by reduced basis method and free form deformation. Submitted, 2010.

[51] B. Mohammadi and O. Pironneau. Applied Shape Optimization for Fluids.
Oxford University Press, Oxford, 2001.

[52] A. M. Morris, C. B. Allen, and T. C. S. Rendall. CFD-based optimization of
aerofoils using radial basis functions for domain element parameterization
and mesh deformation. Int. J. Numer. Methods Fluids, 58:827–860, 2008.

[53] J. Nocedal and S. J. Wright. Numerical optimization. Springer, 1999.

[54] N. Parolini and A. Quarteroni. Mathematical models and numerical simu-
lations for the America’s Cup. Comp. Meth. Appl. Mech. Eng., 194:1001–
1026, 2005.

[55] L. Piegl and W. Tiller. The NURBS book. Springer-Verlag, 1997.

[56] H. Prautzsch, W. Boehm, and M. Paluszny. Bézier and B-Spline techniques.
Springer-Verlag, 2002.

[57] C. Praveen and R. Duvigneau. Low cost PSO using metamodels and inexact
pre-evaluation: Application to aerodynamic shape design. Comp. Meth.
Appl. Mech. Eng., 198:1087–1096, 2009.

[58] L. Quartapelle and F. Auteri. Fluid dynamics. Course material, Politecnico
di Milano, 2004.

[59] A. Quarteroni. Numerical Models for Differential Problems, volume 2 of
MS&A. Springer, Milano, 2009.

[60] A. Quarteroni and G. Rozza. Optimal control and shape optimization in
aorto-coronaric bypass anastomoses. Mathematical Models and Methods in
Applied Sciences (M3AS), 13(12):1801–23, 2003.

[61] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Springer,
Milano, 2007.

108 BIBLIOGRAPHY

[62] A. Quarteroni and F. Saleri. Scientific Computing with MATLAB and
Octave. Springer-Verlag Berlin, 2006.

[63] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differen-
tial Equations. Springer-Verlag, 2 edition, 1997.

[64] D. F. Rogers. An introduction to NURBS. Morgan Kaufmann, 2001.

[65] G. Rozza. Controllo Ottimale e ottimizzazione di forma in fluidodinamica
computazionale. Master degree thesis, Politecnico di Milano, 2002.

[66] G. Rozza. On Optimization, Control and Shape Design for an arterial by-
pass. International Journal Numerical Methods for Fluids, 47(10-11):1411–
1419, 2005. Special issue for ICFD Conference, University of Oxford.

[67] G. Rozza. An introduction to reduced basis method for parametrized PDEs.
In World Scientific, editor, Applied and Industrial Mathematics in Italy, vol-
ume 3 of Series on Advances in Mathematics for Applied Sciences, Vol. 82,
pp. 508-519, Singapore, 2009. Proceedings of SIMAI Conference, Italian So-
ciety for Applied and Industrial Mathematics, Rome, Italy, 14-18 September
2008. EPFL-IACS report 01.2009.

[68] G. Rozza, D. B. P. Huynh, C. N. Nguyen, and A. T. Patera. Real-time reli-
able simulation of heat transfer phenomena. In ASME - American Society
of Mechanical Engineers - Heat Transfer Summer Conference Proceedings,
S. Francisco, CA, US, July 2009, Paper HT 2009-8812.

[69] G. Rozza, T. Lassila, A. Manzoni, E. Ronquist (ed.), and J. Hesthaven (ed.).
Reduced basis approximation for shape optimization in thermal flows with
a parametrized polynomial geometric map. In Springer Heildeberg, editor,
Spectral and High Order Methods for Partial Differential Equations, Lec-
tures Notes in Comp. Science and Engineering, volume 76, pages 307–315,
2010. Selected papers from the ICOSAHOM 09 Conference, NTU Trond-
heim, Norway, 22-26 June 2009.

[70] G. Rozza, A. Manzoni, J. Pereira (ed.), and A. Sequeira (ed.). Model
order reduction by geometrical parametrization for shape optimization in
computational fluid dynamics. In Proceedings of ECCOMAS 2010 CFD
Conference, Lisbon, Portugal, June 2010.

BIBLIOGRAPHY 109

[71] D. Rypl and Z. Bittnar. Triangulation of 3D surfaces reconstructed by
interpolating subdivision. Computers and Structures, 82:2093–2103, 2004.

[72] J. A. Samareh. A survey of shape parameterization techniques. In CEAS
AIAA ICASE NASA Langley International Forum on Aeroelasticity and
Structural Dynamics, June 1999.

[73] J. A. Samareh. A novel Shape Parameterization Approach. In Tech. Rep.
NASA-TM-1999-209116, March 1999.

[74] T. W. Sederberg and S. R. Parry. Free-form deformation of solid geo-
metric models. In Proceedings of SIGGRAPH - Special Interest Group on
GRAPHics and Interactive Techniques, volume 20, pages 151–159, August
1986.

[75] C.-K. Shene. CS3621 Introduction to Computing with Geometry Notes.
Michigan Technological University, 1997-2008.

[76] W. Song and A. J. Keane. A study of shape parameterisation methods for
airfoil optimization. In Proceedings 10th AIAA/ISSMO Multidisciplinary
Anal. Optim. Conf., volume 6, 2004.

[77] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant
of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci.
Stat. Comput., 13(2):631–633, 1992.

[78] H. A. van der Vorst. Iterative Krylov Methods for Large Linear systems.
Cambridge University Press, Cambridge, ISBN: 0521818281, April 2003.

[79] J. Wang and T. Jiang. Nonrigid registration of brain MRI using NURBS.
Journal Pattern Recognition Letters, 28(2), 2007.

